WO2016114295A1 - 二酸化バナジウム - Google Patents

二酸化バナジウム Download PDF

Info

Publication number
WO2016114295A1
WO2016114295A1 PCT/JP2016/050813 JP2016050813W WO2016114295A1 WO 2016114295 A1 WO2016114295 A1 WO 2016114295A1 JP 2016050813 W JP2016050813 W JP 2016050813W WO 2016114295 A1 WO2016114295 A1 WO 2016114295A1
Authority
WO
WIPO (PCT)
Prior art keywords
vanadium dioxide
vanadium
atoms
less
atom
Prior art date
Application number
PCT/JP2016/050813
Other languages
English (en)
French (fr)
Inventor
廣瀬 左京
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016114295A1 publication Critical patent/WO2016114295A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to vanadium dioxide or vanadium dioxide doped with other atoms.
  • Control of the heat generated from the heat source as described above is performed by a cooling fan, a heat pipe, a heat sink, a thermal sheet, a Peltier element, or the like, which is an existing heat management solution.
  • a cooling device in which a fan or a Peltier element is combined is described (see Patent Document 1).
  • the cooling device combining the heat sink and the fan or the Peltier element as described above has a relatively complicated structure and increases the size of the device, particularly for thin devices such as smartphones and tablet terminals. Hateful. Furthermore, since power is consumed, it is disadvantageous from the viewpoint of low power consumption (battery life).
  • the temperature is currently controlled only by means of heat dissipation through the housing, and the heat source and the housing are thermally coupled by a thermal sheet or the like to release heat.
  • Heat dissipation through the enclosure as described above is limited because the surface area of the enclosure is limited. Therefore, the temperature of each heat source is measured, and when the temperature exceeds a predetermined temperature, the performance of the CPU or the like is limited (suppressing heat generation itself). That is, the temperature rise of the housing may hinder the performance of the CPU or the like.
  • heat dissipation through such a case in other words, heat dissipation by heat transfer to the entire device, heat is also transferred to the battery, which can lead to a decrease in battery capacity over time.
  • vanadium oxide specifically, vanadium dioxide
  • vanadium dioxide is a ceramic material that absorbs heat accompanying a crystal structure phase transition or a magnetic phase transition
  • vanadium dioxide may have different endothermic amounts and endothermic characteristics depending on the sample, even if the VO 2 structure is shown by X-ray structural analysis.
  • vanadium dioxide As a heat storage, cold storage or cooling element, it is necessary to produce and use vanadium dioxide having a large endothermic amount and exhibiting endothermic / exothermic characteristics according to the purpose.
  • heat absorption and heat generation heat dissipation
  • heat dissipation may occur quickly in addition to a large amount of heat absorption. desirable. This is because if it takes time to dissipate the absorbed heat, if the element to be cooled again generates heat, the absorbed heat cannot be exhausted, so that the heat cannot be sufficiently absorbed.
  • an object of the present invention is to provide vanadium dioxide having a large endothermic amount and causing an endothermic heat generation or vanadium dioxide doped with other atoms.
  • vanadium dioxide is a material (VO 2 ) in which V and O are 1: 2, but the contents of vanadium and oxygen deviate from the stoichiometric composition to some extent. Even in the case where the same crystal structure is maintained, the composition of vanadium and oxygen in the vanadium dioxide crystal differs from the stoichiometric amount depending on the sample. It has been found that the endothermic characteristics change. That is, it has been found that by controlling the vanadium dioxide composition, in other words, the vanadium content in vanadium dioxide within a desired range, a desired endothermic amount and endothermic property can be obtained.
  • V metal amount the metal vanadium content in vanadium dioxide determined by a titration method.
  • vanadium dioxide can be specified by the amount of oxygen
  • it has been difficult to directly determine the amount of oxygen in vanadium dioxide.
  • the present inventor has found that it can be indirectly quantified by the weight increase rate when vanadium dioxide (VO 2 ) is oxidized to vanadium pentoxide (V 2 O 5 ), and the difference in vanadium dioxide is also determined by this weight increase rate. Found that can be clarified.
  • vanadium dioxide or vanadium dioxide doped with other atoms wherein the metal vanadium content is 60.8 wt% or more and 61.4 wt% or less
  • the other atom is an atom selected from the group consisting of W, Ta, Mo and Nb,
  • W the content mole part of the other atom when the total of vanadium and the other atom is 100 mole parts is greater than 0 mole part and 1.5 mole parts or less
  • the other atom is Ta, Mo, or Nb
  • the content mole part of the other atom when the total of vanadium and the other atom is 100 mole parts is greater than 0 mole part and 10 mole parts or less.
  • V 1-x M x O 2 (Wherein M is W, Ta, Mo or Nb; x is greater than or equal to 0, When M is W, x is 0.015 or less, When M is Ta, Mo or Nb, x is 0.1 or less. ) Vanadium dioxide represented by or vanadium dioxide doped with other atoms, Vanadium dioxide or vanadium dioxide doped with other atoms, characterized in that the metal vanadium content is 60.8 wt% or more and 61.4 wt% or less, is provided.
  • vanadium dioxide having an increase in weight at 650 ° C. with respect to the weight at 200 ° C. in the simultaneous differential thermo-thermogravimetric measurement is 8.8% or more and 9.5% or less.
  • Vanadium dioxide doped with other atoms wherein the other atoms are atoms selected from the group consisting of W, Ta, Mo and Nb; When the other atom is W, the content mole part of the other atom when the total of vanadium and the other atom is 100 mole parts is greater than 0 mole part and 1.5 mole parts or less, When the other atom is Ta, Mo, or Nb, the content mole part of the other atom when the total of vanadium and the other atom is 100 mole parts is greater than 0 mole part and 10 mole parts or less. ) Is provided.
  • V 1-x M x O 2 (Wherein M is W, Ta, Mo or Nb; x is greater than or equal to 0, When M is W, x is 0.015 or less, When M is Ta, Mo or Nb, x is 0.1 or less. ) Vanadium dioxide or vanadium dioxide doped with other atoms, and the weight increase rate at 650 ° C. with respect to the weight at 200 ° C. in the differential thermal-thermogravimetric simultaneous measurement is 8.8% to 9.5% Vanadium dioxide or other vanadium dioxide doped with other atoms is provided.
  • a ceramic material containing the above vanadium dioxide and / or vanadium dioxide doped with other atoms.
  • a cooling device comprising the vanadium dioxide or other atom-doped vanadium dioxide or the ceramic material.
  • an electronic component comprising the cooling device.
  • an electronic apparatus comprising the cooling device or the electronic component.
  • a process for producing vanadium dioxide or vanadium dioxide doped with other atoms wherein the vanadium dioxide or vanadium dioxide doped with other atoms has a metal vanadium content of 60%. 8 wt% or more and 61.4 wt% or less, or the rate of increase in weight at 650 ° C. with respect to the weight at 200 ° C. in the differential thermal-thermogravimetric simultaneous measurement should be 8.8% or more and 9.5% or less.
  • a method for controlling the endothermic or heat dissipation properties of vanadium dioxide or other atoms doped vanadium dioxide wherein the metal in vanadium dioxide or other atoms doped vanadium dioxide.
  • the vanadium content is made 60.8 wt% or more and 61.4 wt% or less, or the rate of increase in weight at 650 ° C. with respect to the weight at 200 ° C. in simultaneous differential thermal-thermogravimetric measurement is 8.8% or more and 9
  • a method is provided which is characterized by being made 5% or less.
  • the endothermic amount is large and the endothermic exotherm occurs rapidly. Vanadium can be provided.
  • FIG. 1 shows the results of DSC measurement of sample number 1.
  • FIG. 2 shows the results of DSC measurement of sample number 2.
  • FIG. 3 shows the results of DSC measurement of sample number 3.
  • FIG. 4 shows the result of TG-DTA measurement of sample number 1.
  • FIG. 5 shows the results of TG-DTA measurement of sample numbers 1 to 3.
  • vanadium dioxide of the present invention and vanadium dioxide doped with other atoms absorb heat by latent heat.
  • Such vanadium dioxide and vanadium dioxide doped with other atoms temporarily absorb excess heat due to latent heat, and release the absorbed heat when the temperature is lowered. As a result, a high cooling effect can be obtained.
  • vanadium dioxide and vanadium dioxide doped with other atoms are usually used as a ceramic material containing this as a main component.
  • the “main component” means a component contained in the ceramic material by 60% by mass or more, particularly 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 98% by mass.
  • it means a component contained in, for example, 98.0 to 99.8% by mass or substantially 100%.
  • vanadium dioxide means vanadium oxide exhibiting a VO 2 structure by X-ray structural analysis (typically using a powder X-ray diffraction method).
  • vanadium dioxide doped with other atoms means that vanadium atoms in vanadium dioxide are substituted with other atoms, and an oxidation which shows a corresponding crystal structure by X-ray structural analysis. It means vanadium.
  • the vanadium dioxide or vanadium dioxide doped with other atoms of the present invention may contain impurities other than vanadium dioxide or vanadium dioxide doped with other atoms.
  • Impurities include, but are not limited to, other ceramic materials such as vanadium dioxide or vanadium oxide other than vanadium dioxide doped with other atoms, such as V 2 O 3 and V 2 O 5 , such as glass, and Na, Al , Cr, Fe, Ni, Mo, Sb, Ca, Si and oxides thereof.
  • the amount of the impurities is preferably as small as possible, for example, 5% by mass or less, preferably 3% by mass or less, more preferably 1% by mass or less, still more preferably 0.5% by mass or less, and even more preferably 0%. .2% by mass or less, and most preferably substantially 0% by mass (that is, substantially free of impurities).
  • the other atoms are not particularly limited as long as they can be contained in vanadium oxide as a doping element, but are preferably W, Ta, Mo, and Nb, and more preferably W.
  • the content mole part of the other atom when the total of vanadium and other atoms is 100 mole parts is preferably larger than 0 mole part and 1.5 mole parts or less.
  • the content mole part of the other atom when the total of vanadium and the other atom is 100 mole parts is preferably greater than 0 mole part and 10 mole parts or less.
  • the vanadium dioxide or vanadium dioxide doped with other atoms of the present invention has the formula: V 1-x M x O 2 (Wherein M is W, Ta, Mo or Nb; x is greater than or equal to 0, When M is W, x is 0.015 or less, When M is Ta, Mo or Nb, x is 0.1 or less. ) Or one or more oxides represented by: Note that M corresponds to “another atom” and is not an essential component, and the molar portion of M may be 0. In this case, the compound represented by the above formula is vanadium dioxide.
  • the vanadium oxide of the present invention is a compound represented by the above formula where x is 0, that is, vanadium dioxide.
  • the vanadium oxide of the present invention is a compound in which M is W, that is, tungsten-doped vanadium dioxide.
  • the temperature at which the vanadium oxide of the present invention undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, etc.
  • the temperature is 20 to 100 ° C., preferably 40 to 60. It is preferable that the phase transition occurs at ° C.
  • the temperature at which the vanadium oxide of the present invention undergoes phase transition is adjusted by adding (doping) other atoms and adjusting the addition amount of the atoms. Can do.
  • the vanadium dioxide or vanadium dioxide doped with other atoms of the present invention has a metal vanadium content of 60.8 wt% or more and 61.4 wt% or less.
  • the metal vanadium content can be measured by a titration method.
  • the vanadium oxide of the present invention has a large latent heat and can absorb and generate heat in a short time.
  • the vanadium dioxide of the present invention or vanadium dioxide doped with other atoms is 650 ° C. relative to the weight at 200 ° C. in differential thermal-thermogravimetric measurement (TG-DTA).
  • the rate of increase in the weight of the “amount” is “8.8% or more and 9.5% or less”. This weight increase is attributed to the oxidation of VO 2 to V 2 O 5 in the case of vanadium dioxide, for example. This weight increase rate may be different even between samples showing similar crystal structures by X-ray structural analysis.
  • the vanadium oxide of the present invention has a large latent heat and can absorb and generate heat in a short time.
  • vanadium dioxide or vanadium dioxide doped with other atoms consists essentially of vanadium and oxygen
  • the weight increase rate and metal vanadium Content becomes a value according to the composition ratio of V and O in vanadium oxide, and the amount of oxygen in vanadium oxide can be quantified indirectly. That is, by controlling the weight increase rate and the metal vanadium content, it becomes possible to determine the amount of latent heat (endothermic amount) and the endothermic characteristics.
  • an error may occur in the weight increase rate, so that a raw material having the highest possible purity is used, or metal vanadium is used. It is preferable to control the content.
  • the weight increase rate of the vanadium dioxide of the present invention or vanadium dioxide doped with other atoms is 8.8% or more and 9.5% or less, and the metal vanadium content is 60.8 wt%. It is 61.4 wt% or less.
  • the method for setting the metal vanadium content to 60.8 wt% or more and 61.4 wt% or less is not particularly limited.
  • Vanadium oxide for example, V 2 O 3 , V 2 O 5, etc.
  • V 2 O 3 vanadium oxide
  • V 2 O 5 vanadium oxide
  • the method of processing at high temperature is mentioned.
  • Conditions for performing the above method for example, temperature, time, pressure, atmosphere, and the like may vary depending on the raw materials used, but those skilled in the art can appropriately determine them. Can be adjusted.
  • the ceramic material of the present invention even when the weight increase rate is 8.8% or more and 9.5% or less, it is processed at a high temperature or heat treatment in a reducing atmosphere while controlling the oxygen partial pressure as described above. be able to.
  • vanadium dioxide or other atom doped vanadium dioxide is heat treated in a reducing atmosphere to provide vanadium dioxide or other atom doped dioxide having the desired weight gain or vanadium content. Vanadium can also be obtained.
  • the present invention provides a method for producing vanadium dioxide or vanadium dioxide doped with other atoms, wherein the vanadium dioxide or vanadium dioxide doped with other atoms has a metal vanadium content of 60.8 wt% or more. Or a weight increase rate at 650 ° C. with respect to the weight at 200 ° C. in simultaneous differential thermal-thermogravimetric measurement is 8.8% or more and 9.5% or less. Provide a way to do it.
  • the present invention also provides a method for controlling the endothermic or heat dissipation properties of vanadium dioxide or vanadium dioxide doped with other atoms, wherein the vanadium dioxide or vanadium dioxide doped with other atoms has a metal vanadium content. 60.8 wt% or more and 61.4 wt% or less, or the rate of increase in weight at 650 ° C with respect to the weight at 200 ° C in the differential thermal-thermogravimetric simultaneous measurement is 8.8% or more and 9.5% or less To provide a method characterized by:
  • the vanadium dioxide or vanadium dioxide doped with other atoms preferably has a latent heat amount of 40 J / g or more, more preferably 42 J / g or more, and further preferably 45 J / g or more.
  • latent heat is the total amount of thermal energy required when the phase of a substance changes, and in this specification, solid-solid phase transitions such as electrical, magnetic, and structural phase transitions are used. This refers to the amount of heat generated and absorbed.
  • the vanadium dioxide or vanadium dioxide doped with other atoms is preferably in the form of particles (powder).
  • Average particle diameter of the core part of vanadium dioxide or vanadium dioxide doped with other atoms (D50: The particle size distribution is determined on a volume basis, and the cumulative value is 50% in the cumulative curve with the total volume being 100%.
  • the particle size is not particularly limited, but is, for example, 0.1 to several hundred ⁇ m, specifically 0.1 to 900 ⁇ m, typically about 0.2 to 50 ⁇ m, and preferably 0.5 to 50 ⁇ m.
  • the average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the average particle diameter is preferably 0.2 ⁇ m or more from the viewpoint of ease of handling, and is preferably 50 ⁇ m or less from the viewpoint that it can be more densely molded.
  • the vanadium oxide or ceramic material of the present invention described above can be formed into a desired shape, for example, a sheet shape, a block shape, and other various shapes.
  • the molding method is not particularly limited, and compression, sintering, or the like can be used.
  • the vanadium oxide or ceramic material of the present invention has a large latent heat, that is, a large endothermic amount, and an endothermic heat is generated quickly, so that it can be suitably used as a cooling device.
  • the present invention also provides a cooling device comprising the vanadium oxide or ceramic material of the present invention described above.
  • the shape of the cooling device of the present invention is not particularly limited, and can be any shape.
  • the cooling device of the present invention may be block-shaped. By making it into a block shape, the whole volume becomes large and more heat can be absorbed.
  • the cooling device of the present invention may be in the form of a sheet. By making it into a sheet shape, the surface area increases, so it becomes easy to release absorbed heat to the outside.
  • the powder may be laminated or wrapped with a metal foil or sheet.
  • the cooling device of the present invention is installed in another member, for example, a protective cover for protecting the cooling device, a heat conductive part such as a metal for enhancing heat conductivity, an insulating sheet for ensuring insulation, and an electronic device.
  • a protective cover for protecting the cooling device for example, a heat conductive part such as a metal for enhancing heat conductivity, an insulating sheet for ensuring insulation, and an electronic device.
  • Members for example, pressure-sensitive adhesive sheets, pins, nails, etc. may be included.
  • the present invention also provides an electronic component having the cooling device of the present invention and an electronic apparatus having the cooling device or the electronic component.
  • the electronic component is not particularly limited, but for example, an integrated circuit (IC) such as a central processing unit (CPU), a power management IC (PMIC), a power amplifier (PA), a transceiver IC, and a voltage regulator (VR).
  • IC integrated circuit
  • CPU central processing unit
  • PMIC power management IC
  • PA power amplifier
  • VR voltage regulator
  • LEDs Light emitting diodes
  • LEDs incandescent bulbs
  • semiconductor lasers and other light emitting elements semiconductor lasers and other light emitting elements
  • FETs field effect transistors
  • heat source components such as lithium ion batteries, substrates, heat sinks, housings, etc. Examples include parts generally used in electronic equipment.
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, and a hard disk drive.
  • VO 2 and shifter were weighed to a predetermined composition ratio. These raw materials were put in a polypot container together with partially stabilized zirconia (PSZ) balls, pure water, and a dispersant, and wet pulverized for 16 hours. Next, the mixed slurry was dried and sized.
  • PSZ partially stabilized zirconia
  • heat treatment was performed while controlling the oxygen partial pressure in a water / hydrogen / nitrogen atmosphere.
  • the amount of water (water vapor) and nitrogen are constant during the treatment in the section above 150 ° C, and the oxygen partial pressure is sampled in the furnace gas and monitored with a zirconia oxygen partial pressure gauge to determine the amount of hydrogen as desired.
  • the pressure was controlled to be a pressure.
  • the temperature profile was 900 ° C. to 1000 ° C. at a rate of temperature increase of 300 K / hour, held for 2 hours, and decreased at a rate of 300 K / minute. Natural cooling was performed from 300 ° C.
  • samples were prepared by heat-treating the synthesized VO 2 (sample number 3) at 500 to 900 ° C. shown in Table 2 for 2 hours in an atmosphere of N 2 20 L, H 2 100 cc / min. did.
  • the temperature of the reduction heat treatment for sample numbers 23 to 27 is shown in Table 2 below.
  • the numbers marked with * are comparative examples.
  • DSC Differential scanning calorimetry
  • DSCQ2000 TA Instruments
  • the DSC measurement was performed by sweeping the temperature from 0 ° C. to 100 ° C. and then to 0 ° C. at 10 K / min in a nitrogen atmosphere. From the DSC results, the endothermic amount absorbed at the time of temperature rise and the intensity ratio (exothermic / endothermic ratio) of the endothermic peak at the time of temperature rise and temperature drop were determined. Representatively, the results of sample numbers 1 to 3 are shown in FIGS. 1 to 3, respectively.
  • V metal vanadium
  • the amount of V metal of the prepared sample was measured by a titration method. First, a sample was sampled, added to a sulfuric acid aqueous solution, heated on a hot plate at about 60 ° C. to be completely dissolved, and cooled to room temperature. Then, phosphoric acid was added, and ammonium iron (II) sulfate hexahydrate as a standard solution was added and stirred. From the resulting solution, a potassium permanganate standard solution was dropped, and the point where the color of the solution was reddish purple was the end point.
  • II ammonium iron
  • V metal in the sample was quantified. This method is essentially based on the same measurement principle as that of a general method for quantifying the amount of V metal.
  • Other reagents may be used as the reducing agent and oxidizing agent, and other procedures may be used as long as the amount of V metal can be determined from the change in the valence of vanadium by oxidation-reduction titration.
  • TG-DTA Thermogravimetry / Differential Thermal Analysis; made by SEIKO
  • thermogravimetric analysis was performed while heating to 700 ° C. at a rate of 10 K / min. . Based on the weight after holding at 200 ° C., the weight increase rate up to 650 ° C. was calculated.
  • FIG. 4 shows the result of TG-DTA measurement of sample number 1. From FIG. 4, it was confirmed that the weight of vanadium oxide increased from about 400 ° C., and oxidation from VO 2 to V 2 O 5 began. Then, it was confirmed that the increase in weight was saturated at about 600 ° C. and became V 2 O 5 completely.
  • Sample Nos. 1 to 3 were identified as VO 2 by powder X-ray diffraction measurement, but it was confirmed that the oxidation behavior, the amount of weight increase (TG-DTA measurement), and the amount of V metal were different. It was.
  • sample numbers 1 to 3 were identified as VO 2 by powder X-ray diffraction measurement, but each exhibited different DSC characteristics.
  • Sample No. 1 had a steep peak shape during endothermic exotherm and an exothermic / endothermic peak ratio of 1.0.
  • the sample No. 3 had a slightly low peak height during exotherm and an exothermic / endothermic peak ratio of 0.7.
  • the sample No. 2 had a broad peak during heat release and an exothermic / endothermic peak ratio of 0.3.
  • sample No. 5 has a weight increase rate of 8.7% and a V metal amount of 60.2%, which is outside the scope of the present invention, and about 5% of V 2 O 5 is detected from the XRD measurement. It is considered that the amount of endotherm was reduced because oxygen was synthesized under excessive heat treatment conditions.
  • the sample No. 2 had an endotherm of 40 J / g or more, but the endothermic peak ratio was 0.3, and the exothermic peak was not steep but gentle as shown in FIG.
  • Sample No. 2 has a weight increase rate of 9.57% and a V metal amount of 61.7%, which is outside the scope of the present invention, and is deficient in oxygen even when it is determined to be VO 2 by XRD measurement. Therefore, it is considered that the heat generation characteristics are broad.
  • Sample Nos. 1, 3, 4, 6 and 7 in which the weight increase rate or the amount of V metal is within the range of the present invention have an ideal characteristic that a sufficiently large endothermic amount is obtained and the endothermic exothermic peak is steep. It was confirmed that it was obtained.
  • the samples obtained by reducing heat treatment in the nitrogen-hydrogen atmosphere using the synthesized VO 2 raw material (sample numbers 23 to 27), the amount of V metal increases as the reduction temperature increases. It was confirmed that the amount of oxygen was reduced. Similarly, the rate of increase in weight also increased as the reduction temperature increased.
  • the sample of Sample No. 27 had a weight increase rate and a V metal amount outside the range of the present invention, and the endothermic peak ratio was small. Even from this result, even if it is set to VO 2 from the XRD measurement, not all of them show excellent endothermic characteristics, and it is managed using the weight increase rate or V metal amount index obtained from TG-DTA. , Confirmed that it is necessary to control.
  • the cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 吸熱量が大きく、吸発熱が速やかに起きる、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおいて、金属バナジウム含有量を60.8wt%以上61.4wt%以下とするか、あるいは示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下とする。

Description

二酸化バナジウム
 本発明は、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムに関する。
 近年の電子機器の性能向上を背景に、熱源となるCPU(中央処理装置)、パワーアンプ、FET(電界効果トランジスタ)、IC(集積回路)、ボルテージレギュレータなどの電子部品の数が増加し、投入されるエネルギーの増加も重なって、発熱の問題が顕著化している。特に、スマートフォンやタブレット型端末のようなモバイル機器では、この熱により、電池の容量が劣化したり、構成する電子機器の信頼性に深刻な影響を与えたりする問題がある。したがって、機器の内部の温度を、より高度に制御することが求められている。
 上記のような熱源から生じた熱の制御は、既存の熱マネジメントソリューションである冷却ファン、ヒートパイプ、ヒートシンク、サーマルシート、ペルチェ素子などにより行われており、例えば、特許文献1には、ヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が記載されている(特許文献1を参照)。
 しかしながら、上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、構造が比較的複雑であることに加え、機器が大きくなり、特にスマートフォンやタブレット型端末等の薄型の機器には使用しにくい。さらには、電力を消費するので、低消費電力(バッテリーの持ち時間)の観点からも不利である。
 したがって、スマートフォンやタブレット型端末等の薄型の機器では、現状、温度の制御は、筺体を介する放熱による手段しかなく、熱源と筺体をサーマルシートなどで熱結合し熱を逃がしている。
特開2010-223497号公報
 上記のような筺体を介する放熱は、筺体の表面積が限られていることから、限界がある。したがって、各熱源の温度を測定し、温度が所定の温度以上になった場合に、CPUなどのパフォーマンスを制限する(発熱自体を抑制する)ことで対応している。即ち、筺体の温度上昇が、CPU等のパフォーマンスの妨げになっていることがある。当然、このような筐体を介した放熱、換言すれば機器全体への伝熱による放熱においては、バッテリーにも熱が伝わることになり、電池容量の経時的な低下に繋がっているともいえる。
 そこで、本発明者は、結晶構造相転移や磁気相転移等に伴い熱を吸収するセラミック材料である酸化バナジウム(具体的には二酸化バナジウム)を、電子機器の熱源付近に配置することにより、無電源で使用可能な冷却デバイスとすることを検討した。しかしながら、本発明者の研究により、二酸化バナジウムは、X線構造解析によりVO構造を示したとしても、試料によって吸熱量および吸発熱特性が異なる場合があることが明らかになった。
 二酸化バナジウムを蓄熱、保冷または冷却素子として用いるためには、大きな吸熱量を有し、目的に応じた吸発熱特性を示す二酸化バナジウムを製造および使用する必要がある。具体的には、短いタイムスケールで発熱を繰り返す素子を、酸化バナジウムから構成される冷却デバイスで冷却する場合には、吸熱量が大きいことに加え、吸熱および発熱(放熱)が速やかに起きることが望ましい。これは吸熱した熱の放熱に時間をかけてしまうと、冷却したい素子が再度発熱した場合、吸った熱を吐き出しきれていないために、十分に熱を吸うことができなくなるためである。
 従って、本発明の目的は、吸熱量が大きく、吸発熱が速やかに起こる二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムを提供することにある。
 本発明者は、上記課題について検討した結果、二酸化バナジウムは、VとOが1:2で構成される材料(VO)であるが、バナジウムと酸素の含有量がある程度化学量論組成からずれた場合であっても同じ結晶構造を維持することができ、二酸化バナジウムの結晶中のバナジウムと酸素の組成が、試料によっては化学量論量と異なり、この組成の違いにより、吸熱量が低下したり、吸発熱特性が変化したりすることを見出した。即ち、二酸化バナジウムの組成、換言すれば二酸化バナジウム中のバナジウムの含有割合を所望の範囲に制御することにより、所望の吸熱量および吸発熱特性を得ることができることを見出した。
 本発明者は、滴定法により求められる二酸化バナジウム中の金属バナジウム含有量(以下、「Vメタル量」ともいう)に基づいて、二酸化バナジウムの違いを明確にすることができることを見出した。
 また、二酸化バナジウムの組成は、酸素量によっても特定され得るが、従来、二酸化バナジウム中の酸素量を直接定量することは困難であった。しかしながら、本発明者は、二酸化バナジウム(VO)から五酸化バナジウム(V)に酸化する際の重量増加率により間接的に定量できることを見出し、この重量増加率によっても二酸化バナジウムの違いを明確にすることができることを見出した。
 本発明の第1の要旨によれば、金属バナジウム含有量が60.8wt%以上61.4wt%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム
(ここに、上記他の原子は、W、Ta、MoおよびNbからなる群から選択される原子であり、
 他の原子がWである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく1.5モル部以下であり、
 他の原子がTa、MoまたはNbである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく10モル部以下である。)
が提供される。
 本発明の第2の要旨によれば、式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、
 xは0以上であって、
 MがWである場合、xは0.015以下であり、
 MがTa、MoまたはNbである場合、xは0.1以下である。)
で表される二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムであって、
 金属バナジウム含有量が60.8wt%以上61.4wt%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムが提供される。
 本発明の第3の要旨によれば、示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率が、8.8%以上9.5%以下である二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム
(ここに、上記他の原子は、W、Ta、MoおよびNbからなる群から選択される原子であり、
 他の原子がWである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく1.5モル部以下であり、
 他の原子がTa、MoまたはNbである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく10モル部以下である。)
が提供される。
 本発明の第4の要旨によれば、式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、
 xは0以上であって、
 MがWである場合、xは0.015以下であり、
 MがTa、MoまたはNbである場合、xは0.1以下である。)
二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムであって、示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率が、8.8%以上9.5%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムが提供される。
 本発明の第5の要旨によれば、上記の二酸化バナジウムおよび/または他の原子がドープされた二酸化バナジウムを含有するセラミック材料が提供される。
 本発明の第6の要旨によれば、上記二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムあるいは上記セラミック材料を含んで成る冷却デバイスが提供される。
 本発明の第7の要旨によれば、上記冷却デバイスを有して成る電子部品が提供される。
 本発明の第8の要旨によれば、上記冷却デバイスまたは上記電子部品を有して成る電子機器が提供される。
 本発明の第9の要旨によれば、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの製造方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法が提供される。
 本発明の第10の要旨によれば、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの吸熱または放熱特性を制御する方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、あるいは示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法が提供される。
 本発明によれば、金属バナジウム含有量を60.8wt%以上61.4wt%以下とすることにより、吸熱量が大きく、かつ、吸発熱が速やかに起こる二酸化バナジウムおよび他の原子がドープされた二酸化バナジウムを提供することができる。
図1は、試料番号1のDSC測定の結果を示す。 図2は、試料番号2のDSC測定の結果を示す。 図3は、試料番号3のDSC測定の結果を示す。 図4は、試料番号1のTG-DTA測定の結果を示す。 図5は、試料番号1~3のTG-DTA測定の結果を示す。
 本発明の二酸化バナジウムおよび他の原子がドープされた二酸化バナジウム(以下、これらを総称して「本発明の酸化バナジウム」とも言う)は、潜熱により熱を吸収する。このような二酸化バナジウムおよび他の原子がドープされた二酸化バナジウムは、過剰な熱を潜熱により一時的に吸収し、温度が低下した際に吸収した熱を放出することにより、時間的な熱の平準化をすることで、高い冷却効果を得ることが可能になる。
 上記二酸化バナジウムおよび他の原子がドープされた二酸化バナジウムは、通常、これを主成分とするセラミック材料として用いられる。
 上記「主成分」とは、セラミック材料中に60質量%以上含まれる成分を意味し、特に80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%あるいは実質的に100%含まれる成分を意味する。
 本発明において、「二酸化バナジウム」とは、X線構造解析(典型的には、粉末X線回折法を用いる)によりVO構造を示す酸化バナジウムを意味する。本明細書において、「他の原子がドープされた二酸化バナジウム」とは、二酸化バナジウムにおけるバナジウム原子が他の原子に置換されているものを意味し、X線構造解析により対応する結晶構造を示す酸化バナジウムを意味する。
 本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム以外の不純物を含み得る。不純物としては、特に限定されないが、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム以外の酸化バナジウム、例えばV、V等、他のセラミック材料、例えばガラス、ならびにNa、Al、Cr、Fe、Ni、Mo、Sb、Ca、Siおよびこれらの酸化物等が挙げられる。
 上記不純物の量は、可能な限り少ないことが好ましく、例えば5質量%以下、好ましくは3質量%以下、より好ましくは1質量%以下、さらに好ましくは0.5質量%以下、さらにより好ましくは0.2質量%以下、最も好ましくは実質的に0質量%(即ち、実質的に不純物を含まない)である。
 上記他の原子としては、ドープ元素として酸化バナジウムに含ませ得るものであれば特に限定されないが、好ましくはW、Ta、MoおよびNbであり、より好ましくはWであり得る。
 他の原子がWである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、好ましくは0モル部より大きく1.5モル部以下である。
 他の原子がTa、MoまたはNbである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、好ましくは0モル部より大きく10モル部以下である。
 一の態様において、本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、
 xは0以上であって、
 MがWである場合、xは0.015以下であり、
 MがTa、MoまたはNbである場合、xは0.1以下である。)
で表される1種またはそれ以上の酸化物であり得る。なお、Mは「他の原子」に相当し、必須成分ではなく、Mの含有モル部は0であってもよい。この場合、上記式で表される化合物は二酸化バナジウムとなる。
 一の態様において、本発明の酸化バナジウムは、xが0である上記式で表される化合物、即ち二酸化バナジウムである。
 別の態様において、本発明の酸化バナジウムは、MがWである化合物、即ちタングステンドープ二酸化バナジウムである。
 上記本発明の酸化バナジウムが相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば冷却対象物がCPUである場合、昇温時20~100℃、好ましくは40~60℃で相転移することが好ましい。上記本発明の酸化バナジウムが相転移する温度、即ち、この本発明の酸化バナジウムが潜熱を示す温度は、他の原子を添加(ドープ)し、その原子の添加量を調節することにより調整することができる。
 一の態様において、本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量は、60.8wt%以上61.4wt%以下である。金属バナジウム含有量は、滴定法により測定することができる。金属バナジウム含有量を上記の範囲内とすることにより、本発明の酸化バナジウムは、大きな潜熱を有し、また、吸発熱を短時間に行うことが可能になる。
 別の態様において、本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、示差熱-熱重量同時測定(TG-DTA:Thermogravimetry/Differential Thermal Analysis)において、200℃での重量に対する650℃での重量の増加率「以下、単に「重量増加率」ともいう」が、8.8%以上9.5%以下である。この重量増加は、例えば二酸化バナジウムである場合、VOがVに酸化されることに起因する。この重量増加率は、X線構造解析により同様の結晶構造を示す試料間であっても異なり得る。そして、この重量増加率を上記の範囲内とすることにより、本発明の酸化バナジウムは、大きな潜熱を有し、また、吸発熱を短時間に行うことが可能になる。
 通常、物質中の酸素の組成を定量することは困難であるが、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、本質的にバナジウムと酸素から成るので、上記の重量増加率および金属バナジウム含有量は、酸化バナジウム中のVとOの組成割合に応じた値となり、酸化バナジウム中の酸素量を間接的に定量化できる。即ち、重量増加率および金属バナジウム含有量を制御することにより、潜熱量(吸熱量)および吸発熱特性を決定することが可能になる。尚、本発明の酸化バナジウムが、酸素含有量に影響を及ぼしやすい不純物を含有する場合には、重量増加率に誤差が生じ得ることから、可能な限り高い純度を有する原料を用いるか、金属バナジウム含有量を制御することが好ましい。
 一の態様において、本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの重量増加率は8.8%以上9.5%以下であり、かつ、金属バナジウム含有量は、60.8wt%以上61.4wt%以下である。
 本発明の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおいて、金属バナジウム含有量を、60.8wt%以上61.4wt%以下とする方法としては、特に限定されないが、例えば、原料として種々の酸化バナジウム(例えば、V、V等)を、適当な割合、好ましくはVとOの化学量論比が1:2となるように混合し、酸素分圧を制御しながら、高温で処理する方法が挙げられる。
 上記の方法を行う条件、例えば、温度、時間、圧力、雰囲気等は、用いる原料により変化し得るが、当業者であれば適宜決定することができ、例えば試料をモニターしながら処理し、適宜条件を調整することができる。
 本発明のセラミック材料において、重量増加率を8.8%以上9.5%以下とする場合も、上記と同様に酸素分圧を制御しながら、高温で処理するか、還元雰囲気下で熱処理することができる。
 別法として、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムを、還元雰囲気下で熱処理することにより、所望の重量増加率または金属バナジウム含有量を有する二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムを得ることもできる。
 従って、本発明は、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの製造方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、あるいは、示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法を提供する。
 また、本発明は、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの吸熱または放熱特性を制御する方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、あるいは示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法を提供する。
 上記二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、好ましくは40J/g以上、より好ましくは42J/g以上、さらに好ましくは45J/g以上の潜熱量を有する。このように大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。ここに、「潜熱」とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、本明細書においては、固体-固体の相転移、例えば電気・磁気・構造相転移に伴う吸発熱量の事をいう。
 上記二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムは、粒子(粉末)状であることが好ましい。二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムのコア部の平均粒径(D50:体積基準で粒度分布を求め、全体積を100%とした累積曲線において、累積値が50%となる点の粒径)は、特に限定されないが、例えば、0.1~数百μm、具体的には0.1~900μm、代表的には約0.2~50μmであり、好ましくは、0.5~50μmである。かかる平均粒径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。平均粒径は、取り扱いの容易性の観点から、0.2μm以上であることが好ましく、より緻密に成形できるという観点から、50μm以下であることが好ましい。
 上記した本発明の酸化バナジウムまたはセラミック材料は、所望の形状、例えばシート状、ブロック状、その他種々の形状に成形することができる。成形方法は、特に限定されず、圧縮、焼結等を用いることができる。また、樹脂、ゴムまたはガラス等のバインダーと混合して成形してもよい。さらに、流動性を有する樹脂等と混合して、ペーストとしてもよい。
 本発明の酸化バナジウムまたはセラミック材料は、上記したように、潜熱が大きく、即ち、吸熱量が大きく、また、吸発熱が速やかに生じることから、冷却デバイスとして好適に用いることができる。
 従って、本発明は、上記した本発明の酸化バナジウムまたはセラミック材料を含んで成る冷却デバイスをも提供する。
 本発明の冷却デバイスの形状は、特に限定されず、任意の形状とすることができる。
 一の態様において、本発明の冷却デバイスは、ブロック状であり得る。ブロック状とすることにより、全体の体積が大きくなり、より多くの熱を吸収することができる。また、別の態様において、本発明の冷却デバイスは、シート状であり得る。シート状とすることにより、表面積が増加するので、吸収した熱を外部に放出しやすくなる。また粉体を金属箔、シートなどでラミネートした形状もしくは包んだ形状でもよい。
 本発明の冷却デバイスは、他の部材、例えば冷却デバイスを保護する保護カバー、伝熱性を高めるための金属等の熱伝導性部、絶縁性を確保するための絶縁性シート、電子機器に設置するための部材(例えば、粘着シート、ピン、爪等)などを有していてもよい。
 また、本発明は、本発明の冷却デバイスを有して成る電子部品、ならびに冷却デバイスまたは電子部品を有して成る電子機器をも提供する。
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、リチウムイオンバッテリー、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末、ハードディスクドライブ等が挙げられる。
 以上、本発明について説明したが、本発明は上記の態様に限定されるものではなく、種々の改変を行うことができる。
 実施例
 出発原料として、下記の材料を準備した。
・バナジウム原料
 純度99.8%以上の三酸化バナジウム(V
 純度99.9%の五酸化バナジウム(V
 純度99.8%以上の二酸化バナジウム(VO
・吸熱開始温度を制御する為のシフター
 酸化タングステン(WO
 酸化タンタル(Ta
 酸化ニオブ(Nb
 酸化モリブデン(MoO
 二酸化バナジウム(試料番号1~7)については、VおよびVをV/V=25/25の混合比で秤量し、また、シフターとしてのW、Mo、TaまたはNbを添加(ドープ)した二酸化バナジウム(試料番号8~22)については、VOとシフターを所定の組成比に秤量した。これらの原料をポリポット容器に部分安定化ジルコニア(PSZ:Partial Stabilized Zirconia)ボールと純水、分散剤とともに入れて、16時間湿式粉砕を行った。次いで、混合スラリーを乾燥、整粒した。
 その後、水/水素/窒素雰囲気中で酸素分圧を制御しながら熱処理した。熱処理時、150℃以上の区間では水(水蒸気)量と窒素量は処理中一定とし、酸素分圧は炉内ガスをサンプリングしてジルコニア式酸素分圧計でモニターしながら水素量を所望の酸素分圧になるように制御した。温度プロファイルは昇温300K/時間の速度で900℃~1000℃まで昇温し、2時間保持して300K/分の速度で降温した。300℃からは自然冷却とした。得られた試料について、粉末X線回折(XRD:X-ray Diffraction)測定により結晶構造を解析して、目的の試料が得られていることを確認した。ただし、試料番号5のみVが約5%存在した。試料番号1~22についての詳細な熱処理条件を下記表1に示す。尚、*を付した番号は比較例である。
Figure JPOXMLDOC01-appb-T000001
 また、合成したVO(試料番号3)を表2に示す500~900℃の温度で2時間、N 20L、H 100cc/分の雰囲気で熱処理した試料(試料番号23~27)を作製した。試料番号23~27についての還元熱処理の温度を下記表2に示す。尚、*を付した番号は比較例である。
Figure JPOXMLDOC01-appb-T000002
 評価
 上記で作製した酸化バナジウム(二酸化バナジウムおよび各原子でドープされた二酸化バナジウム)の粉末の特性を評価した。
・示差走査熱量測定(DSC:Differential scanning calorimetry;DSCQ2000(TAインスツルメント製))
 DSC測定は、窒素雰囲気中で0℃から100℃、そして0℃へ温度を10K/分で掃引して測定を行った。DSCの結果より、昇温時に吸収する吸熱量、そして昇温時、降温時の吸発熱ピークの強度比(発熱/吸熱比)を求めた。代表して試料番号1~3の結果を、それぞれ図1~3に示す。
・金属バナジウム(Vメタル)量測定
 作製した試料のVメタル量は、滴定法により測定した。
 まず試料をサンプリングし、硫酸水溶液に添加、ホットプレートで約60℃で加熱して完全に溶解させて、室温まで冷却した。その後、リン酸を添加し、標準溶液である硫酸アンモニウム鉄(II)六水和物を添加して撹拌した。得られた溶液に対して、過マンガン酸カリウム標準溶液を滴下し、溶液の色が赤紫を呈した点を終点とし、VOを溶解した水溶液、過マンガン酸カリウムの濃度、そして滴定量から試料中のVメタル量を定量した。本手法は本質的に一般的なVメタル量を定量する方法と同様の測定原理に基づいている。また還元剤、酸化剤として他の試薬を用いてもよく、酸化還元滴定でバナジウムの価数変化からVメタル量を定量できれば他の手順で行ってもよい。
・示差熱-熱重量同時測定(TG-DTA:Thermogravimetry/Differential Thermal Analysis;SEIKO製)
 TG-DTA測定は、200℃まで大気中で昇温し、そこで10分保持し、吸着水等の影響をなくした後に、10K/分の速度で700℃まで加熱しながら熱重量分析を行った。200℃保持後の重量を基準とし、650℃までの重量増加率を算出した。
 上記の試験の結果を下記表3に示す。尚、*を付した番号は比較例である。
Figure JPOXMLDOC01-appb-T000003
 図4は試料番号1のTG-DTA測定の結果を示す。図4から、約400℃から酸化バナジウムの重量が増加し、VOからVへの酸化が始まることが確認された。そして、約600℃で重量増加が飽和して、完全にVになることが確認された。
 表3および図5から、試料番号1~3は、粉末X線回折測定によりVOと同定されたが、酸化挙動および重量増加量(TG-DTA測定)ならびにVメタル量が異なることが確認された。
 さらに、表3および図1~3から明らかなように、試料番号1~3は、粉末X線回折測定によりVOと同定されたが、それぞれ、異なるDSC特性を示した。試料番号1の試料は、吸発熱時のピークの形が急峻であり、発熱/吸熱ピーク比が1.0であった。また、試料番号3の試料は、発熱時のピークの高さがやや低く、発熱/吸熱ピーク比は0.7であった。一方、試料番号2の試料は、放熱時のピークがブロードであり、発熱/吸熱ピーク比は0.3であった。
 以上の結果から、粉末X線回折測定によりVOと同定された試料であっても、金属バナジウム量の違いにより、吸発熱特性が有意に異なることが明らかとなった。また、同様に、重量増加率の違いによっても、吸発熱特性が有意に異なることが明らかとなった。これは、VとOの比率が、VOの化学量論量の1:2からずれているためであると考えられ、このずれが、吸発熱特性に大きく影響を与えていると考えられる。
 表1に示されるように、VおよびVの原料から異なる熱処理条件で作製した試料(試料番号1~7)では、試料番号5のみ吸熱量が40J/g未満となった。試料番号5の試料は、重量増加率が8.7%、Vメタル量が60.2%であり、本発明の範囲外であり、XRD測定から5%程度のVが検出され、酸素が過剰な熱処理条件で合成されたため、吸熱量が低下したと考えられる。また、試料番号2の試料は、吸熱量が40J/g以上であったが、吸発熱ピーク比が0.3であり、図2に示すように発熱ピークが急峻ではなく緩やかになっている。従って、本試料では本発明の目的とする冷却素子としての使用に適さない。試料番号2の試料は、重量増加率が9.57%、Vメタル量が61.7%であり、本発明の範囲外であり、XRD測定からVOとされた場合あっても酸素が欠損した状態にあり、その為、発熱特性がブロードになったと考えられる。重量増加率またはVメタル量が本発明の範囲内である試料番号1、3、4、6および7では、十分大きな吸熱量が得られ、かつ、吸発熱ピークが急峻である理想的な特性が得られることが確認された。
 また、試料番号8~22の結果から、W、Mo、TaまたはNbを温度シフターとして添加した試料においてもVOの場合と同様の結果が得られた。尚、Wの添加量が1.5at%以下である場合に、吸熱量が40J/gを超え、特に良好であった。一方、Wの添加量が2.0at%である試料番号9および10は、重量増加率およびVメタル量が本発明の範囲内であっても、吸熱量がやや低かった。同様に、Mo、NbおよびTaの添加量が10at%以下である場合に、吸熱量が40J/gを超え、特に良好であった。
 以上の結果から、Vメタル量または重量増加率を指標に用いることにより、所望の特性、本実施例においては、40J/g以上の吸熱量および0.6以上の発熱/吸熱ピーク比を有する二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムを得ることが可能となることが確認された。
 さらに、合成したVO原料を用いて窒素-水素雰囲気中で還元熱処理して得られた試料は(試料番号23~27)、還元温度が高くなるにつれて、Vメタル量が大きくなり、換言すれば酸素量が少なくなることが確認された。また、同様に重量増加率も還元温度が高くなるにつれて大きくなった。得られた試料のうち、試料番号27の試料は、重量増加率およびVメタル量が本発明の範囲外であり、吸発熱ピーク比が小さくなった。この結果からも、XRD測定からVOとされた場合あっても、全てが優れた吸発熱特性を示すわけではなく、TG-DTAから求められる重量増加率またはVメタル量の指標を用いて管理、制御する必要があることが確認された。
 本発明の冷却デバイスは、例えば、熱対策問題が顕著化している小型通信端末の冷却デバイスとして利用することができる。

Claims (13)

  1.  金属バナジウム含有量が60.8wt%以上61.4wt%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム:
     ここに、上記他の原子は、W、Ta、MoおよびNbからなる群から選択される原子であり、
     他の原子がWである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく1.5モル部以下であり、
     他の原子がTa、MoまたはNbである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく10モル部以下である。
  2.  式:V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、
     xは0以上であって、
     MがWである場合、xは0.015以下であり、
     MがTa、MoまたはNbである場合、xは0.1以下である。)
    で表される二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムであって、
     金属バナジウム含有量が60.8wt%以上61.4wt%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム。
  3.  示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率が、8.8%以上9.5%以下である二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム:
     ここに、上記他の原子は、W、Ta、MoおよびNbからなる群から選択される原子であり、
     他の原子がWである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく1.5モル部以下であり、
     他の原子がTa、MoまたはNbである場合、バナジウムと他の原子の合計を100モル部としたときの他の原子の含有モル部は、0モル部より大きく10モル部以下である。
  4.  式:V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、
     xは0以上であって、
     MがWである場合、xは0.015以下であり、
     MがTa、MoまたはNbである場合、xは0.1以下である。)
    で表される二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムであって、示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率が、8.8%以上9.5%以下であることを特徴とする二酸化バナジウムまたは他の原子がドープされた二酸化バナジウム。
  5.  xが0であることを特徴とする、請求項2または4に記載の二酸化バナジウム。
  6.  MがWであることを特徴とする、請求項2または4に記載の他の原子がドープされた二酸化バナジウム。
  7.  請求項1~6のいずれかに記載の二酸化バナジウムおよび/または他の原子がドープされた二酸化バナジウムを含有するセラミック材料。
  8.  二酸化バナジウムおよび他の原子がドープされた二酸化バナジウムの含有量が96質量%以上であることを特徴とする請求項7に記載のセラミック材料。
  9.  請求項1~6のいずれかに記載の二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムまたは請求項7または8に記載のセラミック材料を含んで成る冷却デバイス。
  10.  請求項9に記載の冷却デバイスを有して成る電子部品。
  11.  請求項9に記載の冷却デバイスまたは請求項10に記載の電子部品を有して成る電子機器。
  12.  二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの製造方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、あるいは示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法。
  13.  二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムの吸熱または放熱特性を制御する方法であって、二酸化バナジウムまたは他の原子がドープされた二酸化バナジウムにおける金属バナジウム含有量を、60.8wt%以上61.4wt%以下にするか、あるいは示差熱-熱重量同時測定における200℃での重量に対する650℃での重量の増加率を、8.8%以上9.5%以下にすることを特徴とする方法。
PCT/JP2016/050813 2015-01-15 2016-01-13 二酸化バナジウム WO2016114295A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-006076 2015-01-15
JP2015006076 2015-01-15

Publications (1)

Publication Number Publication Date
WO2016114295A1 true WO2016114295A1 (ja) 2016-07-21

Family

ID=56405836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050813 WO2016114295A1 (ja) 2015-01-15 2016-01-13 二酸化バナジウム

Country Status (1)

Country Link
WO (1) WO2016114295A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080173A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 燃料電池
JP2011136873A (ja) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム
JP2014198645A (ja) * 2013-03-29 2014-10-23 積水化学工業株式会社 複合酸化バナジウム粒子の製造方法
US20150056515A1 (en) * 2013-08-26 2015-02-26 Samsung Electronics Co., Ltd. Active material, method of preparing the active material electrode including the active material, and secondary battery including the electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010080173A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 燃料電池
JP2011136873A (ja) * 2009-12-28 2011-07-14 Tsurumi Soda Co Ltd 二酸化バナジウム微粒子、その製造方法、及びサーモクロミックフィルム
JP2014198645A (ja) * 2013-03-29 2014-10-23 積水化学工業株式会社 複合酸化バナジウム粒子の製造方法
US20150056515A1 (en) * 2013-08-26 2015-02-26 Samsung Electronics Co., Ltd. Active material, method of preparing the active material electrode including the active material, and secondary battery including the electrode

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENMOU ZHENG: "Preparation and Characterization of V02 Nanopowders", JOURNAL OF SOLID STATE CHEMISTRY, vol. 156, no. Issue 2, pages 274 - 280 *
MENGNA LUO: "The effect of stoichimetry of V02 nano-grain ceramics on their thermal and electrical properties", MATERIALS CHEMISTRY AND PHYSICS, vol. 104, no. Issues 2-3, 15 August 2007 (2007-08-15), pages 258 - 260 *

Similar Documents

Publication Publication Date Title
Xie et al. Low-temperature synthesis of Li7La3Zr2O12 with cubic garnet-type structure
Xu et al. Influence of zinc on electrical and microstructural properties of CaCu3Ti4O12 ceramics prepared by sol–gel process
EP3758120B1 (en) All-solid battery
JP6038886B2 (ja) 窒化アルミニウム粉末の製造方法
US9868672B2 (en) Ceramic material
WO2016114296A1 (ja) 二酸化バナジウム
Hu et al. Microwave dielectric properties of SiO2 ceramics with addition of Li2TiO3
JP6460109B2 (ja) セラミック材料
WO2016006338A1 (ja) 複合体および冷却デバイス
Paul et al. Dielectric switching above a critical frequency occured in iron mullite composites used as an electronic substrate
Deshmukh et al. Synthesis and microwave dielectric properties of BBSZ-zinc silicate based material for LTCC applications
WO2016114295A1 (ja) 二酸化バナジウム
WO2015033691A1 (ja) 冷却デバイス
WO2019026773A1 (ja) 蓄熱粒子、恒温デバイス用組成物および恒温デバイス
JP6589975B2 (ja) 二酸化バナジウム
Jyotsana et al. Synthesis and electrical properties of Y 2 O 3: Dy 3+ & Eu 3+ nanoparticles
JP2007311387A (ja) 酸化物磁性材料
Hakimyfard et al. Lx‐β‐NiMoO4 (L= None, Al, V, Fe, Co) Nanocomposites: Facile Solid‐State Synthesis, Magnetic, Optical, and Electrochemical Properties
Tian et al. High energy storage performance in Bi (Mg0. 5Hf0. 5) O3 modified NaNbO3-based ceramics
Rehani et al. Role of Eu and Fe in TiO2 for magneto-opto-electronic applications
JP6344472B2 (ja) バナジウム含有セラミック材料および冷却デバイス
WO2016006337A1 (ja) 酸化バナジウムを含有する焼結体
WO2017006726A1 (ja) 冷却デバイス
JP2017139188A (ja) イオン伝導体の経時劣化を抑制する方法
JP6414636B2 (ja) 冷却デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16737366

Country of ref document: EP

Kind code of ref document: A1