WO2016114148A1 - 画像処理装置、画像処理方法、及び記録媒体 - Google Patents

画像処理装置、画像処理方法、及び記録媒体 Download PDF

Info

Publication number
WO2016114148A1
WO2016114148A1 PCT/JP2016/000210 JP2016000210W WO2016114148A1 WO 2016114148 A1 WO2016114148 A1 WO 2016114148A1 JP 2016000210 W JP2016000210 W JP 2016000210W WO 2016114148 A1 WO2016114148 A1 WO 2016114148A1
Authority
WO
WIPO (PCT)
Prior art keywords
light image
spectral reflectance
image
visible light
infrared light
Prior art date
Application number
PCT/JP2016/000210
Other languages
English (en)
French (fr)
Inventor
真人 戸田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/540,330 priority Critical patent/US10354366B2/en
Priority to JP2016569295A priority patent/JP6677172B2/ja
Publication of WO2016114148A1 publication Critical patent/WO2016114148A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration using two or more images, e.g. averaging or subtraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image

Definitions

  • the present invention relates to an image processing apparatus and the like, and relates to image processing using a near-infrared light image.
  • ⁇ Visible light image taken at the time of fog or haze will be white or low contrast due to the influence of particles in the atmosphere and image quality will deteriorate.
  • the reflected light of the subject is diffused and attenuated by particles in the atmosphere along the path from the subject to the camera.
  • ambient light is also diffused by particles in the atmosphere, and the diffused light also reaches the image sensor of the camera. Therefore, the light irradiated to the imaging sensor of the camera is a mixed light of the attenuated reflected light from the subject to be photographed and the diffused ambient light.
  • Patent Document 1 discloses a technique for enhancing a visible light image by separating a visible light image into a luminance signal and a color difference signal and synthesizing a near-infrared signal with the luminance signal.
  • Patent Document 2 discloses a low saturation region, in which a luminance signal of a target image is long for a region where a difference between a contour component of a long wavelength luminance signal and a contour component of a visible light luminance signal is equal to or greater than a predetermined reference value.
  • a technique for enhancing a visible light image by replacing it with a wavelength luminance signal is disclosed.
  • Patent Document 1 or Patent Document 2 is luminance signal enhancement processing, and the visibility of the enhanced image is improved.
  • the image quality for color information or the like has not been improved.
  • Non-Patent Document 1 is known as image processing for improving image quality including color information.
  • Non-Patent Document 1 uses prior knowledge that a pixel having a value of 0 exists in any color channel around each pixel in good weather. When restoring the degradation, the restoration performance of the visible light image is improved by applying a constraint that the local gradient amounts of the restored visible light image and the near-infrared light image are similar.
  • Patent Document 3 describes a spectroscopic technique for measuring a fluorescence wavelength region and a long wavelength region outside the fluorescence wavelength region in a sample containing a fluorescent material.
  • Japanese Patent Application Laid-Open No. 2004-228561 describes a technique for matching an object color due to reflected light of a printed material with a light source color on a display screen.
  • Patent Document 5 describes a technique for converting an infrared image into a visible image or a near-infrared image.
  • Non-Patent Document 1 assumes that the ratio of the local gradient amount between the restored visible light image and the near-infrared light image is 1: 1.
  • the ratio between the visible light image and the local gradient amount of the near-infrared light image depends on the reflection characteristics of the object, so that the relationship does not necessarily hold. As a result, an excessive emphasis or lack of deterioration restoration occurs in the restored image after processing, and a high-quality restored image cannot be generated.
  • An object of the present invention is to provide an image processing apparatus or the like that solves the above-described problems.
  • An image processing apparatus includes a spectral reflectance in a visible light wavelength region and a spectral in a near infrared light wavelength region at each pixel position of a visible light image and a near infrared light image in which a subject is captured.
  • An estimation unit is provided for estimating a spectral reflectance ratio that represents a ratio to the reflectance.
  • the image processing apparatus further includes a restoration unit that multiplies the estimated spectral reflectance ratio by the luminance of the near-infrared light image at each pixel position to generate a restored visible light image.
  • An image processing method includes a spectral reflectance in a visible light wavelength region and a spectral in a near infrared wavelength region at each pixel position of a visible light image and a near-infrared light image in which an imaging target is captured.
  • a spectral reflectance ratio representing a ratio to the reflectance is estimated.
  • the image processing method multiplies the estimated spectral reflectance ratio by the brightness of the near-infrared light image at each pixel position to generate a restored visible light image.
  • a recording medium that stores a program according to one embodiment of the present invention includes a spectral reflectance and a near red in a visible light wavelength region at each pixel position of a visible light image and a near-infrared light image in which a photographing target is photographed.
  • Estimate the spectral reflectance ratio that represents the ratio of the spectral reflectance in the outside light wavelength region multiply the estimated spectral reflectance ratio by the brightness of the near-infrared light image at each pixel position, and restore the visible Generate a light image.
  • the present invention can remove the influence of particles in the atmosphere from the visible light image obtained by photographing the object to be photographed and improve the quality of the restored image.
  • It is a block diagram which shows the structure of the image processing apparatus by 1st Embodiment. 3 is a flowchart illustrating an operation of the image processing apparatus according to the first embodiment. It is a block diagram which shows the structure of the image processing apparatus by 2nd Embodiment. It is a flowchart which shows operation
  • FIG. 14 is a flowchart illustrating an operation of a modification of the image processing apparatus according to the third embodiment. It is a block diagram which shows the structure of the image processing apparatus by 4th Embodiment. It is a flowchart which shows operation
  • FIG. 3 is a block diagram showing a hardware configuration for realizing the image processing apparatus according to the first to fourth embodiments by a computer. It is a model figure showing the path
  • FIG. 1 is a block diagram showing the configuration of the image processing apparatus according to the first embodiment.
  • the image processing apparatus 10 according to the first embodiment includes an estimation unit 11 and a restoration unit 12.
  • a visible light image obtained by photographing the photographing object (hereinafter referred to as a photographed visible light image) and a near infrared light image obtained by photographing the photographing object (photographed near infrared light image) are input to the estimation unit 11.
  • the estimation unit 11 estimates a spectral reflectance ratio that represents a ratio between the spectral reflectance in the visible light wavelength region and the spectral reflectance in the near-infrared light wavelength region of the imaging target at each pixel position.
  • the estimation of the spectral reflectance ratio in the estimation unit 11 will be described.
  • the reflected light from the imaging target is diffused and attenuated by fog particles in the path from the imaging target to the camera.
  • ambient light is also diffused by fog particles, and the diffused light reaches an image sensor (not shown) of the camera. Therefore, the light irradiated to the imaging sensor of the camera is a mixed light of the reflected light from the photographic subject that has been attenuated and the diffused ambient light.
  • Equation (1) is a fog model described in Non-Patent Document 1.
  • the luminance I ir (x) of the near-infrared light observed at the pixel position x is equal to the luminance J ir (x) of the reflected light at the same position, the luminance A ir of the ambient light, and the near-infrared light.
  • the atmospheric transmittance t ir (x) it is expressed by equation (2).
  • I c (x) t (x) ⁇ J c (x) + (1 ⁇ t (x)) ⁇ A c
  • I ir (x) t ir (x) ⁇ J ir (x) + (1 ⁇ t ir (x)) ⁇ A ir
  • J c (x) l (x) ⁇ R c (x)
  • J ir (x) l (x) ⁇ R ir (x) (4)
  • the atmospheric transmittance t ir (x) When the atmospheric transmittance t ir (x) is set to 1.0, the observed near-infrared light I ir (x) represented by the equation (2) can be rewritten as the equation (5).
  • I ir (x) J ir (x) (5)
  • the transmittance of light in the atmosphere depends on the size and density of particles in the atmosphere and the distance to the object to be photographed. Further, the shadow of the photographing target in the image depends on the intensity of the irradiation light and the shape of the photographing target. For this reason, the atmospheric transmittance t (x) of visible light and the parameter l (x) representing the shadow are uncorrelated, and the relationship can be expressed as in Expression (6).
  • spectral reflectances R c (x) and R ir (x) are constant in a region M ⁇ N (M and N are integers) centered on the pixel, and the estimation unit 11 Using the formula (7), the spectral reflectance ratio ⁇ (x) in the pixel is estimated.
  • the ambient light Ac is calculated from the relationship between the luminance in the observed image and the number of pixels having the luminance. For example, as shown in FIG. 13, a histogram of each color channel of the observation image is generated. In the graph of FIG. 13, the horizontal axis indicates the luminance in the color channel, and the vertical axis indicates the number of pixels (appearance frequency) of that luminance.
  • the luminance A c of the ambient light, or multiplied by a certain predetermined ratio may be or is provided a limiter.
  • the restoration unit 12 receives the captured near-infrared light image and the spectral reflectance ratio estimated by the estimation unit 11 and generates a restored visible light image.
  • Expressions (3) and (4) are integrated, the relationship between the reflected light in the visible light wavelength region and the reflected light in the near-infrared light wavelength region is expressed as Expression (8).
  • the restoration unit 12 uses each equation (8) to calculate each pixel.
  • the estimated spectral reflectance ratio is multiplied by the brightness of the captured near-infrared light image to generate a restored visible light image.
  • FIG. 2 is a flowchart showing the operation of the image processing apparatus according to the first embodiment.
  • the photographed visible light image and the photographed near-infrared light image are input to the estimation unit 11.
  • the estimation unit 11 estimates a spectral reflectance ratio that represents a ratio between the spectral reflectance in the visible light wavelength region and the spectral reflectance in the near-infrared light wavelength region of the imaging target at each pixel position (S1).
  • the restoration unit 12 generates a restored visible light image based on the captured near-infrared light image and the spectral reflectance ratio estimated by the estimation unit 11.
  • S2 Effects of the first embodiment
  • the image processing apparatus 10 according to the first embodiment can remove the influence of particles in the atmosphere from the visible light image obtained by photographing the subject, and improve the quality of the restored image.
  • the reason is that the spectral reflectance ratio representing the ratio of the spectral reflectance in the visible light wavelength region to be imaged at each pixel position and the spectral reflectance in the near-infrared wavelength region is estimated, and the estimated spectral at each pixel position is estimated. This is because a restored visible light image is generated using the reflectance ratio and the captured near-infrared light image.
  • FIG. 3 is a block diagram showing the configuration of the image processing apparatus according to the second embodiment of the present invention.
  • the image processing apparatus 20 according to the second embodiment includes an estimation unit 11, a restoration unit 12, and a first correction unit 23.
  • the image processing apparatus 20 according to the second embodiment is different from the image processing apparatus 10 according to the first embodiment in that a first correction unit 23 is provided.
  • a first correction unit 23 is provided.
  • the captured visible light image (captured visible light image) and the spectral reflectance ratio estimated by the estimation unit 11 are input to the first correction unit 23 of the image processing apparatus 20. Subsequently, the first correction unit 23 corrects the spectral reflectance ratio of each target pixel to be imaged using the information of the captured visible light image and the spectral reflectance ratio of the peripheral region of the target pixel. (Hereinafter referred to as a corrected spectral reflectance ratio) is estimated.
  • the spectral reflectance ratio estimated by the estimation unit 11 is estimated using Expression (7) on the assumption that the spectral reflectance is constant in the peripheral region centered on the pixel.
  • Expression (7) On the assumption that the spectral reflectance is constant in the peripheral region centered on the pixel.
  • an error occurs in the spectral reflectance ratio estimated by Expression (7), and the restoration process by the restoration unit 12 may fail. Therefore, the first correction unit 23 extracts pixel groups around the target pixel that can be regarded as the same region by using the information of the visible light image, and the target pixel based on the spectral reflectance ratio of these pixel groups. The spectral reflectance ratio is corrected.
  • the spectral reflectance ratio is smoothed by a composite weight based on the color information of the visible light image.
  • a method of calculating the composite weight there is a method of using the hue H in the HSV color system at each pixel of the visible light image.
  • the combined weight w (x, y) at the pixel position y of the peripheral pixel with respect to the spectral reflectance ratio of the pixel of interest at the pixel position x uses the distance d (x, y) between the hues expressed by Expression (9). Is calculated by equation (10).
  • H (x) and H (y) are hues H in the HSV color system
  • ⁇ H 2 is a preset parameter.
  • the first correction unit 23 calculates a composite weight for a predetermined peripheral pixel including the target pixel, and combines the spectral reflectance ratio ⁇ (y) in the peripheral pixel using Expression (11), thereby correcting spectral spectroscopy.
  • the reflectance ratio ⁇ ′ (x) is calculated.
  • the first correction unit 23 may use the hue h in the L * C * h color system to calculate the distance between the hues of the equation (9).
  • an angle ⁇ formed by the color position of the pixel of interest and the color positions of peripheral pixels around the origin on the uv plane in the yuv color system may be used.
  • the calculation of the composite weight according to the equation (10) may use another function having a characteristic of calculating a larger value as the distance d (x, y) is smaller and calculating a smaller value as the value is larger. .
  • a method for calculating the synthesis weight a method of reading the synthesis weight corresponding to the distance d (x, y) from a table that holds the synthesis weight for the distance between hues set manually in advance may be used.
  • the restored near-infrared light image and the corrected spectral reflectance ratio from the first correction unit 23 are input to the restoration unit 12 of the image processing apparatus 20, and a restored visible light image is generated.
  • the input to the restoration unit 12 is changed from the spectral reflectance ratio to the corrected spectral reflectance ratio.
  • FIG. 4 is a flowchart showing the operation of the image processing apparatus according to the second embodiment.
  • a captured visible light image and a captured near-infrared light image are input to the estimation unit 11 of the image processing apparatus 20.
  • the estimation unit 11 estimates the spectral reflectance ratio that is the ratio of the spectral reflectance in the visible light wavelength region and the spectral reflectance in the near-infrared light wavelength region of the subject to be imaged at each pixel position (S101).
  • the first correction unit 23 of the image processing apparatus 20 receives the captured visible light image and the spectral reflectance ratio estimated by the estimation unit 11.
  • the first correction unit 23 corrects the spectral reflectance ratio at each pixel of interest using information of the captured visible light image and the spectral reflectance ratio around the pixel of interest, and calculates the corrected spectral reflectance ratio (S102). .
  • the restoration unit 12 of the image processing apparatus 20 receives the captured near-infrared light image and the corrected spectral reflectance ratio corrected by the first correction unit 23, and generates a restored visible light image (S103). (Effect of 2nd Embodiment) Similar to the image processing apparatus 10 of the first embodiment, the image processing apparatus 20 of the second embodiment removes the influence of particles in the atmosphere from the visible light image obtained by capturing the imaging target, and improves the quality of the restored image. Can be improved.
  • the image processing apparatus 20 can reduce the failure of the visible light image restoration process due to the existence of a pattern to be imaged or a boundary between the imaged objects.
  • the reason is that the first correction unit 23 calculates pixel groups around the target pixel that can be regarded as the same region by using the information of the visible light image, and based on the spectral reflectance ratio of these pixel groups, This is because the spectral reflectance ratio of the target pixel is corrected.
  • FIG. 5 is a block diagram showing a configuration of an image processing apparatus according to the third embodiment of the present invention.
  • the image processing apparatus 30 according to the third embodiment includes an estimation unit 11, a restoration unit 12, a first correction unit 23, and a second correction unit 34.
  • the image processing apparatus 30 according to the third embodiment is different from the image processing apparatus 20 according to the second embodiment in that a second correction unit 34 is provided.
  • a second correction unit 34 is provided.
  • different configurations will be mainly described, and the same components as those in the second embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the photographed near-infrared light image is input to the second correction unit 34, and the second correction unit 34 estimates the amount of deterioration due to the influence of particles in the atmosphere at each pixel of the photographed near-infrared light image. Deterioration is reduced from the optical image to generate a corrected near-infrared light image (hereinafter, corrected near-infrared light image).
  • the atmospheric transmittance t ir (x) of the near-infrared light in Expression (2) is calculated.
  • the process is executed with the setting set to 1.0.
  • the second correction unit 34 estimates the atmospheric transmittance t ir (x) in each pixel of the captured near-infrared light image, and reduces deterioration due to the influence of particles in the atmosphere.
  • the atmospheric transmittance t ir (x) at the target pixel is expressed as in Expression (13).
  • the reflected light J ir (x) in the near-infrared region at the pixel position x can be calculated using Expression (14).
  • I ir (x) represents the observed near infrared light
  • a ir represents the ambient light (near infrared light).
  • the second correction unit 34 calculates the reflected light J ir (x) in each pixel using Expression (14), and outputs it as a corrected near-infrared light image.
  • the second correction unit 34 may provide an upper limit value for the minimum pixel value p ir (x) when calculating the atmospheric transmittance in Expression (13). Alternatively, correction such as multiplication by a preset coefficient may be performed. Further, the atmospheric transmittance t ir (x) may be corrected using the brightness of the near-infrared light image around the pixel of interest or the calculated value of the atmospheric transmittance.
  • the composite weight w ir (x, y) at the pixel position y of the peripheral pixel with respect to the target pixel at the pixel position x is calculated using Expression (15), and is calculated for the peripheral pixel using Expression (16).
  • ⁇ ir 2 is a preset parameter.
  • the photographic visible light image and the corrected near-infrared light image from the second correction unit 34 are input to the estimation unit 11 of the image processing apparatus 30, and the spectral reflectance ratio is estimated.
  • the estimation process in the estimation unit 11 of the image processing device 30 a part of the input to the estimation unit 11 is changed from a captured near-infrared light image to a corrected near-infrared light image.
  • the restoration unit 12 of the image processing apparatus 30 receives the corrected spectral reflectance ratio from the first correction unit 23 and the corrected near-infrared light image from the second correction unit 34, and generates a restored visible light image. .
  • a part of the input to the restoration unit 12 is changed from a captured near-infrared light image to a corrected near-infrared light image.
  • FIG. 6 is a flowchart showing the operation of the image processing apparatus according to the third embodiment.
  • the captured near-infrared light image is input to the second correction unit 34 of the image processing apparatus 30.
  • the second correction unit 34 estimates the amount of deterioration due to particles in the atmosphere in the captured near-infrared light image, corrects the captured near-infrared light image by reducing the deterioration, and generates a corrected near-infrared light image ( S201).
  • the captured visible light image and the corrected near-infrared light image from the second correction unit 34 are input to the estimation unit 11 of the image processing device 30.
  • the estimation unit 11 estimates the spectral reflectance ratio in the visible light wavelength region and the near-infrared light wavelength region of the imaging target at each pixel position (S202).
  • the first correction unit 23 of the image processing device 30 receives the captured visible light image and the spectral reflectance ratio from the estimation unit 11.
  • the first correction unit 23 corrects the spectral reflectance ratio at each pixel of interest using information of the captured visible light image and the spectral reflectance ratio around the pixel of interest, and calculates a corrected spectral reflectance ratio (S203). .
  • the restored near-infrared light image from the second correction unit 34 and the corrected spectral reflectance ratio from the first correction unit 23 are input to the restoration unit 12 of the image processing device 30 to generate a restored visible light image ( S204).
  • the image processing apparatus 30 of the third embodiment removes the influence of particles in the atmosphere from the visible light image obtained by capturing the imaging target, and improves the quality of the restored image. Can be improved.
  • the image processing apparatus 30 can reduce failure in restoration processing of a visible light image due to the presence of a pattern to be imaged or a boundary between the imaged objects.
  • the image processing apparatus 30 of the third embodiment can generate a restored image with higher quality than that of the second embodiment.
  • the reason is that the second correction unit 34 calculates the atmospheric transmittance in each pixel of the near-infrared light image, and executes correction for reducing deterioration due to particles in the air in the near-infrared light image.
  • FIG. 7 is a block diagram illustrating a configuration of an image processing apparatus 31 which is a modification of the third embodiment.
  • the image processing device 31 illustrated in FIG. 7 includes an estimation unit 11, a restoration unit 12, and a second correction unit 34.
  • the captured near-infrared light image is input to the second correction unit 34 of the image processing device 31.
  • the second correction unit 34 estimates the amount of deterioration due to the influence of particles in the atmosphere in the captured near-infrared light image, and corrects the near-infrared light image corrected to reduce the deterioration (hereinafter, corrected near-infrared light image). ) Is generated.
  • the correction process of the near-infrared light image in the second correction unit 34 of the image processing apparatus 31 is the same as the correction process of the second correction unit 34 of the image processing apparatus 30 of the third embodiment.
  • the photographed visible light image and the corrected near-infrared light image from the second correction unit 34 are input to the estimation unit 11 of the image processing device 31, and the spectral reflectance ratio is estimated.
  • the estimation process in the estimation unit 11 of the image processing apparatus 31 is the same as the estimation process of the estimation unit 11 in the image processing apparatus 30.
  • the spectral reflectance ratio from the estimation unit 11 and the corrected near-infrared light image corrected by the second correction unit 34 are input to the restoration unit 12 of the image processing apparatus 31, and a restored visible light image is generated.
  • a part of the input to the restoration unit 12 is changed from a captured near-infrared light image to a corrected near-infrared light image.
  • FIG. 8 is a flowchart showing the operation of the image processing apparatus according to the modification of the third embodiment.
  • the captured near-infrared light image is input to the second correction unit 34 of the image processing device 31, and the second correction unit 34 calculates the amount of deterioration due to particles in the atmosphere in the captured near-infrared light image.
  • the captured near-infrared light image is corrected by reducing the calculated deterioration, and a corrected near-infrared light image is generated (S211).
  • the captured visible light image and the corrected near-infrared light image from the second correction unit 34 are input to the estimation unit 11 of the image processing apparatus 30.
  • the estimation unit 11 estimates the spectral reflectance ratio in the visible light wavelength region and the near-infrared light wavelength region of the imaging target at each pixel position (S212).
  • the restored near-infrared light image from the second correction unit 34 and the spectral reflectance ratio from the estimation unit 11 are input to the restoration unit 12 of the image processing apparatus 30 to generate a restored visible light image (S214).
  • the image processing apparatus 31 that is a modification of the third embodiment removes the influence of particles in the atmosphere from the visible light image obtained by capturing the imaging target, The quality of the restored image can be improved.
  • the image processing apparatus 31 can remove the influence of particles in the atmosphere in the near-infrared light image, and can generate a restored image with higher quality than that of the first embodiment of the restored visible light image.
  • the reason is that the second correction unit 34 estimates the atmospheric transmittance in each pixel of the near-infrared light image and executes correction for reducing deterioration due to the influence of particles in the atmosphere.
  • FIG. 9 is a block diagram showing a configuration of an image processing apparatus according to the fourth embodiment of the present invention.
  • the image processing apparatus 40 according to the fourth embodiment includes an estimation unit 11, a restoration unit 12, a first correction unit 23, and a third correction unit 44.
  • the image processing device 40 according to the fourth embodiment is different from the image processing device 30 according to the third embodiment in that the second correction unit 34 is a third correction unit 44.
  • the third correction unit 44 is different from the second correction unit 34 in that the captured visible light image is used to remove the influence of particles in the atmosphere in the near-infrared light image obtained by capturing the imaging target.
  • different configurations will be mainly described, and the same reference numerals are given to the same configurations as those of the third embodiment, and description thereof will be omitted.
  • a captured visible light image and a captured near-infrared light image are input to the third correction unit 44.
  • the third correction unit 44 estimates a deterioration amount due to the influence of particles in the atmosphere in the captured near-infrared light image, and generates a corrected near-infrared light image in which the deterioration in the captured near-infrared light image is reduced.
  • amendment part 44 improves the estimation precision of the atmospheric transmittance tir (x) of near-infrared light by using the information of a picked-up visible light image as an additional input. As a method of using information of a photographed visible light image, there is a method of using atmospheric transmittance estimation of visible light.
  • the third correction unit 44 uses prior knowledge that pixels having a value of 0 in any color channel exist around each pixel in good weather. The third correction unit 44 estimates the atmospheric transmittance of visible light, and corrects the near-infrared light transmittance of the near-infrared light calculated by the equations (12) and (13). Improve infrared light correction performance.
  • Expression (18) calculates the lowest value of the ambient light in the luminance of each color channel in a certain peripheral pixel y, and further calculates the lowest value of each peripheral pixel y to obtain the atmospheric transmittance of visible light.
  • the correction of the near-infrared light atmospheric transmittance is performed by the near-infrared light transmittance t ir (x) calculated by the equations (12) and (13) and the visible light atmospheric transmittance t v (x). This is executed by obtaining the smaller one of the two using equation (19).
  • the third correction unit 44 may set a lower limit value in advance for the calculated atmospheric transmittance t v (x) of visible light so as not to become smaller than the set lower limit value. Further, the calculated atmospheric transmittance t v (x) of visible light may be corrected by multiplying by a preset coefficient, or by performing a power process using a set exponent value.
  • the second correction unit 34 of the image processing apparatus 30 according to the third embodiment is replaced with a third correction unit 44.
  • the captured visible light image and the corrected near-infrared light image from the third correction unit 44 are input to the estimation unit 11 of the image processing apparatus 40, and the spectral reflectance ratio is estimated.
  • the estimation process in the estimation unit 11 of the image processing device 40 a part of the input to the estimation unit 11 is changed to a corrected near-infrared light image in which information of the captured visible light image is considered.
  • the corrected spectral reflectance ratio from the first correction unit 23 and the corrected near-infrared light image from the third correction unit 44 are input to the restoration unit 12 of the image processing apparatus 40, and a restored visible light image is generated.
  • the In the generation processing in the restoration unit 12 of the image processing device 40 a part of the input to the restoration unit 12 of the image processing device 30 according to the third embodiment is a corrected near-infrared light image in which information of a captured visible light image is taken into consideration It has changed to.
  • FIG. 10 is a flowchart showing the operation of the image processing apparatus according to the fourth embodiment.
  • the captured visible light image and the captured near-infrared light image are input to the third correction unit 44 of the image processing apparatus 40.
  • the third correction unit 44 calculates a deterioration amount due to the influence of particles in the atmosphere in the captured near-infrared light image, performs correction to reduce deterioration of the captured near-infrared light image, and generates a corrected near-infrared light image. (S301).
  • the captured visible light image and the corrected near-infrared light image are input to the estimation unit 11 of the image processing apparatus 40, and the estimation unit 11 includes the visible light wavelength region and the near-infrared light wavelength region of the image capturing target at each pixel position.
  • the spectral reflectance ratio at is estimated (S302).
  • the captured visible light image and the spectral reflectance ratio from the estimation unit 11 are input to the first correction unit 23 of the image processing apparatus 40.
  • the first correction unit 23 corrects the spectral reflectance ratio at each pixel of interest using information of the captured visible light image and the spectral reflectance ratio around the pixel of interest, and calculates a corrected spectral reflectance ratio (S303). .
  • the restored near-infrared light image from the third correction unit 44 and the corrected spectral reflectance ratio from the first correction unit 23 are input to the restoration unit 12 of the image processing apparatus 40, and a restored visible light image is generated (S304). ).
  • the image processing apparatus 40 of the fourth embodiment removes the influence of particles in the atmosphere from the visible light image obtained by capturing the imaging target, and provides a high-quality restored image. Can be generated.
  • the image processing apparatus 40 can reduce the failure of the restoration process of the visible light image due to the presence of the pattern to be imaged or the boundary between the imaged objects.
  • the image processing apparatus 40 can remove the influence of atmospheric particles from the near-infrared light image, and can generate a restored image with higher quality than the third embodiment of the restored visible light image.
  • the third correction unit 44 estimates the atmospheric transmittance in each pixel of the near-infrared light image, and executes correction for reducing deterioration due to the influence of particles in the atmosphere. This is because the accuracy of estimating the atmospheric transmittance of near-infrared light can be improved by using the information of the captured visible light image.
  • An image processing apparatus 41 according to the fourth embodiment is an example in which a third correction unit 44 is provided in the image processing apparatus 20 according to the second embodiment.
  • FIG. 11 is a block diagram showing a configuration of an image processing apparatus 41 which is a modification of the fourth embodiment.
  • An image processing apparatus 41 illustrated in FIG. 11 includes an estimation unit 11, a restoration unit 12, and a third correction unit 44.
  • the captured near-infrared light image is input to the third correction unit 44 of the image processing device 41.
  • the third correction unit 44 estimates a deterioration amount due to the influence of particles in the atmosphere in the captured near-infrared light image, performs correction to reduce deterioration of the captured near-infrared light image, and generates a corrected near-infrared light image. To do.
  • the correction process of the near-infrared light image in the third correction unit 44 of the image processing apparatus 41 is the same as the correction process of the third correction unit 44 of the image processing apparatus 40 of the fourth embodiment.
  • the captured visible light image and the corrected near-infrared light image from the third correction unit 44 are input to the estimation unit 11 of the image processing apparatus 41, and the spectral reflectance ratio is estimated.
  • the estimation process in the estimation unit 11 of the image processing apparatus 41 is the same as the estimation process of the estimation unit 11 in the image processing apparatus 31.
  • FIG. 12 is a flowchart illustrating the operation of the image processing apparatus according to the modification of the fourth embodiment.
  • a captured near-infrared light image is input to the third correction unit 44 of the image processing apparatus 41.
  • amendment part 44 estimates the deterioration amount by the particle
  • the captured visible light image and the corrected near-infrared light image from the third correction unit 44 are input to the estimation unit 11 of the image processing device 41.
  • the estimation unit 11 estimates the spectral reflectance ratio in the visible light wavelength region and the near-infrared light wavelength region of the imaging target at each pixel position (S302).
  • the corrected near-infrared light image from the third correction unit 44 and the spectral reflectance ratio from the estimation unit 11 are input to the restoration unit 12 of the image processing apparatus 41, and a restored visible light image is generated (S314).
  • amendment part 44 in the image processing apparatus 20 of 2nd Embodiment was demonstrated as a modification of 4th Embodiment, it is not restricted to this.
  • the second correction unit 34 of the image processing apparatus 31 that is a modification of the third embodiment may be replaced with a third correction unit 44.
  • the image processing apparatus 41 that is a modification of the fourth embodiment removes the influence of particles in the atmosphere from the captured visible light image, and restores high quality. An image can be generated.
  • the image processing device 41 removes the influence of particles in the atmosphere in the captured near-infrared light image, and restores a higher quality than the image processing device 31 that is a modified example of the third embodiment of the restored visible light image.
  • An image can be generated.
  • the third correction unit 44 estimates the atmospheric transmittance in each pixel of the captured near-infrared light image, and executes correction to reduce deterioration due to the influence of particles in the atmosphere. In that case, it is because the estimation precision of the atmospheric transmittance of near-infrared light can be improved by using the information of a picked-up visible light image in that case.
  • each processing unit can be configured by an integrated circuit that is hardware. It is also possible to configure the function of each processing unit by software such as an image processing program and cause the computer apparatus to execute each process of the image processing apparatus.
  • FIG. 14 is a diagram showing a hardware configuration in which the image processing apparatus according to the first to fourth embodiments of the present invention is realized by a computer apparatus.
  • the image processing apparatus includes a CPU (Central Processing Unit) 91, a communication I / F (communication interface) 92 for network connection, a memory 93, and a storage device 94 such as a hard disk for storing programs. including.
  • CPU Central Processing Unit
  • I / F communication interface
  • storage device 94 such as a hard disk for storing programs.
  • the CPU 91 operates the operating system to control the image processing apparatus according to the first to fourth embodiments of the present invention. Further, the CPU 91 reads out programs and data from the recording medium mounted on the drive device to the memory 93, for example.
  • the CPU 91 functions as at least part of the estimation unit 11 and the restoration unit 12 of the image processing apparatus 10 in the first embodiment, and executes various processes based on a program.
  • the storage device 94 is, for example, an optical disk, a flexible disk, a magnetic optical disk, an external hard disk, or a semiconductor memory.
  • a part of the storage medium of the storage device is a nonvolatile storage device, and stores the program therein.
  • the program is connected to a communication network. It may be downloaded from an external computer (not shown).
  • the CPU 91 is connected to the input device 95 and the output device 96 via the system bus 97.
  • the input device 95 is realized by, for example, a mouse, a keyboard, a key button, or a touch panel, and is used for an input operation.
  • the output device 96 is implemented by, for example, a display and is used for confirming the output.
  • each embodiment of the present invention is realized by the hardware configuration shown in FIG.
  • the means for realizing each unit included in the image processing apparatus is not particularly limited. That is, the image processing apparatus may be realized by one physically coupled apparatus, or may be realized by connecting two or more physically separated apparatuses by wire or wirelessly and by these plural apparatuses. Good.
  • An estimation unit for estimation An image processing apparatus comprising: a restoration unit that multiplies the estimated spectral reflectance ratio by the luminance of the near-infrared light image at each pixel position to generate a restored visible light image.
  • the first correction unit extracts a pixel group in a peripheral region of the target pixel that can be regarded as the same region using information of the visible light image, and based on a spectral reflectance ratio of the extracted pixel group, the target pixel To correct the spectral reflectance ratio of The image processing apparatus according to appendix 2.
  • the first correction unit includes: Smoothing the spectral reflectance ratio by combining weights using the color information of the visible light image;
  • the image processing apparatus according to appendix 3.
  • the composite weight uses a hue H of the HSV color system in each pixel of the visible light image.
  • the image processing apparatus according to appendix 4.
  • the first correction unit calculates the combined weight for a pixel in a predetermined peripheral area including the target pixel, and calculates the corrected spectral reflectance ratio by combining the spectral reflectance ratios in the pixels in the peripheral area.
  • the image processing device according to any one of appendix 2 to appendix 5.
  • a second correction unit that estimates the atmospheric transmittance in each pixel of the near-infrared light image and corrects the near-infrared light image using the estimated deterioration amount;
  • the restoration unit multiplies the estimated spectral reflectance ratio by the brightness of the corrected near-infrared light image corrected by the second correction unit to generate a restored visible light image.
  • the image processing device according to any one of supplementary notes 1 to 6.
  • the second correction unit corrects the pixel value of each target pixel in the near-infrared light image using the pixel value of the near-infrared light image in the peripheral region of the target pixel.
  • the image processing apparatus according to appendix 7.
  • a third correction unit that corrects the near-infrared light image using the visible light image;
  • the restoration unit generates a restored visible light image by multiplying the estimated spectral reflectance ratio by the brightness of the corrected near-infrared light image corrected by the third correction unit.
  • the image processing device according to any one of supplementary notes 1 to 6.
  • Spectral reflectance ratio that expresses the ratio of the spectral reflectance in the visible light wavelength region and the spectral reflectance in the near infrared wavelength region at each pixel position of the visible light image and near infrared light image where the subject is photographed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

 撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させる。画像処理装置は、撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定する推定部と、前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する復元部と、を備える。

Description

画像処理装置、画像処理方法、及び記録媒体
 本発明は、画像処理装置等に関し、近赤外光画像を用いた画像処理に関する。
 霧又は靄の発生時に撮影した可視光画像は、大気中の粒子の影響により、白む、又は、低コントラストとなって画質が劣化する。図15に示すように、霧又は靄の環境下では、撮影対象の反射光は、撮影対象からカメラまでの経路における大気中の粒子によって拡散され減衰する。また、同時に、環境光も大気中の粒子によって拡散され、その拡散光もカメラの撮像センサに到達する。そのため、カメラの撮像センサに照射される光は、撮影対象からの減衰した反射光と拡散された環境光との混合光となる。撮影対象を撮影した可視光画像から、大気中の粒子の影響を除去するためには、混合光から拡散された環境光の影響を除去し、大気中の粒子による減衰を復元する必要がある。
 これまで、劣化のない可視画像への復元を実現するために、霧又は靄中の大気における透過率が高く、劣化の少ない近赤外光画像の情報を利用する手法が提案されている。
 特許文献1は、可視光画像を輝度信号と色差信号に分離し、輝度信号に近赤外信号を合成することで可視光画像を強調する技術を開示する。特許文献2は、低彩度の領域であって、長波長輝度信号の輪郭成分と可視光輝度信号の輪郭成分との差が所定の基準値以上の領域に対し、対象画像の輝度信号を長波長輝度信号で置き換えることで、可視光画像を強調する技術を開示する。
 特許文献1又は特許文献2の技術は、輝度信号の強調処理であり、強調された画像の視認性は向上する。しかしながら、色情報等に対する画質の向上は図られていない。
 一方、色情報を含む画質を向上させる画像処理として、非特許文献1が知られている。非特許文献1は、好天時では各画素の周辺にいずれかのカラーチャネルで0の値を持つ画素が存在するという事前知識を用いている。劣化を復元する際に、復元可視光画像と近赤外光画像の局所勾配量が類似するという制約をかけることで、可視光画像の復元性能を向上させている。
 なお、特許文献3には、蛍光物質を含む試料における蛍光波長域と蛍光波長域外の長波長域を測定する分光測定の技術が記載されている。また、特許文献4には、印刷物の反射光による物体色と、表示画面上の光源色を一致させる技術が記載されている。さらに、特許文献5には、赤外像を可視像または近赤外像に変換する技術が記載されている。
特開2013-255144号公報 特開2010-178036号公報 特開2012-042313号公報 特開平09-102882号公報 特開平06-121232号公報
C.Feng,S.Zhuo,X.Zhang,L.Shen and S.Susstrunk,"Near-Infrared Guided Color Image Dehazing" IEEE 20th International Conference on Image Processing (ICIP),Melbourne,Australia,September 15-18,2013
 非特許文献1の技術は、復元可視光画像と近赤外光画像の局所勾配量の比が1:1であると仮定して処理している。しかし、一般に、可視光画像と近赤外光画像の局所勾配量との比は物体の反射特性に依存するため、その関係が必ずしも成り立つわけではない。その結果、処理後の復元画像で過度の強調または劣化復元の不足が発生することになり、高品質な復元画像を生成することができない。
 このように、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させることが可能な画像処理装置等が望まれている。
 本発明の目的は、上記の課題を解決する画像処理装置等を提供することにある。
 本発明の一態様である画像処理装置は、撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定する推定部を備える。さらに、画像処理装置は、前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する復元部と、を備える。
 本発明の一態様である画像処理方法は、撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定する。さらに、画像処理方法は、前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する。
 本発明の一態様であるプログラムを格納する記録媒体は、コンピュータに、撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定し、前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する、ことを実行させる。
 本発明は、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させることができる。
第1の実施形態による画像処理装置の構成を示すブロック図である。 第1の実施形態による画像処理装置の動作を示すフローチャートである。 第2の実施形態による画像処理装置の構成を示すブロック図である。 第2の実施形態による画像処理装置の動作を示すフローチャートである。 第3の実施形態による画像処理装置の構成を示すブロック図である。 第3の実施形態による画像処理装置の動作を示すフローチャートである。 第3の実施形態による画像処理装置の構成の変形例を示すブロック図である。 第3の実施形態による画像処理装置の変形例の動作を示すフローチャートである。 第4の実施形態による画像処理装置の構成を示すブロック図である。 第4の実施形態による画像処理装置の動作を示すフローチャートである。 第4の実施形態による画像処理装置の構成の変形例を示すブロック図である。 第4の実施形態による画像処理装置の変形例の動作を示すフローチャートである。 環境光の算出方法を表す説明図である。 第1~4の実施形態による画像処理装置をコンピュータで実現するためのハードウエア構成を示すブロック図である。 霧の発生時における光の経路を表すモデル図である。
 以下、本発明の実施形態について図面を用いて説明する。なお、実施形態の構成を説明する図面中の矢印の方向は、一例を示すものであり、ブロック間の信号の向きを限定するものではない。
 (第1の実施形態)
 本発明の第1の実施形態による画像処理装置について、図面を用いて詳細に説明する。図1は、第1の実施形態による画像処理装置の構成を示すブロック図である。第1の実施形態の画像処理装置10は、推定部11と、復元部12と備える。
 撮影対象を撮影した可視光画像(以後、撮影可視光画像と示す)と撮影対象を撮影した近赤外光画像(撮影近赤外光画像)とが、推定部11に入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域における分光反射率と、近赤外光波長領域における分光反射率との比を表す分光反射率比を推定する。
 推定部11における分光反射率比の推定について説明する。図15に示すように、霧の環境においては、撮影対象からの反射光は、撮影対象からカメラまでの経路における霧の粒子によって拡散され減衰する。また、同時に、環境光も霧の粒子によって拡散され、その拡散光もカメラの撮像センサ(図示せず)に到達する。そのため、カメラの撮像センサに照射される光は、減衰した撮影対象からの反射光と拡散された環境光との混合光となる。
 このとき、カメラの撮像センサの画素位置xにおけるカラーチャネルcで観測された可視光の輝度I(x)は、撮影対象表面の反射光の輝度J(x)と環境光の輝度Aとを用いて、式(1)で表される。ただし、t(x)は、可視光の大気透過率を表す。なお、式(1)は、非特許文献1に記載されている霧モデルである。
 また、同様に、画素位置xにおける観測された近赤外光の輝度Iir(x)は、同位置における反射光の輝度Jir(x)と環境光の輝度Airおよび近赤外光の大気透過率tir(x)とを用いて、式(2)で表される。
 可視光の反射光J(x)及び近赤外光の反射光Jir(x)は、同位置における撮影対象の分光反射率R(x)及びRir(x)と、光源から撮影対象への照射光の強度及び撮影対象の形状で形成される画像中の陰影を表すパラメータl(x)とを用いて、式(3)及び式(4)のように表すことができる。
(x)=t(x)・J(x)+(1-t(x))・A      (1)
ir(x)=tir(x)・Jir(x)+(1-tir(x))・Air  (2)
(x)=l(x)・R(x)                (3)
ir(x)=l(x)・Rir(x)                (4)
 近赤外光の大気の透過率は、霧中において、可視光と比較して高いことが知られている。そのため、第1の実施形態では、霧中の近赤外光の拡散は無視できるレベルであるとする。大気透過率tir(x)を1.0と設定すると、式(2)で表される観測された近赤外光Iir(x)は、式(5)のように書き換えることができる。
ir(x)=Jir(x)                    (5)
 一般に、大気中の光の透過率は、大気中の粒子の大きさや密度、撮影対象までの距離に依存する。また、画像中の撮影対象の陰影は、照射光の強度と撮影対象の形状に依存する。そのため、可視光の大気透過率t(x)と陰影を表すパラメータl(x)は無相関であり、その関係は、式(6)のように表すことができる。ただし、関数Cov(・)は、共分散を表す。
Cov(t-1,l)=0                   (6)
 分光反射率R(x)およびRir(x)が画像内で一定である場合、分光反射率R(x)とRir(x)との分光反射率比αは、式(1)、(3)、(4)、(5)および(6)を統合し、式(7)のように表すことができる。
Figure JPOXMLDOC01-appb-I000001
 各画素位置について、当該画素を中心とした領域M×N(M,Nは整数)において分光反射率R(x)およびRir(x)が一定であると仮定し、推定部11は、式(7)を用いて、当該画素における分光反射率の比α(x)を推定する。ここで、環境光Aの算出方法として、観測画像における輝度と、その輝度の画素の数との関係から求める例がる。例えば、図13に示すように、観測画像の各カラーチャネルのヒストグラムを生成する。図13のグラフにおいて、横軸はカラーチャネルにおける輝度を示し、縦軸はその輝度の画素の数(出現頻度)を示す。図中、ヒストグラムにおける輝度の小さい方(原点側)から画素の数を加算していき、予め指定された加算による累積値に達した輝度位置の輝度をAとする。尚、環境光の輝度Aに対して、ある所定の比率を掛けたり、リミッタを設けたりしてもよい。
 復元部12には、撮影近赤外光画像と、推定部11で推定された分光反射率比とが入力され、復元可視光画像が生成される。式(3)および式(4)を統合すると、可視光波長領域における反射光と近赤外光波長領域における反射光の関係は、式(8)のように表される。
Figure JPOXMLDOC01-appb-I000002
 復元部12は、撮影近赤外光画像と、分光反射率R(x)とRir(x)との分光反射率比αをもとに、式(8)を用いて、各画素位置で、推定された分光反射率比と撮影近赤外光画像の輝度とを乗算し、復元可視光画像を生成する。
 次に、第1の実施形態による画像処理装置の動作について図面を用いて説明する。図2は、第1の実施形態による画像処理装置の動作を示すフローチャートである。
 撮影可視光画像と撮影近赤外光画像とが推定部11に入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域における分光反射率と近赤外光波長領域における分光反射率の比を表す分光反射率比を推定する(S1)。
 復元部12は、撮影近赤外光画像と、推定部11で推定された分光反射率比とに基づき、復元可視光画像を生成する。(S2)
 (第1の実施形態の効果)
 第1の実施形態の画像処理装置10は、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させることができる。その理由は、各画素位置における撮影対象の可視光波長領域における分光反射率と近赤外光波長領域における分光反射率の比を表す分光反射率比を推定し、各画素位置における推定された分光反射率比と撮影近赤外光画像とを用いて復元可視光画像を生成するからである。
 (第2の実施形態)
 次に、本発明の第2の実施形態による画像処理装置について、図面を用いて説明する。
 図3は、本発明の第2の実施形態による画像処理装置の構成を示すブロック図である。第2の実施形態の画像処理装置20は、推定部11と、復元部12と、第1補正部23と、を備える。第2の実施形態の画像処理装置20は、第1の実施形態の画像処理装置10と比較して、第1補正部23を備える点で異なる。以下、第2の実施形態について、相違する構成を主に説明し、第1の実施形態と同様の構成には、同じ符号を附して詳細な説明は省略する。
 画像処理装置20の第1補正部23には、撮影した可視光画像(撮影可視光画像)と推定部11で推定された分光反射率比とが入力される。続いて、第1補正部23は、撮影対象の各注目画素における分光反射率比を、撮影可視光画像の情報と注目画素の周辺領域の分光反射率比とを用いて補正した分光反射率比(以後、補正分光反射率比と示す。)を推定する。
 推定部11で推定された分光反射率比は、当該画素を中心とした周辺領域において分光反射率が一定である前提のもと、式(7)を用いて推定される。しかし、実際には、撮影対象の模様や撮影対象間境界等で当該前提が成立していない場合が存在する。このような場合には、式(7)によって推定された分光反射率比に誤差が発生し、復元部12による復元処理に失敗する場合がある。そこで、第1補正部23は、可視光画像の情報を利用して同一領域と見なせる注目画素周辺の画素群をそれぞれ抽出し、これらの画素群の分光反射率比をもとにして、注目画素の分光反射率比を補正する。
 分光反射率比の補正方法の一つとして、可視光画像の色情報をもとにした合成重みにより分光反射率比の平滑化を実施する方法がある。合成重みの算出方法として、可視光画像の各画素におけるHSV表色系における色相Hを利用する方法がある。画素位置xの注目画素の分光反射率比に対する、周辺画素の画素位置yにおける合成重みw(x、y)は、式(9)で表される色相間の距離d(x、y)を用いて式(10)で算出される。ただし、H(x)、H(y)は、HSV表色系における色相Hであり、σ は、あらかじめ設定されたパラメータである。
Figure JPOXMLDOC01-appb-I000003

Figure JPOXMLDOC01-appb-I000004
 第1補正部23は、注目画素を含む所定の周辺画素について、合成重みを算出し、式(11)を用いて、周辺画素における分光反射率比α(y)を合成することで、補正分光反射率比α’(x)を算出する。
Figure JPOXMLDOC01-appb-I000005
 なお、第1補正部23は、式(9)の色相間の距離の算出に、L*C*h表色系における色相hを用いてもよい。また、色相間の距離の算出に、yuv表色系におけるuv平面上で原点を中心に注目画素の色位置と周辺画素の色位置がなす角θを用いてもよい。また、式(10)による合成重みの算出は、距離d(x,y)が小さい値ほど大きな値を算出し、大きな値になるほど小さい値を算出する特性のある別の関数を用いてもよい。あるいは、合成重みの算出として、あらかじめ手動で設定された色相間の距離に対する合成重みを保持するテーブルから距離d(x,y)に対応する合成重みを読み出す方法を用いてもよい。
 画像処理装置20の復元部12には、撮影近赤外光画像と第1補正部23からの補正分光反射率比とが入力され、復元可視光画像が生成される。復元部12における生成処理において、復元部12への入力は分光反射率比から補正分光反射率比に変わっている。
 次に、第2の実施形態による画像処理装置の動作について図面を用いて説明する。図4は、第2の実施形態による画像処理装置の動作を示すフローチャートである。
 画像処理装置20の推定部11には、撮影可視光画像と撮影近赤外光画像とが入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域における分光反射率と近赤外光波長領域における分光反射率の比である分光反射率比を推定する(S101)。
画像処理装置20の第1補正部23には、撮影可視光画像と推定部11で推定された分光反射率比とが入力される。第1補正部23は、各注目画素における分光反射率比を、撮影可視光画像の情報と注目画素周辺の分光反射率比とを用いて補正し、補正分光反射率比を算出する(S102)。
 画像処理装置20の復元部12には、撮影近赤外光画像と、第1補正部23で補正された補正分光反射率比とが入力され、復元可視光画像が生成される(S103)。
 (第2の実施形態の効果)
 第2の実施形態の画像処理装置20は、第1の実施形態の画像処理装置10と同様に、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させることができる。
 更に、第2の実施形態の画像処理装置20は、撮影対象の模様、又は、撮影対象間の境界等の存在に起因する可視光画像の復元処理の失敗を低減することができる。その理由は、第1補正部23が、可視光画像の情報を利用して同一領域と見なせる注目画素周辺の画素群をそれぞれ算出し、これらの画素群の分光反射率比をもとにして、注目画素の分光反射率比を補正するからである。
 (第3の実施形態)
 次に、本発明の第3の実施形態による画像処理装置について、図面を用いて説明する。
 図5は、本発明の第3の実施形態による画像処理装置の構成を示すブロック図である。第3の実施形態の画像処理装置30は、推定部11と、復元部12と、第1補正部23と、第2補正部34とを備える。第3の実施形態の画像処理装置30は、第2の実施形態の画像処理装置20と比較して、第2補正部34を備える点で異なる。以下、第3の実施形態について、相違する構成を主に説明し、第2の実施形態と同様の構成には同じ符号を附して説明を省略する。
 撮影近赤外光画像が第2補正部34に入力され、第2補正部34は、撮影近赤外光画像の各画素における大気中の粒子の影響による劣化量を推定し、撮影近赤外光画像から劣化を低減させて、補正された近赤外光画像(以後、補正近赤外光画像)を生成する。
 第1の実施形態および第2の実施形態では、撮影近赤外光画像における霧の影響による劣化は無視できるものとし、式(2)における近赤外光の大気透過率tir(x)を1.0に設定して処理を実行している。しかし、実際には、無視できない程度の劣化が発生している場合がある。そのため、第2補正部34は、撮影近赤外光画像の各画素における大気透過率tir(x)を推定し、大気中の粒子の影響による劣化を低減させる。
 近赤外光の大気透過率tir(x)の推定方法として、好天時では各画素の周辺には0の値を持つ画素が存在するという事前知識を用いる方法がある。画素位置xの注目画素を含む周辺画素の画素位置yの最小画素値pir(x)は、式(12)を用いて算出できる。
Figure JPOXMLDOC01-appb-I000006
 算出された最小画素値は、大気中の粒子によって拡散された環境光の影響であると考えると、注目画素における大気透過率tir(x)は、式(13)のように表される。
Figure JPOXMLDOC01-appb-I000007
したがって、画素位置xにおける近赤外領域における反射光Jir(x)は、式(14)を用いて算出できる。なお、Iir(x)は観測された近赤外光を、Airは環境光(近赤外光)表す。
Figure JPOXMLDOC01-appb-I000008
 第2補正部34は、式(14)を用いて各画素における反射光Jir(x)を算出し、補正近赤外光画像として出力する。なお、第2補正部34は、式(13)の大気透過率の算出の際に、最小画素値pir(x)に対して、上限値を設けてもよい。あるいは、あらかじめ設定された係数を乗算する等の補正を行ってもよい。また、大気透過率tir(x)は、注目画素周辺の近赤外光画像の輝度、又は、算出された大気透過率の値を用いて補正してもよい。例えば、画素位置xの注目画素に対する周辺画素の画素位置yにおける合成重みwir(x,y)を、式(15)を用いて算出し、式(16)を用いて周辺画素における算出された大気透過率の値を合成することで、注目画素の大気透過率の値を補正することができる。ただし、σir は、あらかじめ設定されたパラメータである。
Figure JPOXMLDOC01-appb-I000009

Figure JPOXMLDOC01-appb-I000010

 画像処理装置30の推定部11には、撮影可視光画像と第2補正部34からの補正近赤外光画像とが入力され、分光反射率比が推定される。画像処理装置30の推定部11における推定処理において、推定部11への入力の一部は撮影近赤外光画像から補正近赤外光画像に変わっている。
 画像処理装置30の復元部12には、第1補正部23からの補正分光反射率比と第2補正部34からの補正近赤外光画像とが入力され、復元可視光画像が生成される。画像処理装置30の復元部12における生成処理において、復元部12への入力の一部は撮影近赤外光画像から補正近赤外光画像に変わっている。
 次に、第3の実施形態による画像処理装置の動作について図面を用いて説明する。図6は、第3の実施形態による画像処理装置の動作を示すフローチャートである。
 初めに、撮影した近赤外光画像が、画像処理装置30の第2補正部34に入力される。第2補正部34は、撮影近赤外光画像における大気中の粒子による劣化量を推定し、劣化を低減させて撮影近赤外光画像を補正し、補正近赤外光画像を生成する(S201)。
 画像処理装置30の推定部11には、撮影可視光画像と第2補正部34からの補正近赤外光画像とが入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域と近赤外光波長領域における分光反射率比を推定する(S202)。
 画像処理装置30の第1補正部23は、撮影可視光画像と推定部11からの分光反射率比とが入力される。第1補正部23は、各注目画素における分光反射率比を、撮影可視光画像の情報と注目画素周辺の分光反射率比とを用いて補正し、補正分光反射率比を算出する(S203)。
 画像処理装置30の復元部12に、第2補正部34からの補正近赤外光画像と第1補正部23からの補正分光反射率比とが入力され、復元可視光画像が生成される(S204)。
 (第3の実施形態の効果)
 第3の実施形態の画像処理装置30は、第2の実施形態の画像処理装置20と同様に、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、復元画像の品質を向上させることができる。
 更に、第3の実施形態の画像処理装置30は、撮影対象の模様、又は、撮影対象間の境界等の存在に起因する可視光画像の復元処理の失敗を低減することができる。
 更に、第3の実施形態の画像処理装置30は、第2の実施形態よりも高品質な復元画像を生成できる。その理由は、第2補正部34は、近赤外光画像の各画素における大気透過率を算出し、近赤外光画像における大気中の粒子による劣化を低減させる補正を実行するからである。
 (第3の実施形態の変形例)
 次に、第3の実施形態の変形例について、説明する。第3の実施形態による画像処理装置30は、第2補正部34を第2の実施形態の画像処理装置20に設ける例であるが、第2補正部34を第1の実施形態の画像処理装置10に設けてもよい。図7は、第3の実施形態の変形例である画像処理装置31の構成を示すブロック図である。図7に示す画像処理装置31は、推定部11と、復元部12と、第2補正部34を備える。
 画像処理装置31の第2補正部34に、撮影近赤外光画像が入力される。第2補正部34は、撮影近赤外光画像における大気中の粒子の影響による劣化量を推定し、劣化を低減するように補正された近赤外光画像(以後、補正近赤外光画像)を生成する。画像処理装置31の第2補正部34における近赤外光画像の補正処理は、第3の実施形態の画像処理装置30の第2補正部34の補正処理と同様である。
 画像処理装置31の推定部11に、撮影可視光画像と第2補正部34からの補正近赤外光画像とが入力され、分光反射率比が推定される。画像処理装置31の推定部11における推定処理は、画像処理装置30の推定部11の推定処理と同様である。
 画像処理装置31の復元部12に、推定部11からの分光反射率比と第2補正部34で補正された補正近赤外光画像とが入力され、復元可視光画像が生成される。画像処理装置31の復元部12における生成処理において、復元部12への入力の一部は撮影近赤外光画像から補正近赤外光画像に変わっている。
 図8は、第3の実施形態の変形例による画像処理装置の動作を示すフローチャートである。
 初めに、画像処理装置31の第2補正部34に、撮影した近赤外光画像が入力され、第2補正部34は、撮影近赤外光画像における大気中の粒子による劣化量を算出し、算出された劣化を低減させることで撮影近赤外光画像を補正し、補正近赤外光画像を生成する(S211)。
 画像処理装置30の推定部11に、撮影可視光画像と第2補正部34からの補正近赤外光画像とが入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域と近赤外光波長領域における分光反射率比を推定する(S212)。
 画像処理装置30の復元部12に、第2補正部34からの補正近赤外光画像と推定部11からの分光反射率比とが入力され、復元可視光画像が生成される(S214)。
 (第3の実施形態の変形例の効果)
 第3の実施形態の変形例である画像処理装置31は、第1の実施形態の画像処理装置10と同様に、撮影対象を撮影した可視光画像から大気中の粒子の影響を除去して、復元画像の品質を向上させることができる。
 更に、画像処理装置31は、近赤外光画像における大気中の粒子の影響を除去し、復元可視光画像の第1の実施形態よりも高品質な復元画像を生成できる。その理由は、第2補正部34は、近赤外光画像の各画素における大気透過率を推定し、大気中の粒子の影響による劣化を低減させる補正を実行するからである。
 (第4の実施形態)
 次に、本発明の第4の実施形態による画像処理装置について、図面を用いて説明する。
 図9は、本発明の第4の実施形態による画像処理装置の構成を示すブロック図である。第4の実施形態の画像処理装置40は、推定部11と、復元部12と、第1補正部23と、第3補正部44と、を備える。第4の実施形態の画像処理装置40は、第3の実施形態の画像処理装置30と比較して、第2補正部34が、第3補正部44となっている点で異なる。第3補正部44は、撮影対象を撮影した近赤外光画像における大気中の粒子の影響を除去するために、撮影可視光画像を利用する点で、第2補正部34と異なる。以下、第4の実施形態について、相違する構成を主に説明し、第3の実施形態と同様の構成には同じ符号を附して説明を省略する。
 第3補正部44に、撮影可視光画像と撮影近赤外光画像とが入力される。第3補正部44は、撮影近赤外光画像における大気中の粒子の影響による劣化量を推定し、撮影近赤外光画像における劣化を低減させた補正近赤外光画像を生成する。第3補正部44は、追加入力として撮影可視光画像の情報を用いることにより、近赤外光の大気透過率tir(x)の推定精度を向上させる。撮影可視光画像の情報を用いる方法として、可視光の大気透過率推定を利用する方法がある。一般に、近赤外光の大気透過率は、可視光の大気透過率と比較して高いことが知られている。そのため、近赤外光の推定大気透過率が可視光の推定大気透過率よりも小さな値を持つ場合には、何らかの推定誤差が発生していることが予測される。そこで、第3補正部44は、可視光において、好天時では各画素の周辺にはいずれかのカラーチャネルで0の値を持つ画素が存在するという事前知識を用いる。第3補正部44は、可視光の大気透過率を推定し、式(12)および式(13)で算出された近赤外光の大気透過率を修正することにより、式(14)による近赤外光の補正性能を向上させる。
 可視光の大気透過率t(x)の推定方法の一例として、式(18)のように、周辺画素の輝度の最小値を利用する方法がある。式(18)は、ある周辺画素yにおける各カラーチャネルの輝度のうち環境光の中の割合が最も小さい値を求め、さらに各周辺画素yのうち最も小さい値を求めて可視光の大気透過率を推定する方法である。
Figure JPOXMLDOC01-appb-I000011
近赤外光の大気透過率の修正は、式(12)および式(13)で算出された近赤外光の大気透過率tir(x)と可視光の大気透過率t(x)のうち小さくない方を、式(19)を用いて求めることで実行される。
Figure JPOXMLDOC01-appb-I000012
 なお、第3補正部44は、算出された可視光の大気透過率t(x)を予め下限値を設定しておき、設定された下限値より小さくならないよう補正してもよい。また、算出された可視光の大気透過率t(x)に対して、予め設定された係数を乗算する、あるいは、設定された指数値を用いてべき乗処理することで補正してもよい。
 第4の実施形態の画像処理装置40は、第3の実施形態の画像処理装置30の第2補正部34が第3補正部44に置き換わっている。このため、画像処理装置40の推定部11には、撮影可視光画像と第3補正部44からの補正近赤外光画像とが入力され、分光反射率比が推定される。画像処理装置40の推定部11における推定処理において、推定部11への入力の一部は撮影可視光画像の情報が考慮された補正近赤外光画像に変わっている。
 また、画像処理装置40の復元部12に、第1補正部23からの補正分光反射率比と第3補正部44からの補正近赤外光画像とが入力され、復元可視光画像が生成される。画像処理装置40の復元部12における生成処理において、第3の実施形態による画像処理装置30の復元部12への入力の一部は撮影可視光画像の情報が考慮された補正近赤外光画像に変わっている。
 次に、第4の実施形態による画像処理装置の動作について図面を用いて説明する。図10は、第4の実施形態による画像処理装置の動作を示すフローチャートである。
 画像処理装置40の第3補正部44に、撮影可視光画像と撮影近赤外光画像が入力される。第3補正部44は、撮影近赤外光画像における大気中の粒子の影響による劣化量を算出し、撮影近赤外光画像の劣化を低減させる補正をし、補正近赤外光画像を生成する(S301)。
 画像処理装置40の推定部11に、撮影可視光画像と補正近赤外光画像とが入力され、推定部11は、各画素位置における撮影対象の、可視光波長領域と近赤外光波長領域における分光反射率比を推定する(S302)。
 画像処理装置40の第1補正部23に、撮影可視光画像と推定部11からの分光反射率比とが入力される。第1補正部23は、各注目画素における分光反射率比を、撮影可視光画像の情報と注目画素周辺の分光反射率比とを用いて補正し、補正分光反射率比を算出する(S303)。
 画像処理装置40の復元部12に、第3補正部44からの補正近赤外光画像と第1補正部23からの補正分光反射率比が入力され、復元可視光画像が生成される(S304)。
 (第4の実施形態の効果)
 第4の実施形態の画像処理装置40は、第1の実施形態の画像処理装置10と同様に、撮影対象を撮影した可視光画像から大気中の粒子による影響を除去し、高品質な復元画像を生成できる。
 更に、画像処理装置40は、撮影対象の模様、又は、撮影対象間の境界等の存在に起因する可視光画像の復元処理の失敗を低減することができる。
 更に、画像処理装置40は、近赤外光画像から大気中の粒子による影響を除去し、復元可視光画像の第3の実施形態よりも高品質な復元画像を生成できる。
 その理由は、第3補正部44は、近赤外光画像の各画素における大気透過率を推定し、大気中の粒子の影響による劣化を低減させる補正を実行する。その際に、撮影可視光画像の情報を用いることにより、近赤外光の大気透過率の推定精度を向上できるからである。
 (第4の実施形態の変形例)
 次に、第4の実施形態の変形例について説明する。第4実施形態による画像処理装置41は、第2の実施形態の画像処理装置20に第3補正部44を設ける例である。
 図11は、第4の実施形態の変形例である画像処理装置41の構成を示すブロック図である。図11に示す画像処理装置41は、推定部11と、復元部12と、第3補正部44を備える。
 画像処理装置41の第3補正部44に、撮影近赤外光画像が入力される。第3補正部44は、撮影近赤外光画像における大気中の粒子の影響による劣化量を推定し、撮影近赤外光画像の劣化を低減する補正をし、補正近赤外光画像を生成する。画像処理装置41の第3補正部44における近赤外光画像の補正処理は、第4の実施形態の画像処理装置40の第3補正部44の補正処理と同様である。
 画像処理装置41の推定部11に、撮影可視光画像と第3補正部44からの補正近赤外光画像とが入力され、分光反射率比が推定される。画像処理装置41の推定部11における推定処理は、画像処理装置31の推定部11の推定処理と同様である。
 画像処理装置41の復元部12に、推定部11からの分光反射率比と第3補正部44からの補正近赤外光画像とが入力され、復元可視光画像が生成される。画像処理装置41の復元部12における生成処理は、復元部12への入力の一部が撮影近赤外光画像から補正近赤外光画像に変わっている。
 図12は、第4の実施形態の変形例による画像処理装置の動作を示すフローチャートである。
 初めに、画像処理装置41の第3補正部44に、撮影近赤外光画像が入力される。第3補正部44は、撮影近赤外光画像における大気中の粒子による劣化量を推定し、撮影近赤外光画像の劣化を低減する補正をし、補正近赤外光画像を生成する(S301)。
 画像処理装置41の推定部11に、撮影可視光画像と第3補正部44からの補正近赤外光画像とが入力される。推定部11は、各画素位置における撮影対象の、可視光波長領域と近赤外光波長領域における分光反射率比を推定する(S302)。
 画像処理装置41の復元部12に、第3補正部44からの補正近赤外光画像と推定部11からの分光反射率比とが入力され、復元可視光画像が生成される(S314)。
 なお、第4の実施形態の変形例として、第2の実施形態の画像処理装置20に第3補正部44を設ける例を説明したが、これに限られない。例えば、第3の実施形態の変形例である画像処理装置31の第2補正部34を第3補正部44に置き換えてもよい。
 (第4の実施形態の変形例の効果)
 第4の実施形態の変形例である画像処理装置41は、第1の実施形態の画像処理装置10と同様に、撮影可視光画像から大気中の粒子の影響を除去して、高品質な復元画像を生成できる。
 更に、画像処理装置41は、撮影近赤外光画像における大気中の粒子の影響を除去し、復元可視光画像の第3の実施形態の変形例である画像処理装置31よりも高品質な復元画像を生成できる。その理由は、第3補正部44は、撮影近赤外光画像の各画素における大気透過率を推定し、大気中の粒子の影響による劣化を低減させる補正を実行する。その際に、その際に、撮影可視光画像の情報を用いることにより、近赤外光の大気透過率の推定精度を向上できるからである。
 上記の第1~第4の実施形態に記載の画像処理装置は、各処理部をハードウエアである集積回路で構成することができる。また、各処理部の機能を画像処理プログラム等のソフトウエアで構成し、コンピュータ装置により画像処理装置の各処理を実行させることも可能である。
 (ハードウエア構成図)
 図14は、本発明の第1~4の実施の形態における画像処理装置をコンピュータ装置で実現したハードウエア構成を示す図である。図14に示されるように、画像処理装置は、CPU(Central Processing Unit)91、ネットワーク接続用の通信I/F(通信インターフェース)92、メモリ93、及び、プログラムを格納するハードディスク等の記憶装置94を含む。
 CPU91は、オペレーティングシステムを動作させて本発明の第1~4の実施の形態に係る画像処理装置を制御する。またCPU91は、例えば、ドライブ装置に装着された記録媒体からメモリ93にプログラムやデータを読み出す。
 また、CPU91は、例えば、第1の実施の形態における画像処理装置10の推定部11、復元部12の少なくとも一部として機能し、プログラムに基づいて各種の処理を実行する。
 記憶装置94は、例えば、光ディスク、フレキシブルディスク、磁気光ディスク、外付けハードディスク、又は半導体メモリ等である。記憶装置の一部の記憶媒体は、不揮発性記憶装置であり、そこにプログラムを記憶する。また、プログラムは、通信網に接続されている。図示しない外部コンピュータからダウンロードされてもよい。
 CPU91は、システムバス97を介して入力装置95及び、出力装置96に接続されている。入力装置95は、例えば、マウス、キーボード、キーボタン、又は、タッチパネルなどで実現され、入力操作に用いられる。出力装置96は、例えば、ディスプレイで実現され出力を確認するために用いられる。
 以上のように、本発明の各実施の形態は、図14に示されるハードウエア構成によって実現される。但し、画像処理装置が備える各部の実現手段は、特に限定されない。すなわち、画像処理装置は、物理的に結合した一つの装置により実現されてもよいし、物理的に分離した二つ以上の装置を有線又は無線で接続し、これら複数の装置により実現してもよい。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、第1から第4の実施形態では、霧中の例を用いて説明したが、靄又は煙霧中でも適用することができる。
 この出願は、2015年1月16日に出願された日本出願特願2015-007204を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 上記の実施形態の一部又は全部は、以下の付記のように記載されうるが、以下には限られない。
 (付記1)
 撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定する推定部と、
 前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する復元部と、を備える画像処理装置。
  (付記2)
 前記可視光画像と前記推定された分光反射率比とが入力され、撮影対象の各注目画素における分光反射率比を、前記可視光画像の情報と前記注目画素の周辺領域の分光反射率比とを用いて補正した補正分光反射率比を算出する第1補正部を更に備え、
 前記復元部は、前記補正分光反射率比と、前記近赤外光画像の輝度を乗算し、前記復元可視光画像を生成する、
付記1記載の画像処理装置。
  (付記3)
 前記第1補正部は、前記可視光画像の情報を用いて同一領域と見なせる前記注目画素の周辺領域の画素群をそれぞれ抽出し、前記抽出した画素群の分光反射率比に基づき、前記注目画素の分光反射率比を補正する、
 付記2記載の画像処理装置。
  (付記4)
 前記第1補正部は、
前記可視光画像の色情報を用いて合成重みにより分光反射率比を平滑化する、
 付記3に記載の画像処理装置。
  (付記5)
 前記合成重みは、前記可視光画像の各画素におけるHSV表色系の色相Hを用いる、
付記4に記載の画像処理装置。
  (付記6)
 前記第1補正部は、前記注目画素を含む所定の周辺領域の画素について、前記合成重みを算出し、前記周辺領域の画素における分光反射率比を合成して前記補正分光反射率比を算出する、
付記2から付記5のいずれか1つに記載の画像処理装置。
  (付記7)
 前記近赤外光画像の各画素における大気透過率を推定し、前記推定した劣化量を用いて前記近赤外光画像を補正する第2補正部を更に備え、
 前記復元部は、推定された前記分光反射率比と前記第2補正部で補正された補正近赤外光画像の輝度を乗算して復元可視光画像を生成する、
付記1から付記6のいずれか1つに記載の画像処理装置。
  (付記8)
 前記第2補正部は、前記近赤外光画像における前記各注目画素の画素値を、前記注目画素の周辺領域の前記近赤外光画像の画素値を用いて補正する、
付記7に記載の画像処理装置。
  (付記9)
 前記近赤外光画像を、前記可視光画像を用いて補正する第3補正部を更に備え、
 前記復元部は、推定された前記分光反射率比と前記第3補正部で補正された補正近赤外光画像の輝度を乗算して復元可視光画像を生成する、
付記1から付記6のいずれか1つに記載の画像処理装置。
  (付記10)
 前記近赤外画像と前記可視光画像における所定の画素における、近赤外光の大気透過率が、可視光の大気透過率よりも小さな値を持つ場合、大気透過率の推定誤差があると予測する、
 付記9に記載の画像処理装置。
  (付記11)
 撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定し、
 前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する、画像処理方法。
  (付記12)
 コンピュータに、
 撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定し、
 前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する、
ことを実行させるプログラム。
 10  画像処理装置
 11  推定部
 12  復元部
 20  画像処理装置
 23  第1補正部
 30  画像処理装置
 31  画像処理装置
 34  第2補正部
 40  画像処理装置
 41  画像処理装置
 44  第3補正部
 91 CPU
 92 通信I/F(通信インターフェース)
 93 メモリ
 94 記憶装置
 95 入力装置
 96 出力装置
 97 システムバス

Claims (10)

  1.  撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定する推定手段と、
     前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する復元手段と、
    を備える、画像処理装置。
  2.  前記可視光画像と前記推定された分光反射率比とが入力され、撮影対象の各注目画素における分光反射率比を、前記可視光画像の情報と前記注目画素の周辺領域の分光反射率比とを用いて補正した補正分光反射率比を算出する第1補正手段を更に備え、
     前記復元手段は、前記補正分光反射率比と、前記近赤外光画像の輝度を乗算し、前記復元可視光画像を生成する、
    請求項1記載の画像処理装置。
  3.  前記第1補正手段は、前記可視光画像の情報を用いて同一領域と見なせる前記注目画素の周辺領域の画素群をそれぞれ抽出し、前記抽出した画素群の分光反射率比に基づき、前記注目画素の分光反射率比を補正する、
     請求項2記載の画像処理装置。
  4.  前記第1補正手段は、前記注目画素を含む所定の周辺領域の画素について、合成重みを算出し、前記周辺領域の画素における分光反射率比を合成して前記補正分光反射率比を算出する、
    請求項2又は請求項3に記載の画像処理装置。
  5.  前記近赤外光画像の各画素における大気透過率を推定し、前記推定した劣化量を用いて前記近赤外光画像を補正する第2補正手段を更にを備え、
     前記復元手段は、推定された前記分光反射率比と前記第2補正手段で補正された補正近赤外光画像の輝度を乗算して前記復元可視光画像を生成する、
    請求項1から請求項4のいずれか1つに記載の画像処理装置。
  6.  前記第2補正手段は、前記近赤外光画像における前記各注目画素の画素値を、前記注目画素の周辺領域の前記近赤外光画像の画素値を用いて補正する、
    請求項5に記載の画像処理装置。
  7.  前記近赤外光画像を、前記可視光画像を用いて補正する第3補正手段を備え、
     前記復元手段は、推定された前記分光反射率比と前記第3補正手段で補正された補正近赤外光画像の輝度を乗算して前記復元可視光画像を生成する、
    請求項1から請求項4のいずれか1つに記載の画像処理装置。
  8.  前記近赤外画像と前記可視光画像における所定の画素における、近赤外光の大気透過率が、可視光の大気透過率よりも小さな値を持つ場合、大気透過率の推定誤差があると予測する、
     請求項7に記載の画像処理装置。
  9.  撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定し、
     前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する、
    画像処理方法。
  10.  コンピュータに、
     撮影対象を撮影した、可視光画像と近赤外光画像の各画素位置における、可視光波長領域の分光反射率と近赤外光波長領域の分光反射率との比を表す分光反射率比を推定し、
     前記各画素位置で、推定された前記分光反射率比と前記近赤外光画像の輝度を乗算し、復元可視光画像を生成する、
    ことを実行させるプログラムを格納する記録媒体。
PCT/JP2016/000210 2015-01-16 2016-01-15 画像処理装置、画像処理方法、及び記録媒体 WO2016114148A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/540,330 US10354366B2 (en) 2015-01-16 2016-01-15 Image processing device, image processing method, and recording medium
JP2016569295A JP6677172B2 (ja) 2015-01-16 2016-01-15 画像処理装置、画像処理方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-007204 2015-01-16
JP2015007204 2015-01-16

Publications (1)

Publication Number Publication Date
WO2016114148A1 true WO2016114148A1 (ja) 2016-07-21

Family

ID=56405696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000210 WO2016114148A1 (ja) 2015-01-16 2016-01-15 画像処理装置、画像処理方法、及び記録媒体

Country Status (3)

Country Link
US (1) US10354366B2 (ja)
JP (1) JP6677172B2 (ja)
WO (1) WO2016114148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168517A1 (ja) * 2021-02-03 2022-08-11 ソニーグループ株式会社 画像処理装置及び画像処理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170099476A1 (en) * 2015-10-01 2017-04-06 Samsung Electronics Co., Ltd. Photographing device and method of controlling the same
CN107438170B (zh) * 2016-05-25 2020-01-17 杭州海康威视数字技术股份有限公司 一种图像透雾方法及实现图像透雾的图像采集设备
JP7234514B2 (ja) * 2018-06-13 2023-03-08 Agc株式会社 光学積層体
CN110660026B (zh) * 2019-08-08 2023-04-18 西安电子科技大学 一种基于Retinex理论和高饱和度先验的图像去雾方法
CN112927150B (zh) * 2021-02-20 2023-04-07 河北先河环保科技股份有限公司 高光谱图像的水体倒影区域光谱恢复方法及终端设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182626A (ja) * 2011-03-01 2012-09-20 Nec Corp 撮像装置
JP2014089075A (ja) * 2012-10-29 2014-05-15 Ricoh Co Ltd 分光反射率測定システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2691579A1 (fr) 1992-05-21 1993-11-26 Commissariat Energie Atomique Système de conversion d'une image infrarouge en image visible ou proche infrarouge.
JP3416352B2 (ja) 1995-10-05 2003-06-16 キヤノン株式会社 画像処理装置及びその方法
JP5182518B2 (ja) 2009-01-29 2013-04-17 株式会社Jvcケンウッド 撮像装置および撮像方法
JP5643571B2 (ja) 2010-08-18 2014-12-17 キヤノン株式会社 蛍光推定装置および蛍光推定方法、および蛍光測定装置
JP2013255144A (ja) 2012-06-08 2013-12-19 Hitachi Consumer Electronics Co Ltd 撮像装置
CN105814887B (zh) * 2014-01-08 2017-10-27 三菱电机株式会社 图像生成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012182626A (ja) * 2011-03-01 2012-09-20 Nec Corp 撮像装置
JP2014089075A (ja) * 2012-10-29 2014-05-15 Ricoh Co Ltd 分光反射率測定システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168517A1 (ja) * 2021-02-03 2022-08-11 ソニーグループ株式会社 画像処理装置及び画像処理方法

Also Published As

Publication number Publication date
JP6677172B2 (ja) 2020-04-08
JPWO2016114148A1 (ja) 2017-10-26
US10354366B2 (en) 2019-07-16
US20170352133A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2016114148A1 (ja) 画像処理装置、画像処理方法、及び記録媒体
JP5213670B2 (ja) 撮像装置及びぶれ補正方法
WO2019200657A1 (zh) 图像边缘处理方法、电子装置及计算机可读存储介质
JP4290193B2 (ja) 画像処理装置
US20120008005A1 (en) Image processing apparatus, image processing method, and computer-readable recording medium having image processing program recorded thereon
US9489728B2 (en) Image processing method and image processing apparatus for obtaining an image with a higher signal to noise ratio with reduced specular reflection
JP6390847B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP6293374B2 (ja) 画像処理装置、画像処理方法、プログラム、これを記録した記録媒体、映像撮影装置、及び映像記録再生装置
JP6818463B2 (ja) 画像処理装置、画像処理方法及びプログラム
US20130251288A1 (en) Apparatus and method for processing image, and apparatus for displaying image
JP2017138647A (ja) 画像処理装置、画像処理方法、映像撮影装置、映像記録再生装置、プログラム及び記録媒体
JP6320115B2 (ja) 画像処理装置、画像処理方法、およびプログラム
JP2022525853A (ja) 結合前ノイズ除去による高ダイナミックレンジ画像生成
KR101456445B1 (ko) Hsv 색상 공간에서 영상의 안개 제거 장치 및 방법, 그리고 그 방법을 컴퓨터에서 실행시키기 위한 프로그램을 기록한 기록매체
JP6436158B2 (ja) 画像処理装置、撮像装置、画像処理方法及びプログラム
US10565687B2 (en) Image processing apparatus, imaging apparatus, image processing method, image processing program, and recording medium
US10097736B2 (en) Image processing device and image processing method
JP2018160024A (ja) 画像処理装置、画像処理方法及びプログラム
JP7365206B2 (ja) 画像処理装置、画像処理方法、及びプログラム
JP5860298B2 (ja) 画像処理装置及びプログラム
KR20110095556A (ko) 영상투사장치 및 그 영상보정방법
WO2013175946A1 (ja) 画像処理装置
CN116612050B (zh) 一种基于暗通道的先验去雾方法
KR101310076B1 (ko) 컬러 영상 복원 장치 및 방법
JP2012156968A (ja) 画像処理装置、画像処理方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569295

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15540330

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737219

Country of ref document: EP

Kind code of ref document: A1