JPH10290017A - Optical catalyzer - Google Patents

Optical catalyzer

Info

Publication number
JPH10290017A
JPH10290017A JP9095519A JP9551997A JPH10290017A JP H10290017 A JPH10290017 A JP H10290017A JP 9095519 A JP9095519 A JP 9095519A JP 9551997 A JP9551997 A JP 9551997A JP H10290017 A JPH10290017 A JP H10290017A
Authority
JP
Japan
Prior art keywords
electrode
photocatalyst
thin film
tio2
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9095519A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tatsuhara
潔 龍原
Yoshimichi Yonekura
義道 米倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9095519A priority Critical patent/JPH10290017A/en
Publication of JPH10290017A publication Critical patent/JPH10290017A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PROBLEM TO BE SOLVED: To perform a decomposition treatment on an interface activator requiring no power besides irradiation with light by a method wherein an electrode catalyzer is formed instead of a transparent electrode on the surface of a solar cell, and a chemical reaction is generated by the simultaneous action of light and electricity on the surface of the electrode catalyzer. SOLUTION: A platinum electrode 2, an N-type polycrystalline silicon film 3, a polycrystalline silicon insulating layer 4 and a P-type polycrystalline silicon film 5 are formed don a substrate 1, and then an electrode catalyzer, consisting of a TiO2 6, an SnO2 7 and a TiO2 8, is formed. Also, this electrode catalyzer has the structure in which the TiO2 and the SnO2 7 are stacked. The electrode catalyzer is formed by pinching the SnO2 7 thin film by the TiO2 6 thin film, or by laminating three or more layers of the TiO2 6 thin film and the SnO2 7 thin film alternately. They are arranged in a water tank, and a cell, to be used for a draining treatment, is formed. Counter electrodes of platinum, etc., are inserted into the water tank, the electricity of a solar cell is applied between the electrode catalyzer and the opposing electrodes, a light is made to irradiate simultaneously and solution reaction is generated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光触媒に関する。
例えば、洗浄、印刷、その他の廃液中の、界面活性剤、
色素などの有害物の分解、水分解による水素発生、大気
中の汚染物質(NOxなど)の分解、脱臭又は水中の有
機物などの分解による水質浄化などに利用できるもので
ある。
The present invention relates to a photocatalyst.
For example, surfactants in washing, printing, and other waste liquids,
Decomposition of harmful substances, such as dyes, hydrogen generation by water decomposition, the decomposition of pollutants in the atmosphere (NO x etc.), those available such as water purification by decomposition of deodorizing or organic matter in water.

【0002】[0002]

【従来の技術】廃液中の界面活性剤などの有害物は、主
に、微生物により分解されている。一部は光触媒等での
分解も試みられている。その際、光触媒としてTiO2
広く用いられており、脱硝、脱臭、界面活性剤や有機物
などの水質汚染物質の分解などの性能を持つことは知ら
れている。
2. Description of the Related Art Harmful substances such as surfactants in waste liquids are mainly decomposed by microorganisms. Some attempts have been made to decompose it with a photocatalyst or the like. At that time, TiO 2 is widely used as a photocatalyst, and is known to have performances such as denitration, deodorization, and decomposition of water pollutants such as surfactants and organic substances.

【0003】[0003]

【発明が解決しようとする課題】微生物処理では高濃度
の界面活性剤を処理できない。また、生分解性の悪い界
面活性剤の分解は困難であり、分解性の良いものでも無
機物への完全な分解は行われておらず、ベンゼン環など
の構造は分解できていないことが多い。従って、他の方
法を検討する必要がある。TiO2などの光触媒を用いる
方法では、太陽光で利用する場合、紫外線しでか利用で
きず効率が低いなどの問題があり、より効率の高い光触
媒の開発が必要である。
SUMMARY OF THE INVENTION Microbial treatment cannot treat high concentrations of surfactants. In addition, it is difficult to decompose a surfactant having poor biodegradability, and even a substance having good decomposability has not been completely decomposed into inorganic substances, and the structure such as a benzene ring has often not been decomposed. Therefore, other methods need to be considered. In the method using a photocatalyst such as TiO 2, when utilized in sunlight, there are problems such as low efficiency not available Deka ultraviolet, it is necessary to develop a more efficient photocatalyst.

【0004】一方、SnO2とTiO2の接合構造を持つ触
媒を電極に用いて、光電気化学反応による色素などの化
合物を高効率で分解する手法が報告されている(Idriss
Bedja, and Prashant V. Kamat, J. Phys. Chem. 99(1
995)9182-9188 )。
On the other hand, there has been reported a method of decomposing a compound such as a dye by a photoelectrochemical reaction with high efficiency using a catalyst having a junction structure of SnO 2 and TiO 2 for an electrode (Idriss).
Bedja, and Prashant V. Kamat, J. Phys. Chem. 99 (1
995) 9182-9188).

【0005】ここで、太陽電池表面の透明電極としてS
nO2が使用されているが、SnO2の触媒としてよく用い
られるTiO2と結晶構造は同じであり、格子定数なども
大きくは違わないので両者の接合構造の形成や、SnO2
のTiO2での置換、また、その逆は容易に行える。
Here, S is used as a transparent electrode on the surface of the solar cell.
nO 2 but is used, the crystal structure and TiO 2 which is often used as the SnO 2 catalyst are the same, the formation of the joint structure of the two and so does not differ greatly well as lattice constant, SnO 2
Can be easily replaced with TiO 2 and vice versa.

【0006】[0006]

【課題を解決するための手段】そこで、本発明は、太陽
電池の表面に透明電極を形成する代わりに、TiO2で被
覆し、その上をSnO2で被覆し、さらにその上をTiO2
で被覆して、接合構造を持つ電極触媒を形成し、太陽電
池と電極触媒を組み合わせた光触媒を作成したものであ
る。
Therefore, in the present invention, instead of forming a transparent electrode on the surface of a solar cell, it is coated with TiO 2 , coated with SnO 2 , and further coated with TiO 2.
To form an electrode catalyst having a bonding structure, and to produce a photocatalyst combining a solar cell and an electrode catalyst.

【0007】〔作用〕この光触媒に光を照射すると、太
陽電池の起電力と電極触媒の光触媒作用で、表面上で有
害物の分解などの化学反応を発生させることができる。
この反応を利用すれば、光を照射する他は動力を必要と
せずに界面活性剤の分解処理などが可能になる。尚、太
陽電池とは、シリコンなどの半導体のp型とn型を接合
したもの、または、p型とn型の間に絶縁体層をはさん
だもので、光により起電力を生じる装置をいう。
[Operation] When light is irradiated to this photocatalyst, a chemical reaction such as decomposition of harmful substances can be generated on the surface by the electromotive force of the solar cell and the photocatalysis of the electrode catalyst.
If this reaction is utilized, it becomes possible to decompose the surfactant without using any power except for irradiating light. Note that a solar cell is a device in which a p-type and n-type semiconductor such as silicon are joined or an insulator layer is interposed between the p-type and n-type, and an electromotive force is generated by light. .

【0008】[0008]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕本発明の一実施例に係る光触媒である光電
気化学反応装置を図1に示す。同図に示すように、本実
施例の光電気化学反応装置は、太陽電池の表面に電極の
代わりに電極触媒を形成したものである。
Embodiment 1 FIG. 1 shows a photoelectrochemical reaction apparatus which is a photocatalyst according to one embodiment of the present invention. As shown in the figure, the photoelectrochemical reaction device of the present example has an electrode catalyst formed on the surface of a solar cell instead of an electrode.

【0009】即ち、基板1上に、白金電極2、n型多結
晶シリコン(200nm)3、多結晶シリコン絶縁層
(1.2μm)4及びp型多結晶シリコン(200n
m)5を形成し、更に、TiO2(3nm)6、SnO
2(5nm)7及びTiO2(3nm)8よりなる電極触
媒を形成したものである。
That is, on a substrate 1, a platinum electrode 2, an n-type polycrystalline silicon (200 nm) 3, a polycrystalline silicon insulating layer (1.2 μm) 4, and a p-type polycrystalline silicon (200n)
m) 5 and then TiO 2 (3 nm) 6 and SnO
An electrode catalyst consisting of 2 (5 nm) 7 and TiO 2 (3 nm) 8 was formed.

【0010】但し、図1中の装置の構成は一例であり、
構造、サイズなどはこれに限るものではない。例えば、
電極触媒として、二種類以上の金属同士、半導体同士、
金属と半導体、金属と絶縁体、半導体と絶縁体などを積
み重ねた構造とすることができる。また、電極触媒は、
TiO2とSnO2の薄膜を積み重ねた構造を持つこと、或
いは、SnO2の薄膜をTiO2の薄膜で挟んだこと、また
は、TiO2の薄膜をSnO2の薄膜を交互に3層以上積層
して構成することができる。
However, the configuration of the device in FIG. 1 is an example,
The structure and size are not limited to these. For example,
As an electrode catalyst, two or more kinds of metals, semiconductors,
A structure in which a metal and a semiconductor, a metal and an insulator, a semiconductor and an insulator, and the like are stacked can be employed. Also, the electrode catalyst
It has a structure in which TiO 2 and SnO 2 thin films are stacked, or a SnO 2 thin film is sandwiched between TiO 2 thin films, or a TiO 2 thin film is formed by alternately stacking three or more SnO 2 thin films. Can be configured.

【0011】上述した構造を有する光電気化学反応装置
を、図2に示すように、水槽9内に配置して、廃水を処
理を行うのためのセルを形成した。水槽9内には、白金
などの対極を挿入し、電極触媒と対極の間に太陽電池に
よる電気を通し、同時に光を照射して溶液反応を起こす
ようにしている。
As shown in FIG. 2, the photoelectrochemical reactor having the above-mentioned structure was disposed in a water tank 9 to form a cell for treating wastewater. A counter electrode made of platinum or the like is inserted into the water tank 9, electricity is supplied from a solar cell between the electrode catalyst and the counter electrode, and light is simultaneously irradiated to cause a solution reaction.

【0012】このセルに界面活性剤ドデシルベンゼンス
ルホン酸ナトリウム(以下、SDS)の1.1%水溶液
を注入し、太陽光を当てて1時間放置した後、残留して
いるSDSを測定したところ0.1%以下になってお
り、ほぼ完全に分解できた。SDS濃度は波長275n
mのベンゼン環の紫外線の吸収量を測定して求めた。
A 1.1% aqueous solution of a surfactant, sodium dodecylbenzenesulfonate (hereinafter referred to as SDS) was injected into the cell, left for 1 hour under sunlight, and the remaining SDS was measured. 0.1% or less, and it could be almost completely decomposed. SDS concentration is 275n wavelength
m was determined by measuring the amount of ultraviolet light absorbed by the benzene ring.

【0013】比較例として、絶縁体Siの上にTiO2
を3nm積層したものを使って、同様にSDS1.1%
水溶液の太陽光による分解を行ったところ、1時間後に
0.4%のSDSが残留しており、時間が経過してもそ
れ以上反応は進行しなかった。
As a comparative example, a 3 nm thick TiO 2 film was laminated on an insulator Si.
When the aqueous solution was decomposed by sunlight, 0.4% of SDS remained after 1 hour, and the reaction did not proceed any further even after the elapse of time.

【0014】〔実施例2〕本発明の第2実施例に係る光
触媒である光電気化学反応装置を図3に、その脱硝性能
確認のための実験装置を図4に示す。本実施例は、図3
に示すように、トンネル内の照明として用いられている
水銀灯、ナトリウムランプ、蛍光灯等10の近くに、図
1の光電気化学反応装置11を設置したものである。
Embodiment 2 FIG. 3 shows a photoelectrochemical reaction apparatus as a photocatalyst according to a second embodiment of the present invention, and FIG. 4 shows an experimental apparatus for confirming the denitration performance. In the present embodiment, FIG.
As shown in FIG. 1, a photoelectrochemical reactor 11 of FIG. 1 is installed near a mercury lamp, a sodium lamp, a fluorescent lamp, or the like 10 used as illumination in a tunnel.

【0015】道路のトンネル中の空気は自動車などの排
ガスにより、NOxの濃度が高いことが問題になってい
るが、ボイラーなどと比較すると濃度が低く拡散してい
る為有効な打ち手がなかった。第1図に示した光電気化
学反応装置は、光触媒の電子状態を電圧を加えて制御し
触媒活性を向上させるもので、必ずしも電流を伴う電気
化学反応を必要としない。従って、空気中でも、脱硝、
脱臭などの為に使用することが可能である。
[0015] The exhaust gas of air in road tunnels automobiles, but higher concentrations of the NO x is at issue, there is no such comparison and hand valid hit for concentration is diffused low boilers Was. The photoelectrochemical reaction device shown in FIG. 1 controls the electronic state of the photocatalyst by applying a voltage to improve the catalytic activity, and does not necessarily require an electrochemical reaction involving a current. Therefore, even in the air, denitration,
It can be used for deodorization.

【0016】そこで、本実施例では、図3に示すよう
に、蛍光灯等10の近くに、光電気化学反応装置11を
設置することにより、トンネル内空気の脱硝を行うよう
にしたものである。本実施例における脱硝性能を評価す
るために、図4に示すように、密閉型のガラス容器(内
容積250ml)12の内部に光電気化学反応装置13
を設置し、NO2濃度98ppmの空気を封入して、水
銀灯14を照射してNO2濃度の経時変化を調べた。
Therefore, in the present embodiment, as shown in FIG. 3, a photoelectrochemical reaction device 11 is installed near a fluorescent lamp or the like 10 to denitrate the air in the tunnel. . In order to evaluate the denitration performance in this example, as shown in FIG. 4, a photoelectrochemical reaction device 13 was placed inside a closed glass container (internal volume 250 ml) 12.
Was installed, air with a NO 2 concentration of 98 ppm was sealed, and irradiation with a mercury lamp 14 was performed to examine the change over time in the NO 2 concentration.

【0017】上記の実験において、水銀灯14の照射を
開始して1時間経過後のNO2濃度を測定したところ4
3ppmに減少した。これより、本実施例の装置が脱硝
性能を持っていることが分かった。
In the above experiment, the NO 2 concentration was measured one hour after the irradiation of the mercury lamp 14 was started.
Reduced to 3 ppm. From this, it was found that the apparatus of the present example had the denitration performance.

【0018】比較例として、絶縁体Siの上にTiO2
を3nm積層したものを使って、同様な試験を行った。
NO2濃度98ppmの空気を封入し、光を1時間照射
した後のNO2濃度は51ppmで本実施例による装置
の方が効率が高かった。
As a comparative example, a similar test was performed using a TiO 2 film having a thickness of 3 nm laminated on an insulator Si.
The air according to the present example was higher in efficiency than the device according to the present example, in which air having a NO 2 concentration of 98 ppm was sealed and irradiated with light for 1 hour, and the NO 2 concentration was 51 ppm.

【0019】[0019]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本願の請求項1の発明に係る光触媒によれ
ば、太陽電池の表面に透明電極の代わりに電極触媒を形
成し、電極触媒表面で光と電気の同時作用により化学反
応を起こし、また、本願の請求項2,3,4に係る発明
の光触媒では、請求項1において、前記電極触媒とし
て、二種類以上の金属同士、半導体同士、金属と半導
体、金属と絶縁体、半導体と絶縁体などを積み重ねた構
造或いはTiO2とSnO2の薄膜を積み重ねた構造、Sn
2の薄膜をTiO2の薄膜で挟んだ構造又はTiO2の薄
膜とSnO2の薄膜とを交互に3層以上積層した構造を持
つため、本発明の光触媒に光を照射すると、太陽電池の
起電力と電極触媒の光触媒作用で、表面上で有害物の分
解などの化学反応を発生させることができ、この反応を
利用すれば、光を照射する他は動力を必要とせずに界面
活性剤の分解処理などが可能になる。
According to the photocatalyst according to the first aspect of the present invention, an electrode catalyst is formed on the surface of a solar cell instead of a transparent electrode, as specifically described above with reference to the embodiments. In the photocatalyst of the invention according to claims 2, 3 and 4 of the present invention, two or more kinds of metals are used as the electrode catalyst in the photocatalyst according to claims 2 to 4 of the present application. A structure in which semiconductors are stacked, a metal and a semiconductor, a metal and an insulator, a semiconductor and an insulator are stacked, or a thin film of TiO 2 and SnO 2 is stacked;
The photocatalyst of the present invention has a structure in which a thin film of O 2 is sandwiched between thin films of TiO 2 or a structure in which three or more thin films of TiO 2 and SnO 2 are alternately laminated. By electromotive force and photocatalysis of the electrode catalyst, chemical reactions such as the decomposition of harmful substances can be generated on the surface. By using this reaction, surfactants can be used without power except for light irradiation. Can be decomposed.

【0020】更に、本願の請求項5の発明に係る光触媒
では、請求項1、2、3又は4において、前記電極触媒
上に液溜を作り、白金などで対極を形成して液溜に挿入
し、電極触媒と対極の間に太陽電池による電気を通し、
同時に光を照射して溶液反応を起こすようにしたため、
太陽電池の起電力と電極触媒の光触媒作用に加え、電流
を伴う電気化学反応の作用により、液溜内の有害物をほ
ぼ完全に分解して処理することが可能となった。
Further, in the photocatalyst according to the invention of claim 5 of the present application, in claim 1, 2, 3 or 4, a liquid reservoir is formed on the electrode catalyst, and a counter electrode is formed with platinum or the like and inserted into the liquid reservoir. And pass electricity from the solar cell between the electrode catalyst and the counter electrode,
Simultaneously irradiating light to cause a solution reaction,
In addition to the electromotive force of the solar cell and the photocatalytic action of the electrode catalyst, the action of an electrochemical reaction involving an electric current makes it possible to almost completely decompose and treat harmful substances in the liquid reservoir.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る太陽電池とその上
の電極触媒の構成図である。
FIG. 1 is a configuration diagram of a solar cell and an electrode catalyst thereon according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係わる光電気化学反応装
置の構成図である。
FIG. 2 is a configuration diagram of a photoelectrochemical reaction device according to a first embodiment of the present invention.

【図3】本発明の第2実施例に係わる光電気化学反応装
置の設置図である。
FIG. 3 is an installation view of a photoelectrochemical reaction device according to a second embodiment of the present invention.

【図4】本発明の第2実施例に係わる光電気化学反応装
置の脱硝性能確認実験の構成図である。
FIG. 4 is a configuration diagram of an experiment for confirming denitration performance of a photoelectrochemical reaction apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 白金電極 3 n型多結晶シリコン 4 多結晶シリコン絶縁層 5 p型多結晶シリコン 6,8 TiO2 7 SnO2 9 水槽 10 水銀灯、ナトリウムランプ、蛍光灯等 11,13 光電気化学反応装置 12 ガラス容器 14 水銀灯Reference Signs List 1 substrate 2 platinum electrode 3 n-type polycrystalline silicon 4 polycrystalline silicon insulating layer 5 p-type polycrystalline silicon 6,8 TiO 2 7 SnO 2 9 water tank 10 mercury lamp, sodium lamp, fluorescent lamp, etc. 11,13 photoelectrochemical reaction device 12 Glass container 14 Mercury lamp

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池の表面に透明電極の代わりに電
極触媒を形成し、電極触媒表面で光と電気の同時作用に
より化学反応を起こすことを特徴とする光触媒。
1. A photocatalyst wherein an electrocatalyst is formed on the surface of a solar cell instead of a transparent electrode, and a chemical reaction is caused on the surface of the electrocatalyst by the simultaneous action of light and electricity.
【請求項2】 請求項1において、前記電極触媒は、二
種類以上の金属同士、半導体同士、金属と半導体、金属
と絶縁体或いは半導体と絶縁体などを積み重ねた構造を
持つことを特徴とする光触媒。
2. The electrode catalyst according to claim 1, wherein the electrode catalyst has a structure in which two or more kinds of metals, semiconductors, metal and semiconductor, metal and insulator, or semiconductor and insulator are stacked. photocatalyst.
【請求項3】 請求項1において、前記電極触媒は、T
iO2とSnO2の薄膜を積み重ねた構造を持つことを特徴
とする光触媒。
3. The method according to claim 1, wherein the electrocatalyst comprises T
iO 2 photocatalyst characterized by having a stacked structure a thin film of SnO 2.
【請求項4】 請求項1において、前記電極触媒は、S
nO2の薄膜をTiO2の薄膜で挟んだ構造、または、Ti
2の薄膜とSnO2の薄膜とを交互に3層以上積層した
構造を持つことを特徴とする光触媒。
4. The method according to claim 1, wherein the electrode catalyst comprises S
a structure in which an nO 2 thin film is sandwiched between TiO 2 thin films,
A photocatalyst having a structure in which three or more O 2 thin films and SnO 2 thin films are alternately stacked.
【請求項5】 請求項1、2、3又は4において、前記
電極触媒上に液溜を作り、白金などで対極を形成して液
溜に挿入し、前記電極触媒と対極の間に太陽電池による
電気を通し、同時に光を照射して溶液反応を起こすこと
を特徴とする光触媒。
5. The solar cell according to claim 1, wherein a liquid reservoir is formed on the electrode catalyst, a counter electrode is formed of platinum or the like, and the counter electrode is inserted into the liquid reservoir. A photocatalyst characterized in that a solution reaction is caused by simultaneously irradiating light with electricity generated by the photocatalyst.
JP9095519A 1997-04-14 1997-04-14 Optical catalyzer Withdrawn JPH10290017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9095519A JPH10290017A (en) 1997-04-14 1997-04-14 Optical catalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9095519A JPH10290017A (en) 1997-04-14 1997-04-14 Optical catalyzer

Publications (1)

Publication Number Publication Date
JPH10290017A true JPH10290017A (en) 1998-10-27

Family

ID=14139823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9095519A Withdrawn JPH10290017A (en) 1997-04-14 1997-04-14 Optical catalyzer

Country Status (1)

Country Link
JP (1) JPH10290017A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080773A1 (en) 2012-11-20 2014-05-30 株式会社 東芝 Photochemical reaction system
WO2015040988A1 (en) 2013-09-17 2015-03-26 株式会社 東芝 Chemical reaction device
CN104797741A (en) * 2012-11-20 2015-07-22 株式会社东芝 Photochemical reaction device
JP2015206109A (en) * 2014-04-11 2015-11-19 株式会社豊田中央研究所 Photochemical reaction device and electrode for oxidation reaction and electrode for reduction reaction used in the same
WO2016114063A1 (en) * 2015-01-13 2016-07-21 富士フイルム株式会社 Hydrogen generating electrode
CN106062255A (en) * 2014-03-24 2016-10-26 株式会社东芝 Photoelectrochemical reactor
JPWO2015177950A1 (en) * 2014-05-20 2017-04-20 株式会社東芝 Photoelectrochemical reactor
US10196748B2 (en) 2013-05-29 2019-02-05 Kabushiki Kaisha Toshiba Reduction catalyst and chemical reactor
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
US10443136B2 (en) 2014-11-28 2019-10-15 Kabushiki Kaisha Toshiba Electrochemical reaction device
US10494724B2 (en) 2014-03-11 2019-12-03 Kabushiki Kaisha Toshiba Photochemical reaction device
US10597787B2 (en) 2014-05-20 2020-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
WO2022254617A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Oxidation-reduction reaction apparatus
WO2022254618A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Redox reaction apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107090585A (en) * 2012-11-20 2017-08-25 株式会社东芝 Photochemical reaction system
CN104797741A (en) * 2012-11-20 2015-07-22 株式会社东芝 Photochemical reaction device
US9708717B2 (en) 2012-11-20 2017-07-18 Kabushiki Kaisha Toshiba Photochemical reaction device
US10844495B2 (en) 2012-11-20 2020-11-24 Kabushiki Kaisha Toshiba Photochemical reaction system
US9758882B2 (en) 2012-11-20 2017-09-12 Kabushiki Kaisha Toshiba Photochemical reaction system
WO2014080773A1 (en) 2012-11-20 2014-05-30 株式会社 東芝 Photochemical reaction system
US10196748B2 (en) 2013-05-29 2019-02-05 Kabushiki Kaisha Toshiba Reduction catalyst and chemical reactor
US10472724B2 (en) 2013-09-17 2019-11-12 Kabushiki Kaisha Toshiba Chemical reaction device
WO2015040988A1 (en) 2013-09-17 2015-03-26 株式会社 東芝 Chemical reaction device
US10494724B2 (en) 2014-03-11 2019-12-03 Kabushiki Kaisha Toshiba Photochemical reaction device
CN106062255A (en) * 2014-03-24 2016-10-26 株式会社东芝 Photoelectrochemical reactor
US10378116B2 (en) 2014-03-24 2019-08-13 Kabushiki Kaisha Toshiba Photoelectrochemical reaction device
JP2015206109A (en) * 2014-04-11 2015-11-19 株式会社豊田中央研究所 Photochemical reaction device and electrode for oxidation reaction and electrode for reduction reaction used in the same
JPWO2015177950A1 (en) * 2014-05-20 2017-04-20 株式会社東芝 Photoelectrochemical reactor
US10233549B2 (en) 2014-05-20 2019-03-19 Kabushiki Kaisha Toshiba Photo-electrochemical reaction device
US10597787B2 (en) 2014-05-20 2020-03-24 Kabushiki Kaisha Toshiba Electrochemical reaction device
US10443136B2 (en) 2014-11-28 2019-10-15 Kabushiki Kaisha Toshiba Electrochemical reaction device
JPWO2016114063A1 (en) * 2015-01-13 2017-09-28 富士フイルム株式会社 Hydrogen generation electrode
WO2016114063A1 (en) * 2015-01-13 2016-07-21 富士フイルム株式会社 Hydrogen generating electrode
US10344388B2 (en) 2015-09-16 2019-07-09 Kabushiki Kaisha Toshiba CO2 reduction catalyst, CO2 reduction electrode, CO2 reduction reaction apparatus, and process for producing CO2 reduction catalyst
WO2022254617A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Oxidation-reduction reaction apparatus
WO2022254618A1 (en) * 2021-06-02 2022-12-08 日本電信電話株式会社 Redox reaction apparatus

Similar Documents

Publication Publication Date Title
JPH10290017A (en) Optical catalyzer
Rajeshwar Photoelectrochemistry and the environment
Ochiai et al. Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification
CN102309973B (en) Composite photoelectric catalyst as well as preparation and applications
Khalik et al. Optimization of degradation of Reactive Black 5 (RB5) and electricity generation in solar photocatalytic fuel cell system
CN104909428B (en) A kind of Ag3PO4/TiO2The device and method of catalyst and low temperature plasma Combined Treatment bio-refractory organic wastewater
Deng et al. Enhanced photocatalytic activity of Bi2WO6/TiO2 nanotube array composite under visible light irradiation
KR100927185B1 (en) Decomposition method of organic pollutant by using electric field of solar cells and Decomposition system of organic pollutant by using electric field of solar cells thereof
JPS60187322A (en) Purifying method of waste
Pop et al. Photoelectrocatalytic hydrogen production using nitrogen containing water soluble wastes
Zhang et al. A novel photoelectrocatalytic system for organic contaminant degradation on a TiO2 nanotube (TNT)/Ti electrode
Kaneko et al. Direct electrical power generation from urine, wastes and biomass with simultaneous photodecomposition and cleaning
Ojani et al. Photoelectrocatalytic degradation of 3-nitrophenol at surface of Ti/TiO 2 electrode
KR20160060191A (en) Photoelectrocatalytic Water Treatment Apparatus by Using Immobilized Nanotubular photosensized electrode
JP2007144328A (en) Photocatalyst fiber and liquid cleaning apparatus using the same
CN112156647A (en) High-voltage auxiliary photocatalytic purification module, purification device and method
JP2000037615A (en) Light source-integrated type photocatalytic apparatus and manufacture thereof
CN110585864B (en) Reaction process suitable for low-temperature plasma concerted catalytic degradation of VOCs and membrane catalyst preparation process
KR101472621B1 (en) Bifacial anode for water treatment with photoelectrocatalytic layer and electrocatalytic layer, a preparation method thereof and a water treatment method using the same
CN214261381U (en) High-voltage auxiliary photocatalytic purification module and purification device
CN100563819C (en) Has diffusion barrier of photocatalysis performance and preparation method thereof
JP7012951B2 (en) Purification equipment, purification method, carbon material manufacturing method and carbon material
Mendive et al. Current issues concerning the mechanism of pristine TiO2 photocatalysis and the effects on photonic crystal nanostructures
KR100437096B1 (en) A Waste Water Treatment System with Photoreactor
JP5214404B2 (en) Method for detoxifying persistent organic compounds

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040706