WO2016114063A1 - Hydrogen generating electrode - Google Patents

Hydrogen generating electrode Download PDF

Info

Publication number
WO2016114063A1
WO2016114063A1 PCT/JP2015/085238 JP2015085238W WO2016114063A1 WO 2016114063 A1 WO2016114063 A1 WO 2016114063A1 JP 2015085238 W JP2015085238 W JP 2015085238W WO 2016114063 A1 WO2016114063 A1 WO 2016114063A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
layer
semiconductor layer
hydrogen generating
type semiconductor
Prior art date
Application number
PCT/JP2015/085238
Other languages
French (fr)
Japanese (ja)
Inventor
一成 堂免
東 耕平
Original Assignee
富士フイルム株式会社
国立大学法人東京大学
人工光合成化学プロセス技術研究組合
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社, 国立大学法人東京大学, 人工光合成化学プロセス技術研究組合 filed Critical 富士フイルム株式会社
Priority to JP2016569271A priority Critical patent/JP6559710B2/en
Publication of WO2016114063A1 publication Critical patent/WO2016114063A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material

Definitions

  • the present invention relates to a hydrogen generating electrode that generates light from an aqueous electrolyte solution by receiving light, and more particularly to a hydrogen generating electrode having a large photocurrent density corresponding to the amount of hydrogen generated per unit area.
  • Non-Patent Document 1 As one form of utilizing solar energy, which is renewable energy, an electrolysis aqueous solution is obtained by using an electromotive force obtained from this photoelectric conversion material using a photoelectric conversion material used in a solar cell. An apparatus for producing hydrogen by decomposing it has been proposed (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 shows an improved Cu 2 ZnSnS 4 semiconductor photoelectrode that generates hydrogen from water under sunlight.
  • the semiconductor photoelectrode of Non-Patent Document 1 has a Pt / TiO 2 / CdS / CZTS (Cu 2 ZnSnS 4 ) / Mo / SLG configuration.
  • the TiO 2 layer is an electron transport layer, and is formed by sputtering to partially cover the CdS layer. Pt is supported on a TiO 2 layer that partially covers the CdS layer.
  • Non-Patent Document 1 a TiO 2 layer that partially covers the CdS layer is formed by sputtering, but the IE characteristic (current-voltage characteristic) obtained by light irradiation is low. Unfortunately, on the high potential side, there is a problem that the photocurrent density corresponding to the amount of hydrogen generated per unit area is low.
  • An object of the present invention is to solve the problems based on the above-described prior art and provide a hydrogen generating electrode having a large photocurrent density corresponding to the amount of hydrogen generated per unit area.
  • the present invention provides a hydrogen generating electrode that generates light from an aqueous electrolyte solution by receiving light, an inorganic semiconductor layer having a pn junction, a mixed layer formed on the inorganic semiconductor layer,
  • the mixed layer provides a hydrogen generating electrode characterized by having fine particles having an electron transporting capability and a hydrogen generation catalyst.
  • a hydrogen generation catalyst is supported on the surface of the fine particles.
  • the inorganic semiconductor layer preferably contains any of a CIGS compound semiconductor, a CZTS compound semiconductor, and a CGSe compound semiconductor.
  • the fine particles having an electron transport ability are composed of TiO 2 .
  • the mixed layer preferably has a thickness of less than 300 nm.
  • the hydrogen generation catalyst is particulate.
  • the hydrogen generation catalyst is preferably composed of platinum.
  • the photocurrent density corresponding to the amount of hydrogen generated per unit area can be increased on the high potential side.
  • FIG. 1 is typical sectional drawing which shows the structure of the hydrogen generating electrode of embodiment of this invention
  • (b) is a schematic diagram which expands and shows the mixed layer of the hydrogen generating electrode of embodiment of this invention. It is typical sectional drawing which shows the structure of the artificial photosynthesis module using the hydrogen generating electrode of embodiment of this invention.
  • (A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of the comparative example 1 and the comparative example 4
  • (b) is schematic which shows the structure of the hydrogen generating electrode of the comparative example 2, the comparative example 3, and the comparative example 5.
  • FIG. 1 is typical sectional drawing which shows the structure of the hydrogen generating electrode of embodiment of this invention
  • (b) is a schematic diagram which expands and shows the mixed layer of the hydrogen generating electrode of embodiment of this invention. It is typical sectional drawing which shows the structure of the artificial photosynthesis module using the hydrogen generating electrode of embodiment of this invention.
  • (A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of the comparative
  • the hydrogen generating electrode of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings.
  • the present invention is not limited to the embodiments of the hydrogen generating electrode described below.
  • “to” indicating a numerical range includes numerical values written on both sides.
  • is a numerical value ⁇ to a numerical value ⁇
  • the range of ⁇ is a range including the numerical value ⁇ and the numerical value ⁇ , and expressed by mathematical symbols, ⁇ ⁇ ⁇ ⁇ ⁇ .
  • FIG. 1A is a schematic cross-sectional view showing a configuration of a hydrogen generating electrode according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram showing an enlarged mixed layer of the hydrogen generating electrode according to the embodiment of the present invention.
  • the hydrogen generating electrode 10 receives light and generates hydrogen from the electrolyte aqueous solution.
  • the hydrogen generating electrode 10 is formed on the insulating substrate 12 and has a conductive layer 14, an inorganic semiconductor layer 16, and a mixed layer 18.
  • the insulating substrate 12 supports the hydrogen generating electrode 10 and is made of an electrically insulating material.
  • the insulating substrate 12 is not particularly limited, and for example, a soda lime glass substrate (hereinafter referred to as an SLG substrate) or a ceramic substrate can be used.
  • the insulating substrate 12 may be a substrate in which an insulating layer is formed on a metal substrate.
  • a metal substrate such as an Al substrate or a SUS substrate, or a composite metal substrate such as a composite Al substrate made of a composite material of Al and another metal such as SUS can be used.
  • the composite metal substrate is also a kind of metal substrate, and the metal substrate and the composite metal substrate are collectively referred to simply as a metal substrate.
  • insulating substrate 12 a metal substrate with an insulating film having an insulating layer formed by anodizing the surface of an Al substrate or the like can also be used.
  • the insulating substrate 12 may or may not be flexible.
  • a glass plate such as high strain point glass and non-alkali glass, or a polyimide material can be used as the insulating substrate 12.
  • the thickness of the insulating substrate 12 is not particularly limited, and may be, for example, about 20 to 20000 ⁇ m, preferably 100 to 10,000 ⁇ m, and more preferably 1000 to 5000 ⁇ m.
  • alkali ions for example, sodium (Na) ions are formed on the insulating substrate 12 side. : Na + ) improves the photoelectric conversion efficiency. Therefore, it is preferable to provide an alkali supply layer for supplying alkali ions on the surface 12 a of the insulating substrate 12. In the case of the SLG substrate, the alkali supply layer is not necessary.
  • the conductive layer 14 is formed on the surface 12 a of the insulating substrate 12 and applies a voltage to the inorganic semiconductor layer 16.
  • the conductive layer 14 has electroconductivity,
  • it is comprised by metals, such as Mo, Cr, and W, or what combined these.
  • the conductive layer 14 may have a single layer structure or a laminated structure such as a two-layer structure. Among these, the conductive layer 14 is preferably composed of Mo.
  • the thickness of the conductive layer 14 is generally about 800 nm, but the thickness of the conductive layer 14 is preferably 400 nm to 1 ⁇ m.
  • the inorganic semiconductor layer 16 generates an electromotive force.
  • the inorganic semiconductor layer 16 includes a p-type semiconductor layer 20 and an n-type semiconductor layer 22, and the p-type semiconductor layer 20 forms a pn junction at the interface with the n-type semiconductor layer 22.
  • a p-type semiconductor layer 20 is formed on the conductive layer 14.
  • the inorganic semiconductor layer 16 is a layer that absorbs light that has passed through the n-type semiconductor layer 22 and generates holes on the p side and electrons on the n side.
  • the p-type semiconductor layer 20 has a photoelectric conversion function.
  • the thickness of the p-type semiconductor layer 20 is preferably 0.5 to 3.0 ⁇ m, and particularly preferably 1.0 to 2.0 ⁇ m.
  • the p-type semiconductor layer 20 is preferably composed of, for example, a CIGS compound semiconductor having a chalcopyrite crystal structure or a CZTS compound semiconductor such as Cu 2 ZnSnS 4 .
  • the CIGS compound semiconductor layer may be made of not only Cu (In, Ga) Se 2 (CIGS) but also CuInSe 2 (CIS), CuGaSe 2 (CGSe), or the like.
  • the p-type semiconductor layer 20 may be composed of a CGSe compound semiconductor.
  • CIGS layer forming methods 1) multi-source vapor deposition, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.
  • Examples of other CIGS layer forming methods include screen printing, proximity sublimation, MOCVD (Metal Organic Chemical Vapor Deposition), and spray (wet film formation).
  • a fine particle film containing a group 11 element, a group 13 element, and a group 16 element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and a thermal decomposition treatment ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a group 16 element atmosphere) (JP-A-9-74065, JP-A-9-74213, etc.).
  • the n-type semiconductor layer 22 forms a pn junction at the interface with the p-type semiconductor layer 20 as described above.
  • the n-type semiconductor layer 22 transmits light so that incident light reaches the p-type semiconductor layer 20.
  • the n-type semiconductor layer 22 includes, for example, CdS, ZnS, Zn (S, O), and / or Zn (S, O, OH), SnS, Sn (S, O), and / or Sn (S, O, OH), InS, In (S, O), and / or In (S, O, OH), and other metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In Is formed.
  • the film thickness of the n-type semiconductor layer 22 is preferably 10 nm to 2 ⁇ m, more preferably 15 to 200 nm.
  • the n-type semiconductor layer 22 is formed by, for example, a chemical bath deposition method (hereinafter referred to as CBD method).
  • a mixed layer 18 is formed on the inorganic semiconductor layer 16, that is, on a surface 22a of an n-type semiconductor layer 22 described later.
  • the mixed layer 18 includes fine particles 24 having an electron transport ability and hydrogen generation catalyst particles 26.
  • the fine particles 24 and the hydrogen generation catalyst particles 26 are mixed, but the fine particles 24 are bonded and stacked, and the hydrogen generation catalyst particles 26 are supported on the surfaces of the fine particles 24.
  • the hydrogen generation catalyst particles 26 are preferably carried on the interface between the n-type semiconductor layer 22 and the mixed layer 18, the inside of the mixed layer 18, and the surface of the fine particles 24. Thereby, the area which the hydrogen production
  • the mixed layer 18 may be formed using core-shell particles having a core of fine particles 24 and a shell of hydrogen-producing catalyst particles 26.
  • a hydrogen generation catalyst may be supported in the form of a film on the surface of the laminate of the fine particles 24.
  • the hydrogen generating catalyst particles 26 are supported on the surfaces of the fine particles 24.
  • the hydrogen generating catalyst is not limited to the particulate form, and is in the form of a piece.
  • a membrane-like hydrogen generation catalyst may be supported on the surface of the fine particles 24.
  • the thickness t of the mixed layer 18 is preferably 300 nm or less. If it is 300 nm or less, the photocurrent density corresponding to the amount of hydrogen generated per unit area can be reliably increased.
  • the fine particles 24 of the mixed layer 18 have an electron transport capability and do not change in quality when immersed in an aqueous electrolyte solution.
  • the fine particles 24 can move carriers between the fine particles 24. In this case, electrons can move, the surface area increases, and when the hydrogen generation catalyst particles 26 are supported, water is added.
  • the number of reaction sites for reduction is not particularly limited as long as the conditions satisfy that the number of reaction sites increases and the electron transport ability is satisfied.
  • the fine particles 24 are made of, for example, TiO 2 .
  • the size of the fine particles 24 is, for example, about 5 to 10 nm.
  • the hydrogen generation catalyst particles 26 of the mixed layer 18 include, for example, simple substances composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc. oxides, for example, can be formed of NiOx and RuO 2.
  • the size of the hydrogen generation catalyst particles 26 is not particularly limited, but is about 0.5 nm to 5 nm, for example, because the hydrogen generation catalyst particles 26 attach to the surface of the fine particles 24.
  • generation catalyst particle 26 is not specifically limited, For example, a photo-deposition method and a sputtering method can be used.
  • a dispersion liquid in which the fine particles 24 are dispersed is applied to the surface 22 a of the n-type semiconductor layer 22. Then, it is dried. Thereby, a layer composed of the fine particles 24 is formed. Then, for example, it is immersed in an aqueous solution containing chloroplatinic acid, and Pt particles (platinum particles) are supported on the surfaces of the fine particles 24 as the hydrogen generation catalyst particles 26 by a photo-deposition method. In this way, the mixed layer 18 can be formed.
  • the mixed layer 18 can be formed using, for example, particles in which the hydrogen generation catalyst particles 26 are previously supported on the surfaces of the fine particles 24. Moreover, the mixed layer 18 can also be formed using a sol-gel method.
  • the photocurrent density can be increased on the high potential side, thereby increasing the amount of hydrogen generation. Can do.
  • the mixed layer 18 provided on the inorganic semiconductor layer 16 having a pn junction is not a dense film structure formed by, for example, sputtering, but a laminated structure in which fine particles 24 having an electron transporting ability are bonded to each other. The surface area of the fine particles 24 is increased by supporting the hydrogen-producing catalyst particles 26 on the surface.
  • the area where the hydrogen generation catalyst particles 26 supported on the fine particles 24 are in contact with the electrolytic aqueous solution containing water is increased as compared with the case of the above-described dense film configuration and the structure without the electron transport layer. It is estimated that the photocurrent density corresponding to the amount of hydrogen generated per unit area can be increased on the high potential side.
  • the condition of water decomposition starting voltage of electrolytic aqueous solution + 0.6V> photovoltaic power between hydrogen generation region and oxygen generating region> water decomposition starting voltage of electrolytic aqueous solution The effect of increasing the photocurrent density corresponding to the amount of hydrogen generated is further increased.
  • FIG. 2 is a schematic cross-sectional view showing the configuration of the artificial photosynthesis module using the hydrogen generating electrode of the embodiment of the present invention.
  • the same components as those of the hydrogen generating electrode 10 shown in FIGS. 1A and 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a hydrogen electrolysis chamber 36 and an oxygen electrolysis chamber 38 are arranged side by side with a partition wall 34 in a container 32.
  • An electrolytic aqueous solution AQ is supplied into the container 32.
  • piping, a pump, and the like are necessary, but these are not shown.
  • the container 32 constitutes the outer shell of the artificial photosynthesis module 30, and if the electrolytic aqueous solution AQ can be held inside without leaking and the light L from the outside can be transmitted inside, the structure Is not particularly limited.
  • the electrolytic aqueous solution AQ is, for example, a liquid mainly composed of H 2 O, and may be distilled water, or an aqueous solution containing water as a solvent and containing a solute.
  • water for example, it may be an electrolytic solution that is an aqueous solution containing an electrolyte, or may be cooling water used in a cooling tower or the like.
  • an aqueous solution containing an electrolyte such as a strong alkali (KOH), a polymer electrolyte (Nafion (registered trademark)), an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1 M sodium sulfate.
  • Electrolytic solution 0.1M potassium phosphate buffer, etc.
  • the partition wall 34 is for isolating the hydrogen gas generated in the hydrogen electrolysis chamber 36 and the oxygen gas generated in the oxygen electrolysis chamber 38 so as not to be mixed. Therefore, the configuration of the partition wall 34 is not particularly limited as long as it has the above-described isolation function.
  • the partition wall 34 is composed of hydroxide ions (pH is increased) increased due to generation of hydrogen in the hydrogen electrolysis chamber 36 and hydrogen ions (pH is decreased) increased due to oxygen generation in the oxygen electrolysis chamber 38.
  • the container 32 may be separated from the hydrogen electrolysis chamber 36 and the oxygen electrolysis chamber 38 in order to allow hydroxide ions and hydrogen ions to pass therethrough.
  • the partition wall 34 is made of, for example, a material having ion permeability and gas non-permeability. Specifically, for example, an ion exchange membrane, a ceramic filter, porous glass, or the like is used.
  • the thickness of the partition wall 34 is not particularly limited, and is preferably 10 to 1000 ⁇ m.
  • two photoelectric conversion units 40, a hydrogen gas generation unit 42, and an oxygen gas generation unit 44 are formed on the planar insulating substrate 12, and these are electrically connected in the direction M. Connected in series.
  • the photoelectric conversion unit 40 and the hydrogen gas generation unit 42 are disposed in the hydrogen electrolysis chamber 36, and the photoelectric conversion unit 40 and the oxygen gas generation unit 44 are disposed in the oxygen electrolysis chamber 38.
  • the photoelectric conversion unit 40 receives light and generates power to supply power for generating hydrogen gas in the hydrogen gas generation unit 42 and power for generating oxygen gas in the oxygen gas generation unit 44 It is.
  • the photoelectric conversion unit 40 is configured by laminating a conductive layer 14, a p-type semiconductor layer 20, an n-type semiconductor layer 22, a transparent electrode layer 50, and a protective film 52 in order from the insulating substrate 12 side, and is used for a solar cell. It has the same structure as the photoelectric conversion element.
  • the p-type semiconductor layer 20 and the n-type semiconductor layer 22 constitute the inorganic semiconductor layer 16 as described above, and a pn junction is formed at the interface between the p-type semiconductor layer 20 and the n-type semiconductor layer 22. Yes.
  • the inorganic semiconductor layer 16 is a layer that absorbs incident light L and generates holes on the p side and electrons on the n side.
  • the p-type semiconductor layer 20 has a photoelectric conversion function. In the p-type semiconductor layer 20, holes generated at the pn junction are moved from the p-type semiconductor layer 20 to the conductive layer 14 side, and electrons generated at the pn junction are moved from the n-type semiconductor layer 22 to the transparent electrode layer 50 side. .
  • the thickness of the p-type semiconductor layer 20 is preferably 0.5 to 3.0 ⁇ m, and particularly preferably 1.0 to 2.0 ⁇ m.
  • the two photoelectric conversion units 40 are connected in series in the direction M.
  • the number is not limited as long as an electromotive force capable of generating hydrogen gas and oxygen gas can be obtained. Two or more may be sufficient. Since a higher voltage can be obtained by connecting a plurality of photoelectric conversion units in series, it is preferable to connect the plurality of photoelectric conversion units in series.
  • an opening groove P2 that penetrates the n-type semiconductor layer 22 and the p-type semiconductor layer 20 and reaches the surface of the conductive layer 14 is formed at a position different from the formation position of the separation groove P1 in the direction M.
  • a partition wall 34 is provided in the opening groove P2.
  • the hydrogen gas generation unit 42 becomes a negative electrode (electrolysis cathode), and the oxygen gas generation unit 44 becomes a positive electrode (electrolysis anode).
  • the type (polarity) of the produced gas in the artificial photosynthesis module 30 varies as appropriate according to the configuration of the photoelectric conversion unit, the configuration of the artificial photosynthesis module 30, and the like.
  • the protective film 52 is insoluble in a weakly acidic solution and a weakly alkaline solution, and also has light transmission properties, water shielding properties, and insulating properties. Specifically, the protective film 52 has translucency and protects the photoelectric conversion unit 40. Specifically, the protective film 52 is a portion other than the hydrogen gas generation region in the hydrogen electrolysis chamber 36, and the oxygen gas in the oxygen electrolysis chamber 38. It is provided so as to cover a portion other than the generation region. Specifically, the protective film 52 covers the entire surface of the transparent electrode layer 50 and the side surface of the hydrogen generation electrode 10. Protective film 52, for example, a SiO 2, SnO 2, Nb 2 O 5, Ta 2 O 5, Al 2 O 3 and Ga 2 O 3 or the like. The thickness of the protective film 52 is not particularly limited, and is preferably 100 to 1000 nm.
  • the method for forming the protective film 52 is not particularly limited, and can be formed by RF (high frequency) sputtering, DC (direct current) reactive sputtering, MOCVD, or the like.
  • the protective film 52 can be made of, for example, an insulating epoxy resin, an insulating silicone resin, an insulating fluororesin, or the like.
  • the thickness of the protective film 52 is not particularly limited and is preferably 2 to 1000 ⁇ m.
  • the hydrogen gas generation unit 42 is basically composed of the hydrogen generation electrode 10 described above, and its side surface is covered with a protective film 52.
  • the functional layer 19 is formed on the surface 22 a of the n-type semiconductor layer 22, and the mixed layer 18 is formed on the surface 19 a of the functional layer 19.
  • the detailed description of the configuration of the hydrogen generation electrode 10 is omitted.
  • the hydrogen generating electrode 10 is immersed in the electrolytic aqueous solution AQ and is in contact with the electrolytic aqueous solution AQ.
  • the protective film 52 on the side surface of the hydrogen generation electrode 10 prevents a short circuit due to contact with the electrolytic aqueous solution AQ.
  • the mixed layer 18 electrons are supplied to hydrogen ions (protons) H + ionized from water molecules to generate hydrogen molecules, that is, hydrogen gas (2H + + 2e ⁇ ⁇ > H 2 ).
  • the mixed layer 18 constitutes a hydrogen gas generation region.
  • the functional layer 19 prevents moisture from entering the inorganic semiconductor layer 16 and suppresses bubble formation inside the inorganic semiconductor layer 16.
  • the functional layer 19 is required to have transparency, water resistance, water shielding, and conductivity.
  • the functional layer 19 improves the durability of the hydrogen generating electrode 10.
  • the functional layer 19 is preferably made of, for example, a metal or a conductive oxide (overvoltage is 0.5 V or less) or a composite thereof. More specifically, the functional layer 19 is made of transparent conductive material such as ITO (Indium Tin Oxide), ZnO doped with Al, B, Ga, and In, or IMO (In 2 O 3 doped with Mo). A membrane can be used.
  • the functional layer 19 may have a single layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the functional layer 19 is not particularly limited, and is preferably 10 to 1000 nm, and more preferably 50 to 500 nm.
  • the method for forming the functional layer 19 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method, a sputtering method, a CVD method, or a coating method.
  • the functional layer 19 is not necessarily provided also in the hydrogen gas generation unit 42.
  • the oxygen gas generation unit 44 includes a region 60 that is an extension of the conductive layer 14 of the right photoelectric conversion unit 40, and this region 60 serves as an oxygen gas generation region.
  • the region 60 of the extended portion of the conductive layer 14 of the photoelectric conversion unit 40 takes out electrons from the hydroxide ions OH ⁇ ionized from the water molecules and generates oxygen molecules, that is, oxygen gas (2OH ⁇ ⁇ ). > H 2 O + O 2/ 2 + 2e -) and oxygen gas generator 44, the surface 60a serves as a gas generation region.
  • a promoter (not shown) for generating oxygen may be formed on the surface 60a of the region 60 of the conductive layer 14, and in this case, the promoter is formed in an island shape so as to be scattered, for example.
  • the co-catalyst for oxygen generation is composed of, for example, IrO 2 , CoO x or the like. Further, the size of the oxygen-generating cocatalyst is not particularly limited, and is preferably 0.5 nm to 1 ⁇ m. In addition, the formation method of the co-catalyst for oxygen generation is not particularly limited, and can be formed by a coating baking method, a dipping method, an impregnation method, a sputtering method, a vapor deposition method, or the like.
  • the photoelectric conversion unit 40 functions as a photoelectric conversion element, and includes the p-type semiconductor layer 20 and the n-type semiconductor layer 22. Since the p-type semiconductor layer 20 and the n-type semiconductor layer 22 are as described above, detailed description thereof is omitted.
  • the absorption wavelength of the inorganic semiconductor forming the p-type semiconductor layer 20 is not particularly limited as long as it is a wavelength region where photoelectric conversion is possible. As an absorption wavelength, it is only necessary to include a wavelength region such as sunlight, in particular, a visible wavelength region to an infrared wavelength region, but the absorption wavelength end includes 800 nm or more, that is, the infrared wavelength region. Is preferred. The reason is that as much solar energy as possible can be used.
  • the longer absorption wavelength end corresponds to the reduction of the band gap, which can be expected to reduce the electromotive force for assisting water decomposition. Therefore, it can be expected that the number of connections for connecting the photoelectric conversion units 40 in series is increased, so that the longer the absorption edge, the better.
  • the transparent electrode layer 50 has translucency, takes light into the p-type semiconductor layer 20, and pairs with the conductive layer 14 to move holes and electrons generated in the p-type semiconductor layer 20 ( It functions as an electrode through which current flows, and functions as a transparent conductive film for connecting two photoelectric conversion units 40 in series.
  • the transparent electrode layer 50 is made of, for example, ZnO doped with Al, B, Ga, In or the like, or ITO.
  • the transparent electrode layer 50 may have a single layer structure or a laminated structure such as a two-layer structure.
  • the thickness of the transparent electrode is not particularly limited and is preferably 0.3 to 1 ⁇ m.
  • the formation method of a transparent electrode is not specifically limited, It can form by vapor phase film-forming methods, such as an electron beam vapor deposition method, a sputtering method, and CVD method, or the apply
  • the manufacturing method of the artificial photosynthesis module 30 is not limited to the manufacturing method shown below.
  • a soda lime glass substrate to be the insulating substrate 12 is prepared.
  • a Mo film or the like that becomes the conductive layer 14 is formed on the surface of the insulating substrate 12 by sputtering.
  • a predetermined position of the Mo film is scribed to form a separation groove P ⁇ b> 1 extending in the width direction of the insulating substrate 12. Thereby, the conductive layers 14 separated from each other by the separation groove P1 are formed.
  • a CIGS film is formed as the p-type semiconductor layer 20 so as to cover the conductive layer 14 and fill the isolation trench P1.
  • This CIGS film is formed by any of the film forming methods described above.
  • a CdS layer to be the n-type semiconductor layer 22 is formed on the p-type semiconductor layer 20 by the CBD method.
  • it in the direction M, it extends in the width direction of the insulating substrate 12 at a position different from the formation position of the separation groove P1, and reaches the surface 14a of the conductive layer 14 from the n-type semiconductor layer 22 through the p-type semiconductor layer 20.
  • Two opening grooves P2 are formed.
  • a laser scribe method or a mechanical scribe method can be used as the scribe method.
  • Al, B, Ga, Sb, or the like that becomes the transparent electrode layer 50 is added so as to extend in the width direction of the insulating substrate 12 and fill the opening groove P2 on the n-type semiconductor layer 22.
  • a ZnO: Al layer is formed by sputtering or coating.
  • the ZnO: Al layer in the opening groove P2 is removed so as to leave a part, and two slightly narrow opening grooves P2 reaching the surface of the conductive layer 14 are formed again. Thereby, three laminated bodies (not shown) are formed. One becomes the hydrogen generating electrode 10 and the remaining two become the photoelectric conversion unit 40.
  • As the scribe method a laser scribe method or a mechanical scribe method can be used.
  • an SiO 2 film for example, serving as the protective film 52 is formed by RF sputtering on the outer surface and side surfaces of the multilayer body and the surface of the conductive layer 14 at the bottom surface of the two opening grooves P2.
  • a groove is formed again at a position corresponding to the opening groove P2 between the two laminated bodies, and a partition wall 34 is provided in the groove.
  • the ZnO: Al layer of the photoelectric conversion unit 40 is peeled off using a laser scribe method or a mechanical scribe method, and an amorphous ITO layer, for example, is formed as the functional layer 19 on the exposed surface 22a of the n-type semiconductor layer 22. It is formed by a sputtering method using a patterning mask.
  • a dispersion liquid in which the fine particles 24 are dispersed is applied to the surface 22 a of the n-type semiconductor layer 22. Then, it is dried. Thereby, a layer composed of the fine particles 24 is formed. Then, a mask other than the formation layer of the fine particles 24 is used as a mask, and immersed in an aqueous solution containing, for example, chloroplatinic acid, and the hydrogen generating catalyst particles 26 are supported on the surfaces of the fine particles 24 by a photo-deposition method. Thereby, the hydrogen generation electrode 10 is formed, and the hydrogen gas generation part 42 is formed.
  • region 60 of the extension part of the conductive layer 14 of the photoelectric conversion unit 40 is removed using a laser scribe method or a mechanical scribe method, and the area
  • generation part 44 is formed.
  • a container 32 having substantially the same size as the insulating substrate 12 is prepared, and the insulating substrate 12 on which the photoelectric conversion unit 40, the hydrogen gas generation unit 42, and the oxygen gas generation unit 44 are formed is stored in the container 32.
  • a hydrogen electrolysis chamber 36 and an oxygen electrolysis chamber 38 are formed by the partition wall 34. In this way, the artificial photosynthesis module 30 can be manufactured.
  • the hydrogen gas generation unit 42 has a high photocurrent density corresponding to the amount of hydrogen generated per unit area on the high potential side. Thereby, the artificial photosynthesis module 30 with excellent performance can be obtained.
  • the present invention is basically configured as described above.
  • the hydrogen generating electrode of the present invention has been described in detail above.
  • the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. is there.
  • the hydrogen generation electrodes of Examples 1 to 4 and Comparative Examples 1 to 5 were subjected to IE (current-voltage) measurement, and the reduction current density (relative value) was obtained.
  • the results are shown in Table 1 below. It is known that the reduction current density (relative value) is a parameter proportional to the amount of hydrogen produced.
  • IE current-voltage
  • a hydrogen generating electrode is used as a working electrode
  • Ag / AgCl is used as a reference electrode
  • Pt wire is used as a counter electrode, and these are immersed in an aqueous solution of 0.5M Na 2 SO 4 and correspond to AM1.5G.
  • the simulated sunlight was irradiated.
  • the hydrogen generating electrodes of Examples 1 to 4 and Comparative Examples 1 to 5 will be described.
  • Example 1 The hydrogen generation electrode of Example 1 has the same configuration as the hydrogen generation electrode 10 shown in FIG.
  • Mo was formed to a thickness of about 500 nm on a soda lime glass substrate by sputtering, and a Mo electrode was formed as the conductive layer 14.
  • a CuGaSe 2 (CGSe) thin film was formed as the p-type semiconductor layer 20 on the Mo electrode.
  • granular raw materials of high-purity copper (purity 99.9999%), high-purity Ga (purity 99.999%), and high-purity Se (purity 99.999%) were used as an evaporation source. .
  • a chromel-alumel thermocouple was used as a substrate temperature monitor. After the main vacuum chamber is evacuated to 10 ⁇ 8 Torr (1.3 ⁇ 10 ⁇ 5 Pa), the deposition rate from each evaporation source is controlled, and the film thickness is about 100 ° C. under the film forming conditions with the maximum substrate temperature of 530 ° C. A 1.2 ⁇ m CGSe thin film was formed. Subsequently, a CdS thin film having a thickness of about 90 nm was formed by a solution growth method. This CdS thin film is an n-type semiconductor layer 22 that functions as a buffer layer.
  • a solaronix TiO 2 nanoparticle dispersion (HT-L / SC) is applied to the surface 22a of the n-type semiconductor layer 22 by spin coating, and dried at a temperature of 120 ° C. for 30 minutes. 10 nm TiO 2 nanoparticles were laminated to a thickness of 150 nm. On the other hand, it was immersed in an aqueous solution containing chloroplatinic acid, and the Pt promoter was supported on the surfaces of the fine particles 24 as the hydrogen generation catalyst particles 26 by the photo-deposition method. In this way, a mixed layer 18 having a thickness of 150 nm was formed.
  • Example 2 The hydrogen generation electrode of Example 2 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Example 2 is different from Example 1 in that the p-type semiconductor layer 20 is replaced with a CuGaSe 2 (CGSe) thin film, except that a CIGS thin film is formed as described later. Since it is the same as an electrode, the detailed description is abbreviate
  • high-purity copper (Cu) and indium (In) purity 99.9999%
  • high-purity gallium (Ga) purity 99.999%
  • high-purity selenium (Se) A granular raw material having a purity of 99.999% was used.
  • a chromel-alumel thermocouple was used as a substrate temperature monitor. After the main vacuum chamber was evacuated to 10 ⁇ 6 Torr (1.3 ⁇ 10 ⁇ 3 Pa), the deposition rate from each evaporation source was controlled, and the film thickness was about 530 ° C. under the film forming conditions. A 1.2 ⁇ m CIGS thin film was formed.
  • Example 3 The hydrogen generation electrode of Example 3 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Since Example 3 is the same as the hydrogen generation electrode of Example 1 except that a mixed layer 18 having a thickness of 300 nm is formed as compared with Example 1, detailed description thereof is omitted.
  • Example 4 The hydrogen generation electrode of Example 4 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Since Example 3 is the same as the hydrogen generation electrode of Example 1 except that a mixed layer 18 having a thickness of 50 nm is formed as compared with Example 1, detailed description thereof is omitted.
  • Comparative Example 1 The configuration of the hydrogen generating electrode of Comparative Example 1 is the same as that of the hydrogen generating electrode 100 shown in FIG.
  • the same components as those of the hydrogen generating electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the comparative example 1 is different in that the mixed layer 18 is not provided and the hydrogen generation catalyst particles 102 are formed on the surface 22a of the n-type semiconductor layer 22, and the other configuration is the hydrogen generating electrode 10 shown in FIG. Is the same.
  • the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
  • Comparative Example 2 The configuration of the hydrogen generating electrode of Comparative Example 2 is the same as that of the hydrogen generating electrode 100a shown in FIG.
  • the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the comparative example 2 is different in that the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22 and the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer. This is the same as the hydrogen generating electrode 10 shown in FIG.
  • the TiO 2 layer 104 is formed by sputtering to a thickness of 5 nm.
  • the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
  • Comparative Example 3 The configuration of the hydrogen generating electrode of Comparative Example 3 is the same as that of the hydrogen generating electrode 100a shown in FIG.
  • the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the comparative example 2 is different in that the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22 and the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer. This is the same as the hydrogen generating electrode 10 shown in FIG.
  • the TiO 2 layer 104 is formed to a thickness of 10 nm by sputtering.
  • the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
  • Comparative Example 4 The configuration of the hydrogen generating electrode of Comparative Example 4 is the same as that of the hydrogen generating electrode 100 shown in FIG.
  • the same components as those of the hydrogen generating electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the mixed layer 18 is not provided, and the hydrogen generation catalyst particles 102 are formed on the surface 22a of the n-type semiconductor layer 22.
  • the p-type semiconductor layer 20 is a CIGS thin film instead of the CuGaSe 2 (CGSe) thin film.
  • the other structure is the same as that of the hydrogen generating electrode 10 shown in FIG.
  • the CIGS thin film was produced in the same manner as the CIGS thin film of Example 2 described above. Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
  • Comparative Example 5 The configuration of the hydrogen generating electrode of Comparative Example 5 is the same as that of the hydrogen generating electrode 100a shown in FIG. In the hydrogen generation electrode 100a, the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted.
  • a CIGS thin film is formed as the p-type semiconductor layer 20 instead of the CuGaSe 2 (CGSe) thin film, and the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22.
  • the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer, and the other configuration is the same as that of the hydrogen generation electrode 10 shown in FIG.
  • the CIGS thin film was produced in the same manner as the CIGS thin film of Example 2 described above.
  • the TiO 2 layer 104 is formed by sputtering to a thickness of 5 nm.
  • the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.

Abstract

The hydrogen generating electrode according to the present invention receives light and generates hydrogen from an electrolytic aqueous solution. The hydrogen generating electrode has an inorganic semiconductor layer having a pn junction, and a mixed layer formed on the inorganic semiconductor layer. The mixed layer has a hydrogen generating catalyst and fine particles having electron transport capability.

Description

水素発生電極Hydrogen generation electrode
 本発明は、光を受けて電解質水溶液から水素を発生する水素発生電極に関し、特に、単位面積あたりの水素の発生量に相当する光電流密度が大きい水素発生電極に関する。 The present invention relates to a hydrogen generating electrode that generates light from an aqueous electrolyte solution by receiving light, and more particularly to a hydrogen generating electrode having a large photocurrent density corresponding to the amount of hydrogen generated per unit area.
 従来、再生可能なエネルギーである太陽光エネルギーを利用する形態の1つとして、太陽電池に使用される光電変換材料を用いて、この光電変換材料で得られる起電力を利用して、電解水溶液を分解して水素を得る製造する装置が提案されている(例えば、非特許文献1参照)。 Conventionally, as one form of utilizing solar energy, which is renewable energy, an electrolysis aqueous solution is obtained by using an electromotive force obtained from this photoelectric conversion material using a photoelectric conversion material used in a solar cell. An apparatus for producing hydrogen by decomposing it has been proposed (see, for example, Non-Patent Document 1).
 非特許文献1には、太陽光の下、水から水素を発生させる、改良されたCuZnSnSの半導体光電極が示されている。非特許文献1の半導体光電極は、Pt/TiO/CdS/CZTS(CuZnSnS)/Mo/SLG構成である。TiO層が電子輸送層であり、スパッタ法により、CdS層を部分的に覆うように形成されている。CdS層を部分的に覆うTiO層上にPtが担持されている。 Non-Patent Document 1 shows an improved Cu 2 ZnSnS 4 semiconductor photoelectrode that generates hydrogen from water under sunlight. The semiconductor photoelectrode of Non-Patent Document 1 has a Pt / TiO 2 / CdS / CZTS (Cu 2 ZnSnS 4 ) / Mo / SLG configuration. The TiO 2 layer is an electron transport layer, and is formed by sputtering to partially cover the CdS layer. Pt is supported on a TiO 2 layer that partially covers the CdS layer.
 非特許文献1に示されている半導体光電極は、CdS層を部分的に覆うTiO層をスパッタ法により形成しているが、光照射により得られるI-E特性(電流-電圧特性)が悪く、高電位側において、単位面積あたりの水素の発生量に相当する光電流密度が低いという問題がある。 In the semiconductor photoelectrode shown in Non-Patent Document 1, a TiO 2 layer that partially covers the CdS layer is formed by sputtering, but the IE characteristic (current-voltage characteristic) obtained by light irradiation is low. Unfortunately, on the high potential side, there is a problem that the photocurrent density corresponding to the amount of hydrogen generated per unit area is low.
 本発明の目的は、前述の従来技術に基づく問題点を解消し、単位面積あたりの水素の発生量に相当する光電流密度が大きい水素発生電極を提供することにある。 An object of the present invention is to solve the problems based on the above-described prior art and provide a hydrogen generating electrode having a large photocurrent density corresponding to the amount of hydrogen generated per unit area.
 上記目的を達成するために、本発明は、光を受けて電解質水溶液から水素を発生する水素発生電極であって、pn接合を有する無機半導体層と、無機半導体層上に形成された混合層とを有し、混合層は、電子輸送能を有する微粒子と、水素生成触媒とを有することを特徴とする水素発生電極を提供するものである。 In order to achieve the above object, the present invention provides a hydrogen generating electrode that generates light from an aqueous electrolyte solution by receiving light, an inorganic semiconductor layer having a pn junction, a mixed layer formed on the inorganic semiconductor layer, The mixed layer provides a hydrogen generating electrode characterized by having fine particles having an electron transporting capability and a hydrogen generation catalyst.
 微粒子の表面に水素生成触媒が担持されていることが好ましい。無機半導体層は、CIGS化合物半導体、CZTS化合物半導体、およびCGSe化合物半導体のうち、いずれかを含むことが好ましい。
 例えば、電子輸送能を有する微粒子は、TiOで構成される。混合層は、厚みが300nm未満であることが好ましい。例えば、水素生成触媒は、粒子状である。また、水素生成触媒は、白金で構成されることが好ましい。
It is preferable that a hydrogen generation catalyst is supported on the surface of the fine particles. The inorganic semiconductor layer preferably contains any of a CIGS compound semiconductor, a CZTS compound semiconductor, and a CGSe compound semiconductor.
For example, the fine particles having an electron transport ability are composed of TiO 2 . The mixed layer preferably has a thickness of less than 300 nm. For example, the hydrogen generation catalyst is particulate. The hydrogen generation catalyst is preferably composed of platinum.
 本発明によれば、高電位側において、単位面積あたりの水素の発生量に相当する光電流密度を大きくすることができる。 According to the present invention, the photocurrent density corresponding to the amount of hydrogen generated per unit area can be increased on the high potential side.
(a)は本発明の実施形態の水素発生電極の構成を示す模式的断面図であり、(b)は本発明の実施形態の水素発生電極の混合層を拡大して示す模式図である。(A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of embodiment of this invention, (b) is a schematic diagram which expands and shows the mixed layer of the hydrogen generating electrode of embodiment of this invention. 本発明の実施形態の水素発生電極を用いた人工光合成モジュールの構成を示す模式的断面図である。It is typical sectional drawing which shows the structure of the artificial photosynthesis module using the hydrogen generating electrode of embodiment of this invention. (a)は比較例1および比較例4の水素発生電極の構成を示す模式的断面図であり、(b)は比較例2、比較例3および比較例5の水素発生電極の構成を示す模式的断面図である。(A) is typical sectional drawing which shows the structure of the hydrogen generating electrode of the comparative example 1 and the comparative example 4, (b) is schematic which shows the structure of the hydrogen generating electrode of the comparative example 2, the comparative example 3, and the comparative example 5. FIG.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の水素発生電極を詳細に説明する。本発明は、以下に説明する水素発生電極の実施形態に限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値α~数値βとは、εの範囲は数値αと数値βを含む範囲であり、数学記号で示せばα≦ε≦βである。
Hereinafter, the hydrogen generating electrode of the present invention will be described in detail based on preferred embodiments shown in the accompanying drawings. The present invention is not limited to the embodiments of the hydrogen generating electrode described below.
In the following, “to” indicating a numerical range includes numerical values written on both sides. For example, when ε is a numerical value α to a numerical value β, the range of ε is a range including the numerical value α and the numerical value β, and expressed by mathematical symbols, α ≦ ε ≦ β.
 図1(a)は、本発明の実施形態の水素発生電極の構成を示す模式的断面図であり、(b)は、本発明の実施形態の水素発生電極の混合層を拡大して示す模式図である。
 水素発生電極10は、光を受けて電解質水溶液から水素を発生させるものである。水素発生電極10は、絶縁基板12上に形成されるものであり、導電層14と、無機半導体層16と、混合層18とを有する。
FIG. 1A is a schematic cross-sectional view showing a configuration of a hydrogen generating electrode according to an embodiment of the present invention, and FIG. 1B is a schematic diagram showing an enlarged mixed layer of the hydrogen generating electrode according to the embodiment of the present invention. FIG.
The hydrogen generating electrode 10 receives light and generates hydrogen from the electrolyte aqueous solution. The hydrogen generating electrode 10 is formed on the insulating substrate 12 and has a conductive layer 14, an inorganic semiconductor layer 16, and a mixed layer 18.
 絶縁基板12は、水素発生電極10を支持するものであり、電気絶縁性を有するもので構成される。絶縁基板12は、特に限定されるものではないが、例えば、ソーダライムガラス基板(以下、SLG基板という)またはセラミックス基板を用いることができる。また、絶縁基板12には、金属基板上に絶縁層が形成されたものを用いることができる。ここで、金属基板としては、Al基板またはSUS基板等の金属基板、またはAlと、例えば、SUS等の他の金属との複合材料からなる複合Al基板等の複合金属基板が利用可能である。なお、複合金属基板も金属基板の一種であり、金属基板および複合金属基板をまとめて、単に金属基板ともいう。さらには、絶縁基板12としては、Al基板等の表面を陽極酸化して形成された絶縁層を有する絶縁膜付金属基板を用いることもできる。絶縁基板12は、フレキシブルなものであっても、そうでなくてもよい。なお、上述のもの以外に、絶縁基板12として、例えば、高歪点ガラスおよび無アルカリガラス等のガラス板、またはポリイミド材を用いることもできる。 The insulating substrate 12 supports the hydrogen generating electrode 10 and is made of an electrically insulating material. The insulating substrate 12 is not particularly limited, and for example, a soda lime glass substrate (hereinafter referred to as an SLG substrate) or a ceramic substrate can be used. In addition, the insulating substrate 12 may be a substrate in which an insulating layer is formed on a metal substrate. Here, as the metal substrate, a metal substrate such as an Al substrate or a SUS substrate, or a composite metal substrate such as a composite Al substrate made of a composite material of Al and another metal such as SUS can be used. The composite metal substrate is also a kind of metal substrate, and the metal substrate and the composite metal substrate are collectively referred to simply as a metal substrate. Furthermore, as the insulating substrate 12, a metal substrate with an insulating film having an insulating layer formed by anodizing the surface of an Al substrate or the like can also be used. The insulating substrate 12 may or may not be flexible. In addition to the above, for example, a glass plate such as high strain point glass and non-alkali glass, or a polyimide material can be used as the insulating substrate 12.
 絶縁基板12の厚みは、特に限定されるものではなく、例えば、20~20000μm程度あればよく、100~10000μmが好ましく、1000~5000μmがより好ましい。なお、p型半導体層20に、CIGS(Cu(In1-xGa)Se)化合物半導体を含むものを用いる場合には、絶縁基板12側に、アルカリイオン(例えば、ナトリウム(Na)イオン:Na)を供給するものがあると、光電変換効率が向上するので、絶縁基板12の表面12aにアルカリイオンを供給するアルカリ供給層を設けておくことが好ましい。なお、SLG基板の場合には、アルカリ供給層は不要である。 The thickness of the insulating substrate 12 is not particularly limited, and may be, for example, about 20 to 20000 μm, preferably 100 to 10,000 μm, and more preferably 1000 to 5000 μm. When the p-type semiconductor layer 20 includes a CIGS (Cu (In 1-x Ga x ) Se 2 ) compound semiconductor, alkali ions (for example, sodium (Na) ions are formed on the insulating substrate 12 side. : Na + ) improves the photoelectric conversion efficiency. Therefore, it is preferable to provide an alkali supply layer for supplying alkali ions on the surface 12 a of the insulating substrate 12. In the case of the SLG substrate, the alkali supply layer is not necessary.
 導電層14は、絶縁基板12の表面12aに形成され、無機半導体層16に電圧を印加するものである。導電層14は、導電を有していれば、特に限定されるものではないが、例えば、Mo、CrおよびW等の金属、またはこれらを組み合わせたものにより構成される。この導電層14は、単層構造でもよいし、2層構造等の積層構造でもよい。この中で、導電層14は、Moで構成することが好ましい。導電層14の膜厚は、一般的に、その厚みが800nm程度であるが、導電層14は厚みが400nm~1μmであることが好ましい。 The conductive layer 14 is formed on the surface 12 a of the insulating substrate 12 and applies a voltage to the inorganic semiconductor layer 16. Although it will not specifically limit if the conductive layer 14 has electroconductivity, For example, it is comprised by metals, such as Mo, Cr, and W, or what combined these. The conductive layer 14 may have a single layer structure or a laminated structure such as a two-layer structure. Among these, the conductive layer 14 is preferably composed of Mo. The thickness of the conductive layer 14 is generally about 800 nm, but the thickness of the conductive layer 14 is preferably 400 nm to 1 μm.
 無機半導体層16は、起電力を発生するものである。無機半導体層16は、p型半導体層20とn型半導体層22とを有し、p型半導体層20は、n型半導体層22との界面でpn接合を形成する。p型半導体層20が導電層14上に形成されている。
 無機半導体層16では、n型半導体層22を透過して到達した光を吸収して、p側に正孔を、n側に電子を生じさせる層である。p型半導体層20は、光電変換機能を有する。p型半導体層20では、pn接合で生じた正孔をp型半導体層20から導電層14側に移動させ、pn接合で生じた電子をn型半導体層22から透明電極層50側に移動させる。p型半導体層20の膜厚は、好ましくは0.5~3.0μmであり、1.0~2.0μmが特に好ましい。
The inorganic semiconductor layer 16 generates an electromotive force. The inorganic semiconductor layer 16 includes a p-type semiconductor layer 20 and an n-type semiconductor layer 22, and the p-type semiconductor layer 20 forms a pn junction at the interface with the n-type semiconductor layer 22. A p-type semiconductor layer 20 is formed on the conductive layer 14.
The inorganic semiconductor layer 16 is a layer that absorbs light that has passed through the n-type semiconductor layer 22 and generates holes on the p side and electrons on the n side. The p-type semiconductor layer 20 has a photoelectric conversion function. In the p-type semiconductor layer 20, holes generated at the pn junction are moved from the p-type semiconductor layer 20 to the conductive layer 14 side, and electrons generated at the pn junction are moved from the n-type semiconductor layer 22 to the transparent electrode layer 50 side. . The thickness of the p-type semiconductor layer 20 is preferably 0.5 to 3.0 μm, and particularly preferably 1.0 to 2.0 μm.
 p型半導体層20は、例えば、カルコパイライト結晶構造を有するCIGS化合物半導体またはCuZnSnS等のCZTS化合物半導体で構成されるのが好ましい。CIGS化合物半導体層は、Cu(In,Ga)Se(CIGS)のみならず、CuInSe(CIS)、CuGaSe(CGSe)等で構成してもよい。p型半導体層20は、CGSe化合物半導体で構成してもよい。
 なお、CIGS層の形成方法としては、1)多源蒸着法、2)セレン化法、3)スパッタ法、4)ハイブリッドスパッタ法、および5)メカノケミカルプロセス法等が知られている。
 その他のCIGS層の形成方法としては、スクリーン印刷法、近接昇華法、MOCVD(Metal Organic Chemical Vapor Deposition)法、およびスプレー法(ウェット成膜法)等が挙げられる。例えば、スクリーン印刷法(ウェット成膜法)またはスプレー法(ウェット成膜法)等で、11族元素、13族元素、および16族元素を含む微粒子膜を基板上に形成し、熱分解処理(この際、16族元素雰囲気での熱分解処理でもよい)を実施する等により、所望の組成の結晶を得ることができる(特開平9-74065号公報、特開平9-74213号公報等)。
The p-type semiconductor layer 20 is preferably composed of, for example, a CIGS compound semiconductor having a chalcopyrite crystal structure or a CZTS compound semiconductor such as Cu 2 ZnSnS 4 . The CIGS compound semiconductor layer may be made of not only Cu (In, Ga) Se 2 (CIGS) but also CuInSe 2 (CIS), CuGaSe 2 (CGSe), or the like. The p-type semiconductor layer 20 may be composed of a CGSe compound semiconductor.
As CIGS layer forming methods, 1) multi-source vapor deposition, 2) selenization, 3) sputtering, 4) hybrid sputtering, and 5) mechanochemical process are known.
Examples of other CIGS layer forming methods include screen printing, proximity sublimation, MOCVD (Metal Organic Chemical Vapor Deposition), and spray (wet film formation). For example, a fine particle film containing a group 11 element, a group 13 element, and a group 16 element is formed on a substrate by a screen printing method (wet film forming method) or a spray method (wet film forming method), and a thermal decomposition treatment ( At this time, a crystal having a desired composition can be obtained by performing a thermal decomposition treatment in a group 16 element atmosphere) (JP-A-9-74065, JP-A-9-74213, etc.).
 n型半導体層22は、上述のようにp型半導体層20との界面でpn接合を形成するものである。また、n型半導体層22は、入射した光をp型半導体層20に到達させるため、光が透過するものである。
 n型半導体層22は、例えば、CdS、ZnS,Zn(S,O)、および/またはZn(S,O,OH)、SnS,Sn(S,O)、および/またはSn(S,O,OH)、InS,In(S,O)、および/またはIn(S,O,OH)等の、Cd,Zn,Sn,Inからなる群より選ばれる少なくとも1種の金属元素を含む金属硫化物を含むもので形成される。n型半導体層22の膜厚は、10nm~2μmが好ましく、15~200nmがより好ましい。n型半導体層22の形成には、例えば、化学浴析出法(以下、CBD法という)により形成される。
The n-type semiconductor layer 22 forms a pn junction at the interface with the p-type semiconductor layer 20 as described above. The n-type semiconductor layer 22 transmits light so that incident light reaches the p-type semiconductor layer 20.
The n-type semiconductor layer 22 includes, for example, CdS, ZnS, Zn (S, O), and / or Zn (S, O, OH), SnS, Sn (S, O), and / or Sn (S, O, OH), InS, In (S, O), and / or In (S, O, OH), and other metal sulfides containing at least one metal element selected from the group consisting of Cd, Zn, Sn, and In Is formed. The film thickness of the n-type semiconductor layer 22 is preferably 10 nm to 2 μm, more preferably 15 to 200 nm. The n-type semiconductor layer 22 is formed by, for example, a chemical bath deposition method (hereinafter referred to as CBD method).
 図1(a)に示す水素発生電極10では、無機半導体層16上、すなわち、後述するn型半導体層22の表面22aに混合層18が形成されている。
 混合層18は、図1(b)に示すように、電子輸送能を有する微粒子24と、水素生成触媒粒子26とを有するものである。混合層18では、微粒子24と水素生成触媒粒子26とが混在しているが、微粒子24が結合して積層されて構成され、この微粒子24の表面に水素生成触媒粒子26が担持されている。なお、水素生成触媒粒子26は、n型半導体層22と混合層18との界面にも、混合層18内部にも、微粒子24の表面にも担持されていることが好ましい。これにより、水素生成触媒粒子26が水との接触する面積を増やすことができ、水素の発生量を増やすことができる。
In the hydrogen generating electrode 10 shown in FIG. 1A, a mixed layer 18 is formed on the inorganic semiconductor layer 16, that is, on a surface 22a of an n-type semiconductor layer 22 described later.
As shown in FIG. 1B, the mixed layer 18 includes fine particles 24 having an electron transport ability and hydrogen generation catalyst particles 26. In the mixed layer 18, the fine particles 24 and the hydrogen generation catalyst particles 26 are mixed, but the fine particles 24 are bonded and stacked, and the hydrogen generation catalyst particles 26 are supported on the surfaces of the fine particles 24. The hydrogen generation catalyst particles 26 are preferably carried on the interface between the n-type semiconductor layer 22 and the mixed layer 18, the inside of the mixed layer 18, and the surface of the fine particles 24. Thereby, the area which the hydrogen production | generation catalyst particle 26 contacts with water can be increased, and the generation amount of hydrogen can be increased.
 また、コアが微粒子24でシェルが水素生成触媒粒子26のコアシェル粒子を用いて混合層18は形成してもよい。さらに、微粒子24の積層体表面に水素生成触媒が膜状に担持されてもよい。また、図1(a)に示す水素発生電極10では、微粒子24の表面に水素生成触媒粒子26が担持されているが、水素生成触媒は粒子状のものに限定されるものではなく、片状または膜状の水素生成触媒が微粒子24の表面に担持されてもよい。
 混合層18の厚みtは、300nm以下であることが好ましい。300nm以下であれば、単位面積あたりの水素の発生量に相当する光電流密度を確実に高くすることができる。
Alternatively, the mixed layer 18 may be formed using core-shell particles having a core of fine particles 24 and a shell of hydrogen-producing catalyst particles 26. Further, a hydrogen generation catalyst may be supported in the form of a film on the surface of the laminate of the fine particles 24. Further, in the hydrogen generating electrode 10 shown in FIG. 1 (a), the hydrogen generating catalyst particles 26 are supported on the surfaces of the fine particles 24. However, the hydrogen generating catalyst is not limited to the particulate form, and is in the form of a piece. Alternatively, a membrane-like hydrogen generation catalyst may be supported on the surface of the fine particles 24.
The thickness t of the mixed layer 18 is preferably 300 nm or less. If it is 300 nm or less, the photocurrent density corresponding to the amount of hydrogen generated per unit area can be reliably increased.
 混合層18の微粒子24は、電子輸送能を有するものであり、電解質水溶液に浸漬された場合に変質しないものである。なお、微粒子24は、後述するように、微粒子24間でのキャリアの移動が可能、本件では電子の移動が可能であること、表面積が増加し、水素生成触媒粒子26を担持した場合に水を還元するための反応サイト数が増えること、電子輸送能を持っていることの条件を満たすものであれば、特に限定されるものではない。例えば、微粒子24は、例えば、TiOで構成される。微粒子24の大きさは、例えば、5~10nm程度である。 The fine particles 24 of the mixed layer 18 have an electron transport capability and do not change in quality when immersed in an aqueous electrolyte solution. As will be described later, the fine particles 24 can move carriers between the fine particles 24. In this case, electrons can move, the surface area increases, and when the hydrogen generation catalyst particles 26 are supported, water is added. The number of reaction sites for reduction is not particularly limited as long as the conditions satisfy that the number of reaction sites increases and the electron transport ability is satisfied. For example, the fine particles 24 are made of, for example, TiO 2 . The size of the fine particles 24 is, for example, about 5 to 10 nm.
 混合層18の水素生成触媒粒子26は、例えば、Pt、Pd、Ni、Au、Ag、Ru、Cu、Co、Rh、Ir、Mn等により構成される単体、およびそれらを組み合わせた合金、ならびにその酸化物、例えば、NiOxおよびRuOで形成することができる。また、水素生成触媒粒子26のサイズは、特に限定されるものではないが、水素生成触媒粒子26は微粒子24の表面に付くため、例えば、0.5nm~5nm程度である。
 なお、水素生成触媒粒子26の担持方法は、特に限定されるものではなく、例えば、光電着法、スパッタ法を用いることができる。
The hydrogen generation catalyst particles 26 of the mixed layer 18 include, for example, simple substances composed of Pt, Pd, Ni, Au, Ag, Ru, Cu, Co, Rh, Ir, Mn, etc. oxides, for example, can be formed of NiOx and RuO 2. The size of the hydrogen generation catalyst particles 26 is not particularly limited, but is about 0.5 nm to 5 nm, for example, because the hydrogen generation catalyst particles 26 attach to the surface of the fine particles 24.
In addition, the loading method of the hydrogen production | generation catalyst particle 26 is not specifically limited, For example, a photo-deposition method and a sputtering method can be used.
 図1(b)に示す混合層18は、例えば、微粒子24が分散された分散液を、n型半導体層22の表面22aに塗布する。その後、乾燥させる。これにより、微粒子24で構成された層が形成される。そして、例えば、塩化白金酸を含む水溶液に浸漬し、光電着法により、水素生成触媒粒子26として、Pt粒子(白金粒子)を微粒子24の表面に担持させる。このようにして、混合層18を形成することができる。
 また、混合層18は、例えば、微粒子24の表面に予め水素生成触媒粒子26が担持された粒子を用いて形成することができる。また、ゾルゲル法を用いて混合層18を形成することもできる。
In the mixed layer 18 shown in FIG. 1B, for example, a dispersion liquid in which the fine particles 24 are dispersed is applied to the surface 22 a of the n-type semiconductor layer 22. Then, it is dried. Thereby, a layer composed of the fine particles 24 is formed. Then, for example, it is immersed in an aqueous solution containing chloroplatinic acid, and Pt particles (platinum particles) are supported on the surfaces of the fine particles 24 as the hydrogen generation catalyst particles 26 by a photo-deposition method. In this way, the mixed layer 18 can be formed.
The mixed layer 18 can be formed using, for example, particles in which the hydrogen generation catalyst particles 26 are previously supported on the surfaces of the fine particles 24. Moreover, the mixed layer 18 can also be formed using a sol-gel method.
 水素発生電極10では、pn接合を有する無機半導体層16上に上述の混合層18を設けることにより、高電位側において光電流密度を大きくすることができ、これにより、水素生成量を多くすることができる。
 本発明では、pn接合を有する無機半導体層16上に設けた混合層18を、例えば、スパッタ法等で形成された緻密な膜構成ではなく、電子輸送能を有する微粒子24同士が結合した積層構造とし、微粒子24の表面に水素生成触媒粒子26を担持することで、表面積が増加する。その結果、微粒子24上に担持した水素生成触媒粒子26と水を含む電解水溶液と接する面積が、上述の緻密な膜構成の場合および電子輸送層がない構造のものと比較して増加したことにより、高電位側において、単位面積あたりの水素の発生量に相当する光電流密度を大きくできたと推測される。
 なお、電解水溶液の水分解開始電圧+0.6V>水素生成領域と酸素生成領域間における光起電力>電解水溶液の水分解開始電圧の条件を満たす場合、上述の高電位側において、単位面積あたりの水素の発生量に相当する光電流密度を大きくできる効果がより大きくなる。
In the hydrogen generating electrode 10, by providing the above-described mixed layer 18 on the inorganic semiconductor layer 16 having a pn junction, the photocurrent density can be increased on the high potential side, thereby increasing the amount of hydrogen generation. Can do.
In the present invention, the mixed layer 18 provided on the inorganic semiconductor layer 16 having a pn junction is not a dense film structure formed by, for example, sputtering, but a laminated structure in which fine particles 24 having an electron transporting ability are bonded to each other. The surface area of the fine particles 24 is increased by supporting the hydrogen-producing catalyst particles 26 on the surface. As a result, the area where the hydrogen generation catalyst particles 26 supported on the fine particles 24 are in contact with the electrolytic aqueous solution containing water is increased as compared with the case of the above-described dense film configuration and the structure without the electron transport layer. It is estimated that the photocurrent density corresponding to the amount of hydrogen generated per unit area can be increased on the high potential side.
In addition, when satisfying the condition of water decomposition starting voltage of electrolytic aqueous solution + 0.6V> photovoltaic power between hydrogen generation region and oxygen generating region> water decomposition starting voltage of electrolytic aqueous solution, The effect of increasing the photocurrent density corresponding to the amount of hydrogen generated is further increased.
 上述の水素発生電極10は、光により電解水溶液を水素と酸素に分解する人工光合成モジュールに用いることができる。
 以下、図1(a)、(b)に示す水素発生電極10を用いた人工光合成モジュールについて説明する。
 図2は、本発明の実施形態の水素発生電極を用いた人工光合成モジュールの構成を示す模式的断面図である。
 なお、図2に示す人工光合成モジュール30において、図1(a)、(b)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。
The hydrogen generation electrode 10 described above can be used in an artificial photosynthesis module that decomposes an electrolytic aqueous solution into hydrogen and oxygen by light.
Hereinafter, an artificial photosynthesis module using the hydrogen generation electrode 10 shown in FIGS. 1A and 1B will be described.
FIG. 2 is a schematic cross-sectional view showing the configuration of the artificial photosynthesis module using the hydrogen generating electrode of the embodiment of the present invention.
In the artificial photosynthesis module 30 shown in FIG. 2, the same components as those of the hydrogen generating electrode 10 shown in FIGS. 1A and 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
 人工光合成モジュール30は、容器32内に隔壁34により水素用電解室36と酸素用電解室38とが並んで配置されている。容器32内に電解水溶液AQ供給される。電解水溶液AQを容器32内に供給するために配管、ポンプ等が必要であるが、これらの図示は省略している。
 容器32は、人工光合成モジュール30の外殻を構成するものであり、電解水溶液AQが漏れることなく内部に保持することができ、かつ外部からの光Lを内部に透過させることができれば、その構成は特に限定されるものではない。
In the artificial photosynthesis module 30, a hydrogen electrolysis chamber 36 and an oxygen electrolysis chamber 38 are arranged side by side with a partition wall 34 in a container 32. An electrolytic aqueous solution AQ is supplied into the container 32. In order to supply the electrolytic aqueous solution AQ into the container 32, piping, a pump, and the like are necessary, but these are not shown.
The container 32 constitutes the outer shell of the artificial photosynthesis module 30, and if the electrolytic aqueous solution AQ can be held inside without leaking and the light L from the outside can be transmitted inside, the structure Is not particularly limited.
 ここで、電解水溶液AQとは、例えば、HOを主成分とする液体であり、蒸留水であってもよく、水を溶媒とし溶質を含む水溶液であってもよい。水の場合、例えば、電解質を含む水溶液である電解液であってもよく、冷却塔等で用いられる冷却水であってもよい。電解液の場合、例えば、電解質を含む水溶液であり、例えば、強アルカリ(KOH)、ポリマー電解質(ナフィオン(登録商標))、0.1MのHSOを含む電解液、0.1M硫酸ナトリウム電解液、0.1Mリン酸カリウム緩衝液等である。 Here, the electrolytic aqueous solution AQ is, for example, a liquid mainly composed of H 2 O, and may be distilled water, or an aqueous solution containing water as a solvent and containing a solute. In the case of water, for example, it may be an electrolytic solution that is an aqueous solution containing an electrolyte, or may be cooling water used in a cooling tower or the like. In the case of the electrolytic solution, for example, an aqueous solution containing an electrolyte, such as a strong alkali (KOH), a polymer electrolyte (Nafion (registered trademark)), an electrolytic solution containing 0.1 M H 2 SO 4 , 0.1 M sodium sulfate. Electrolytic solution, 0.1M potassium phosphate buffer, etc.
 隔壁34は、水素用電解室36で生成された水素ガスと、酸素用電解室38で生成された酸素ガスとが混合されないように隔離するためのものである。このため、隔壁34は、上述の隔離機能を有するものであれば、その構成は、特に限定されるものではない。
 なお、隔壁34は、水素用電解室36内での水素の生成によって増加した水酸イオン(pHも増加)と酸素用電解室38内での酸素の生成によって増加した水素イオン(pHは減少)とが中和するように、水酸イオンおよび水素イオンを通過させるために、容器32内を、水素用電解室36と酸素用電解室38と分離するためのものであってもよい。この場合、隔壁34は、例えば、イオン透過性、かつガス非透過性を有するもので構成される。具体的には、例えば、イオン交換膜、セラミックフィルタ、多孔質ガラス等により構成される。隔壁34の厚みは、特に限定されるものではなく、10~1000μmであることが好ましい。
The partition wall 34 is for isolating the hydrogen gas generated in the hydrogen electrolysis chamber 36 and the oxygen gas generated in the oxygen electrolysis chamber 38 so as not to be mixed. Therefore, the configuration of the partition wall 34 is not particularly limited as long as it has the above-described isolation function.
The partition wall 34 is composed of hydroxide ions (pH is increased) increased due to generation of hydrogen in the hydrogen electrolysis chamber 36 and hydrogen ions (pH is decreased) increased due to oxygen generation in the oxygen electrolysis chamber 38. The container 32 may be separated from the hydrogen electrolysis chamber 36 and the oxygen electrolysis chamber 38 in order to allow hydroxide ions and hydrogen ions to pass therethrough. In this case, the partition wall 34 is made of, for example, a material having ion permeability and gas non-permeability. Specifically, for example, an ion exchange membrane, a ceramic filter, porous glass, or the like is used. The thickness of the partition wall 34 is not particularly limited, and is preferably 10 to 1000 μm.
 人工光合成モジュール30では、平面状の絶縁基板12上に、例えば、2つの光電変換ユニット40と水素ガス生成部42と酸素ガス生成部44とが形成されており、これらは方向Mに電気的に直列に接続されている。
 水素用電解室36に光電変換ユニット40と水素ガス生成部42が配置され、酸素用電解室38に光電変換ユニット40と酸素ガス生成部44が配置されている。
In the artificial photosynthesis module 30, for example, two photoelectric conversion units 40, a hydrogen gas generation unit 42, and an oxygen gas generation unit 44 are formed on the planar insulating substrate 12, and these are electrically connected in the direction M. Connected in series.
The photoelectric conversion unit 40 and the hydrogen gas generation unit 42 are disposed in the hydrogen electrolysis chamber 36, and the photoelectric conversion unit 40 and the oxygen gas generation unit 44 are disposed in the oxygen electrolysis chamber 38.
 光電変換ユニット40は、光を受光して電力を発生させ水素ガス生成部42で水素ガスを発生させるための電力および酸素ガス生成部44で酸素ガスを発生させるための電力を供給するためのものである。
 光電変換ユニット40は、絶縁基板12側から順に、導電層14、p型半導体層20、n型半導体層22、透明電極層50および保護膜52が積層されて構成されており、太陽電池に用いられる光電変換素子と同様の構成を有する。
 光電変換ユニット40では、上述のようにp型半導体層20とn型半導体層22で無機半導体層16が構成され、p型半導体層20とn型半導体層22の界面においてpn接合が形成されている。
The photoelectric conversion unit 40 receives light and generates power to supply power for generating hydrogen gas in the hydrogen gas generation unit 42 and power for generating oxygen gas in the oxygen gas generation unit 44 It is.
The photoelectric conversion unit 40 is configured by laminating a conductive layer 14, a p-type semiconductor layer 20, an n-type semiconductor layer 22, a transparent electrode layer 50, and a protective film 52 in order from the insulating substrate 12 side, and is used for a solar cell. It has the same structure as the photoelectric conversion element.
In the photoelectric conversion unit 40, the p-type semiconductor layer 20 and the n-type semiconductor layer 22 constitute the inorganic semiconductor layer 16 as described above, and a pn junction is formed at the interface between the p-type semiconductor layer 20 and the n-type semiconductor layer 22. Yes.
 無機半導体層16は、入射された光Lを吸収して、p側に正孔を、n側に電子を生じさせる層である。p型半導体層20は、光電変換機能を有する。p型半導体層20では、pn接合で生じた正孔をp型半導体層20から導電層14側に移動させ、pn接合で生じた電子をn型半導体層22から透明電極層50側に移動させる。p型半導体層20の膜厚は、好ましくは0.5~3.0μmであり、1.0~2.0μmが特に好ましい。 The inorganic semiconductor layer 16 is a layer that absorbs incident light L and generates holes on the p side and electrons on the n side. The p-type semiconductor layer 20 has a photoelectric conversion function. In the p-type semiconductor layer 20, holes generated at the pn junction are moved from the p-type semiconductor layer 20 to the conductive layer 14 side, and electrons generated at the pn junction are moved from the n-type semiconductor layer 22 to the transparent electrode layer 50 side. . The thickness of the p-type semiconductor layer 20 is preferably 0.5 to 3.0 μm, and particularly preferably 1.0 to 2.0 μm.
 2つの光電変換ユニット40が方向Mに直列に接続されているが、水素ガスおよび酸素ガスを発生させることができる起電力を得ることができれば、その数は限定されるものではなく、1つでも、2つ以上であってもよい。複数の光電変換ユニットを直列に接続する方が高い電圧を得ることができるため、複数の光電変換ユニットを直列接続することが好ましい。
 光電変換ユニット40間に、n型半導体層22およびp型半導体層20を貫き導電層14の表面に達する開口溝P2が方向Mにおいて分離溝P1の形成位置とは異なる位置に形成されている。開口溝P2に隔壁34が設けられている。
The two photoelectric conversion units 40 are connected in series in the direction M. However, the number is not limited as long as an electromotive force capable of generating hydrogen gas and oxygen gas can be obtained. Two or more may be sufficient. Since a higher voltage can be obtained by connecting a plurality of photoelectric conversion units in series, it is preferable to connect the plurality of photoelectric conversion units in series.
Between the photoelectric conversion units 40, an opening groove P2 that penetrates the n-type semiconductor layer 22 and the p-type semiconductor layer 20 and reaches the surface of the conductive layer 14 is formed at a position different from the formation position of the separation groove P1 in the direction M. A partition wall 34 is provided in the opening groove P2.
 人工光合成モジュール30では、光電変換ユニット40に、保護膜52側から光Lが入射されると、この光Lが、保護膜52、各透明電極層50および各n型半導体層22を通過し、各p型半導体層20で起電力が発生し、例えば、透明電極層50から導電層14に向かう電流(正孔の移動)が発生する。このため、人工光合成モジュール30では、水素ガス生成部42が負極(電気分解のカソード)となり、酸素ガス生成部44が正極(電気分解のアノード)になる。
 なお、人工光合成モジュール30における生成ガスの種類(極性)は、光電変換ユニットの構成および人工光合成モジュール30構成等に応じて適宜変わるものである。
In the artificial photosynthesis module 30, when the light L is incident on the photoelectric conversion unit 40 from the protective film 52 side, the light L passes through the protective film 52, each transparent electrode layer 50, and each n-type semiconductor layer 22, An electromotive force is generated in each p-type semiconductor layer 20, and for example, a current (movement of holes) from the transparent electrode layer 50 toward the conductive layer 14 is generated. Therefore, in the artificial photosynthesis module 30, the hydrogen gas generation unit 42 becomes a negative electrode (electrolysis cathode), and the oxygen gas generation unit 44 becomes a positive electrode (electrolysis anode).
Note that the type (polarity) of the produced gas in the artificial photosynthesis module 30 varies as appropriate according to the configuration of the photoelectric conversion unit, the configuration of the artificial photosynthesis module 30, and the like.
 保護膜52は、弱酸性溶液および弱アルカリ性溶液に不溶であり、かつ光透過性、遮水性および絶縁性を兼ね備えるものである。
 保護膜52は、透光性を有し、光電変換ユニット40を保護するため、具体的には、水素用電解室36内の水素ガス生成領域以外の部分、酸素用電解室38内の酸素ガス発生領域以外の部分を覆うように設けられるものである。具体的には、保護膜52は、透明電極層50の全面および水素発生電極10の側面を覆うものである。
 保護膜52は、例えば、SiO、SnO、Nb、Ta、AlおよびGa等により構成される。また、保護膜52の厚みは、特に限定されるものではなく、100~1000nmであることが好ましい。
The protective film 52 is insoluble in a weakly acidic solution and a weakly alkaline solution, and also has light transmission properties, water shielding properties, and insulating properties.
Specifically, the protective film 52 has translucency and protects the photoelectric conversion unit 40. Specifically, the protective film 52 is a portion other than the hydrogen gas generation region in the hydrogen electrolysis chamber 36, and the oxygen gas in the oxygen electrolysis chamber 38. It is provided so as to cover a portion other than the generation region. Specifically, the protective film 52 covers the entire surface of the transparent electrode layer 50 and the side surface of the hydrogen generation electrode 10.
Protective film 52, for example, a SiO 2, SnO 2, Nb 2 O 5, Ta 2 O 5, Al 2 O 3 and Ga 2 O 3 or the like. The thickness of the protective film 52 is not particularly limited, and is preferably 100 to 1000 nm.
 なお、保護膜52の形成方法は、特に限定されるものではなく、RF(高周波)スパッタ法、DC(直流)リアクティブスパッタ法およびMOCVD法等により形成することができる。
 また、保護膜52は、例えば、絶縁性エポキシ樹脂、絶縁性シリコーン樹脂、絶縁性フッ素樹脂等により構成できる。この場合、保護膜52の厚みは、特に限定されるものではなく、2~1000μmが好ましい。
The method for forming the protective film 52 is not particularly limited, and can be formed by RF (high frequency) sputtering, DC (direct current) reactive sputtering, MOCVD, or the like.
The protective film 52 can be made of, for example, an insulating epoxy resin, an insulating silicone resin, an insulating fluororesin, or the like. In this case, the thickness of the protective film 52 is not particularly limited and is preferably 2 to 1000 μm.
 水素ガス生成部42は、基本的に上述の水素発生電極10で構成されており、側面が保護膜52で覆われている。水素ガス生成部42では、n型半導体層22の表面22aに機能層19が形成されており、この機能層19の表面19aに混合層18が形成されている。このようなことから、水素ガス生成部42においては、水素発生電極10の構成について、その詳細な説明は省略する。水素発生電極10は、電解水溶液AQ中に浸漬され、電解水溶液AQと接する。なお、水素発生電極10の側面の保護膜52により、電解水溶液AQとの接触による短絡が防止される。
 混合層18で、水分子からイオン化した水素イオン(プロトン)Hに電子を供給して水素分子、すなわち、水素ガスを発生させる(2H+2e ―>H)。水素ガス生成部42では、混合層18が水素ガスの発生領域を構成する。
The hydrogen gas generation unit 42 is basically composed of the hydrogen generation electrode 10 described above, and its side surface is covered with a protective film 52. In the hydrogen gas generator 42, the functional layer 19 is formed on the surface 22 a of the n-type semiconductor layer 22, and the mixed layer 18 is formed on the surface 19 a of the functional layer 19. For this reason, in the hydrogen gas generation unit 42, the detailed description of the configuration of the hydrogen generation electrode 10 is omitted. The hydrogen generating electrode 10 is immersed in the electrolytic aqueous solution AQ and is in contact with the electrolytic aqueous solution AQ. The protective film 52 on the side surface of the hydrogen generation electrode 10 prevents a short circuit due to contact with the electrolytic aqueous solution AQ.
In the mixed layer 18, electrons are supplied to hydrogen ions (protons) H + ionized from water molecules to generate hydrogen molecules, that is, hydrogen gas (2H + + 2e −> H 2 ). In the hydrogen gas generator 42, the mixed layer 18 constitutes a hydrogen gas generation region.
 機能層19は、無機半導体層16内部への水分侵入を防ぎ、無機半導体層16内部での気泡形成を抑制するものである。機能層19には、透明性、耐水性、遮水性および導電性が要求される。機能層19により、水素発生電極10の耐久性が向上する。 The functional layer 19 prevents moisture from entering the inorganic semiconductor layer 16 and suppresses bubble formation inside the inorganic semiconductor layer 16. The functional layer 19 is required to have transparency, water resistance, water shielding, and conductivity. The functional layer 19 improves the durability of the hydrogen generating electrode 10.
 機能層19は、例えば、金属または導電性酸化物(過電圧が0.5V以下)もしくはその複合物であることが好ましい。より具体的には、機能層19は、ITO(Indium Tin Oxide)、Al、B、Ga、およびIn等がドープされたZnO、またはIMO(Moが添加されたIn)等の透明導電膜を用いることができる。機能層19は単層構造でもよいし、2層構造等の積層構造でもよい。また、機能層19の厚さは、特に限定されるものではなく、好ましくは、10~1000nmであり、50~500nmがより好ましい。
 なお、機能層19の形成方法は、特に限定されるものではなく、電子ビーム蒸着法、スパッタ法およびCVD法等の気相成膜法または塗布法により形成することができる。水素ガス生成部42においても機能層19は必ずしも設ける必要はない。
The functional layer 19 is preferably made of, for example, a metal or a conductive oxide (overvoltage is 0.5 V or less) or a composite thereof. More specifically, the functional layer 19 is made of transparent conductive material such as ITO (Indium Tin Oxide), ZnO doped with Al, B, Ga, and In, or IMO (In 2 O 3 doped with Mo). A membrane can be used. The functional layer 19 may have a single layer structure or a laminated structure such as a two-layer structure. Further, the thickness of the functional layer 19 is not particularly limited, and is preferably 10 to 1000 nm, and more preferably 50 to 500 nm.
The method for forming the functional layer 19 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method, a sputtering method, a CVD method, or a coating method. The functional layer 19 is not necessarily provided also in the hydrogen gas generation unit 42.
 酸素ガス生成部44は、右側の光電変換ユニット40の導電層14の延長部分の領域60で構成され、この領域60が酸素ガスの発生領域となる。
 具体的には、光電変換ユニット40の導電層14の延長部分の領域60は、水分子からイオン化した水酸イオンOHから電子を取り出して酸素分子、すなわち、酸素ガスを発生させる(2OH ―>HO+O/2+2e)酸素ガス生成部44であり、表面60aがガス生成領域として機能する。
 導電層14の領域60の表面60aには、酸素生成用の助触媒(図示せず)を形成してもよく、この場合、助触媒は、例えば、点在するように島状に形成してもよい。
 酸素生成用の助触媒は、例えば、IrO、CoO等により構成される。また、酸素生成用の助触媒のサイズは、特に限定されるものではなく、0.5nm~1μmであることが好ましい。なお、酸素生成用の助触媒の形成方法は、特に限定されるものではなく、塗布焼成法、浸漬法、含浸法、スパッタ法および蒸着法等により形成することができる。
The oxygen gas generation unit 44 includes a region 60 that is an extension of the conductive layer 14 of the right photoelectric conversion unit 40, and this region 60 serves as an oxygen gas generation region.
Specifically, the region 60 of the extended portion of the conductive layer 14 of the photoelectric conversion unit 40 takes out electrons from the hydroxide ions OH ionized from the water molecules and generates oxygen molecules, that is, oxygen gas (2OH −). > H 2 O + O 2/ 2 + 2e -) and oxygen gas generator 44, the surface 60a serves as a gas generation region.
A promoter (not shown) for generating oxygen may be formed on the surface 60a of the region 60 of the conductive layer 14, and in this case, the promoter is formed in an island shape so as to be scattered, for example. Also good.
The co-catalyst for oxygen generation is composed of, for example, IrO 2 , CoO x or the like. Further, the size of the oxygen-generating cocatalyst is not particularly limited, and is preferably 0.5 nm to 1 μm. In addition, the formation method of the co-catalyst for oxygen generation is not particularly limited, and can be formed by a coating baking method, a dipping method, an impregnation method, a sputtering method, a vapor deposition method, or the like.
 上述のように、光電変換ユニット40は光電変換素子として機能するものであり、p型半導体層20とn型半導体層22を有する。p型半導体層20およびn型半導体層22は、上述の通りであるため、その詳細な説明は省略する。
 なお、p型半導体層20を形成する無機半導体の吸収波長は、光電変換可能な波長域であれば、特に限定されるものではない。吸収波長としては、太陽光等の波長域、特に、可視波長域から赤外波長域を含んでいればよいが、その吸収波長端は800nm以上、すなわち、赤外波長域までを含んでいることが好ましい。その理由は、できるだけ多くの太陽光エネルギーを利用できるからである。一方、吸収波長端が長波長化することは、すなわち、バンドギャップが小さくなることに相当し、これは水分解をアシストするための起電力が低下することが予想でき、その結果、水分解のために、光電変換ユニット40を直列接続する接続数を増すことが予想できるので、吸収端が長ければ長い方がよいというわけでもない。
As described above, the photoelectric conversion unit 40 functions as a photoelectric conversion element, and includes the p-type semiconductor layer 20 and the n-type semiconductor layer 22. Since the p-type semiconductor layer 20 and the n-type semiconductor layer 22 are as described above, detailed description thereof is omitted.
Note that the absorption wavelength of the inorganic semiconductor forming the p-type semiconductor layer 20 is not particularly limited as long as it is a wavelength region where photoelectric conversion is possible. As an absorption wavelength, it is only necessary to include a wavelength region such as sunlight, in particular, a visible wavelength region to an infrared wavelength region, but the absorption wavelength end includes 800 nm or more, that is, the infrared wavelength region. Is preferred. The reason is that as much solar energy as possible can be used. On the other hand, the longer absorption wavelength end corresponds to the reduction of the band gap, which can be expected to reduce the electromotive force for assisting water decomposition. Therefore, it can be expected that the number of connections for connecting the photoelectric conversion units 40 in series is increased, so that the longer the absorption edge, the better.
 透明電極層50は、透光性を有し、光をp型半導体層20に取り込み、かつ導電層14と対になって、p型半導体層20で生成された正孔および電子を移動させる(電流が流れる)電極として機能すると共に、2つの光電変換ユニット40を直列接続するための透明導電膜として機能するものである。
 透明電極層50は、例えばAl、B、Ga、In等がドープされたZnO、またはITOにより構成される。透明電極層50は、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明電極の厚みは、特に限定されるものではなく、0.3~1μmが好ましい。
 なお、透明電極の形成方法は、特に限定されるものではなく、電子ビーム蒸着法、スパッタ法およびCVD法等の気相成膜法または塗布法により形成することができる。
The transparent electrode layer 50 has translucency, takes light into the p-type semiconductor layer 20, and pairs with the conductive layer 14 to move holes and electrons generated in the p-type semiconductor layer 20 ( It functions as an electrode through which current flows, and functions as a transparent conductive film for connecting two photoelectric conversion units 40 in series.
The transparent electrode layer 50 is made of, for example, ZnO doped with Al, B, Ga, In or the like, or ITO. The transparent electrode layer 50 may have a single layer structure or a laminated structure such as a two-layer structure. The thickness of the transparent electrode is not particularly limited and is preferably 0.3 to 1 μm.
In addition, the formation method of a transparent electrode is not specifically limited, It can form by vapor phase film-forming methods, such as an electron beam vapor deposition method, a sputtering method, and CVD method, or the apply | coating method.
 次に、人工光合成モジュール30の製造方法について説明する。
 なお、人工光合成モジュール30の製造方法は、以下に示す製造方法に限定されるものではない。
 まず、例えば、絶縁基板12となるソーダライムガラス基板を用意する。
 次に、絶縁基板12の表面に導電層14となる、例えば、Mo膜等をスパッタ法により形成する。
 次に、例えば、レーザースクライブ法を用いて、Mo膜の所定位置をスクライブして、絶縁基板12の幅方向に伸びた分離溝P1を形成する。これにより、分離溝P1により互いに分離された導電層14が形成される。
Next, a method for manufacturing the artificial photosynthesis module 30 will be described.
In addition, the manufacturing method of the artificial photosynthesis module 30 is not limited to the manufacturing method shown below.
First, for example, a soda lime glass substrate to be the insulating substrate 12 is prepared.
Next, for example, a Mo film or the like that becomes the conductive layer 14 is formed on the surface of the insulating substrate 12 by sputtering.
Next, for example, by using a laser scribing method, a predetermined position of the Mo film is scribed to form a separation groove P <b> 1 extending in the width direction of the insulating substrate 12. Thereby, the conductive layers 14 separated from each other by the separation groove P1 are formed.
 次に、導電層14を覆い、かつ分離溝P1を埋めるように、p型半導体層20として、例えば、CIGS膜を形成する。このCIGS膜は、前述のいずれか成膜方法により、形成される。
 次に、p型半導体層20上にn型半導体層22となる、例えば、CdS層をCBD法により形成する。
 次に、方向Mにおいて、分離溝P1の形成位置とは異なる位置に、絶縁基板12の幅方向に伸び、かつn型半導体層22からp型半導体層20を経て導電層14の表面14aに達する2つの開口溝P2を形成する。この場合、スクライブ方法としては、レーザースクライブ法またはメカスクライブ法を用いることができる。
Next, for example, a CIGS film is formed as the p-type semiconductor layer 20 so as to cover the conductive layer 14 and fill the isolation trench P1. This CIGS film is formed by any of the film forming methods described above.
Next, for example, a CdS layer to be the n-type semiconductor layer 22 is formed on the p-type semiconductor layer 20 by the CBD method.
Next, in the direction M, it extends in the width direction of the insulating substrate 12 at a position different from the formation position of the separation groove P1, and reaches the surface 14a of the conductive layer 14 from the n-type semiconductor layer 22 through the p-type semiconductor layer 20. Two opening grooves P2 are formed. In this case, a laser scribe method or a mechanical scribe method can be used as the scribe method.
 次に、絶縁基板12の幅方向に伸び、かつn型半導体層22上に、開口溝P2を埋めるように、透明電極層50となる、例えば、Al、B、Ga、Sb等が添加されたZnO:Al層を、スパッタ法または塗布法により形成する。
 次に、開口溝P2内のZnO:Al層の一部を残すようにして除去し、導電層14の表面に達する2つの少し幅の狭い開口溝P2を再び形成する。これにより、3つの積層体(図示せず)が形成される。1つは水素発生電極10になり、残りの2つは光電変換ユニット40になる。スクライブ方法としては、レーザースクライブ法またはメカスクライブ法を用いることができる。
Next, for example, Al, B, Ga, Sb, or the like that becomes the transparent electrode layer 50 is added so as to extend in the width direction of the insulating substrate 12 and fill the opening groove P2 on the n-type semiconductor layer 22. A ZnO: Al layer is formed by sputtering or coating.
Next, the ZnO: Al layer in the opening groove P2 is removed so as to leave a part, and two slightly narrow opening grooves P2 reaching the surface of the conductive layer 14 are formed again. Thereby, three laminated bodies (not shown) are formed. One becomes the hydrogen generating electrode 10 and the remaining two become the photoelectric conversion unit 40. As the scribe method, a laser scribe method or a mechanical scribe method can be used.
 次に、積層体の外面および側面と、2つの開口溝P2の底面の導電層14の表面に保護膜52となる、例えば、SiO膜をRFスパッタ法で形成する。
 次に、2つの積層体の間で、開口溝P2に相当する位置に再度、溝を形成し、この溝に隔壁34を設ける。
 次に、光電変換ユニット40のZnO:Al層を、レーザースクライブ法またはメカスクライブ法を用いて剥離し、露出したn型半導体層22の表面22aに機能層19として、例えば、アモルファスITO層を、パターニングマスクを用いたスパッタ法により形成する。
 次に、n型半導体層22の表面22aに、例えば、微粒子24が分散された分散液を、n型半導体層22の表面22aに塗布する。その後、乾燥させる。これにより、微粒子24で構成された層が形成される。そして、微粒子24の形成層以外にマスクをして、例えば、塩化白金酸を含む水溶液に浸漬し、光電着法により、水素生成触媒粒子26を微粒子24の表面に担持させる。これにより、水素発生電極10が形成されて、水素ガス生成部42が形成される。
Next, an SiO 2 film, for example, serving as the protective film 52 is formed by RF sputtering on the outer surface and side surfaces of the multilayer body and the surface of the conductive layer 14 at the bottom surface of the two opening grooves P2.
Next, a groove is formed again at a position corresponding to the opening groove P2 between the two laminated bodies, and a partition wall 34 is provided in the groove.
Next, the ZnO: Al layer of the photoelectric conversion unit 40 is peeled off using a laser scribe method or a mechanical scribe method, and an amorphous ITO layer, for example, is formed as the functional layer 19 on the exposed surface 22a of the n-type semiconductor layer 22. It is formed by a sputtering method using a patterning mask.
Next, for example, a dispersion liquid in which the fine particles 24 are dispersed is applied to the surface 22 a of the n-type semiconductor layer 22. Then, it is dried. Thereby, a layer composed of the fine particles 24 is formed. Then, a mask other than the formation layer of the fine particles 24 is used as a mask, and immersed in an aqueous solution containing, for example, chloroplatinic acid, and the hydrogen generating catalyst particles 26 are supported on the surfaces of the fine particles 24 by a photo-deposition method. Thereby, the hydrogen generation electrode 10 is formed, and the hydrogen gas generation part 42 is formed.
 次に、光電変換ユニット40の導電層14の延長部分の領域60上の堆積物を、レーザースクライブ法またはメカスクライブ法を用いて取り除き、領域60を露出させる。これにより、酸素ガス生成部44が形成される。
 絶縁基板12と略同じ大きさの容器32を用意し、この容器32内に、光電変換ユニット40、水素ガス生成部42および酸素ガス生成部44が形成された絶縁基板12を収納する。これにより、隔壁34で水素用電解室36および酸素用電解室38が形成される。このようにして、人工光合成モジュール30を製造することができる。
Next, the deposit on the area | region 60 of the extension part of the conductive layer 14 of the photoelectric conversion unit 40 is removed using a laser scribe method or a mechanical scribe method, and the area | region 60 is exposed. Thereby, the oxygen gas production | generation part 44 is formed.
A container 32 having substantially the same size as the insulating substrate 12 is prepared, and the insulating substrate 12 on which the photoelectric conversion unit 40, the hydrogen gas generation unit 42, and the oxygen gas generation unit 44 are formed is stored in the container 32. As a result, a hydrogen electrolysis chamber 36 and an oxygen electrolysis chamber 38 are formed by the partition wall 34. In this way, the artificial photosynthesis module 30 can be manufactured.
 人工光合成モジュール30においても、上述の水素発生電極10と同じく、水素ガス生成部42は、高電位側において単位面積あたりの水素の発生量に相当する光電流密度が大きい。これにより、優れた性能の人工光合成モジュール30を得ることができる。 Also in the artificial photosynthesis module 30, like the hydrogen generation electrode 10 described above, the hydrogen gas generation unit 42 has a high photocurrent density corresponding to the amount of hydrogen generated per unit area on the high potential side. Thereby, the artificial photosynthesis module 30 with excellent performance can be obtained.
 本発明は、基本的に以上のように構成されるものである。以上、本発明の水素発生電極について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良または変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. The hydrogen generating electrode of the present invention has been described in detail above. However, the present invention is not limited to the above embodiment, and various improvements or modifications may be made without departing from the spirit of the present invention. is there.
 以下、本発明の水素発生電極の効果について詳細に説明する。
 本実施例においては、本発明の効果を確認するために、以下に示す実施例1~4および比較例1~5の水素発生電極を作製した。実施例1~4および比較例1~5の水素発生電極の構成のうち、無機半導体層の組成、混合層の厚み、TiO層の厚みを下記表1に示す。なお、下記表1において混合層の厚みの欄、TiO層の厚みの欄に示す「-」は層がないことを示す。
 実施例1~4および比較例1~5の水素発生電極について、I-E(電流-電圧)測定を行い、還元電流密度(相対値)を求めた。その結果を下記表1に示す。還元電流密度(相対値)は、水素生成量に比例するパラメータであることが知られている。
 なお、I-E測定は、水素発生電極を作用極とし、参照電極としてAg/AgCl、対向電極としてPtワイヤーを用いて、これらを0.5M NaSO水溶液中に浸し、AM1.5G相当の擬似太陽光を照射して行った。
 以下、実施例1~4および比較例1~5の水素発生電極について説明する。
Hereinafter, the effect of the hydrogen generating electrode of the present invention will be described in detail.
In this example, in order to confirm the effect of the present invention, hydrogen generating electrodes of Examples 1 to 4 and Comparative Examples 1 to 5 shown below were produced. Of the configurations of the hydrogen generating electrodes of Examples 1 to 4 and Comparative Examples 1 to 5, the composition of the inorganic semiconductor layer, the thickness of the mixed layer, and the thickness of the TiO 2 layer are shown in Table 1 below. In Table 1 below, “-” shown in the column of the thickness of the mixed layer and the column of the thickness of the TiO 2 layer indicates that there is no layer.
The hydrogen generation electrodes of Examples 1 to 4 and Comparative Examples 1 to 5 were subjected to IE (current-voltage) measurement, and the reduction current density (relative value) was obtained. The results are shown in Table 1 below. It is known that the reduction current density (relative value) is a parameter proportional to the amount of hydrogen produced.
In the IE measurement, a hydrogen generating electrode is used as a working electrode, Ag / AgCl is used as a reference electrode, Pt wire is used as a counter electrode, and these are immersed in an aqueous solution of 0.5M Na 2 SO 4 and correspond to AM1.5G. The simulated sunlight was irradiated.
Hereinafter, the hydrogen generating electrodes of Examples 1 to 4 and Comparative Examples 1 to 5 will be described.
(実施例1)
 実施例1の水素発生電極は、図1(a)に示す水素発生電極10と同じ構成である。
 実施例1の水素発生電極においては、まず、ソーダライムガラス基板上にスパッタ法にてMoを厚さ約500nm成膜し、導電層14としてMo電極を形成した。次に、Mo電極上に、p型半導体層20として、CuGaSe(CGSe)薄膜を形成した。このCuGaSe(CGSe)薄膜は、蒸着源として高純度銅(純度99.9999%)、高純度Ga(純度99.999%)、高純度Se(純度99.999%)の粒状原材料を用いた。基板温度モニターとして、クロメル-アルメル熱電対を用いた。主真空チャンバーを10-8Torr(1.3×10-5Pa)まで真空排気した後、各蒸発源からの蒸着レートを制御して、最高基板温度530℃の製膜条件で、膜厚約1.2μmのCGSe薄膜を製膜した。
 続いて、溶液成長法により、厚み90nm程度のCdS薄膜を形成した。このCdS薄膜は、バッファ層として機能するn型半導体層22である。
 次に、n型半導体層22の表面22aに、solaronix社製TiOナノ粒子分散液(HT-L/SC)をスピンコートで塗布し、温度120℃で30分乾燥させて、粒径5~10nmのTiOナノ粒子を厚み150nm積層した。これに対して、塩化白金酸を含む水溶液に浸漬させて、光電着法にて、水素生成触媒粒子26としてPt助触媒を微粒子24の表面に担持させた。このようにして、厚み150nmの混合層18を形成した。
(Example 1)
The hydrogen generation electrode of Example 1 has the same configuration as the hydrogen generation electrode 10 shown in FIG.
In the hydrogen generating electrode of Example 1, first, Mo was formed to a thickness of about 500 nm on a soda lime glass substrate by sputtering, and a Mo electrode was formed as the conductive layer 14. Next, a CuGaSe 2 (CGSe) thin film was formed as the p-type semiconductor layer 20 on the Mo electrode. In this CuGaSe 2 (CGSe) thin film, granular raw materials of high-purity copper (purity 99.9999%), high-purity Ga (purity 99.999%), and high-purity Se (purity 99.999%) were used as an evaporation source. . A chromel-alumel thermocouple was used as a substrate temperature monitor. After the main vacuum chamber is evacuated to 10 −8 Torr (1.3 × 10 −5 Pa), the deposition rate from each evaporation source is controlled, and the film thickness is about 100 ° C. under the film forming conditions with the maximum substrate temperature of 530 ° C. A 1.2 μm CGSe thin film was formed.
Subsequently, a CdS thin film having a thickness of about 90 nm was formed by a solution growth method. This CdS thin film is an n-type semiconductor layer 22 that functions as a buffer layer.
Next, a solaronix TiO 2 nanoparticle dispersion (HT-L / SC) is applied to the surface 22a of the n-type semiconductor layer 22 by spin coating, and dried at a temperature of 120 ° C. for 30 minutes. 10 nm TiO 2 nanoparticles were laminated to a thickness of 150 nm. On the other hand, it was immersed in an aqueous solution containing chloroplatinic acid, and the Pt promoter was supported on the surfaces of the fine particles 24 as the hydrogen generation catalyst particles 26 by the photo-deposition method. In this way, a mixed layer 18 having a thickness of 150 nm was formed.
(実施例2)
 実施例2の水素発生電極は、実施例1の水素発生電極と同じ構成であり、すなわち、図1(a)に示す水素発生電極10と同じ構成である。実施例2は、実施例1に比して、p型半導体層20として、CuGaSe(CGSe)薄膜に代えて、後述のようにしてCIGS薄膜を形成した点以外は、実施例1の水素発生電極と同じであるため、その詳細な説明は省略する。
 なお、実施例2では、蒸着源として高純度銅(Cu)とインジウム(In)(純度99.9999%)、高純度ガリウム(Ga)(純度99.999%)、高純度セレン(Se)(純度99.999%)の粒状原材料を用いた。基板温度モニターとして、クロメル-アルメル熱電対を用いた。主真空チャンバーを10-6Torr(1.3×10-3Pa)まで真空排気した後、各蒸発源からの蒸着レートを制御して、最高基板温度530℃の製膜条件で、膜厚約1.2μmのCIGS薄膜を製膜した。
(Example 2)
The hydrogen generation electrode of Example 2 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Example 2 is different from Example 1 in that the p-type semiconductor layer 20 is replaced with a CuGaSe 2 (CGSe) thin film, except that a CIGS thin film is formed as described later. Since it is the same as an electrode, the detailed description is abbreviate | omitted.
In Example 2, high-purity copper (Cu) and indium (In) (purity 99.9999%), high-purity gallium (Ga) (purity 99.999%), high-purity selenium (Se) ( A granular raw material having a purity of 99.999% was used. A chromel-alumel thermocouple was used as a substrate temperature monitor. After the main vacuum chamber was evacuated to 10 −6 Torr (1.3 × 10 −3 Pa), the deposition rate from each evaporation source was controlled, and the film thickness was about 530 ° C. under the film forming conditions. A 1.2 μm CIGS thin film was formed.
(実施例3)
 実施例3の水素発生電極は、実施例1の水素発生電極と同じ構成であり、すなわち、図1(a)に示す水素発生電極10と同じ構成である。実施例3は、実施例1に比して、厚み300nmの混合層18を形成した点以外は、実施例1の水素発生電極と同じであるため、その詳細な説明は省略する。
(実施例4)
 実施例4の水素発生電極は、実施例1の水素発生電極と同じ構成であり、すなわち、図1(a)に示す水素発生電極10と同じ構成である。実施例3は、実施例1に比して、厚み50nmの混合層18を形成した点以外は、実施例1の水素発生電極と同じであるため、その詳細な説明は省略する。
(Example 3)
The hydrogen generation electrode of Example 3 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Since Example 3 is the same as the hydrogen generation electrode of Example 1 except that a mixed layer 18 having a thickness of 300 nm is formed as compared with Example 1, detailed description thereof is omitted.
Example 4
The hydrogen generation electrode of Example 4 has the same configuration as the hydrogen generation electrode of Example 1, that is, the same configuration as the hydrogen generation electrode 10 shown in FIG. Since Example 3 is the same as the hydrogen generation electrode of Example 1 except that a mixed layer 18 having a thickness of 50 nm is formed as compared with Example 1, detailed description thereof is omitted.
(比較例1)
 比較例1の水素発生電極の構成は、図3(a)に示す水素発生電極100と同じ構成である。水素発生電極100において、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。比較例1は、混合層18がなく、n型半導体層22の表面22aに水素生成触媒粒子102が形成されている点が異なり、それ以外の構成は図1(a)に示す水素発生電極10と同じである。
 水素生成触媒粒子102は、実施例1と同じく、塩化白金酸を含む水溶液に浸漬させて、光電着法にて形成されたものである。
(Comparative Example 1)
The configuration of the hydrogen generating electrode of Comparative Example 1 is the same as that of the hydrogen generating electrode 100 shown in FIG. In the hydrogen generating electrode 100, the same components as those of the hydrogen generating electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. The comparative example 1 is different in that the mixed layer 18 is not provided and the hydrogen generation catalyst particles 102 are formed on the surface 22a of the n-type semiconductor layer 22, and the other configuration is the hydrogen generating electrode 10 shown in FIG. Is the same.
Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
(比較例2)
 比較例2の水素発生電極の構成は、図3(b)に示す水素発生電極100aと同じ構成である。水素発生電極100aにおいて、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。比較例2は、n型半導体層22の表面22aにTiO層104が形成されており、このTiO層の表面に水素生成触媒粒子102が形成されている点が異なり、それ以外の構成は図1(a)に示す水素発生電極10と同じである。
 TiO層104は、スパッタ法により厚さ5nmに形成されたものである。水素生成触媒粒子102は、実施例1と同じく、塩化白金酸を含む水溶液に浸漬させて、光電着法にて形成されたものである。
(Comparative Example 2)
The configuration of the hydrogen generating electrode of Comparative Example 2 is the same as that of the hydrogen generating electrode 100a shown in FIG. In the hydrogen generation electrode 100a, the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. The comparative example 2 is different in that the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22 and the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer. This is the same as the hydrogen generating electrode 10 shown in FIG.
The TiO 2 layer 104 is formed by sputtering to a thickness of 5 nm. Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
(比較例3)
 比較例3の水素発生電極の構成は、図3(b)に示す水素発生電極100aと同じ構成である。水素発生電極100aにおいて、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。比較例2は、n型半導体層22の表面22aにTiO層104が形成されており、このTiO層の表面に水素生成触媒粒子102が形成されている点が異なり、それ以外の構成は図1(a)に示す水素発生電極10と同じである。
 TiO層104は、スパッタ法により厚さ10nmに形成されたものである。水素生成触媒粒子102は、実施例1と同じく、塩化白金酸を含む水溶液に浸漬させて、光電着法にて形成されたものである。
(Comparative Example 3)
The configuration of the hydrogen generating electrode of Comparative Example 3 is the same as that of the hydrogen generating electrode 100a shown in FIG. In the hydrogen generation electrode 100a, the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. The comparative example 2 is different in that the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22 and the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer. This is the same as the hydrogen generating electrode 10 shown in FIG.
The TiO 2 layer 104 is formed to a thickness of 10 nm by sputtering. Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
(比較例4)
 比較例4の水素発生電極の構成は、図3(a)に示す水素発生電極100と同じ構成である。水素発生電極100において、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。比較例4は、混合層18がなく、n型半導体層22の表面22aに水素生成触媒粒子102が形成されている点、p型半導体層20として、CuGaSe(CGSe)薄膜に代えてCIGS薄膜が形成されている点が異なり、それ以外の構成は図1(a)に示す水素発生電極10と同じである。
 CIGS薄膜は、上述の実施例2のCIGS薄膜と同様に作製した。水素生成触媒粒子102は、実施例1と同じく、塩化白金酸を含む水溶液に浸漬させて、光電着法にて形成されたものである。
(Comparative Example 4)
The configuration of the hydrogen generating electrode of Comparative Example 4 is the same as that of the hydrogen generating electrode 100 shown in FIG. In the hydrogen generating electrode 100, the same components as those of the hydrogen generating electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. In Comparative Example 4, the mixed layer 18 is not provided, and the hydrogen generation catalyst particles 102 are formed on the surface 22a of the n-type semiconductor layer 22. The p-type semiconductor layer 20 is a CIGS thin film instead of the CuGaSe 2 (CGSe) thin film. The other structure is the same as that of the hydrogen generating electrode 10 shown in FIG.
The CIGS thin film was produced in the same manner as the CIGS thin film of Example 2 described above. Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
(比較例5)
 比較例5の水素発生電極の構成は、図3(b)に示す水素発生電極100aと同じ構成である。水素発生電極100aにおいて、図1(a)に示す水素発生電極10と同一構成物には同一符号を付して、その詳細な説明は省略する。比較例5は、p型半導体層20として、CuGaSe(CGSe)薄膜に代えてCIGS薄膜が形成されている点、n型半導体層22の表面22aにTiO層104が形成されており、このTiO層の表面に水素生成触媒粒子102が形成されている点が異なり、それ以外の構成は図1(a)に示す水素発生電極10と同じである。
 CIGS薄膜は、上述の実施例2のCIGS薄膜と同様に作製した。TiO層104は、スパッタ法により厚さ5nmに形成されたものである。水素生成触媒粒子102は、実施例1と同じく、塩化白金酸を含む水溶液に浸漬させて、光電着法にて形成されたものである。
(Comparative Example 5)
The configuration of the hydrogen generating electrode of Comparative Example 5 is the same as that of the hydrogen generating electrode 100a shown in FIG. In the hydrogen generation electrode 100a, the same components as those of the hydrogen generation electrode 10 shown in FIG. 1A are denoted by the same reference numerals, and detailed description thereof is omitted. In Comparative Example 5, a CIGS thin film is formed as the p-type semiconductor layer 20 instead of the CuGaSe 2 (CGSe) thin film, and the TiO 2 layer 104 is formed on the surface 22a of the n-type semiconductor layer 22. The difference is that the hydrogen generation catalyst particles 102 are formed on the surface of the TiO 2 layer, and the other configuration is the same as that of the hydrogen generation electrode 10 shown in FIG.
The CIGS thin film was produced in the same manner as the CIGS thin film of Example 2 described above. The TiO 2 layer 104 is formed by sputtering to a thickness of 5 nm. Similarly to Example 1, the hydrogen generation catalyst particles 102 are formed by dipping in an aqueous solution containing chloroplatinic acid and by a photo-deposition method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、実施例1~4は、いずれもp型半導体層の組成によらず、水素発生量に比例する還元電流密度(相対値)が高い。
 一方、比較例1~4は、いずれも還元電流密度(相対値)が低い。なお、比較例2、3、5はTiO層を形成しているが、形成方法がスパッタ法であるため、TiO層がない比較例1、比較例4に比して還元電流密度(相対値)が高いが、実施例1~4よりも低い。
As shown in Table 1, all of Examples 1 to 4 have a high reduction current density (relative value) proportional to the amount of hydrogen generation, regardless of the composition of the p-type semiconductor layer.
On the other hand, all of Comparative Examples 1 to 4 have a low reduction current density (relative value). In Comparative Examples 2, 3, and 5, a TiO 2 layer is formed. However, since the formation method is a sputtering method, the reduction current density (relative to Comparative Example 1 and Comparative Example 4 in which no TiO 2 layer is provided). Value) is high, but lower than Examples 1-4.
 10、100、100a 水素発生電極
 12 絶縁基板
 14 導電層
 16 無機半導体層
 18 助触媒
 20 p型半導体層
 22 n型半導体層
 30 人工光合成モジュール
 32 容器
 34 隔壁
 36 水素用電解室
 38 酸素用電解室
 40 光電変換ユニット
 42 水素ガス生成部
 44 酸素ガス生成部
10, 100, 100a Hydrogen generating electrode 12 Insulating substrate 14 Conductive layer 16 Inorganic semiconductor layer 18 Promoter 20 p-type semiconductor layer 22 n-type semiconductor layer 30 Artificial photosynthetic module 32 Container 34 Partition 36 Hydrogen electrolysis chamber 38 Oxygen electrolysis chamber 40 Photoelectric conversion unit 42 Hydrogen gas generator 44 Oxygen gas generator

Claims (7)

  1.  光を受けて電解質水溶液から水素を発生する水素発生電極であって、
     pn接合を有する無機半導体層と、
     前記無機半導体層上に形成された混合層とを有し、
     前記混合層は、電子輸送能を有する微粒子と、水素生成触媒とを有することを特徴とする水素発生電極。
    A hydrogen generating electrode that receives light to generate hydrogen from an aqueous electrolyte solution,
    an inorganic semiconductor layer having a pn junction;
    A mixed layer formed on the inorganic semiconductor layer,
    The mixed layer includes a fine particle having an electron transporting ability and a hydrogen generation catalyst.
  2.  前記微粒子の表面に前記水素生成触媒が担持されている請求項1に記載の水素発生電極。 The hydrogen generating electrode according to claim 1, wherein the hydrogen generating catalyst is supported on the surface of the fine particles.
  3.  前記無機半導体層は、CIGS化合物半導体、CZTS化合物半導体、およびCGSe化合物半導体のうち、いずれかを含む請求項1または2に記載の水素発生電極。 The hydrogen generating electrode according to claim 1, wherein the inorganic semiconductor layer includes any one of a CIGS compound semiconductor, a CZTS compound semiconductor, and a CGSe compound semiconductor.
  4.  前記電子輸送能を有する微粒子は、TiOで構成される請求項1~3のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 3, wherein the fine particles having an electron transporting capability are composed of TiO 2 .
  5.  前記混合層は、厚みが300nm未満である請求項1~4のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 4, wherein the mixed layer has a thickness of less than 300 nm.
  6.  前記水素生成触媒は、粒子状である請求項1~5のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 5, wherein the hydrogen generating catalyst is in the form of particles.
  7.  前記水素生成触媒は、白金で構成される請求項1~6のいずれか1項に記載の水素発生電極。 The hydrogen generating electrode according to any one of claims 1 to 6, wherein the hydrogen generating catalyst is made of platinum.
PCT/JP2015/085238 2015-01-13 2015-12-16 Hydrogen generating electrode WO2016114063A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016569271A JP6559710B2 (en) 2015-01-13 2015-12-16 Hydrogen generation electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-004110 2015-01-13
JP2015004110 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114063A1 true WO2016114063A1 (en) 2016-07-21

Family

ID=56405618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085238 WO2016114063A1 (en) 2015-01-13 2015-12-16 Hydrogen generating electrode

Country Status (2)

Country Link
JP (1) JP6559710B2 (en)
WO (1) WO2016114063A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318359A (en) * 2021-11-15 2022-04-12 隆基绿能科技股份有限公司 Photoelectrode, photoelectrolytic device, energy system using photoelectrode, and photoelectrolytic method
WO2022107315A1 (en) * 2020-11-20 2022-05-27 日本電信電話株式会社 Semiconductor photoelectrode and manufacturing method for semiconductor photoelectrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290017A (en) * 1997-04-14 1998-10-27 Mitsubishi Heavy Ind Ltd Optical catalyzer
JP2003064495A (en) * 2001-08-22 2003-03-05 Sanyo Electric Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2014189883A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
JP2015002144A (en) * 2013-06-18 2015-01-05 株式会社東芝 Photocatalyst electrode, photolysis device for water, and photolysis method for water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649677A (en) * 1992-08-04 1994-02-22 Toshiba Corp Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode
JP2006176835A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Method for manufacturing water electrolysis apparatus
JP4904715B2 (en) * 2005-04-21 2012-03-28 日産自動車株式会社 Photoelectrochemical cell and method for producing the same
WO2010042196A1 (en) * 2008-10-08 2010-04-15 Massachusetts Institute Of Technology Catalytic materials, photoanodes, and photoelectrochemical cells for water electrolysis and other electrochemical techniques
IN2012DN02262A (en) * 2009-09-09 2015-08-21 Mitsui Chemicals Inc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10290017A (en) * 1997-04-14 1998-10-27 Mitsubishi Heavy Ind Ltd Optical catalyzer
JP2003064495A (en) * 2001-08-22 2003-03-05 Sanyo Electric Co Ltd Electrode for electrolysis and manufacturing method therefor
JP2014189883A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Gas production apparatus
JP2015002144A (en) * 2013-06-18 2015-01-05 株式会社東芝 Photocatalyst electrode, photolysis device for water, and photolysis method for water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107315A1 (en) * 2020-11-20 2022-05-27 日本電信電話株式会社 Semiconductor photoelectrode and manufacturing method for semiconductor photoelectrode
CN114318359A (en) * 2021-11-15 2022-04-12 隆基绿能科技股份有限公司 Photoelectrode, photoelectrolytic device, energy system using photoelectrode, and photoelectrolytic method

Also Published As

Publication number Publication date
JPWO2016114063A1 (en) 2017-09-28
JP6559710B2 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6316436B2 (en) Hydrogen generating electrode and artificial photosynthesis module
CN109312478B (en) Photocatalyst electrode, artificial photosynthesis module and artificial photosynthesis device
AU2014246142B2 (en) Gas production apparatus
JP6184312B2 (en) Artificial photosynthetic array
US10258971B2 (en) Photocatalyst electrode and artificial photosynthesis module
US10392714B2 (en) Artificial-photosynthesis module
US20170191172A1 (en) Artificial photosynthesis module
US20160281241A1 (en) Water electrolysis system
US10384195B2 (en) Artificial photosynthesis module
JP6388665B2 (en) Hydrogen generation electrode
JP6412417B2 (en) Hydrogen generating electrode and manufacturing method thereof
JP6559710B2 (en) Hydrogen generation electrode
US10465299B2 (en) Gas production apparatus
JP6322558B2 (en) Method for regenerating hydrogen generating electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016569271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878014

Country of ref document: EP

Kind code of ref document: A1