JPH0649677A - Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode - Google Patents

Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode

Info

Publication number
JPH0649677A
JPH0649677A JP4207637A JP20763792A JPH0649677A JP H0649677 A JPH0649677 A JP H0649677A JP 4207637 A JP4207637 A JP 4207637A JP 20763792 A JP20763792 A JP 20763792A JP H0649677 A JPH0649677 A JP H0649677A
Authority
JP
Japan
Prior art keywords
electrode
photocatalytic
photocatalyst
fine powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4207637A
Other languages
Japanese (ja)
Inventor
Yasushi Shimizu
康 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4207637A priority Critical patent/JPH0649677A/en
Publication of JPH0649677A publication Critical patent/JPH0649677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a photocatalyst electrode stably held in a reactant, capable of uniformly irradiating the reactant with light and capable of efficiently absorbing a light energy, to promote the photocatalyst electrode reaction so that the reaction product is rapidly detached from the electrode surface and to easily clean off the contaminant stuck the electrode surface. CONSTITUTION:A porous photocatalyst electrode 21 is formed from a combination of a metal and a semiconductor. Both materials having a fine matrix structure are firmly joined to each other. The highly reductive material in the electrode 21 exhibits the polarity of an anode 22, and the highly oxidative material exhibits the polarity of a cathode 23. A cavity 24 is kept except in the joining region and used as a passage for the photocatalysis product.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光触媒反応に用いられる
光触媒電極、およびその製造方法、光触媒電極反応促進
方法、光触媒電極洗浄方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalytic electrode used in a photocatalytic reaction, a method for producing the same, a method for promoting a photocatalytic electrode reaction, and a method for cleaning a photocatalytic electrode.

【0002】[0002]

【従来の技術】半導体と金属とからなる一対の電極のう
ち、該半導体部分に光を照射すると電極表面上で酸化・
還元反応が起こることが一般に知られている(「セラミ
ックス」VOL21 ,NO4 ,P326〜333 川合知二,チタニア
の光エネルギー変換作用) 。たとえば、二酸化チタンと
白金からなる一対の電極を電解質水溶液中に設置し、二
酸化チタンに光を照射すると水を分解する作用があり、
(「Nature」VOL238, P37〜38、A.Fujishima and K.Ho
nda ,Electrochemical Photolysis of water ata semi
conductor electrode) 、このような現象はいわゆる本
多・藤嶋効果と呼ばれて知られている。さらに、白金、
パラジウムや酸化ルテニウムを担持した二酸化チタン粉
末に光を照射すると、水が分解され水素と酸素が発生す
ることが確認されている。(「Chemical Physics Lette
r 」VOL72 ,P87 〜89 T.Kawai andT.Sakata ,Photoca
talytic decomposition of gaseous water over Ti
2and TiO2 −RuO2 surfaces,1980)。電極を
微粉末にすることにより、光の吸収面積を大きくできる
と同時に、水との接触面積を大きくできることが知られ
ている。
2. Description of the Related Art Of a pair of electrodes composed of a semiconductor and a metal, when the semiconductor part is irradiated with light, it is oxidized on the surface of the electrode.
It is generally known that a reduction reaction occurs (“ceramics” VOL21, NO4, P326-333 Tomoji Kawagoi, light energy conversion of titania). For example, a pair of electrodes made of titanium dioxide and platinum is placed in an electrolyte aqueous solution, and when titanium dioxide is irradiated with light, it has the action of decomposing water,
("Nature" VOL238, P37-38, A. Fujishima and K. Ho
nda, Electrochemical Photolysis of water ata semi
conductor electrode), such a phenomenon is known as the so-called Honda / Fujishima effect. In addition, platinum,
It has been confirmed that when titanium dioxide powder carrying palladium or ruthenium oxide is irradiated with light, water is decomposed and hydrogen and oxygen are generated. ("Chemical Physics Lette
r ”VOL72, P87-89 T.Kawai and T.Sakata, Photoca
talytic decomposition of gaseous water over Ti
O 2 and TiO 2 —RuO 2 surfaces, 1980). It is known that by making the electrode fine powder, the light absorption area can be increased and at the same time the contact area with water can be increased.

【0003】さらに、電極を微粉末にしたことによる現
象面の特徴は、二酸化チタン表面の電場勾配によって生
じるエネルギーレベルの分布が粒径によって制限され、
電子と正孔が移動し易くなることである。電極表面にお
いて、水は室温で水素と酸素とに分解される。
Furthermore, the characteristic of the phenomenon surface due to the fine powder of the electrode is that the distribution of the energy level generated by the electric field gradient on the surface of titanium dioxide is limited by the particle size,
That is, electrons and holes can easily move. At the electrode surface, water decomposes into hydrogen and oxygen at room temperature.

【0004】半導体として二酸化チタン,担持金属とし
て白金を用いた光触媒電極を例にとり、水の分解につい
て以下に説明する。図7は二酸化チタン1微粉末に白金
2を担持させた光触媒電極3の模式図である。この電極
3は2種の材料で1対をなし、10分の数μmから数μ
mの直径をもつ球状の微粉末であり、リード部をもたな
い。二酸化チタン1に光4を照射すると、光4のエネル
ギーを二酸化チタン1が吸収し、二酸化チタン1の内部
に電子5と正孔6が生成する。その様子を図8に示す。
電極3を水7中あるいは水蒸気雰囲気中に置き、光4を
照射すると価電子帯8にある電子5が伝導帯9へ励起さ
れて価電子帯8には正孔6が生成する。生成した電子5
および正孔6の一部は半導体表面に移動し、電子5は還
元反応10、正孔6は酸化反応11に各々使われる。こ
のとき、白金2は還元反応10を促進させるための触媒
電極として作用する。
The decomposition of water will be described below by taking a photocatalytic electrode using titanium dioxide as a semiconductor and platinum as a supporting metal as an example. FIG. 7 is a schematic view of a photocatalyst electrode 3 in which platinum 2 is supported on titanium dioxide 1 fine powder. The electrodes 3 are made of two kinds of materials, and form a pair.
It is a spherical fine powder having a diameter of m and has no lead portion. When the titanium dioxide 1 is irradiated with the light 4, the energy of the light 4 is absorbed by the titanium dioxide 1 and electrons 5 and holes 6 are generated inside the titanium dioxide 1. The situation is shown in FIG.
When the electrode 3 is placed in water 7 or in a water vapor atmosphere and irradiated with light 4, electrons 5 in the valence band 8 are excited into the conduction band 9 and holes 6 are generated in the valence band 8. Generated electron 5
And some of the holes 6 move to the surface of the semiconductor, the electrons 5 are used for the reduction reaction 10, and the holes 6 are used for the oxidation reaction 11. At this time, the platinum 2 acts as a catalyst electrode for promoting the reduction reaction 10.

【0005】水の分散に用いる光触媒電極の模式図を図
9に示す。光触媒電極3を水7あるいは電解質水溶液と
ともにガラスのフラスコに入れ、光4を照射すると、電
極からガス(水素12および酸素13)が発生する。
FIG. 9 shows a schematic diagram of a photocatalytic electrode used for dispersing water. When the photocatalyst electrode 3 is put in a glass flask together with water 7 or an aqueous electrolyte solution and irradiated with light 4, gas (hydrogen 12 and oxygen 13) is generated from the electrode.

【0006】そのほか光触媒作用として、この電極がさ
まざまな分野に応用されるものと考えられている。たと
えば、有機物の分離、殺菌や脱臭などである。いずれも
金属を担持した半導体電極の強力な酸化・還元反応を利
用した光触媒作用である。
In addition, as a photocatalytic action, this electrode is considered to be applied to various fields. For example, separation of organic matter, sterilization and deodorization. Both are photocatalytic actions that utilize the strong oxidation / reduction reaction of the semiconductor-supported metal electrode.

【0007】[0007]

【発明が解決しようとする課題】上記したように半導体
と金属からなる光触媒電極は、微粉末の形で用いられて
いる。この光触媒電極によって水あるいは水蒸気を分散
するには、光触媒電極を光透過性の容器に入れて、水や
水蒸気の中に保持しなければならない。
As described above, the photocatalytic electrode made of semiconductor and metal is used in the form of fine powder. In order to disperse water or water vapor by this photocatalyst electrode, the photocatalyst electrode must be placed in a light transmissive container and kept in water or water vapor.

【0008】水の分解においては、一般に、微粉末電極
を水と共にガラスの容器に入れて、容器を通して光照射
する。電極は水よりも比重が大きいので、ガラス容器の
底に溜まることになる。したがって、電極の微粉末は厚
く堆積し易く、電極全体として光を効率的に吸収するこ
とができない。
In the decomposition of water, generally, a fine powder electrode is put together with water in a glass container and irradiated with light through the container. Since the specific gravity of the electrode is larger than that of water, it will accumulate on the bottom of the glass container. Therefore, the fine powder of the electrode is thick and easily deposited, and the entire electrode cannot efficiently absorb light.

【0009】また、水蒸気を分解するときには、微粉末
電極を水蒸気中に保持しなければならない。たとえば、
光透過性の容器に電極微粉末を入れて、水蒸気を満たす
か、光透過性の皿に電極微粉末を載せて、水蒸気中に保
持する方法が採られる。このような場合にも、電極微粉
末は底に堆積し易く、電極全体として光の効率的な吸収
が難しくなる。
Further, when decomposing water vapor, the fine powder electrode must be held in the water vapor. For example,
A method of putting the electrode fine powder in a light transmissive container and filling the water vapor or placing the electrode fine powder on a light transmissive dish and holding it in the water vapor is adopted. Even in such a case, the electrode fine powder easily deposits on the bottom, and it becomes difficult for the electrode as a whole to efficiently absorb light.

【0010】光触媒作用を利用した多くの反応系につい
て、同様のことがいえる。すなわち、光触媒電極の粉末
は反応系の中に、堆積させるか薄く拡げるが、粉体ゆえ
に厚さにバラツキが生じ均一な厚さを保つのが極めて難
しい。したがって、光を電極にむらなく照射し、効率的
に光エネルギーを電極に吸収させることができない。
The same can be said for many reaction systems utilizing photocatalysis. That is, the powder of the photocatalyst electrode is deposited or spread thinly in the reaction system, but it is extremely difficult to maintain a uniform thickness due to variation in thickness due to the powder. Therefore, it is not possible to uniformly irradiate the electrode with light and efficiently absorb the light energy in the electrode.

【0011】また、分散生成物が電極周辺に滞留するこ
とは、反応の進行上好ましくない。反応を速やかに進行
させるには速やかに電極表面に生成した分解生成物を離
脱させ反応物と入れ換える必要がある。
Further, it is not preferable that the dispersion product stays around the electrode in terms of progress of the reaction. In order to allow the reaction to proceed rapidly, it is necessary to promptly remove the decomposition product generated on the electrode surface and replace it with the reaction product.

【0012】また、塵あいや高沸点物質などによって光
触媒電極が汚染されると、光の吸収能力が低下するの
で、随時、汚染物質を除去する必要がある。しかし、粉
体である光触媒電極の洗浄は、汚染物質と光触媒電極の
分離が難しい。たとえば、塵あいと光触媒電極とを選り
分けるのは難しい。
Further, if the photocatalytic electrode is contaminated by dust or a substance having a high boiling point, the light absorbing ability is deteriorated. Therefore, it is necessary to remove the pollutant from time to time. However, it is difficult to separate the contaminants and the photocatalyst electrode by cleaning the photocatalyst electrode which is a powder. For example, it is difficult to distinguish dust from photocatalytic electrodes.

【0013】そこで、本発明の目的は反応物の中に安定
に保持して全体に行き届くよう光を照射し、効率よく光
エネルギーを吸収できる光触媒電極およびその製造方法
を提供することにある。また、別の目的は反応生成物を
電極表面から速やかに離脱させることができる光触媒電
極反応促進方法を提供することにある。さらに、別の目
的は電極に付着して反応を低下させる汚染物質を容易に
取り除くことのできる光触媒電極洗浄方法を提供するこ
とにある。
Therefore, an object of the present invention is to provide a photocatalyst electrode which can be stably held in a reactant and irradiated with light so as to reach the whole and to efficiently absorb light energy, and a method for producing the same. Another object of the present invention is to provide a photocatalytic electrode reaction accelerating method capable of rapidly separating reaction products from the electrode surface. Another object of the present invention is to provide a photocatalyst electrode cleaning method capable of easily removing contaminants that adhere to the electrodes and deteriorate the reaction.

【0014】[0014]

【課題を解決するための手段】本発明に係る光触媒電極
は内部に空隙を保って半導体と金属とからなる結合体を
構成し、双方の材料が示す還元性あるいは酸化性に従い
極性を決めるようにしたものである。
The photocatalyst electrode according to the present invention forms a bonded body composed of a semiconductor and a metal while keeping voids inside, and determines the polarity according to the reducing property or oxidizing property of both materials. It was done.

【0015】また、光触媒媒極の製造方法は半導体微粉
末と金属微粉末とを混合し、次に、その微粉末混合体を
所望の形状に成形し、この後、成形形状を保って焼成す
るようにしたしたものである。
Further, in the method for producing the photocatalyst medium electrode, the semiconductor fine powder and the metal fine powder are mixed, and then the fine powder mixture is formed into a desired shape, and thereafter, the formed shape is maintained and fired. It was done in this way.

【0016】さらに別の発明に係る光触媒電極の製造方
法は半導体微粉末と金属微粉末とをバインダーとともに
混合し、次に、その微粉末混合体を所望の形状に成形
し、この後、成形形状を保って焼成し、このとき該バイ
ンダーを揮散させるようにしたものである。
According to another method of manufacturing a photocatalyst electrode, a semiconductor fine powder and a metal fine powder are mixed with a binder, and then the fine powder mixture is molded into a desired shape. Is kept and fired, and at this time, the binder is volatilized.

【0017】また、本発明に係る光触媒電極の反応促進
方法は光触媒作用を生じさせる流体中に光触媒電極を置
いて反応を進行させるにあたり、流体を流動させるよう
にしたものである。
The photocatalyst electrode reaction promoting method according to the present invention is such that the fluid is caused to flow when the photocatalyst electrode is placed in a fluid which causes a photocatalytic action and the reaction proceeds.

【0018】さらに、別の発明に係る反応促進方法は光
触媒作用を生じさせる流体中に光触媒電極を置いて反応
を進行させるにあたり、光触媒電極を振動させるように
したものである。また、別の発明に係る洗浄方法は光触
媒電極に洗浄ガスあるいは洗浄液を噴射して電極汚染物
質を取り除くようにしたものである。
Furthermore, a reaction promoting method according to another invention is to vibrate the photocatalyst electrode when the photocatalyst electrode is placed in a fluid which causes a photocatalytic action and the reaction proceeds. A cleaning method according to another invention is one in which a cleaning gas or a cleaning liquid is sprayed on a photocatalyst electrode to remove electrode contaminants.

【0019】[0019]

【作用】本発明による光触媒電極は粉末を焼成したこと
により、反応物の中に安定に保持できるようになる。す
なわち、半導体および金属の粉末を混合し、型に収めて
加熱炉で焼成することによって気孔率の高い多孔質体に
焼き固める。これにより比重量が低下し、容易に反応物
の中に浮かせて保持することができる。
The photocatalyst electrode according to the present invention can be stably retained in the reaction product by firing the powder. That is, semiconductor and metal powders are mixed, placed in a mold, and baked in a heating furnace to be baked and solidified into a porous body having a high porosity. As a result, the specific weight is lowered, and it can be easily floated and held in the reaction product.

【0020】また、特に、薄いシート状に焼成すること
により、効率よく光を照射できるようになる。すなわ
ち、半導体および金属の粉末を混合し薄板状に成形し、
光を電極の内部まで行き渡らせることができる。
Further, in particular, it becomes possible to efficiently irradiate light by baking the thin sheet. That is, semiconductor and metal powders are mixed and formed into a thin plate shape,
Light can be spread to the inside of the electrode.

【0021】また、本発明による光触媒電極の細孔を通
過するよう反応物を流すことによって、反応生成物を電
極表面から速やかに離脱させることができる。さらに、
光触媒電極を反応物中で振動させることによって、電極
表面を清浄に保つことができる。また、本発明による光
触媒電極は洗浄ガスあるいは洗浄液の中で塵あいその他
の汚染物質を容易に洗い流すことができる。
Further, by flowing the reactant so as to pass through the pores of the photocatalyst electrode according to the present invention, the reaction product can be promptly released from the electrode surface. further,
By vibrating the photocatalytic electrode in the reactant, the electrode surface can be kept clean. Further, the photocatalyst electrode according to the present invention can easily wash away dust and other pollutants in the cleaning gas or cleaning liquid.

【0022】[0022]

【実施例】以下、添付図面に基づいて本発明の実施例に
ついて説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0023】図1は金属と半導体との結合体であり、多
孔質の光触媒電極21を示す。微細な金属と微細な半導
体とがマトリックス構造をもって結合している。金属と
半導体との組み合わせにより、還元性の強い方がアノー
ド22になり、酸化性の強い方がカソード23となる。
本図ではカソード23の中にアノード22が分散させら
れた状態で一体化されている。この光触媒電極21を流
動性の反応物中に保持すると、マトリックス構造の空隙
24を反応物が自由に流動することができる。この光触
媒電極21に光を照射すると、アノード22上で還元反
応を、カソード23上で酸化反応を繰り返し、光触媒作
用を引き起こす。この光触媒反応の生成物もマトリック
ス構造の空隙24を自由に流動することができる。たと
えば、この光触媒電極21に水中または水蒸気中で光を
照射すると、アノード22上で酸素が生成すると同時
に、カソード23上で水素が生成する。
FIG. 1 shows a porous photocatalytic electrode 21 which is a combination of a metal and a semiconductor. The fine metal and the fine semiconductor are combined in a matrix structure. Due to the combination of the metal and the semiconductor, the one having a strong reducing property becomes the anode 22, and the one having a strong oxidizing property becomes the cathode 23.
In this figure, the anode 22 is integrated with the cathode 23 in a dispersed state. When the photocatalyst electrode 21 is held in the fluid reactant, the reactant can freely flow in the voids 24 having the matrix structure. When the photocatalyst electrode 21 is irradiated with light, a reduction reaction is repeated on the anode 22 and an oxidation reaction is repeated on the cathode 23 to cause a photocatalytic action. The products of this photocatalytic reaction can also freely flow in the voids 24 of the matrix structure. For example, when the photocatalyst electrode 21 is irradiated with light in water or water vapor, oxygen is produced on the anode 22 and hydrogen is produced on the cathode 23 at the same time.

【0024】このように成形された光触媒電極21は金
属と半導体との結合が強まり、剛さが充分である。これ
は宙に浮かせて保持することができるので、光触媒電極
の全方向から光を吸収させることが可能になると同時
に、光触媒電極21の全方向余すところなく反応物を流
動させることができる。したがって、効率よく光触媒電
極21に光および反応物を供給させることができる。ま
た、反応物を光触媒電極21の一方向より流動させるこ
とにより、生成物の除去と反応物の供給を速やかにし、
効率よく光触媒反応を生じさせることができる。たとえ
ば、光触媒作用による水の分散においては、水中あるい
は水蒸気中にこの光触媒電極21を保持してある方向を
決めて水あるいは水蒸気を流動させることにより、新鮮
な水あるいは水蒸気が常に光触媒電極21に供給され
る。光触媒反応で生成した水素と酸素は電極表面から速
やかに取り除かれる。
The thus formed photocatalyst electrode 21 has sufficient rigidity between the metal and the semiconductor and has sufficient rigidity. Since this can be floated and held in the air, light can be absorbed from all directions of the photocatalyst electrode, and at the same time, the reactant can be completely flowed in all directions of the photocatalyst electrode 21. Therefore, the photocatalyst electrode 21 can be efficiently supplied with light and a reactant. In addition, by flowing the reactant from one direction of the photocatalyst electrode 21, the removal of the product and the supply of the reactant are accelerated,
A photocatalytic reaction can be efficiently generated. For example, in water dispersion by photocatalysis, fresh water or water vapor is always supplied to the photocatalyst electrode 21 by holding the photocatalyst electrode 21 in water or water vapor and deciding a certain direction to flow the water or water vapor. To be done. Hydrogen and oxygen generated by the photocatalytic reaction are quickly removed from the electrode surface.

【0025】マトリックス構造をもつ光触媒電極の望ま
しい製造方法は、金属粉と半導体粉を混合して加熱炉内
で焼成する方法である。金属粉と半導体粉を適当な混合
比をもって混合し、双方の粉末を型に収めた後、焼結炉
で加熱する。このとき、金属粉と半導体粉は分散された
まま焼結される。したがって、任意の形状をした光触媒
電極に仕上げることができる。
A preferred method for producing a photocatalytic electrode having a matrix structure is a method in which metal powder and semiconductor powder are mixed and fired in a heating furnace. The metal powder and the semiconductor powder are mixed at an appropriate mixing ratio, both powders are placed in a mold, and then heated in a sintering furnace. At this time, the metal powder and the semiconductor powder are sintered while being dispersed. Therefore, the photocatalytic electrode having an arbitrary shape can be finished.

【0026】次に、上記のものと異なる製造方法を説明
する。複数種類の金属を混合して加熱し、任意の種類の
金属を特定のガスと反応させ半導体に変えると同時に、
混合物を焼成する。この方法によっても、金属と半導体
とからなる多孔質の光触媒電極を得ることができる。
Next, a manufacturing method different from that described above will be described. Mixing multiple types of metals and heating, reacting any type of metal with a specific gas to turn it into a semiconductor,
Bake the mixture. Also by this method, a porous photocatalytic electrode composed of a metal and a semiconductor can be obtained.

【0027】さらに、別の製造方法を説明する。半導体
粉末と金属粉末をバインダーとともに混合した後、加熱
してバインダーを揮散させ、半導体と金属からなる多孔
質の光触媒電極を製造する。この方法で製造された光触
媒電極は混合時のバインダー部分が空隙になり、多孔質
で、かつ強固な結合体とすることができる。
Further, another manufacturing method will be described. After mixing the semiconductor powder and the metal powder with the binder, the binder is volatilized by heating to produce a porous photocatalytic electrode composed of the semiconductor and the metal. The photocatalyst electrode manufactured by this method has a void portion in the binder portion at the time of mixing, and can be made into a porous and strong bonded body.

【0028】さらに、別の製造方法を説明する。複数種
類の金属粉末をバインダーとともに混合した後、加熱す
ることによってバインダーを揮散させるとともに任意の
種類の金属を特定のガスと反応させて半導体に変える。
バインダーが揮散した部分の空隙となり、半導体と金属
が焼結して多孔質で、しかも強固な光触媒電極を得るこ
とができる。
Further, another manufacturing method will be described. After mixing a plurality of kinds of metal powders with a binder, the binder is volatilized by heating and at the same time any kind of metal is reacted with a specific gas to be converted into a semiconductor.
A void is formed in the portion where the binder is volatilized, and the semiconductor and the metal are sintered to obtain a porous and strong photocatalytic electrode.

【0029】上記の異なる製造方法により製造された光
触媒電極はいずれもマトリックス構造を有し、その空隙
を反応物および生成物が自由に流動でき、光照射によっ
て金属上および半導体上において光触媒反応を起こさせ
ることができる。
Each of the photocatalytic electrodes manufactured by the above different manufacturing methods has a matrix structure, and the reactants and products can freely flow in the voids thereof, and photocatalytic reaction occurs on the metal and the semiconductor by light irradiation. Can be made.

【0030】次に、効率よく光を電極に照射できるよう
な電極の形状および電極の製造方法について述べる。図
2は光触媒電極の外観を示す。光が電極の内部まで透過
するように、光触媒電極21を薄い平板状に成形する。
上述した光触媒電極は多孔質で、微細な空隙を有するの
で、薄い平板状に成形することにより、その空隙を通し
て照射光が表面から内部まで届き、光エネルギーの効率
的な吸収を果たすことができる。
Next, the shape of the electrode and the method for manufacturing the electrode will be described so that the electrode can be efficiently irradiated with light. FIG. 2 shows the appearance of the photocatalytic electrode. The photocatalyst electrode 21 is formed in a thin flat plate shape so that light can be transmitted to the inside of the electrode.
Since the above-mentioned photocatalyst electrode is porous and has fine voids, by forming it into a thin flat plate, the irradiation light can reach from the surface to the inside through the voids and efficiently absorb the light energy.

【0031】光触媒電極21を薄い板状に製造する方法
を、以下図を参照して説明する。図3は半導体微粉末と
金属微粉末の混合物を薄い板状に成形した実施例であ
る。モータ25と送りネジ26とで駆動可能なテーブル
27が左から右に移動する過程で、そのテーブル27上
に置かれた耐熱プレート28上に微粉末が薄板状に形成
される。まず第1工程として、図中左において光触媒電
極成分の微粉末29を耐熱プレート28上に散布する。
次に、図中中央においてカッター30により、散布され
た微粉末29の表面を摺り切る。同時に、カッター30
に付着した微粉末をノズル31により吸引して回収す
る。カッター30はA方向に回転し、余分な微粉末29
をすくい上げる。次に、図中右において微粉末29の散
布厚さを測定する。レーザ変位計32はB方向に可動
し、耐熱プレート28上の微粉末29の上部からレーザ
照射と反射光検知を行い、このときの厚さを計測する。
A method of manufacturing the photocatalyst electrode 21 in the shape of a thin plate will be described below with reference to the drawings. FIG. 3 shows an embodiment in which a mixture of semiconductor fine powder and metal fine powder is molded into a thin plate shape. In the process of moving the table 27 that can be driven by the motor 25 and the feed screw 26 from left to right, fine powder is formed in a thin plate shape on the heat-resistant plate 28 placed on the table 27. First, as the first step, the fine powder 29 of the photocatalyst electrode component is sprinkled on the heat-resistant plate 28 on the left side of the drawing.
Next, the cutter 30 scrapes off the surface of the fine powder 29 scattered in the center of the drawing. At the same time, the cutter 30
The fine powder adhered to is sucked by the nozzle 31 and collected. The cutter 30 rotates in the A direction, and the excess fine powder 29
Scoop up. Next, the dispersion thickness of the fine powder 29 is measured on the right side of the figure. The laser displacement meter 32 moves in the B direction, performs laser irradiation and reflected light detection from above the fine powder 29 on the heat resistant plate 28, and measures the thickness at this time.

【0032】焼成して光触媒電極とするには図4に示す
ように耐熱プレート28上に成形された微粉末29を焼
結炉33の中に収め、適温まで加熱することにより図2
に示す光触媒電極21を得ることができる。
In order to obtain a photocatalyst electrode by firing, as shown in FIG. 4, the fine powder 29 molded on the heat-resistant plate 28 is placed in a sintering furnace 33 and heated to an appropriate temperature, as shown in FIG.
The photocatalyst electrode 21 shown in can be obtained.

【0033】上記の工程を経て作られる光触媒電極21
は均一な厚さを有すると同時に、高い気孔率を備えてい
る。したがって、照射光は光触媒電極21の内部まで届
き、効果的に光触媒作用を果たすことができる。
Photocatalyst electrode 21 produced through the above steps
Has a uniform thickness and at the same time has a high porosity. Therefore, the irradiation light reaches the inside of the photocatalytic electrode 21 and can effectively perform the photocatalytic action.

【0034】次に、薄い平板状の光触媒電極を成形する
上記と異なる方法を説明する。図5はグリーンシートの
一般的な製造方法を示しており、光触媒電極の製造方法
にも適用できる。電極成分の微粉末をバインダーと混合
したスラリー34を台紙35上に流す。そのとき、スラ
リー34はカッター36を通して絞られ、台紙35の上
にシート37が形成される。
Next, a method different from the above method for forming a thin plate-shaped photocatalyst electrode will be described. FIG. 5 shows a general method for manufacturing a green sheet, and can be applied to a method for manufacturing a photocatalytic electrode. A slurry 34 in which fine powder of an electrode component is mixed with a binder is poured on a mount 35. At that time, the slurry 34 is squeezed through the cutter 36, and the sheet 37 is formed on the mount 35.

【0035】この方法で成形されたシート37を耐熱プ
レート28に載せて、図4に示すように焼結炉33で加
熱し、バインダーを揮散させると同時に、焼き固める。
この方法で製造された光触媒媒極はバインダーの揮散に
よって空隙が形成された状態で微粉末の電極成分が結合
するので、高い気孔率を備えている。したがって、照射
光は光触媒電極の内部まで届き、有効に光触媒作用を果
たすことができる。
The sheet 37 formed by this method is placed on the heat-resistant plate 28 and heated in a sintering furnace 33 as shown in FIG.
The photocatalyst medium electrode manufactured by this method has a high porosity because the electrode components of the fine powder are bound together in the state where voids are formed by volatilization of the binder. Therefore, the irradiation light reaches the inside of the photocatalytic electrode and can effectively perform the photocatalytic action.

【0036】次に、光触媒電極反応促進方法について説
明する。上記の工程を経て焼成された光触媒電極は充分
な剛さを有するので、反応物の中に保持することができ
る。図6は光触媒作用による水の分散の一実施例を示
す。透明容器38の中間部に光触媒電極21が保持さ
れ、水は透明容器38の下から供給される。水が流動す
ることによって光触媒電極21の表面の水が常に入れ換
わって光触媒反応に寄与するとともに、生成した水素4
0および酸素41は速やかに光触媒電極21の表面から
離脱して行く。これにより、反応を速やかに進行させる
ことができる。また、焼成された光触媒電極21を反応
物中で振動させることによっても、同様の効果を得るこ
とができる。
Next, the method for promoting the photocatalytic electrode reaction will be described. Since the photocatalyst electrode baked through the above steps has sufficient rigidity, it can be retained in the reaction product. FIG. 6 shows an example of water dispersion by photocatalysis. The photocatalytic electrode 21 is held in the middle of the transparent container 38, and water is supplied from below the transparent container 38. As the water flows, the water on the surface of the photocatalyst electrode 21 is constantly replaced and contributes to the photocatalytic reaction.
0 and oxygen 41 rapidly leave the surface of the photocatalytic electrode 21. This allows the reaction to proceed rapidly. The same effect can also be obtained by vibrating the fired photocatalyst electrode 21 in the reaction product.

【0037】次に、光触媒電極洗浄方法を説明する。光
触媒電極が塵埃、有機物、無機物などで汚れると、電極
が光エネルギーを吸収することができずに、効率的に光
触媒作用を果たすことができない。光触媒電極に洗浄ガ
スあるいは洗浄液を噴射することによって、塵埃などの
汚染物質を洗い流すことができる。また、洗浄液中での
光触媒電極を振動することにより洗浄を効果的に行うこ
とができる。
Next, the photocatalyst electrode cleaning method will be described. When the photocatalytic electrode is contaminated with dust, organic substances, inorganic substances, etc., the electrode cannot absorb the light energy and cannot efficiently perform the photocatalytic action. By injecting a cleaning gas or a cleaning liquid onto the photocatalyst electrode, contaminants such as dust can be washed away. Further, the cleaning can be effectively performed by vibrating the photocatalytic electrode in the cleaning liquid.

【0038】[0038]

【発明の効果】以上説明したように本発明によれば、半
導体および金属からなる多孔質の光触媒電極を成形する
ので、容易に反応物の中に浮かせて保持することができ
る。したがって、光を周囲の広い範囲から照射すること
ができるとともに、特に、薄い平板状に成形することに
より、光触媒電極の内部まで照射光が届き、電極に効率
的に光エネルギーを吸収することが可能になる。また、
電極に対して反応物のみを流動させることにより、反応
物の供給と生成物の除去を速やかに果たすことができ
る。さらに、洗浄ガスあるいは洗浄液を用いて塵埃など
の汚染物質を容易に洗い流すことができる。
As described above, according to the present invention, since a porous photocatalyst electrode made of a semiconductor and a metal is molded, it can be easily floated and held in the reaction product. Therefore, it is possible to irradiate light from a wide range of the surroundings, and particularly by forming it into a thin flat plate, the irradiation light reaches the inside of the photocatalyst electrode, and the electrode can efficiently absorb the light energy. become. Also,
By supplying only the reactant to the electrode, the reactant can be supplied and the product can be quickly removed. Further, contaminants such as dust can be easily washed away using the cleaning gas or the cleaning liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光触媒電極の微視的拡大図。FIG. 1 is a microscopic enlarged view of a photocatalytic electrode according to the present invention.

【図2】本発明による光触媒電極の一実施例を示す斜視
図。
FIG. 2 is a perspective view showing an embodiment of a photocatalytic electrode according to the present invention.

【図3】本発明による光触媒電極の製造工程を説明する
ための図。
FIG. 3 is a diagram for explaining a manufacturing process of the photocatalytic electrode according to the present invention.

【図4】本発明による光触媒電極の製造工程を説明する
ための図。
FIG. 4 is a view for explaining the manufacturing process of the photocatalytic electrode according to the present invention.

【図5】本発明による光触媒電極の製造工程を説明する
ための図。
FIG. 5 is a view for explaining the manufacturing process of the photocatalytic electrode according to the present invention.

【図6】本発明に係る光触媒電極の使用方法を説明する
ための図。
FIG. 6 is a diagram for explaining a method of using the photocatalytic electrode according to the present invention.

【図7】従来の光触媒電極の模式図。FIG. 7 is a schematic diagram of a conventional photocatalytic electrode.

【図8】光触媒電極における光触媒作用を説明するため
の図。
FIG. 8 is a diagram for explaining a photocatalytic action in the photocatalytic electrode.

【図9】光触媒作用の応用例を示す模式図。FIG. 9 is a schematic diagram showing an application example of photocatalytic action.

【符号の説明】[Explanation of symbols]

21…光触媒電極 22…アノード 23…カソード 24…空隙 21 ... Photocatalyst electrode 22 ... Anode 23 ... Cathode 24 ... Void

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 内部に空隙を保って半導体と金属とから
なる結合体を構成し、双方の材料が示す還元性あるいは
酸化性に従い極性を決めるようにした光触媒電極。
1. A photocatalyst electrode in which a void is kept inside to form a combined body of a semiconductor and a metal, and the polarity is determined according to the reducing property or oxidizing property of both materials.
【請求項2】 半導体微粉末と金属微粉末とを混合し、
次に、その微粉末混合体を所望の形状に成形し、この
後、成形形状を保って焼成するようにした光触媒電極の
製造方法。
2. A semiconductor fine powder and a metal fine powder are mixed,
Next, a method for producing a photocatalyst electrode, in which the fine powder mixture is molded into a desired shape, and then the molded shape is maintained and fired.
【請求項3】 半導体微粉末と金属微粉末とをバインダ
ーとともに混合し、次に、その微粉末混合体を所望の形
状に成形し、この後、成形形状を保って焼成し、このと
き該バインダーを揮散させるようにした光触媒電極の製
造方法。
3. A semiconductor fine powder and a metal fine powder are mixed together with a binder, and then the fine powder mixture is formed into a desired shape, and thereafter, the formed shape is maintained and fired at this time. A method for producing a photocatalytic electrode, which is adapted to volatilize.
【請求項4】 微粉末混合体を成形するにあたり、平板
状に成形したことを特徴とする請求項2または3記載の
光触媒電極の製造方法。
4. The method for producing a photocatalytic electrode according to claim 2, wherein the fine powder mixture is formed into a flat plate shape.
【請求項5】 光触媒作用を生じさせる流体中に光触媒
電極を置いて反応を進行させるにあたり、該流体を流動
させるようにした光触媒電極反応促進方法。
5. A method for promoting a photocatalytic electrode reaction in which a fluid is caused to flow when a photocatalytic electrode is placed in a fluid which causes a photocatalytic action to proceed a reaction.
【請求項6】 光触媒作用を生じさせる流体中に光触媒
電極を置いて反応を進行させるにあたり、該光触媒電極
を振動させるようにした光触媒電極反応促進方法。
6. A method of promoting a photocatalytic electrode reaction, which comprises vibrating the photocatalytic electrode when the photocatalytic electrode is placed in a fluid which causes a photocatalytic action to proceed the reaction.
【請求項7】 光触媒電極に洗浄ガスあるいは洗浄液を
噴射して電極汚染物質を取り除くようにした光触媒電極
洗浄方法。
7. A photocatalyst electrode cleaning method in which a cleaning gas or a cleaning liquid is sprayed on the photocatalyst electrode to remove electrode contaminants.
JP4207637A 1992-08-04 1992-08-04 Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode Pending JPH0649677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4207637A JPH0649677A (en) 1992-08-04 1992-08-04 Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4207637A JPH0649677A (en) 1992-08-04 1992-08-04 Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode

Publications (1)

Publication Number Publication Date
JPH0649677A true JPH0649677A (en) 1994-02-22

Family

ID=16543091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4207637A Pending JPH0649677A (en) 1992-08-04 1992-08-04 Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode

Country Status (1)

Country Link
JP (1) JPH0649677A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013327A1 (en) 1994-10-31 1996-05-09 Kanagawa Academy Of Science And Technology Titanium oxide photocatalyst structure and method of manufacturing the same
US6939611B2 (en) 1994-10-31 2005-09-06 Kanagawa Academy Of Science And Technology Window glass employing titanium dioxide photocatalyst
JPWO2016114063A1 (en) * 2015-01-13 2017-09-28 富士フイルム株式会社 Hydrogen generation electrode
CN108247060A (en) * 2018-01-14 2018-07-06 湘潭大学 A kind of preparation method of nickel-base alloy electrolysis cathode for hydrogen evolution porous material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013327A1 (en) 1994-10-31 1996-05-09 Kanagawa Academy Of Science And Technology Titanium oxide photocatalyst structure and method of manufacturing the same
US6939611B2 (en) 1994-10-31 2005-09-06 Kanagawa Academy Of Science And Technology Window glass employing titanium dioxide photocatalyst
US7157840B2 (en) 1994-10-31 2007-01-02 Kanagawa Academy Of Science And Technology Illuminating devices employing titanium dioxide photocatalysts
US7327074B2 (en) 1994-10-31 2008-02-05 Kanagawa Academy Of Science And Technology Illuminating devices employing titanium dioxide photocatalysts
JPWO2016114063A1 (en) * 2015-01-13 2017-09-28 富士フイルム株式会社 Hydrogen generation electrode
CN108247060A (en) * 2018-01-14 2018-07-06 湘潭大学 A kind of preparation method of nickel-base alloy electrolysis cathode for hydrogen evolution porous material

Similar Documents

Publication Publication Date Title
Montebelli et al. Methods for the catalytic activation of metallic structured substrates
KR101952354B1 (en) Device and method for gas treatment using non-thermal plasma and catalyst medium
JP4221505B2 (en) Manufacturing method of microreactor and microreactor
US20090004072A1 (en) Ceramic Chemical Reaction Device Capable of Decomposing Solid Carbon
CN1708351A (en) Coated microstructure and method of manufacture
WO2002046130A1 (en) Processes for electrically activated transformation of chemical and material compositions
Plesch et al. Zr doped anatase supported reticulated ceramic foams for photocatalytic water purification
CN104226287B (en) Preparation method of nano titanium dioxide photocatalyst thin film
JPH0649677A (en) Photocatalyst electrode, its production, method for promoting photocatalyst electrode reaction and method for cleaning the electrode
JP2001070802A (en) Photocatalyst film and its production
JPH06246165A (en) Production of photocatalyst
JP5740947B2 (en) Visible light responsive photocatalyst, hydrophilic member containing the same, and production method thereof
CN108772052A (en) A kind of titania-based porous blocks and its preparation method and application
JP2007098197A (en) Manufacturing method of photocatalyst material
JP2016193428A (en) Catalyst-carrying electrode and gas treatment device prepared therewith
JP2019048269A (en) Porous catalyzer membrane and gas treatment device using the same
JP2002113369A (en) Photocatalyst and method of manufacturing the same
KR102612696B1 (en) Method for producing an open pore molded body formed of metal with a modified surface and a molded body manufactured using the method
JP2005329360A (en) Cleaning material and its manufacturing method
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter
US20050129844A1 (en) Method of deposition of nano-particles onto micro and nano-structured materials
JP2000086497A (en) Three-dimensional photocatalyst filter and filter device
JP5532504B2 (en) Photocatalytic element
CN104492500B (en) Cellular glass optical catalyst carrier and preparation method thereof
Antsiferov et al. High‐Porosity Permeable Cellular Metals and Alloys in Catalytic Processes of Gas Cleaning