JP2019048269A - Porous catalyzer membrane and gas treatment device using the same - Google Patents
Porous catalyzer membrane and gas treatment device using the same Download PDFInfo
- Publication number
- JP2019048269A JP2019048269A JP2017174077A JP2017174077A JP2019048269A JP 2019048269 A JP2019048269 A JP 2019048269A JP 2017174077 A JP2017174077 A JP 2017174077A JP 2017174077 A JP2017174077 A JP 2017174077A JP 2019048269 A JP2019048269 A JP 2019048269A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- membrane
- film
- particles
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 140
- 239000003054 catalyst Substances 0.000 claims abstract description 380
- 239000002245 particle Substances 0.000 claims abstract description 229
- 239000011148 porous material Substances 0.000 claims abstract description 82
- 239000007787 solid Substances 0.000 claims abstract description 53
- 239000000835 fiber Substances 0.000 claims abstract description 39
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 37
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 34
- 239000000758 substrate Substances 0.000 claims description 74
- 238000012545 processing Methods 0.000 claims description 47
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 43
- 229910052751 metal Inorganic materials 0.000 claims description 33
- 239000002184 metal Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 32
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 31
- 239000010931 gold Substances 0.000 claims description 30
- 229910044991 metal oxide Inorganic materials 0.000 claims description 27
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 23
- 150000004703 alkoxides Chemical class 0.000 claims description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 238000007254 oxidation reaction Methods 0.000 claims description 17
- 239000004094 surface-active agent Substances 0.000 claims description 17
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 16
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 16
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 150000002736 metal compounds Chemical class 0.000 claims description 13
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 229910052737 gold Inorganic materials 0.000 claims description 12
- 238000004438 BET method Methods 0.000 claims description 11
- 230000003647 oxidation Effects 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 8
- 210000000746 body region Anatomy 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 6
- 238000001354 calcination Methods 0.000 claims description 4
- 238000011068 loading method Methods 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 3
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 26
- 238000012423 maintenance Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 131
- 239000000243 solution Substances 0.000 description 55
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 54
- 229910001928 zirconium oxide Inorganic materials 0.000 description 54
- 239000011521 glass Substances 0.000 description 51
- 239000000463 material Substances 0.000 description 37
- 239000002243 precursor Substances 0.000 description 35
- 238000012360 testing method Methods 0.000 description 34
- 238000006243 chemical reaction Methods 0.000 description 25
- 239000010410 layer Substances 0.000 description 23
- 230000003197 catalytic effect Effects 0.000 description 22
- 239000012615 aggregate Substances 0.000 description 20
- 239000003989 dielectric material Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000000919 ceramic Substances 0.000 description 15
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 239000002131 composite material Substances 0.000 description 12
- -1 acetaldehyde, ketones Chemical class 0.000 description 11
- 229910000420 cerium oxide Inorganic materials 0.000 description 10
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 150000002739 metals Chemical class 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 238000010521 absorption reaction Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000011398 Portland cement Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- 238000000354 decomposition reaction Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000010944 silver (metal) Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000004568 cement Substances 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910010272 inorganic material Inorganic materials 0.000 description 5
- 239000011147 inorganic material Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229910006404 SnO 2 Inorganic materials 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000007806 chemical reaction intermediate Substances 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- 239000004575 stone Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ATUZTMPBPKCMKN-UHFFFAOYSA-N [Bi].[Zr].[Ce] Chemical compound [Bi].[Zr].[Ce] ATUZTMPBPKCMKN-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000003426 co-catalyst Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000011246 composite particle Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 239000000693 micelle Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000006864 oxidative decomposition reaction Methods 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000004080 punching Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910020599 Co 3 O 4 Inorganic materials 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- 229910003771 Gold(I) chloride Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 229910052878 cordierite Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 229910052839 forsterite Inorganic materials 0.000 description 2
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 229910052809 inorganic oxide Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229910003465 moissanite Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052863 mullite Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000010525 oxidative degradation reaction Methods 0.000 description 2
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000056 polyoxyethylene ether Polymers 0.000 description 2
- 229940051841 polyoxyethylene ether Drugs 0.000 description 2
- 229920002620 polyvinyl fluoride Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920005682 EO-PO block copolymer Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000292 Polyquinoline Polymers 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- CPTCUNLUKFTXKF-UHFFFAOYSA-N [Ti].[Zr].[Mo] Chemical compound [Ti].[Zr].[Mo] CPTCUNLUKFTXKF-UHFFFAOYSA-N 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940045985 antineoplastic platinum compound Drugs 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- RCFVMJKOEJFGTM-UHFFFAOYSA-N cerium zirconium Chemical compound [Zr].[Ce] RCFVMJKOEJFGTM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 229910052798 chalcogen Inorganic materials 0.000 description 1
- 150000001787 chalcogens Chemical class 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 235000019504 cigarettes Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229910052571 earthenware Inorganic materials 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- QHSJIZLJUFMIFP-UHFFFAOYSA-N ethene;1,1,2,2-tetrafluoroethene Chemical group C=C.FC(F)=C(F)F QHSJIZLJUFMIFP-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000002241 glass-ceramic Substances 0.000 description 1
- 150000002344 gold compounds Chemical class 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 229910000856 hastalloy Inorganic materials 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000005340 laminated glass Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 150000002941 palladium compounds Chemical class 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 150000003058 platinum compounds Chemical class 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002577 polybenzoxazole Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- DECCZIUVGMLHKQ-UHFFFAOYSA-N rhenium tungsten Chemical compound [W].[Re] DECCZIUVGMLHKQ-UHFFFAOYSA-N 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000005341 toughened glass Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000005314 uranium glass Substances 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
本発明は、有害成分等として作用する化合物を酸化により分解することができる多孔質触媒体膜と、それを用いたガス処理装置に関する。 The present invention relates to a porous catalyst membrane capable of decomposing a compound acting as a harmful component or the like by oxidation, and a gas treatment apparatus using the same.
自動車や工場などの内燃機関から発生する排気ガスには微量の一酸化炭素などの有害成分が含まれるため、除去手段を用いてこれらを除去してから大気中に放出されている。また、密閉した保管庫などでは微量の悪臭物質が産生されアンモニア臭が発生する場合があり、種々の除去手段が施されている。 Since exhaust gases generated from internal combustion engines such as automobiles and factories contain harmful components such as trace amounts of carbon monoxide, they are released into the atmosphere after they are removed using removing means. Further, in a closed storage or the like, a slight amount of offensive odor may be produced and an ammonia odor may be generated, and various removal means are provided.
有害成分を除去する方法は活性炭などの吸着剤への吸着、プラズマ発生装置によるラジカルや、オゾンなど活性種による分解除去方法などが広く用いられている。しかしながら吸着剤による吸着処理では吸着剤の有害成分吸着量には上限があり、定期的な吸着剤の交換が必要である。 As a method of removing harmful components, adsorption onto adsorbents such as activated carbon, radical by plasma generator, decomposition and removal method by active species such as ozone, etc. are widely used. However, in the adsorption treatment with an adsorbent, there is an upper limit to the adsorption amount of harmful components of the adsorbent, and periodical replacement of the adsorbent is necessary.
有害成分を分解除去する方法としては、上述のプラズマ法のような物理的に発生させた活性種で酸化して分解する方法以外に、触媒を用いて酸化して分解する方法も広く用いられている。酸化触媒体としては、接触面積を広くするため、無機粒子である担体に活性物質(触媒粒子)を担持させた構造体が使用されている(特許文献1)。また、シリンダー状のメソ孔を有する無機メソポーラス担体の細孔内に触媒粒子を担持させている触媒体も開発されている(特許文献2、3)が、空気中の水分を吸着して細孔が閉塞したりすることで触媒活性が徐々に低下し易いという課題がある。 As a method of decomposing and removing harmful components, in addition to a method of oxidizing and decomposing with a physically generated active species such as the above-mentioned plasma method, a method of oxidizing and decomposing using a catalyst is also widely used. There is. As an oxidation catalyst body, in order to widen the contact area, a structure in which an active material (catalyst particles) is supported on a carrier which is inorganic particles is used (Patent Document 1). In addition, a catalyst body in which catalyst particles are supported in the pores of an inorganic mesoporous carrier having cylindrical mesopores has also been developed (patent documents 2 and 3), but the moisture in the air is adsorbed to the pores. There is a problem that the catalyst activity is likely to be gradually reduced by
さらに、触媒である固体微粒子と多孔体が複合化した複合多孔体が提案されている(特許文献4)。3次元細孔を持ち、高い分子選択性を有するとしているが、触媒である固体微粒子は細孔外に存在し、その粒径は細孔直径より大きな比較的大きい粒子であるため、メソポーラス担体の細孔内に担持される触媒粒子と比較すると、比表面積は大きくなく、複合体単位重量あたりの触媒活性は必ずしも十分ではない。
特許文献5では酸触媒とアルコールとノニオン性界面活性剤と金属アルコキシドと、金属及び金属酸化物粒子の少なくとも一方の粒子から製造される多孔質粒子が開示されているが、当該特許では金属及び金属酸化物粒子はその一部が多孔質の隔壁を形成するために使用され、細孔は被処理気体の吸着場として利用しているだけである。金属および金属酸化物粒子の触媒作用については言及がないが、当該作用効果を有しているとしても当該粒子の粒径は特許文献4同様に細孔径より大きいため、触媒活性は必ずしも十分ではない。
Furthermore, a composite porous body in which solid fine particles as a catalyst and a porous body are complexed has been proposed (Patent Document 4). Although it has been stated that it has three-dimensional pores and high molecular selectivity, the solid fine particles that are catalysts are outside the pores, and the particle size is a relatively large particle larger than the pore diameter. As compared with the catalyst particles supported in the pores, the specific surface area is not large, and the catalytic activity per unit weight of the composite is not always sufficient.
Patent Document 5 discloses porous particles produced from an acid catalyst, an alcohol, a nonionic surfactant, a metal alkoxide, and at least one particle of metal and metal oxide particles. Some of the oxide particles are used to form porous partition walls, and the pores are only used as adsorption sites for the gas to be treated. There is no mention of catalysis of metal and metal oxide particles, but even if it has the effect, the particle size of the particles is larger than the pore size as in Patent Document 4, so the catalytic activity is not always sufficient. .
使用用途に応じて、触媒体は適切な形状に調整して用いられるが、適切な触媒量を含有していることも必要である。膜状の触媒体では担持できる触媒の絶対量は膜厚にも依存するので、厚い膜が形成できるのが望ましい。一般に膜状に形成する場合は、触媒体の構成成分もしくは前駆体を溶媒に溶解した溶液を基材に塗布して製造される。膜厚を厚くするには粘度の高い溶液を用いればよいが、特許文献2、3のように触媒を担持させる細孔を形成する際に高温処理を施すと膜の脱離などが生じるため、厚い膜を形成するのは困難であった。 Depending on the intended use, the catalyst body may be adjusted to an appropriate shape, but it is also necessary to contain an appropriate amount of catalyst. In the case of a membrane-like catalyst, the absolute amount of the supported catalyst also depends on the film thickness, so it is desirable to be able to form a thick film. In general, in the case of film formation, it is manufactured by applying a solution in which a component or precursor of a catalyst body is dissolved in a solvent to a substrate. To increase the film thickness, a solution with high viscosity may be used. However, as described in Patent Documents 2 and 3, when the high temperature treatment is performed when forming the pores for supporting the catalyst, detachment of the film and the like occur. It was difficult to form a thick film.
厚膜を形成する方法としては、細孔を形成する際に真空状態でUV照射によって細孔の鋳型となる有機化合物を分解することで、高温にさらすことなく厚膜を製造する方法が開示されている(特許文献7)。しかしながら、当該方法は製造に真空装置及び紫外線照射装置が必要で、数時間の照射も必要であり、コストを要する方法である。また、細孔内に触媒を担持させるときに高温処理を行うので、その際の温度変化によってひずみが生じて膜が脱離する恐れもある。 As a method of forming a thick film, there is disclosed a method of manufacturing a thick film without exposure to high temperature by decomposing an organic compound as a template of pores by UV irradiation in a vacuum state when forming pores. (Patent Document 7). However, the method requires a vacuum device and an ultraviolet irradiation device for production, and also requires several hours of irradiation, which is a costly method. In addition, since the high temperature treatment is performed when the catalyst is supported in the pores, the temperature change at that time may cause distortion, which may cause detachment of the membrane.
上述した触媒体は、いずれも触媒活性が不十分であり、触媒活性の更なる向上が求められている。本発明者らはプラズマ発生装置と金属微粒子触媒を組み合わせた除去方法を提案しているが(特許文献6)、有害成分の分解能力は使用用途によっては必ずしも十分ではなく、浄化装置の更なる向上も求められている。 All the above-mentioned catalyst bodies have insufficient catalytic activity, and further improvement of the catalytic activity is required. The present inventors have proposed a removal method combining a plasma generation device and a metal fine particle catalyst (Patent Document 6), but the decomposing ability of harmful components is not necessarily sufficient depending on the application, and the purification device is further improved Is also required.
そこで本発明は、上記課題を解決するためになされたものであって、触媒活性について改善された新規な多孔質触媒体膜を提供することを目的とする。 Then, this invention is made in order to solve the said subject, Comprising: It aims at providing the novel porous catalyst body film | membrane improved about the catalyst activity.
本発明の要旨は以下のとおりである。
[1] 固体粒子、繊維、繊維もしくは固体粒子の集合体、およびモノリス構造体からなる群から1種または2種以上選択されて構成され、膜の形状維持を補助する膜支持体領域と、
膜内において前記膜支持体領域と隣接し、膜表面において開口する細孔を有する多孔質であり、該細孔内に貴金属および/または貴金属酸化物を含む触媒粒子が担持されている触媒体領域とを備えることを特徴とする多孔質触媒体膜。
[2] 前記膜支持体領域が金属酸化物および/または珪素酸化物で構成されていることを特徴とする[1]に記載の多孔質触媒体膜。
[3] 前記金属酸化物および/または珪素酸化物がSiO2、Al2O3、TiO2、Fe2O3、ZrO2、およびCeO2のうち少なくとも1種類以上で構成されていることを特徴とする[1]または[2]に記載の多孔質触媒体膜。
[4] 前記膜支持体領域が固体粒子および/または固体粒子集合体で構成されていることを特徴とする[1]から[3]のいずれか一つに記載の多孔質触媒体膜。
[5] 前記膜支持体領域が固体粒子集合体で構成されており、該固体粒子集合体は粒子が焼結して連続した構造体であることを特徴とする[4]に記載の多孔質触媒体膜。
[6] 前記膜支持体領域の少なくとも一部が細孔を有し、その細孔に貴金属および/または貴金属酸化物を含む触媒粒子が担持されていることを特徴とする[1]から[5]のいずれか一つに記載の多孔質触媒体膜。
[7] 前記多孔質触媒体膜の触媒粒子担持量が0.050mg/cm2以上、1.000mg/cm2以下であることを特徴とする[1]から[6]のいずれか一つに記載の多孔質触媒体膜。
[8] 前記膜支持体領域が触媒粒子を除いた前記支持体領域および前記触媒体領域の合計に対して、質量比で60%以上95%以下であることを特徴とする[1]から[7]のいずれか一つに記載の多孔質触媒体膜。
[9] 前記触媒粒子が金、白金、パラジウムおよびこれらの酸化物からなる群から1種または2種以上選択される物質を含む粒子であることを特徴とする[1]から[8]のいずれか一つに記載の多孔質触媒体膜。
[10] 前記触媒体領域における多孔質体がSiO2、Al2O3、TiO2、Fe2O3、ZrO2、およびCeO2からなる群から1種または2種以上選択される金属酸化物を含むことを特徴とする[1]から[9]のいずれか一つに記載の多孔質触媒体膜。
[11] 前記触媒粒子の粒径が2nm以上9nm以下であることを特徴とする[1]から[10]のいずれか一つに記載の多孔質触媒体膜。
[12] 前記触媒粒子の担持量が前記触媒体領域100質量%に対して30質量%以上70質量%以下であることを特徴とする[1]から[11]のいずれか一つに記載の多孔質触媒体膜。
[13] 前記触媒体領域がメソ孔を有することを特徴とする[1]から[12]のいずれか一つに記載の多孔質触媒体膜。
[14] 前記メソ孔のBET法で測定した平均孔径が3nm以上10nm以下であることを特徴とする[13]に記載の多孔質触媒体膜。
[15] 前記多孔質触媒体膜が一酸化炭素もしくは有機化合物の酸化反応触媒であることを特徴とする[1]から[14]のいずれか一つに記載の多孔質触媒体膜。
[16] 固体粒子、アルコキシシランもしくは金属アルコキシドの加水分解物、および界面活性剤を含有する溶液を基材に塗布後に焼成して得られる細孔を有する膜状体と前記酸化触媒粒子に含有される貴金属および/または貴金属酸化物に対応する金属化合物が溶解している溶液とを接触させ、
焼成および/または還元処理を行い前記膜状体の細孔内に酸化触媒粒子を形成することを含むことを特徴とする、[1]から[15]のいずれか一つに記載の多孔質触媒体膜の製造方法。
[17] 第1の電極と、第2の電極と、前記第1の電極と前記第2の電極の間に配置される誘電体とを少なくとも備え、前記第1の電極と前記第2の電極の間に電圧を印加して放電を発生させることによりプラズマを発生させるプラズマ発生部と、
前記プラズマ発生部によって発生した前記プラズマが存在する領域に形成される、被処理気体が流れる流路と、
前記流路に配置される[1]から[15]のいずれか一つに記載の多孔質触媒体膜と、を備えることを特徴とするガス処理装置。
The gist of the present invention is as follows.
[1] A membrane support region which is constituted by one or more selected from the group consisting of solid particles, fibers, fibers or aggregates of solid particles, and monolithic structure, and which helps maintain the shape of the membrane,
A catalyst region which is a porous film having a pore adjacent to the membrane support region in the membrane and opening at the membrane surface, and in which the catalyst particles containing a noble metal and / or a noble metal oxide are supported in the pore And a porous catalyst body membrane characterized by comprising:
[2] The porous catalyst membrane according to [1], wherein the membrane support region is composed of a metal oxide and / or a silicon oxide.
[3] The metal oxide and / or silicon oxide is composed of at least one or more of SiO 2 , Al 2 O 3, TiO 2 , Fe 2 O 3 , ZrO 2 , and CeO 2 The porous catalyst membrane according to [1] or [2].
[4] The porous catalyst membrane according to any one of [1] to [3], wherein the membrane support region is composed of solid particles and / or solid particle aggregates.
[5] The porous member according to [4], wherein the membrane support region is constituted by a solid particle aggregate, and the solid particle aggregate is a continuous structure in which the particles are sintered. Catalyst membrane.
[6] At least a part of the membrane support region has pores, and catalyst particles containing a noble metal and / or a noble metal oxide are supported on the pores. [1] to [5] ] The porous catalyst body membrane as described in any one of the above.
[7] In any one of [1] to [6], the catalyst particle loading amount of the porous catalyst membrane is 0.050 mg / cm 2 or more and 1.000 mg / cm 2 or less The porous catalyst body membrane of description.
[8] The film support area is 60% or more and 95% or less by mass ratio with respect to the total of the support area excluding the catalyst particles and the catalyst area [1] to [1] 7] The porous catalyst body membrane as described in any one of 7).
[9] Any of the above-mentioned [1] to [8], wherein the catalyst particle is a particle containing a substance selected from one or more selected from the group consisting of gold, platinum, palladium and oxides thereof. The porous catalyst membrane according to any one of the preceding claims.
[10] A metal oxide in which the porous body in the catalyst body region is one or more selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , Fe 2 O 3 , ZrO 2 , and CeO 2 And the porous catalyst membrane according to any one of [1] to [9].
[11] The porous catalyst membrane according to any one of [1] to [10], wherein the particle size of the catalyst particles is 2 nm or more and 9 nm or less.
[12] The supported amount of the catalyst particles is 30% by mass or more and 70% by mass or less with respect to 100% by mass of the catalyst region, described in any one of [1] to [11] Porous catalyst membrane.
[13] The porous catalyst membrane according to any one of [1] to [12], wherein the catalyst region has mesopores.
[14] The porous catalyst membrane according to [13], wherein the average pore diameter of the mesopores measured by the BET method is 3 nm or more and 10 nm or less.
[15] The porous catalyst membrane according to any one of [1] to [14], wherein the porous catalyst membrane is an oxidation reaction catalyst of carbon monoxide or an organic compound.
[16] A film-like body having pores obtained by applying a solution containing solid particles, a hydrolyzate of alkoxysilane or metal alkoxide, and a surfactant to a substrate and then calcining, and contained in the oxidation catalyst particles, Contact with a solution in which the metal compound corresponding to the noble metal and / or noble metal oxide is dissolved,
The porous catalyst according to any one of [1] to [15], which comprises calcining and / or reducing treatment to form oxidation catalyst particles in the pores of the film-like body. Method of manufacturing medium film.
[17] At least a first electrode, a second electrode, and a dielectric disposed between the first electrode and the second electrode, the first electrode and the second electrode A plasma generation unit that generates a plasma by applying a voltage between them to generate a discharge;
A flow path through which a gas to be treated flows, which is formed in a region where the plasma generated by the plasma generation unit is present;
A gas processing apparatus comprising: the porous catalyst membrane according to any one of [1] to [15] disposed in the flow path.
本発明によれば、触媒活性について改善された触媒体膜を提供することができる。
本発明の触媒体膜は例えばガス処理装置に用いることができる。
According to the present invention, a catalyst membrane with improved catalyst activity can be provided.
The catalyst membrane of the present invention can be used, for example, in a gas processing apparatus.
以下、図面を用いて本発明の実施形態について詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本実施形態の多孔質触媒体膜100(以下、単に「触媒体膜」ともいう)は、通気性を有する部材であり、触媒体領域51と膜支持体領域53を有する。膜支持体領域53は固体粒子、繊維、繊維もしくは固体粒子の集合体、およびモノリス構造体からなる群から1種または2種以上選択されて構成され、膜の形状を支持する。触媒体領域51は、膜支持体領域53に隣接している。また、触媒体領域51は、多孔質触媒体膜の表面の少なくとも一部を構成しており、該部分において開口している気体が通気可能な細孔を有する。第さらに触媒体領域53は、その細孔内に担持された貴金属および/または貴金属酸化物触媒粒子55(以下、単に「触媒粒子」とすることがある)を含む。なお、図1は膜支持体領域53が固体粒子もしく固体粒子集合体の場合を、図2は膜支持体領域53が繊維もしくは繊維集合体の場合を、図3は膜支持体領域53がモノリス構造体である場合をそれぞれ概要図として示している。 The porous catalyst body membrane 100 (hereinafter, also simply referred to as “catalyst body membrane”) of the present embodiment is a member having air permeability, and has a catalyst body region 51 and a membrane support region 53. The membrane support region 53 is selected from one or more selected from the group consisting of solid particles, fibers, fibers or aggregates of solid particles, and monolithic structures, and supports the shape of the membrane. The catalyst region 51 is adjacent to the membrane support region 53. In addition, the catalyst region 51 constitutes at least a part of the surface of the porous catalyst membrane, and has open pores in which the gas can flow. The catalyst region 53 further includes noble metal and / or noble metal oxide catalyst particles 55 (hereinafter, may be simply referred to as “catalyst particles”) supported in the pores. 1 shows the case where the membrane support region 53 is a solid particle or a solid particle aggregate, FIG. 2 shows the case where the membrane support region 53 is a fiber or a fiber aggregate, and FIG. 3 shows the membrane support region 53 The cases of monolith structures are shown as schematic diagrams.
被処理気体を本実施形態の触媒体膜100の表面に曝すことによって、被処理気体が細孔を通して触媒体膜100内部へ拡散し、細孔内の触媒粒子55と接触して、被処理気体中の有害成分が酸化されて分解される。 By exposing the gas to be treated to the surface of the catalyst membrane 100 of the present embodiment, the gas to be treated diffuses into the interior of the catalyst membrane 100 through the pores and contacts the catalyst particles 55 in the pores, whereby the gas to be treated is treated. Hazardous components in the product are oxidized and decomposed.
本実施形態の触媒体膜100は膜状であり、粉体状のような凝集形態になりにくいので、触媒粒子55が存在する細孔と触媒体膜100外部の被処理気体までの距離が、粉体状など他の形状の細孔を有する触媒体(以下「従来の触媒体」ともいう)と比較して短くなりやすい。したがって、本実施形態の触媒体膜100は、被処理気体が内部に拡散しやすく、触媒体膜100の表層部に形成される細孔だけでなく、触媒体膜100の内部に形成される細孔にも被処理気体が到達しやすい。このため、本実施形態の触媒体膜100は、触媒体膜100に含まれる触媒粒子55の全てが被処理気体と接触しやすい。
一方、従来の触媒体は、本実施形態の触媒体膜100と比較し、触媒体外部の被処理気体までの距離が長くなりやすいため、内部に形成される細孔には被処理気体が到達しにくい。このため、従来の触媒体は、触媒体に含まれる触媒粒子の一部が被処理気体と接触しにくい。
ここで、触媒粒子と有害成分等の処理対象となる化合物(以下、単に有害成分ともいう)が接触すると、触媒粒子が被毒して有害成分が触媒粒子に付着したり、有害成分を分解する際に生じる反応中間体が触媒粒子に付着したりして触媒体の触媒活性が失われることがある。従来の触媒体においては一部分の触媒に被処理気体が接触しやすいので該触媒に上記付着がより生じる傾向がある。その結果、触媒体に含まれる触媒粒子の全てが被毒しなくても、触媒体の触媒活性が失われやすい。つまり、従来の触媒体は、触媒活性を維持しにくい。
しかしながら、本実施形態の触媒体膜100は、触媒体膜100に含まれる触媒粒子が被処理気体とより接触しやすいため、全ての触媒粒子が被毒するまで触媒体膜の活性が維持される。このため、本実施形態の触媒体膜100は、触媒活性を長期に維持することができる。
The catalyst film 100 according to the present embodiment is in the form of a film, and is less likely to be in a powdery aggregation form, so the distance between the pores in which the catalyst particles 55 are present and the gas to be processed outside the catalyst film 100 is It tends to be short as compared with a catalyst having pores of other shapes such as powdery (hereinafter also referred to as “conventional catalyst”). Therefore, in the catalyst body film 100 of the present embodiment, the gas to be treated is easily diffused to the inside, and fine particles formed not only in the pores formed in the surface layer portion of the catalyst body film 100 but also in the catalyst body film 100. The gas to be treated can easily reach the holes. For this reason, in the catalyst body film 100 of the present embodiment, all of the catalyst particles 55 contained in the catalyst body film 100 easily come in contact with the gas to be processed.
On the other hand, in the conventional catalyst body, the distance to the gas to be treated outside the catalyst body tends to be longer as compared with the catalyst body film 100 of the present embodiment, so the gas to be treated reaches the pores formed inside. It is difficult to do. For this reason, in the conventional catalyst body, a part of catalyst particles contained in the catalyst body is unlikely to be in contact with the gas to be treated.
Here, when the catalyst particles and a compound to be treated (hereinafter simply referred to as harmful components) such as harmful components contact, the catalyst particles are poisoned to cause harmful components to adhere to the catalyst particles or decompose the harmful components. In some cases, the reaction intermediate formed may adhere to the catalyst particles and the catalytic activity of the catalyst may be lost. In the conventional catalyst body, the deposition tends to occur more on the catalyst because the gas to be treated is easily in contact with a part of the catalyst. As a result, even if all of the catalyst particles contained in the catalyst body are not poisoned, the catalyst activity of the catalyst body is easily lost. That is, conventional catalyst bodies have difficulty in maintaining catalytic activity.
However, in the catalyst membrane 100 of the present embodiment, the catalyst particles contained in the catalyst membrane 100 are more easily in contact with the gas to be treated, so the activity of the catalyst membrane is maintained until all catalyst particles are poisoned. . Therefore, the catalyst membrane 100 of the present embodiment can maintain the catalyst activity for a long time.
また、本実施形態の触媒体膜100は、上述したように、被処理気体が内部に拡散しやすいため、細孔内に被処理気体中の水分が吸着した場合、被処理気体に対する水分の濃度勾配が発生しやすい。従って、吸着した水分の被処理気体への再拡散が進行し、結果として吸着する水分が一定量に抑制される効果がある。一方従来の触媒体は、粉体内部の細孔から、触媒体外部の被処理気体までの距離が相対的に長く、特に粉体内部に吸着した水分の再拡散が起き難い状態になっている。このため、吸着した水分による細孔の閉塞が生じ易く、触媒活性が低下するものと推察される。 Further, as described above, in the catalyst body film 100 of the present embodiment, the gas to be treated is easily diffused inside, so when moisture in the gas to be treated is adsorbed in the pores, the concentration of water to the gas to be treated A gradient is likely to occur. Therefore, re-diffusion of the adsorbed water to the gas to be treated proceeds, and as a result, there is an effect that the adsorbed water is suppressed to a fixed amount. On the other hand, in the conventional catalyst, the distance from the pores inside the powder to the gas to be treated outside the catalyst is relatively long, and in particular, the re-diffusion of water adsorbed inside the powder is difficult to occur. . For this reason, it is presumed that clogging of pores by the adsorbed water is likely to occur, and the catalytic activity is reduced.
本実施形態の触媒体膜100は、例えば基材57上に形成させることができる。このとき、基材が通気性を有するか否かは特に限定されない。通気性のない基材57上に本実施形態の触媒体膜100が配置されている場合には、触媒体膜100の表面にエンボス加工などにより凹凸が形成されていてもよい。触媒体膜100の表面に凹凸が形成されていると、被処理気体と触媒体膜との接触面積が増加するため、被処理気体中の有害成分等の酸化反応をより促進することができる。 The catalyst film 100 of the present embodiment can be formed, for example, on the substrate 57. At this time, it is not particularly limited whether the substrate has air permeability. In the case where the catalyst film 100 of the present embodiment is disposed on the non-air-permeable substrate 57, the surface of the catalyst film 100 may be embossed by embossing or the like. When the unevenness is formed on the surface of the catalyst film 100, the contact area between the gas to be treated and the catalyst film is increased, so that the oxidation reaction of harmful components and the like in the gas to be treated can be further promoted.
触媒体膜100が形成される基材57がハニカム状、メッシュ状など通気可能な形状を有していれば、触媒体膜100の厚み方向に被処理気体を流通させても構わない。また、基材57の両面に本実施形態の触媒体膜100が形成されていてもよく、いずれの形態で用いるかは本実施形態の触媒体膜100を組み込む装置の設計等に応じて決めればよい。 As long as the base material 57 on which the catalyst film 100 is formed has an air-permeable shape such as a honeycomb shape or a mesh shape, the process gas may be circulated in the thickness direction of the catalyst film 100. The catalyst film 100 of the present embodiment may be formed on both sides of the substrate 57, and which form to use is determined according to the design of the apparatus incorporating the catalyst film 100 of the present embodiment. Good.
本実施形態の触媒体膜100の膜厚は特に限定されないが、300nm以上5,000nm以下であることが望ましい。
300nm未満であると、上記範囲内である場合と比較して、触媒体領域51に担持することができる触媒粒子55の絶対量が低減するので、被処理気体中の有害成分を十分分解し難くなる。5,000nmより大きくなると、触媒体膜100の内部に被処理気体が拡散しにくくなり、触媒体膜100の内部の触媒粒子が被処理気体と接触しにくくなる。また、触媒体膜100の内部に存在するメソ孔に吸着した水分が再拡散されにくくなり、メソ孔内に吸着する水分量が増加し、触媒粒子の作用を阻害しやすくなる。このため、上記範囲内である場合と比較して、触媒体膜100の触媒活性を維持しにくくなる。なお、本実施形態の触媒体膜100の膜厚は、触媒体膜100の断面をTEM観察し、断面画像のサイズを測ることにより測定することができる。
Although the film thickness of the catalyst film 100 of the present embodiment is not particularly limited, it is desirable that the film thickness be 300 nm or more and 5,000 nm or less.
If it is less than 300 nm, the absolute amount of the catalyst particles 55 that can be supported on the catalyst region 51 is reduced as compared with the case where it is within the above range, so it is difficult to sufficiently decompose harmful components in the gas to be treated Become. If the thickness is larger than 5,000 nm, the gas to be treated is less likely to diffuse into the catalyst film 100, and the catalyst particles in the catalyst film 100 are less likely to come in contact with the gas to be treated. In addition, the water adsorbed in the mesopores present inside the catalyst membrane 100 is less likely to be diffused again, the amount of water adsorbed in the mesopores increases, and the action of the catalyst particles is likely to be inhibited. For this reason, compared with the case where it is in the said range, it becomes difficult to maintain the catalyst activity of the catalyst membrane 100. The film thickness of the catalyst film 100 of the present embodiment can be measured by observing the cross section of the catalyst film 100 by TEM and measuring the size of the cross-sectional image.
本実施形態の触媒体膜100は、被処理気体中の有害成分を酸化反応で二酸化炭素や水などの無害な物質に分解処理し、大気中に排出できる。本実施形態の触媒体膜100において処理可能な化合物としては、自動車の内装材、住宅の建材・内装材、家電の筐体・部材などの素材から揮発する物質、たとえば、塗料、接着剤、洗浄剤などの有機溶剤から揮発する物質が挙げられる。具体的には、エチレン、ベンゼン、キシレン、トルエン、エチルベンゼン、スチレンなどの炭化水素類、メタノール、エタノール、プロピルアルコールなどのアルコール類、ホルムアルデヒドやアセトアルデヒドなどのアルデヒド類、アセトン、エチルメチルケトンなどのケトン類、アンモニアなどが例示される。また、工場や厨房の燃焼工程や家庭用暖房器具などやタバコの不完全燃焼により生じる一酸化炭素も処理可能である。 The catalyst body film 100 of the present embodiment can decompose harmful components in the gas to be treated into an innocuous substance such as carbon dioxide or water by an oxidation reaction, and discharge it into the atmosphere. As compounds that can be treated in the catalyst body film 100 of the present embodiment, substances that volatilize from materials such as automobile interior materials, house construction materials and interior materials, housings and members of home appliances, for example, paints, adhesives, cleaning Substances that volatilize from organic solvents such as Specifically, hydrocarbons such as ethylene, benzene, xylene, toluene, ethylbenzene and styrene, alcohols such as methanol, ethanol and propyl alcohol, aldehydes such as formaldehyde and acetaldehyde, ketones such as acetone and ethyl methyl ketone And ammonia. In addition, carbon monoxide produced by incomplete combustion of cigarettes and burning processes in factories and kitchens, household heaters, etc. can also be treated.
本実施形態の構成要素である膜支持体領域53は、無機材料、有機材料あるいは無機有機複合材料のいずれで構成されていても構わず、処理対象のガス等の種類や触媒体膜を適用する機器や諸環境条件に応じて選択すればよい。このうち多孔体の細孔形成時に高温処理を行うため、耐熱性がより高い無機材料を用いるのが好ましい。該無機材料として、例えば、γ-Al2O3、α-Al2O3、θ-Al2O3、η-Al2O3、アモルファスのAl2O3、TiO2、ZrO2、SnO2、SiO2、MgO、ZnO2、Bi2O3、In2O3、MnO2、Mn2O3、Nb2O5、FeO、Fe2O3、Fe3O4、Sb2O3、CuO、Cu2O、NiO、Ni3O4、Ni2O3、CoO、Co3O4、Co2O3、WO3、CeO2、Pr6O11、Y2O3、In2O3、PbO、ThO2などの単一の無機酸化物が挙げられる。また、例えば、SiO2−Al2O3、SiO2−B2O3、SiO2−P2O5、SiO2−TiO2、SiO2−ZrO2、Al2O3−TiO2、Al2O3−ZrO2、Al2O3−CaO、Al2O3−B2O3、Al2O3−P2O5、Al2O3−CeO2、Al2O3−Fe2O3、TiO2−CeO2、TiO2−ZrO2、TiO2−WO3、ZrO2−WO3、SnO2−WO3、CeO2−ZrO2、SiO2−TiO2−ZrO2、Al2O3−TiO2−ZrO2、SiO2−Al2O3−TiO2、SiO2−TiO2−CeO2、セリウム・ジルコニウム・ビスマス複合酸化物などの複合酸化物も膜支持体領域53を構成する物質として挙げられる。
例えばこれら単一の無機酸化物や複合酸化物のうち1種または2種以上が本実施形態に係る膜支持体領域53を構成する物質として触媒体膜100に含まれるようにしてもよく、具体的にはこれら物質によって後述の固体粒子等を構成すればよい。尚、セリウム・ジルコニウム・ビスマス複合酸化物は一般式Ce1−X−YZrXBiYO2−δで表わされる固溶体であり、X、Y、δの値がそれぞれ0.1≦X≦0.3、0.1≦Y≦0.3、0.05≦δ≦0.15の範囲である。
このうち、上記耐熱性の観点から、膜支持体領域が金属酸化物および/または珪素酸化物で構成されていることが好ましく、SiO2、Al2O3、TiO2、Fe2O3、ZrO2、およびCeO2のうち少なくとも1種類以上で構成されていることがより好ましい。
The film support region 53, which is a component of the present embodiment, may be made of any of an inorganic material, an organic material, and an inorganic-organic composite material, and the type of gas to be treated and the catalyst film are applied. It may be selected according to the device and various environmental conditions. Among these, it is preferable to use an inorganic material having higher heat resistance, because high temperature treatment is performed at the time of pore formation of the porous body. Examples of the inorganic material include γ-Al 2 O 3 , α-Al 2 O 3 , θ-Al 2 O 3 , η-Al 2 O 3 , amorphous Al 2 O 3 , TiO 2 , ZrO 2 and SnO 2. , SiO 2 , MgO, ZnO 2 , Bi 2 O 3 , In 2 O 3 , In 2 O 3 , MnO 2 , Mn 2 O 3 , Nb 2 O 5 , FeO, Fe 2 O 3 , Fe 3 O 4 , Sb 2 O 3 , CuO , Cu 2 O, NiO, Ni 3 O 4 , Ni 2 O 3 , CoO, Co 3 O 4 , Co 2 O 3 , WO 3 , CeO 2 , Pr 6 O 11 , Y 2 O 3 , In 2 O 3 , A single inorganic oxide such as PbO or ThO 2 can be mentioned. Also, for example, SiO 2 -Al 2 O 3 , SiO 2 -B 2 O 3 , SiO 2 -P 2 O 5 , SiO 2 -TiO 2 , SiO 2 -ZrO 2 , Al 2 O 3 -TiO 2 , Al 2 O 3 -ZrO 2 , Al 2 O 3 -CaO, Al 2 O 3 -B 2 O 3 , Al 2 O 3 -P 2 O 5 , Al 2 O 3 -CeO 2 , Al 2 O 3 -Fe 2 O 3 , TiO 2 -CeO 2, TiO 2 -ZrO 2, TiO 2 -WO 3, ZrO 2 -WO 3, SnO 2 -WO 3, CeO 2 -ZrO 2, SiO 2 -TiO 2 -ZrO 2, Al 2 O 3 substance constituting the -TiO 2 -ZrO 2, SiO 2 -Al 2 O 3 -TiO 2, SiO 2 -TiO 2 -CeO 2, composite oxides such as cerium-zirconium-bismuth composite oxide even film support region 53 Can be mentioned as
For example, one or more of the single inorganic oxide and the composite oxide may be included in the catalyst film 100 as a material constituting the film support region 53 according to the present embodiment. In particular, the below-mentioned solid particles and the like may be constituted of these substances. Note that the cerium-zirconium-bismuth composite oxide is a solid solution represented by the general formula Ce 1-X-Y Zr X Bi Y O 2-δ, X, Y, the value is 0.1 ≦ X ≦ each [delta] 0 .3, 0.1 ≦ Y ≦ 0.3, and 0.05 ≦ δ ≦ 0.15.
Among them, the film support region is preferably composed of metal oxide and / or silicon oxide from the viewpoint of the above heat resistance, and SiO 2 , Al 2 O 3, TiO 2 , Fe 2 O 3 , ZrO 2 2, and it is more preferable that among the CeO 2 is composed of at least one or more.
これらの膜支持体領域53の材質と触媒体領域51の材質は同一でも異なっていても構わないが、同一である方が膜支持体領域53と触媒体領域51が強固に結びつき、基材界面に強固に接着した膜状触媒体が得られるのでより好ましい。 The material of the membrane support region 53 and the material of the catalyst region 51 may be the same or different. However, the film support region 53 and the catalyst region 51 are strongly connected if they are the same. It is more preferable because a membrane-like catalyst body firmly bonded to is obtained.
使用用途に応じて、触媒体は必要な触媒量を含有することが必要であるが、触媒体膜100に担持される触媒粒子量は0.050mg/cm2以上、1.000mg/cm2以下が好ましい。0.050mg/cm2未満であると、0.050mg/cm2以上である場合と比較して触媒体膜の触媒活性が低く、被処理気体中の有害成分を十分に除去することができなくなる。1.000mg/cm2を超えると膜厚が厚くなりすぎて触媒体膜が脱離し易くなったり、触媒粒子が凝集して触媒活性が低下したりするため、好ましくない。
本実施形態のような膜状の触媒体では担持できる触媒の絶対量は膜厚に依存する。本実施形態の触媒体膜100は膜支持体領域53を含有しているため、膜支持体領域53が後述の製造工程での前駆体の増粘剤として作用したり、膜形成の足場としても機能することで、膜支持体領域が存在しない膜と比較して、より厚い膜を形成するのが容易となる。言い換えれば、膜支持体領域53は、膜の形状維持を補助し、意図する厚みの膜の提供に寄与する。一方、膜支持体領域を含有しない場合は細孔を形成する際に高温にさらすなどするときに、膜自体の脱離などが生じ、膜の厚みを維持することが難しい。膜厚を厚くすることで触媒粒子の担持量を多くして、触媒活性のより高い触媒体膜100を得ることができる。
Depending on the application, the catalyst needs to contain a necessary amount of catalyst, but the amount of catalyst particles supported on the catalyst membrane 100 is 0.050 mg / cm 2 or more and 1.000 mg / cm 2 or less Is preferred. If it is less than 0.050 mg / cm 2 , the catalytic activity of the catalyst membrane is lower than in the case of 0.050 mg / cm 2 or more, and harmful components in the gas to be treated can not be sufficiently removed. . If it exceeds 1.000 mg / cm 2 , the film thickness becomes too thick, which makes the catalyst film easily detached, or the catalyst particles aggregate to lower the catalytic activity, which is not preferable.
In the case of a membrane-like catalyst as in this embodiment, the absolute amount of the supported catalyst depends on the film thickness. The catalyst support film 100 of the present embodiment contains the film support region 53, so that the film support region 53 acts as a thickener for the precursor in the manufacturing process described later, and also as a scaffold for film formation. By functioning, it is easier to form a thicker membrane compared to a membrane without a membrane support area. In other words, the membrane support region 53 assists in maintaining the shape of the membrane and contributes to the provision of a membrane of the intended thickness. On the other hand, in the case where the membrane support region is not contained, when the membrane is exposed to high temperature when forming the pores, desorption of the membrane itself occurs, and it is difficult to maintain the thickness of the membrane. By increasing the film thickness, the supported amount of catalyst particles can be increased, and the catalyst film 100 with higher catalytic activity can be obtained.
例えば、後述の触媒体膜の製造方法において、鋳型となる界面活性剤と金属アルコキシドの加水分解物と固体粒子を含む溶液(以下、「前駆体溶液」と称する)を基材に塗布して加熱することで溶媒を揮散させ膜状体が得ている。膜支持体領域を形成する材料を含まない前駆体溶液を用いると、前駆体溶液の粘度が低いので厚い膜状体が形成しにくい。 For example, in the method for producing a catalyst membrane described later, a solution containing a surfactant serving as a template, a hydrolyzate of metal alkoxide and solid particles (hereinafter referred to as “precursor solution”) is applied to a substrate and heated Thus, the solvent is volatilized to obtain a film. When using a precursor solution that does not contain the material that forms the membrane support region, it is difficult to form a thick film because the viscosity of the precursor solution is low.
膜支持体領域53は、触媒体膜内において固体粒子、繊維、固体粒子集合体、繊維集合体、およびモノリス構造体からなる群から材料が1種以上選択されて構成される。
膜支持体領域を含むようにして触媒体膜を形成する方法は特に限定しないが、膜支持体領域を構成する材料を触媒体領域の原料を含む溶液に分散させるなどによって、膜支持体領域と触媒体領域を同時に膜状に形成するようにしてもよく、基材上に膜支持体領域を膜状に形成後、膜状支持体領域に隣接する周囲に存在する空間に触媒体領域を形成することで触媒体膜を得てもよい。
The membrane support region 53 is configured by selecting one or more types of materials from the group consisting of solid particles, fibers, solid particle aggregates, fiber aggregates, and monolith structures in a catalyst body film.
There is no particular limitation on the method of forming the catalyst film so as to include the film support region, but the film support region and the catalyst are dispersed by, for example, dispersing the material constituting the film support region in the solution containing the raw material of the catalyst region. The regions may be simultaneously formed in the form of a film, and after forming the film support region in the form of a film on the base material, the catalyst region is formed in the space existing around the film support region. The catalyst membrane may be obtained by
膜支持体領域53が固体粒子で構成されている場合、固体粒子の平均粒径は特に限定されないが、固体粒子の平均粒径は0.01μm以上1μm以下であることが好ましい。0.01μm以下の固体粒子は製造が難しく、1μm以上であると、触媒体膜の製造工程において触媒体領域の前駆体溶液中で容易に沈降するため、固体粒子が膜中に均一に分散した触媒体膜の製造が困難になる。
なお、固体粒子の平均粒径は後述の触媒粒子と同様にTEMを用いて測定することができる。
When the film support region 53 is composed of solid particles, the average particle diameter of the solid particles is not particularly limited, but the average particle diameter of the solid particles is preferably 0.01 μm or more and 1 μm or less. Solid particles of 0.01 μm or less are difficult to manufacture, and if 1 μm or more, the solid particles are uniformly dispersed in the film because they are easily precipitated in the precursor solution of the catalyst region in the process of manufacturing the catalyst film. It becomes difficult to produce a catalyst membrane.
The average particle diameter of the solid particles can be measured using a TEM as in the case of the catalyst particles described later.
膜支持体領域53が繊維の場合、平均繊維径および平均繊維長は特に限定されないが、平均繊維径は0.01μm以上1μm以下、平均繊維長は1μm以上100μm以下であることが好ましい。平均繊維径0.01μm未満である場合や平均繊維長1μm未満の場合、繊維は製造が難しく、平均繊維径1μm以上である場合や平均繊維長100μm以上である場合には、触媒体膜の製造工程において繊維が触媒体領域の前駆体溶液中で容易に沈降するため、繊維が膜中に均一に分散した触媒体膜の製造が困難になる。なお、平均繊維径および平均繊維長もTEMを用いて測定することができる。 When the membrane support region 53 is a fiber, the average fiber diameter and the average fiber length are not particularly limited, but the average fiber diameter is preferably 0.01 μm to 1 μm, and the average fiber length is preferably 1 μm to 100 μm. When the average fiber diameter is less than 0.01 μm or the average fiber length is less than 1 μm, the fibers are difficult to manufacture, and when the average fiber diameter is 1 μm or more or when the average fiber length is 100 μm or more, the catalyst film is manufactured. In the process, the fibers easily settle in the precursor solution in the catalyst region, which makes it difficult to produce a catalyst film in which the fibers are uniformly dispersed in the film. In addition, an average fiber diameter and an average fiber length can also be measured using TEM.
固体粒子集合体はその構成単位である固体粒子が物理的に固着した集合体であり、多数の固体粒子(一次粒子)が集合した粒子(二次粒子)などが含まれる。また、一次粒子の少なくとも一部が焼結などによって互いに化学的に接合した連続体となっていても構わない。
固体粒子集合体の平均粒径は固体粒子同様0.01μm以上1μm以下であることが好ましい。0.01μm未満の固体粒子集合体は製造が難しく、1μmより大きくなると、触媒体膜の製造工程において第2の領域の前駆体溶液中で容易に沈降するため、固体粒子集合体が膜中に均一に分散した触媒体膜の製造が困難になる。
A solid particle aggregate is an aggregate in which solid particles that are constituent units are physically fixed, and includes particles (secondary particles) in which a large number of solid particles (primary particles) are collected. Further, at least a part of the primary particles may be in a continuous body chemically bonded to each other by sintering or the like.
The average particle diameter of the solid particle aggregate is preferably 0.01 μm or more and 1 μm or less as in the case of the solid particles. Solid particle aggregates less than 0.01 μm are difficult to manufacture, and when larger than 1 μm, solid particle aggregates are in the film because they are easily precipitated in the precursor solution of the second region in the catalyst membrane manufacturing process. It becomes difficult to produce a uniformly dispersed catalyst membrane.
繊維集合体は固体粒子集合体同様、繊維が物理的に固着した集合体であり、多数の繊維(一次繊維)が集合した繊維(二次繊維)などが含まれ、一次繊維の少なくとも一部が焼結などによって互いに化学的に接合した連続体となっていても構わない。また、繊維集合体が、織物、網物、不織布などから構成される繊維構造体であっても構わない。また、膜支持体領域53は、網目状の連続構造をもつ一体型の構造体であるモノリス構造体であってもよい。
膜支持体領域53は上述の通り、様々な形状の材料が使用できるが、固体粒子もしくは固体粒子集合体は後述の触媒体膜の製造工程において多孔質の前駆体溶液に分散することで、所望の触媒体膜が容易に製造できるため好ましい。また、固体粒子もしくは固体粒子集合体が細孔を有する固体粒子で構成されていると、当該細孔内にも触媒粒子を担持させることができるので、触媒体膜の触媒活性をより高めることができ、さらに好ましい。
The fiber assembly is, like the solid particle assembly, an assembly in which fibers are physically fixed, includes fibers (secondary fibers) in which a large number of fibers (primary fibers) are collected, etc., and at least a part of the primary fibers It may be a continuous body chemically bonded to each other by sintering or the like. In addition, the fiber assembly may be a fiber structure composed of a woven fabric, a net, a non-woven fabric, and the like. In addition, the membrane support region 53 may be a monolithic structure which is an integral structure having a mesh-like continuous structure.
As described above, various shapes of materials can be used as the film support region 53, but the solid particles or solid particle aggregates are desirably dispersed by dispersing them in a porous precursor solution in the process of producing a catalyst film described later. Is preferable because it can be easily produced. In addition, when the solid particles or the solid particle aggregate are composed of solid particles having pores, the catalyst particles can be supported also in the pores, so that the catalytic activity of the catalyst membrane can be further enhanced. Yes, even more preferable.
また、膜支持体領域53はゼオライトや活性炭などの、有害成分の吸着活性を有する材料を使用するのも好ましい。被処理気体の流量が増大する、非処理気体中の有害成分濃度が高まる、などによって担持されている触媒粒子の酸化分解能力以上の有害成分が触媒体膜に供給された場合、膜支持体領域53が吸着活性を有さないと、酸化分解能力を超えた有害成分は酸化分解されずに触媒体膜を通過する。
一方、膜支持体領域53が吸着活性を有する場合は、触媒粒子の酸化分解能力以上の有害成分が触媒体膜に一時的に供給されても、触媒粒子の処理能力を超える有害成分は膜支持体領域53に一旦吸着されるが、有害成分の供給量が減少すると有害成分が膜支持体領域53から放出されて、触媒粒子によって酸化分解される。よって酸化分解量が平準化され、有害成分供給量変動にも対応できる触媒体膜を得ることができる。
Moreover, it is also preferable to use a material having adsorption activity of harmful components, such as zeolite and activated carbon, as the membrane support region 53. When the harmful component more than the oxidative decomposition ability of the supported catalyst particles is supplied to the catalyst membrane, the flow rate of the gas to be treated increases, the concentration of harmful components in the non-treatment gas increases, etc. If 53 does not have adsorption activity, harmful components exceeding the oxidative degradation capacity pass through the catalyst membrane without oxidative degradation.
On the other hand, when the membrane support region 53 has adsorption activity, even if harmful components more than the oxidative decomposition ability of the catalyst particles are temporarily supplied to the catalyst film, the harmful components exceeding the treatment capacity of the catalyst particles are film supported Once adsorbed to the body region 53, the harmful component is released from the membrane support region 53 when the supply amount of the harmful component decreases, and is oxidized and decomposed by the catalyst particles. Therefore, the amount of oxidative decomposition can be equalized, and a catalyst membrane that can cope with fluctuations in the supply of harmful components can be obtained.
膜支持体領域が、触媒粒子を除いた膜支持体領域および触媒体領域の合計に占める割合は重量比率で60%以上95%以下であるのが好ましく、より好ましくは70%以上90%以下である。膜支持体領域が60%以上となると、60%未満である場合と比較して触媒粒子の担持量が高まり触媒活性がより高くなるので好ましい。一方、95%を超えると、例えば後述の触媒体膜の製造工程において前駆体溶液の粘度が高くなり基材に均一に塗布することが困難になる、などのように触媒体膜の製造が95%以下の場合と比較して困難になるため、好ましくない。 The ratio of the membrane support area to the total of the membrane support area excluding the catalyst particles and the catalyst area is preferably 60% to 95% by weight, more preferably 70% to 90%. is there. When the membrane support area is 60% or more, the amount of supported catalyst particles is increased as compared with the case of less than 60%, which is preferable because the catalytic activity becomes higher. On the other hand, if it exceeds 95%, for example, the viscosity of the precursor solution becomes high in the production process of the catalyst membrane described later, and it becomes difficult to uniformly apply the solution on the substrate. It is not preferable because it becomes difficult compared to the case of% or less.
本実施形態の触媒体膜の構成要素である触媒体領域51は、多孔質体であり細孔を有するが、細孔がメソ孔であると、細孔内に担持される触媒粒子の活性が高まるので好ましい。本明細書において、メソ孔とは、触媒体領域51の表面に形成される少なくとも2つの開口部に連通している、直径が2nm以上50nm以下である細孔を指す。メソ孔の形状やその開口部の位置関係などは特に限定されず、例えば、触媒体領域51表面の2つの対向する面に向かって同一直線上に延びるメソ孔により構成されるシリンダー形状(例えば、ハニカム形状)でも、メソ孔が触媒体領域51内部で分岐して他のメソ孔とつながっているようないわゆる連通構造でもよい。これらのうち、連通構造は、シリンダー形状などと比較して、一つのメソ孔がより多くの開口部につながっているので、触媒体膜100の内部に被処理気体が拡散しやすく、メソ孔内や開口部に形成される触媒粒子が形成されても通気性が損なわれにくい。また、触媒体領域51内部のメソ孔に水分が付着しても通気性が損なわれにくい。このため、連通構造のほうがより好ましい。ここで、メソ孔の直径は、3nm以上10nm以下であることが好ましい。メソ孔の直径が当該範囲内にある場合、担持される触媒粒子55の粒径も当該範囲内になり、粒径が10nmを超える触媒粒子55と比較して、触媒粒子の比表面積が大きくなりやすいため、より高い活性の触媒体膜が得られる。また、メソ孔に触媒粒子55が担持されることで、触媒粒子55が凝集しにくくなり、触媒活性がより維持される。なお、本実施形態に係る触媒体領域51が有するメソ孔の直径は、触媒体領域51に形成されるメソ孔の平均直径であり、JIS-Z-8831に基づくBET法による自動比表面積/細孔分布測定装置を用いて測定した値である。 The catalyst region 51, which is a component of the catalyst membrane of the present embodiment, is a porous body and has pores, but if the pores are mesopores, the activity of the catalyst particles supported in the pores is It is preferable because it increases. In the present specification, mesopores refer to pores communicating with at least two openings formed on the surface of the catalyst region 51 and having a diameter of 2 nm or more and 50 nm or less. The shape of the mesopores and the positional relationship of the openings thereof are not particularly limited. For example, a cylinder shape (for example, mesopores) extending in the same straight line toward two opposing surfaces of the surface of the catalyst region 51 (for example, The honeycomb structure may be a so-called communication structure in which mesopores are branched inside the catalyst region 51 and connected to other mesopores. Among these, in the communication structure, one mesopore is connected to a larger number of openings as compared with a cylinder shape or the like, so the gas to be treated is easily diffused to the inside of the catalyst film 100 and the inside of the mesopore Even if catalyst particles formed in the opening portion are formed, the air permeability is unlikely to be impaired. Further, even if water adheres to the mesopores in the catalyst region 51, the air permeability is not easily impaired. For this reason, the communication structure is more preferable. Here, the diameter of the mesopores is preferably 3 nm or more and 10 nm or less. When the diameter of the mesopores is within the above range, the particle diameter of the supported catalyst particles 55 is also within the above range, and the specific surface area of the catalyst particles becomes larger compared to the catalyst particles 55 having a particle diameter exceeding 10 nm. Because of the ease, a catalyst membrane with higher activity can be obtained. In addition, the catalyst particles 55 are supported on the mesopores, whereby the catalyst particles 55 are less likely to aggregate and the catalyst activity is further maintained. The diameter of the mesopores in the catalyst region 51 according to the present embodiment is the average diameter of the mesopores formed in the catalyst region 51, and the automatic specific surface area / thin diameter by BET method based on JIS-Z-8831 is It is a value measured using a hole distribution measuring device.
本実施形態の触媒体膜100の構成要素である触媒粒子55は、酸化反応を促進する触媒活性を有する貴金属もしくは貴金属酸化物、またはその両方を含む粒子であればよく、特に限定されない。 The catalyst particle 55 which is a component of the catalyst body film 100 of the present embodiment may be a particle containing a noble metal or a noble metal oxide having catalytic activity for promoting an oxidation reaction, or both, and is not particularly limited.
本明細書において、貴金属とは金、銀および白金族のルテニウム、ロジウム、パラジウム、オスミウム、イリジウムおよび白金を指す。貴金属酸化物は上述の貴金属の酸化物およびその水和物であり、具体的にはAu2O3、Ag2O、AgO、Ag2O・Ag2O3、RuO2、RuO4、Rh2O3、PdO、OsO2、OsO4、IrO2、Ir2O3・nH2O、PtO2、PtO2・H2O、白金黒等を指す。
好ましくは酸化触媒能がより高い、金(Au)、白金(Pt)、パラジウム(Pd)及びそれらの酸化物の少なくともいずれかから触媒粒子55が構成されるのがよい。触媒粒子55として、Au、Pt、Pd、Au2O3、Ag2O、AgO、Ag2O・Ag2O3、PdO、PtO2、PtO2・H2O、白金黒等の一種以上から構成される粒子が挙げられる。
As used herein, noble metals refer to gold, silver and ruthenium of the platinum group, rhodium, palladium, osmium, iridium and platinum. The noble metal oxides are oxides of the above-mentioned noble metals and their hydrates, and more specifically, Au 2 O 3 , Ag 2 O, AgO, Ag 2 O.Ag 2 O 3 , RuO 2 , RuO 4 , Rh 2 It refers to O 3 , PdO, OsO 2 , OsO 4 , IrO 2 , Ir 2 O 3 .nH 2 O, PtO 2 , PtO 2 .H 2 O, platinum black and the like.
Preferably, the catalyst particles 55 are composed of at least one of gold (Au), platinum (Pt), palladium (Pd) and their oxides, which have higher oxidation catalytic ability. As the catalyst particles 55, one or more of Au, Pt, Pd, Au 2 O 3 , Ag 2 O, Ag 2 O, Ag 2 O.Ag 2 O 3 , PdO, PtO 2 , PtO 2 · H 2 O, platinum black, etc. The particle comprised can be mentioned.
触媒粒子55の粒径は、メソ孔内に担持されるのでメソ孔の直径以下の大きさであるが、メソ孔内部に担持される触媒粒子55とメソ孔内に拡散した被処理気体とを接触するための被処理気体が通過する通路が十分確保されるために、触媒粒子55の粒径はメソ孔の直径の90%以下であるのが望ましい。90%より大きい粒径であると、90%以下である場合と比較して、被処理気体が触媒体膜100内部まで拡散しにくくなり、触媒活性を長期に維持しにくくなるとともに、被処理気体中の有害成分の分解効率が低下しやすくなる。また、触媒粒子55の粒径が9nm以下(より好ましくは2nm以上6nm以下)であれば、粒径が9nmを超える場合と比較して、触媒粒子の比表面積が増大し触媒活性が飛躍的に向上して被処理気体中の有害成分の分解効率がさらに高まる。このため、触媒粒子55の粒径は、9nm以下であることがさらに好ましい。また、粒径が2nmより小さいときに触媒粒子55が金属または金属酸化物である場合は、物質として非常に不安定であり、触媒活性が低くなりやすい。なお、触媒粒子55の粒径は、透過型電子顕微鏡(TEM)を用いて触媒粒子55の画像写真を取得し、画像写真に写る触媒粒子55から無作為に抽出した300個以上の触媒粒子55のフェレ径を測定し、そのフェレ径を相加平均した値である。なお、フェレ径は、TEMにより確認することができる触媒粒子の画像において、触媒粒子を通過(接することを含む)する任意の直線に平行な直線群の中で、最も距離の離れた2本の平行線の間の距離である。 The particle size of the catalyst particles 55 is smaller than the diameter of the mesopores because the catalyst particles 55 are supported in the mesopores, but the catalyst particles 55 supported in the mesopores and the gas to be treated diffused in the mesopores It is desirable that the particle size of the catalyst particles 55 be 90% or less of the diameter of the mesopores, in order to secure a sufficient passage for the gas to be treated to contact. When the particle size is larger than 90%, the gas to be treated hardly diffuses to the inside of the catalyst film 100 as compared with the case of 90% or less, and it becomes difficult to maintain the catalyst activity for a long time. Decomposing efficiency of harmful components in it tends to decrease. In addition, if the particle size of the catalyst particles 55 is 9 nm or less (more preferably 2 nm or more and 6 nm or less), the specific surface area of the catalyst particles is increased and the catalyst activity is dramatically increased as compared to the case where the particle size exceeds 9 nm. It improves and the decomposition efficiency of harmful components in the gas to be treated is further enhanced. Therefore, the particle size of the catalyst particles 55 is more preferably 9 nm or less. In addition, when the catalyst particles 55 are metal or metal oxide when the particle size is smaller than 2 nm, they are very unstable as a substance, and the catalyst activity tends to be low. In addition, the particle size of the catalyst particles 55 is obtained by acquiring an image photograph of the catalyst particles 55 using a transmission electron microscope (TEM), and 300 or more catalyst particles 55 randomly extracted from the catalyst particles 55 shown in the image photograph. It is the value which measured the Feret diameter of and arithmetically averaged the Feret diameter. In the image of the catalyst particle which can be confirmed by TEM, the Feret diameter is the two longest distance among the straight lines parallel to any straight line passing (including being in contact with) the catalyst particle. It is the distance between parallel lines.
触媒粒子55の担持量は、触媒粒子を担持している状態での触媒体領域100質量%に対して、30質量%以上70質量%以下とするのが好ましく、より好ましくは40質量%以上70質量%以下であり、さらに好ましくは50質量%以上70質量%以下である。70質量%を超えると、触媒粒子同士が凝集しやすくなり、上記範囲内にある場合と比較して触媒活性が減少しやすくなる。また、30質量%未満では、上記範囲内にある場合と比較して、十分な触媒活性が得られにくい。粒径2nm以上9nm以下の触媒粒子55を30質量%以上担持するには、細孔がメソ孔を有していないと困難である。 The loading amount of the catalyst particles 55 is preferably 30% by mass or more and 70% by mass or less, and more preferably 40% by mass or more and 70% by mass or less with respect to 100% by mass of the catalyst region in the state of supporting the catalyst particles. It is mass% or less, More preferably, they are 50 mass% or more and 70 mass% or less. When it exceeds 70% by mass, the catalyst particles are easily aggregated with each other, and the catalytic activity is likely to be reduced as compared with the case of being in the above range. Moreover, if it is less than 30 mass%, compared with the case where it exists in the said range, sufficient catalyst activity is hard to be acquired. In order to support 30% by mass or more of catalyst particles 55 having a particle diameter of 2 nm or more and 9 nm or less, it is difficult if the pores do not have mesopores.
なお、本実施形態の触媒体膜100においては、触媒粒子に加えて、助触媒粒子や貴金属以外の他の金属または金属酸化物などを含んでいてもよく、特に限定されない。具体的には、助触媒粒子と触媒粒子が混在するものや、貴金属以外の金属元素を触媒粒子と複合化させた複合粒子からなる複合触媒であってもよい。触媒粒子単独で用いる場合や触媒粒子と助触媒粒子とを混在させたものを用いる場合には、触媒粒子を上述の大きさの範囲内(粒径が2nm以上9nm以下)とすることができる。また、貴金属以外の金属元素を触媒粒子と複合化した複合粒子の場合には、複合粒子の大きさを上述の大きさの範囲内(粒径が2nm以上9nm以下)とすることができる。助触媒粒子または複合触媒において用いることができる触媒粒子以外の金属粒子(ナノ粒子)としては、卑金属およびその酸化物などが挙げられる。これらの貴金属およびその酸化物、卑金属およびその酸化物の粒子は2種以上混合されて、触媒体領域51に形成されるメソ孔内表面に担持されてもよい。 In addition to the catalyst particles, the catalyst film 100 of the present embodiment may contain promoter particles, metals other than noble metals, metal oxides, and the like, and is not particularly limited. Specifically, the composite catalyst may be one in which co-catalyst particles and catalyst particles are mixed, or a composite catalyst composed of composite particles in which metal elements other than noble metals are complexed with the catalyst particles. In the case of using the catalyst particles alone or in the case of using a mixture of catalyst particles and co-catalyst particles, the catalyst particles can be in the above-mentioned size range (particle diameter is 2 nm or more and 9 nm or less). Further, in the case of composite particles in which a metal element other than a noble metal is complexed with catalyst particles, the size of the composite particles can be set within the above-described size range (particle diameter is 2 nm or more and 9 nm or less). Examples of metal particles (nanoparticles) other than catalyst particles that can be used in cocatalyst particles or composite catalysts include base metals and oxides thereof. Two or more types of these noble metals and their oxides, base metals and particles of their oxides may be mixed and supported on the inner surface of mesopores formed in the catalyst region 51.
本実施形態に係る触媒体領域51は、珪素酸化物もしくは金属酸化物から構成されていることが好ましい。珪素酸化物もしくは金属酸化物から構成される触媒体領域51は、触媒粒子55に作用し、触媒体膜の触媒活性を向上することができる。珪素酸化物もしくは金属酸化物以外の他の材料から形成される触媒体領域51は、触媒粒子に作用しにくく、触媒粒子の触媒活性を向上させにくい。また、珪素酸化物もしくは金属酸化物以外の他の材料から形成される触媒体領域51の場合、助触媒粒子を用いれば触媒粒子の活性が上がるが、多孔質に担持できる粒子の量には上限があるため、助触媒粒子と触媒粒子の両方を多孔質に担持すると、触媒粒子の担持量を増やすことに限界がある(例えば、触媒体領域100質量%に対して、触媒粒子を10質量%以上担持しにくい)。さらに、金属酸化物は、耐熱性が有り、製造工程で高温状態を経る場合に、物性が変化しにくいため好ましい。 The catalyst region 51 according to the present embodiment is preferably made of silicon oxide or metal oxide. The catalyst region 51 made of silicon oxide or metal oxide can act on the catalyst particles 55 to improve the catalytic activity of the catalyst film. The catalyst region 51 formed of other materials than silicon oxide or metal oxide is less likely to act on the catalyst particles, and it is difficult to improve the catalyst activity of the catalyst particles. In addition, in the case of the catalyst region 51 formed of silicon oxide or other material other than metal oxide, the activity of the catalyst particles is increased by using the co-catalyst particles, but the upper limit for the amount of particles that can be supported porously If both the promoter particles and the catalyst particles are supported in a porous manner, there is a limit to increase the supported amount of catalyst particles (for example, 10% by mass of catalyst particles relative to 100% by mass of the catalyst region) More difficult to carry). Furthermore, metal oxides are preferable because they have heat resistance and physical properties are unlikely to change when subjected to a high temperature state in the manufacturing process.
金属とは、周期表における、1族(Hを除く)、2〜12族、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P及びAsを除く)、及び16族(O、S、Se、及びTeを除く)に属する元素、並びにランタノイド及びアクチノイドをいう。金属酸化物としては、例えば、γ-Al2O3、α-Al2O3、θ-Al2O3、η-Al2O3、アモルファスのAl2O3、TiO2、ZrO2、SnO2、MgO、ZnO2、Bi2O3、In2O3、MnO2、Mn2O3、Nb2O5、FeO、Fe2O3、Fe3O4、Sb2O3、CuO、Cu2O、NiO、Ni3O4、Ni2O3、CoO、Co3O4、Co2O3、WO3、CeO2、Pr6O11、Y2O3、In2O3、PbO、ThO2などの金属酸化物が挙げられる。また、金属酸化物は、例えば、Al2O3−TiO2、Al2O3−ZrO2、Al2O3−CaO、Al2O3−CeO2、Al2O3−Fe2O3、TiO2−CeO2、TiO2−ZrO2、TiO2−WO3、ZrO2−WO3、SnO2−WO3、CeO2−ZrO2、Al2O3−TiO2−ZrO2、セリウム・ジルコニウム・ビスマス複合酸化物などの2種以上の金属を含む複合酸化物であってもよい。例えばこれら金属酸化物のうち1種または2種以上で本実施形態に係る触媒体領域51が構成されるようにしてもよい。尚、セリウム・ジルコニウム・ビスマス複合酸化物は一般式Ce1−X−YZrXBiYO2−δで表わされる固溶体であり、X、Y、δの値がそれぞれ0.1≦X≦0.3、0.1≦Y≦0.3、0.05≦δ≦0.15の範囲である。 The metals are Group 1 (excluding H), Groups 2 to 12, 13 (excluding B), 14 (excluding C and Si), and 15 (excluding N, P and As) in the periodic table. , And elements belonging to Group 16 (except O, S, Se, and Te), and lanthanoids and actinoids. As metal oxides, for example, γ-Al 2 O 3 , α-Al 2 O 3 , θ-Al 2 O 3 , η-Al 2 O 3 , amorphous Al 2 O 3 , TiO 2 , ZrO 2 , SnO 2 MgO, ZnO 2 , Bi 2 O 3 , In 2 O 3 , In 2 O 3 , MnO 2 , Mn 2 O 3 , Nb 2 O 5 , FeO, Fe 2 O 3 , Fe 3 O 4 , Sb 2 O 3 , CuO, Cu 2 O, NiO, Ni 3 O 4, Ni 2 O 3, CoO, Co 3 O 4, Co 2 O 3, WO 3, CeO 2, Pr 6 O 11, Y 2 O 3, In 2 O 3, PbO, Metal oxides such as ThO 2 can be mentioned. Also, metal oxides, e.g., Al 2 O 3 -TiO 2, Al 2 O 3 -ZrO 2, Al 2 O 3 -CaO, Al 2 O 3 -CeO 2, Al 2 O 3 -Fe 2 O 3, TiO 2 -CeO 2, TiO 2 -ZrO 2, TiO 2 -WO 3, ZrO 2 -WO 3, SnO 2 -WO 3, CeO 2 -ZrO 2, Al 2 O 3 -TiO 2 -ZrO 2, cerium-zirconium A complex oxide containing two or more metals such as bismuth complex oxide may be used. For example, the catalyst region 51 according to the present embodiment may be configured of one or more of these metal oxides. Note that the cerium-zirconium-bismuth composite oxide is a solid solution represented by the general formula Ce 1-X-Y Zr X Bi Y O 2-δ, X, Y, the value is 0.1 ≦ X ≦ each [delta] 0 .3, 0.1 ≦ Y ≦ 0.3, and 0.05 ≦ δ ≦ 0.15.
本実施形態の触媒体膜100に、後述する誘電体13としての機能も付与する場合、触媒体領域51は、少なくとも一部が絶縁体となる金属酸化物により形成されればよい。絶縁体となる金属酸化物としては、例えば、ZrO2、γ-Al2O3、α-Al2O3、θ-Al2O3、η-Al2O3、アモルファスのAl2O3、チタン酸マグネシウム、チタン酸バリウムなどが挙げられる。誘電体13を金属酸化物から形成することで、耐プラズマ性、耐熱性を向上させることができる。 In the case where the catalyst film 100 of the present embodiment also has a function as the dielectric 13 described later, the catalyst region 51 may be formed of a metal oxide at least a part of which is an insulator. As a metal oxide to be an insulator, for example, ZrO 2 , γ-Al 2 O 3 , α-Al 2 O 3 , θ-Al 2 O 3 , η-Al 2 O 3 , amorphous Al 2 O 3 , Magnesium titanate, barium titanate and the like can be mentioned. By forming the dielectric 13 from a metal oxide, plasma resistance and heat resistance can be improved.
触媒体領域51を形成する珪素酸化物もしくは金属酸化物は、SiO2、Al2O3、Fe2O3、TiO2、ZrO2、CeO2の少なくとも1種類以上であることが好ましい。SiO2、Al2O3、Fe2O3、TiO2、ZrO2、CeO2の少なくとも1種類以上により形成されている触媒体領域51は、触媒粒子55をより強固に担持できるため、触媒粒子55が凝集しにくい。また、基材57とより強固に接着でき、さらに触媒粒子55に作用しやすく、触媒粒子55の触媒活性が他の金属酸化物等よりも高まるのでより望ましい。 The silicon oxide or metal oxide forming the catalyst region 51 is preferably at least one or more of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , ZrO 2 and CeO 2 . The catalyst region 51 formed of at least one or more of SiO 2 , Al 2 O 3 , Fe 2 O 3 , TiO 2 , ZrO 2 and CeO 2 can support the catalyst particles 55 more firmly, so 55 is hard to aggregate. Further, it can be more firmly adhered to the base material 57, and it is more desirable because it easily acts on the catalyst particles 55 and the catalytic activity of the catalyst particles 55 is higher than other metal oxides and the like.
本実施形態の触媒体膜100は上述のとおり基材57上に形成されるようにすることができる。基材を用いることで、後述する膜前駆体の支持体として働くので、触媒体膜100製造時に容易に膜形状に成形できるため、好ましい。基材57は、上述のように、板状など通気性のない構造でも通気性を有する構造でもよい。通気性を有する構造としては、例えば、パンチング加工により多数の貫通孔が形成されているシート状のものや、繊維状、布状、メッシュ状で、織物、網物、不織布などから構成される繊維構造体(フィルター状)を挙げることができる。その他、使用目的に合った種々の形状及びサイズ等のものを適宜利用できる。 The catalyst membrane 100 of the present embodiment can be formed on the substrate 57 as described above. By using a base material, it works as a support for a film precursor to be described later, so that it can be easily formed into a film shape at the time of producing the catalyst film 100, which is preferable. As described above, the base material 57 may have a non-air-permeable structure such as a plate shape or a structure having air-permeability. The air-permeable structure is, for example, a sheet-like one having a large number of through holes formed by punching, a fiber, a cloth, a mesh, and a fiber composed of a woven fabric, a net, a non-woven fabric, etc. A structure (filter-like) can be mentioned. In addition, those of various shapes and sizes suitable for the purpose of use can be appropriately used.
触媒体膜100が形成される基材57には膜状体を形成する際に高温に加熱する場合があるため、当該加熱温度に耐える耐熱性を有する材料を用いることが望ましい。具体的には金属材料、セラミックス、ガラス、炭素繊維、炭化珪素繊維や耐熱性有機高分子材料などが好ましく、さらには金属、金属酸化物、ガラスがより好ましい。 Since the base material 57 on which the catalyst film 100 is formed may be heated to a high temperature when forming a film-like body, it is desirable to use a material having heat resistance to withstand the heating temperature. Specifically, metal materials, ceramics, glass, carbon fibers, silicon carbide fibers, heat-resistant organic polymer materials, and the like are preferable, and metals, metal oxides, and glasses are more preferable.
基材57に用いられる金属材料としては、タングステン、モリブデン、タンタル、ニオブ、TZM(Titanium Zirconium Molybdenum)、W−Re(tungsten-rhenium)などの高融点金属や、銀、ルテニウムなどの貴金属及びそれらの合金または酸化物、チタン、ニッケル、ジルコニウム、クロム、インコネル、ハステロイなどの特殊金属、アルミニウム、銅、ステンレス鋼、亜鉛、マグネシウム、鉄などの汎用金属およびこれら汎用金属を含む合金またはこれら汎用金属の酸化物を用いることができる。また、各種めっき及び真空蒸着や、CVD法や、スパッタ法などにより、上述した金属、合金または酸化物の被膜が形成された部材を金属材料として用いてもよい。 As metal materials used for the base material 57, refractory metals such as tungsten, molybdenum, tantalum, niobium, TZM (Titanium Zirconium Molybdenum), W-Re (tungsten-rhenium), noble metals such as silver, ruthenium and the like, and metals thereof Alloys or oxides, special metals such as titanium, nickel, zirconium, chromium, inconel, hastelloy, etc., general metals such as aluminum, copper, stainless steel, zinc, magnesium, iron and alloys containing these general metals or oxidation of these general metals A thing can be used. Moreover, you may use the member in which the film of the metal, the alloy, or the oxide mentioned above was formed by various plating, vacuum evaporation, CVD method, a sputtering method etc. as a metal material.
さらに、基材57に用いられるセラミックスとしては、土器、陶器、せっ器、磁気などの陶磁器、セメント、石膏、ほうろう及びファインセラミックスなどのセラミックスを挙げることができる。セラミックスの組成は、元素系、酸化物系、水酸化物系、炭化物系、炭酸塩系、窒化物系、ハロゲン化物系、及びリン酸塩系などを挙げることができ、また、それらの複合物でもよい。 Furthermore, as ceramics used for the base material 57, ceramics, such as earthenware, pottery, ceramic, ceramics such as magnetism, cement, gypsum, enamel, and fine ceramics can be mentioned. The composition of the ceramic may be elemental, oxide, hydroxide, carbide, carbonate, nitride, halide, phosphate or the like, and a composite thereof May be.
また、基材57に用いられるセラミックスとしては、さらに、チタン酸バリウム、チタン酸ジルコン酸鉛、フェライト、アルミナ、フォルステライト、ジルコニア、ジルコン、ムライト、ステアタイト、コーディエライト、窒化アルミニウム、窒化ケイ素、炭化ケイ素、ニューカーボンなどや、高強度セラミックス、機能性セラミックス、超伝導セラミックス、非線形光学セラミックス、抗菌性セラミックス、生分解性セラミックス、及びバイオセラミックスなどのセラミックスを挙げることができる。 Moreover, as ceramics used for the base material 57, barium titanate, lead zirconate titanate, ferrite, alumina, forsterite, zirconia, zircon, mullite, steatite, cordierite, aluminum nitride, silicon nitride, and the like are further used. Ceramics such as silicon carbide, new carbon, high strength ceramics, functional ceramics, superconductive ceramics, nonlinear optical ceramics, antibacterial ceramics, biodegradable ceramics, bioceramics and the like can be mentioned.
また、基材57に用いられるガラスとしては、ソーダ石灰ガラス、カリガラス、クリスタルガラス、石英ガラス、カルコゲンガラス、ウランガラス、水ガラス、偏光ガラス、強化ガラス、合わせガラス、耐熱ガラス・硼珪酸ガラス、防弾ガラス、ガラス繊維、ダイクロ、ゴールドストーン(茶金石・砂金石・紫金石)、ガラスセラミックス、低融点ガラス、金属ガラス、ニューガラス、及びサフィレットなどのガラスを挙げることができる。 Moreover, as glass used for the base material 57, soda lime glass, potash glass, crystal glass, quartz glass, chalcogen glass, uranium glass, water glass, polarizing glass, tempered glass, laminated glass, heat resistant glass / borosilicate glass, bulletproof Glass, glass fiber, dichroic, gold stone (brown gold stone, sand gold stone, purple gold stone), glass ceramics, low melting point glass, metallic glass, new glass, and glass such as saffilet can be mentioned.
また、基材57にはその他に、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、及びポルトランドセメントに高炉スラグ、フライアッシュ、シリカ質混合材を添加した混合セメントである高炉セメント、シリカセメント、及びフライアッシュセメントなどのセメントを使用することも可能である。 In addition to the base material 57, ordinary portland cement, early strength portland cement, ultra early strength portland cement, moderate heat portland cement, low heat portland cement, sulfate resistant portland cement, and portland cement with blast furnace slag, fly ash, It is also possible to use cements such as blast furnace cement, silica cement, and fly ash cement which are mixed cements to which a siliceous mixed material is added.
また、基材57にはその他に、チタニア、ジルコニア、アルミナ、セリア(酸化セリウム)、ゼオライト、アパタイト、シリカ、活性炭、珪藻土などを使用することができる。さらに、基材には、クロム、マンガン、コバルト、ニッケル、錫などからなる金属酸化物を用いることも可能である。 In addition, as the base material 57, it is possible to use titania, zirconia, alumina, ceria (cerium oxide), zeolite, apatite, silica, activated carbon, diatomaceous earth or the like. Furthermore, it is also possible to use a metal oxide composed of chromium, manganese, cobalt, nickel, tin or the like as the base material.
さらに、基材57には、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアラミド、ポリベンゾチアゾール、ポリベンゾオキサゾール、ポリベンゾイミダゾール、ポリキノリン、ポリキノキサリン、フッ素樹脂などや、フェノール樹脂やエポキシ樹脂などの熱硬化性樹脂などの当業者に公知な耐熱性有機高分子材料を用いることも可能である。 Furthermore, the base material 57 may be made of polyimide, polyetheretherketone, polyphenylene sulfide, polyaramid, polybenzothiazole, polybenzoxazole, polybenzimidazole, polyquinoline, polyquinoxaline, fluorine resin, etc., or heat such as phenol resin or epoxy resin It is also possible to use heat-resistant organic polymer materials known to those skilled in the art, such as curable resins.
次に、本実施形態の触媒体膜100を得る方法の一例について説明する。当該方法においては、膜支持体領域53を構成する材料として固体粒子を用い、まず、膜状体の前駆体を形成する。細孔を有する多孔質を含む膜状体は、例えば、多孔質内部のメソ孔の鋳型として作用する物質が含有している状態で基材上に膜状体の前駆体を形成し、その後鋳型として作用する物質を分解除去することで得ることができる。 Next, an example of a method of obtaining the catalyst membrane 100 of the present embodiment will be described. In the method, solid particles are used as a material for forming the film support region 53, and a film-like precursor is first formed. The film-like body containing the porous material having pores forms, for example, a precursor of the film-like body on a substrate in a state of containing a substance acting as a mesopore template in the porous inside, and then the template It can be obtained by decomposing and removing the substance acting as.
当該方法の具体的な一例について説明する。まず、鋳型となる界面活性剤と金属アルコキシドの加水分解物と固体粒子を含む溶液(以下、「前駆体溶液」と称する)を調製する。より具体的には、例えば、界面活性剤を溶解した溶液に金属アルコキシドを加え、pH調整を行って金属アルコキシドを加水分解する。これにより金属水酸化物を生成させる。界面活性剤は溶液中でミセルを形成しメソ孔の鋳型となる。さらに得られた溶液に固体粒子を加えて分散させ、前駆体溶液が得られる。なお固体粒子を加える順番は特に限定されず、界面活性剤を溶解した溶液に固体粒子を加えてから金属アルコキシドを加えても構わない。
この前駆体溶液を基材に塗布し、加熱することで溶媒を揮散させるとともに、金属水酸化物を縮合硬化させて、基材表面に膜状体の前駆体を形成させる。その後、さらに300℃以上の高温に焼成することで、前駆体中の鋳型である界面活性剤を分解揮発させることにより除去し、固体粒子によって構成される膜支持体領域53と細孔を有する触媒体領域51とを含む膜状体が得られる。なお、基材に塗布された前駆体溶液の加熱と、膜状体の前駆体の焼成は、同時に行われてもよく、これらを同時に行う場合、基材に塗布された前駆体溶液を300℃以上で焼成すればよい。
A specific example of the method will be described. First, a solution (hereinafter, referred to as “precursor solution”) containing a surfactant serving as a template, a hydrolyzate of metal alkoxide and solid particles is prepared. More specifically, for example, a metal alkoxide is added to a solution in which a surfactant is dissolved, and pH adjustment is performed to hydrolyze the metal alkoxide. This produces a metal hydroxide. Surfactants form micelles in solution and become templates for mesopores. Furthermore, solid particles are added to the obtained solution and dispersed to obtain a precursor solution. The order of adding the solid particles is not particularly limited, and the metal alkoxide may be added after the solid particles are added to the solution in which the surfactant is dissolved.
The precursor solution is applied to a substrate, and the solvent is volatilized by heating, and the metal hydroxide is condensed and cured to form a film-like precursor on the substrate surface. Thereafter, by further baking at a high temperature of 300 ° C. or more, the surfactant which is a template in the precursor is removed by decomposition and volatilization, and a catalyst having a membrane support region 53 constituted by solid particles and pores A film-like body including the medium region 51 is obtained. The heating of the precursor solution applied to the substrate and the firing of the film-like precursor may be performed simultaneously, and when these are simultaneously performed, the precursor solution applied to the substrate is heated to 300 ° C. The firing may be performed as above.
前駆体溶液は、例えば、(1)金属アルコキシドの加水分解物、(2)溶媒(溶剤)、(3)界面活性剤、(4)固体粒子の4つの成分を含んで構成することができる。金属アルコキシドについて、溶液中で加水分解処理を行って加水分解物を得る場合には、水が必要なので、溶媒は水や、水とエタノールやメタノールなどのアルコール類との混合溶媒とすることが好ましい。また、金属アルコキシドの加水分解処理のための触媒が溶液中にさらに含まれるようにしてもよく、当該触媒としては硝酸、塩酸等の酸を用いることが好ましい。なお、前駆体溶液を得るために配合される界面活性剤の配合割合(配合量)や金属アルコキシドの配合割合(配合量)は特に限定されず、適宜設定でき、特に限定されない。金属アルコキシドに対する界面活性剤のモル比(界面活性剤(mol)/金属アルコキシド(mol))を変えることで、得られる触媒体領域51における細孔の体積率、多孔度を制御することができる。また、膜状体の前駆体を焼成する温度を変更することにより、触媒体領域51の比表面積や、細孔の容積(以下、「細孔容積」ともいう)や、細孔の直径(以下、「細孔径」ともいう)を制御することができる。 The precursor solution can include, for example, four components of (1) hydrolyzate of metal alkoxide, (2) solvent (solvent), (3) surfactant, and (4) solid particle. In the case of obtaining a hydrolyzate by subjecting a metal alkoxide to a hydrolysis treatment in a solution to obtain a hydrolyzate, it is preferable to use water or a mixed solvent of water and an alcohol such as ethanol or methanol since water is required. . In addition, a catalyst for hydrolyzing the metal alkoxide may be further contained in the solution, and it is preferable to use an acid such as nitric acid or hydrochloric acid as the catalyst. The blending ratio (blending amount) of the surfactant to be blended to obtain the precursor solution and the blending ratio (blending amount) of the metal alkoxide are not particularly limited, can be appropriately set, and are not particularly limited. By changing the molar ratio of surfactant to metal alkoxide (surfactant (mol) / metal alkoxide (mol)), it is possible to control the volume fraction of pores and the porosity in the resulting catalyst region 51. In addition, the specific surface area of the catalyst region 51, the volume of the pores (hereinafter, also referred to as "pore volume"), the diameter of the pores (hereinafter referred to as "pore volume") , "Pore diameter" can be controlled.
なお、基材への塗布の前に前駆体溶液中に沈殿物を生成させないことが、均一な膜厚を有する触媒体膜(膜状体)の形成の観点から好ましく、酸性(pHが7未満)のアルコールを用いることで沈殿物の生成を回避できる。別法としては、水と金属アルコキシドとのモル比だけを調節するか、pH調整と共に前述したモル比を調節するか、pH調整と共にアルコールを添加するか、前述したモル比の調節とアルコールの添加の両方を行うかにより沈殿物の生成を回避することもできる。 In addition, it is preferable from the viewpoint of formation of a catalyst body film (film-like body) having a uniform film thickness that it is not acidic (pH is less than 7) that precipitates are not generated in the precursor solution before application to a substrate. The formation of precipitates can be avoided by using the alcohol of Alternatively, only the molar ratio of water to metal alkoxide is adjusted, the molar ratio is adjusted with pH adjustment, alcohol is added with pH adjustment, or the adjustment of molar ratio and alcohol is added It is also possible to avoid the formation of precipitates by doing both.
界面活性剤としてはポリオキシエチレンエーテルやポリアルキレンオキシドブロックコポリマーなどが使用できる。ポリオキシエチレンエーテルとしてはC12H25(CH2CH2O)10OH、C16H33(CH2CH2O)10OH、C18H37(CH2CH2O)10OH、C12H25(CH2CH2O)4OH、C16H33(CH2CH2O)2OHなどが挙げられる。ポリアルキレンオキシドブロックコポリマーとしてはエチレンオキサイドとプロピレンオキサイドのブロックコポリマーが挙げられる。 As the surfactant, polyoxyethylene ether, polyalkylene oxide block copolymer and the like can be used. The polyoxyethylene ether C 12 H 25 (CH 2 CH 2 O) 10 OH, C 16 H 33 (CH 2 CH 2 O) 10 OH, C 18 H 37 (CH 2 CH 2 O) 10 OH, C 12 H 25 (CH 2 CH 2 O) 4 OH, C 16 H 33 (CH 2 CH 2 O) 2 OH and the like can be mentioned. Polyalkylene oxide block copolymers include block copolymers of ethylene oxide and propylene oxide.
界面活性剤の鎖長が細孔の直径に影響するので、目的の細孔の直径に応じて界面活性剤を選択すればよい。またメシチレンなどの疎水性化合物を前駆体溶液に添加するようにしてもよく、当該疎水性化合物は前駆体溶液中のミセル径を増大させられるので、細孔の直径の調整に使用することができる。 Since the chain length of the surfactant affects the diameter of the pores, the surfactant may be selected according to the diameter of the intended pore. Alternatively, a hydrophobic compound such as mesitylene may be added to the precursor solution, and since the hydrophobic compound can increase the micelle diameter in the precursor solution, it can be used to adjust the pore diameter. .
金属アルコキシドとしてはテトラプロポキシアルミニウム、テトラプロポキシすず、テトラプロポキシチタニウム、テトラプロポキシジルコニウムなどを使用することができる。 As the metal alkoxide, tetrapropoxyaluminum, tetrapropoxytin, tetrapropoxytitanium, tetrapropoxyzirconium and the like can be used.
基材に前駆体溶液を塗布する方法は、前駆体溶液を均一に薄く塗布できれば方法は問わないが、スピンコート法や基材を前駆体溶液に浸漬後に不要な溶液を吹き飛ばすDip&ブロー法などが適用できる。前駆体溶液を塗布する方法は、塗布する基材の形状などに合わせて選択すればよい。また、多孔質の前駆体を形成した後に鋳型分子(界面活性剤(ミセル))を除去するときの加熱条件も特に限定されず、例えば300〜600℃で膜状体の前駆体を加熱すればよい。 The precursor solution can be applied to the substrate by any method as long as the precursor solution can be applied uniformly and thinly, but the spin coating method or the dip & blow method that blows off unnecessary solution after immersing the substrate in the precursor solution Applicable The method of applying the precursor solution may be selected in accordance with the shape of the substrate to be applied. Also, the heating conditions for removing the template molecule (surfactant (micelle)) after forming the porous precursor are not particularly limited. For example, if the precursor of the film-like body is heated at 300 to 600 ° C. Good.
次に、触媒粒子を膜状体が有する触媒体領域51における細孔に担持させ、本実施形態の触媒体膜を得る。まず、膜状体が有する細孔と貴金属化合物が溶解及び/又は分散している溶液(以下、「貴金属化合物溶液」と称する)とを接触させて触媒体領域51の細孔に貴金属化合物溶液を導入する。その後、還元処理を行い触媒体領域51の細孔内に触媒粒子を形成することにより、本実施形態の触媒体膜を得ることができる。 Next, the catalyst particles are supported by the pores in the catalyst region 51 of the film-like body to obtain the catalyst film of the present embodiment. First, the pores of the membrane are brought into contact with a solution in which the noble metal compound is dissolved and / or dispersed (hereinafter referred to as “precious metal compound solution”), and the noble metal compound solution is Introduce. Thereafter, reduction treatment is performed to form catalyst particles in the pores of the catalyst region 51, whereby the catalyst film of the present embodiment can be obtained.
具体的には、例えば、貴金属化合物溶液に膜状体を浸漬後、還元処理を行うようにすることができる。より具体的には、貴金属化合物溶液を20〜90℃、好ましくは50〜70℃に加温、攪拌しながら、pH3〜10、好ましくはpH5〜8になるようにアルカリ溶液を用いて調整する。その後、その表面に膜状体が形成されている基材を貴金属化合物溶液に浸漬し、続いて、減圧脱気処理を行い細孔に貴金属化合物溶液を浸透させた後、200〜300℃で加熱焼成して還元処理を行う。 Specifically, for example, after a film-like body is immersed in a noble metal compound solution, reduction treatment can be performed. More specifically, while the noble metal compound solution is heated to 20 to 90 ° C., preferably 50 to 70 ° C. and stirred, the pH is adjusted to 3 to 10, preferably 5 to 8, using an alkaline solution. Thereafter, the base material having a filmy body formed on the surface thereof is immersed in a noble metal compound solution, followed by vacuum degassing to make the noble metal compound solution penetrate the pores, and then heated at 200 to 300 ° C. Baking to perform reduction treatment.
また、200〜300℃の加熱焼成の替わりに、100〜200℃の水素気流による水素還元法、水素化ホウ素ナトリウム溶液に浸漬する液相還元法、エチレングリコールを添加してマイクロ波で加熱するマイクロ波法など公知の方法で貴金属化合物を還元してもよい。 Also, instead of heating and baking at 200 to 300 ° C., a hydrogen reduction method using a hydrogen stream at 100 to 200 ° C., a liquid phase reduction method to be immersed in a sodium borohydride solution, and microwave heating with ethylene glycol added. The noble metal compound may be reduced by a known method such as a wave method.
貴金属化合物としては、例えば、金化合物としてHAuCl4・4H2O、NH4AuCl4、KAuCl4・nH2O、KAu(CN)4、Na2AuCl4、KAuBr4・2H2O、NaAuBr4などが、白金化合物については塩化白金酸、ジニトロジアンミン白金、ジクロロテトラアンミン白金などが、パラジウム化合物についてはジニトロジアンミンパラジウム、塩化パラジウム酸アンモニウムなどが挙げられる。金属化合物溶液における金属化合物の濃度は特に限定されないが、1×10−2〜1×10−5mol/Lとして溶液を調製するのが、生成した触媒粒子が凝集しにくいので好ましい。 Examples of noble metal compounds include gold compounds such as HAuCl 4 · 4H 2 O, NH 4 AuCl 4 , KAuCl 4 · nH 2 O, KAu (CN) 4 , Na 2 AuCl 4 , KAuBr 4 · 2H 2 O, NaAuBr 4 and the like. However, for platinum compounds, chloroplatinic acid, dinitrodiammine platinum, dichlorotetraammine platinum and the like can be mentioned, and for palladium compounds, dinitrodiammine palladium, ammonium chloropalladate and the like can be mentioned. The concentration of the metal compound in the metal compound solution is not particularly limited, but it is preferable to prepare the solution as 1 × 10 −2 to 1 × 10 −5 mol / L because the generated catalyst particles are hard to aggregate.
以上、本実施形態の触媒体膜100は、膜状であるため、触媒体膜に含まれる触媒粒子の全てが被処理気体と接触しやすく、優れた触媒活性を持続することができる。また、本実施形態の触媒体膜はその厚みをより厚くして触媒体膜を構成することが可能であり、より優れた触媒活性を有する触媒体膜を提供することができる。
本実施形態の多孔質触媒体膜は、炭化水素や一酸化炭素、アンモニアといった有害成分を酸化することにより分解除去でき、またその触媒活性の低下が起き難く、長期に使用可能である。
As described above, since the catalyst body film 100 of the present embodiment is in the form of a film, all of the catalyst particles contained in the catalyst body film easily come in contact with the gas to be treated, and can maintain excellent catalyst activity. In addition, the catalyst film of the present embodiment can be thicker to form a catalyst film, and a catalyst film having more excellent catalytic activity can be provided.
The porous catalyst membrane of the present embodiment can be decomposed and removed by oxidizing harmful components such as hydrocarbons, carbon monoxide, and ammonia, and the catalyst activity is unlikely to be reduced, and can be used for a long time.
次に、本実施形態の触媒体膜100が用いられるガス処理装置について説明する。図2は、第1実施形態のガス処理装置200の断面の一部を模式的に表した図である。本実施形態のガス処理装置200は、ガス処理装置200に対して矢印A方向に供給される被処理気体中の有害成分を、ガス処理装置200において発生させるプラズマと触媒体膜100の機能によって、酸化して分解する装置である。 Next, a gas processing apparatus in which the catalyst membrane 100 of the present embodiment is used will be described. FIG. 2: is the figure which represented typically a part of cross section of the gas processing apparatus 200 of 1st Embodiment. The gas processing apparatus 200 according to the present embodiment uses the plasma generated in the gas processing apparatus 200 and the function of the catalyst film 100 to generate harmful components in the gas to be processed supplied in the direction of arrow A to the gas processing apparatus 200. It is a device that oxidizes and decomposes.
ガス処理装置200は、印加電極11と接地電極12と誘電体13とを備えるプラズマ発生部を有し、印加電極11には、電源部である(高圧)電源14が接続されている。接地電極12と印加電極11は、互いに対向して配置されており、接地電極12と印加電極11との間に誘電体13が配置されている。誘電体13は、接地電極12にのみ密着しており、印加電極11と離隔している。ガス処理装置200において、これら印加電極11と接地電極12と誘電体13は、プラズマを発生させるための部材・装置(プラズマ発生部)であり、電源14によって印加電極11と接地電極12との間に電圧が印加されることで、印加電極11と接地電極12と誘電体13によって、印加電極11と誘電体13との間に放電による低温プラズマ反応層(プラズマが存在する領域)が形成される。なお、印加電極11と接地電極12のいずれか一方が第1の電極であり、他方が第2の電極である。また、他の実施形態において印加電極11と接地電極12がそれぞれ複数組み合わせられる場合にも、いずれか一方の種類の複数の電極それぞれが第1の電極であり、他方の種類の複数の電極それぞれが第2の電極である。また、本実施形態において、誘電体13は、接地電極12と触媒体膜100との間にのみ設けられているが、接地電極12と触媒体膜100との間に加えて、印加電極11と触媒体膜100との間に設けられてもよい。 The gas processing apparatus 200 has a plasma generation unit including an application electrode 11, a ground electrode 12, and a dielectric 13. The application electrode 11 is connected to a (high voltage) power supply 14 which is a power supply unit. The ground electrode 12 and the application electrode 11 are disposed to face each other, and the dielectric 13 is disposed between the ground electrode 12 and the application electrode 11. The dielectric 13 adheres only to the ground electrode 12 and is separated from the application electrode 11. In the gas processing apparatus 200, the application electrode 11, the ground electrode 12, and the dielectric 13 are members / devices (plasma generation units) for generating plasma, and between the application electrode 11 and the ground electrode 12 by the power supply 14. Voltage is applied, and a low temperature plasma reaction layer (a region where plasma exists) is formed between the application electrode 11 and the dielectric 13 by the application electrode 11, the ground electrode 12, and the dielectric 13. . Note that one of the application electrode 11 and the ground electrode 12 is a first electrode, and the other is a second electrode. In addition, even when a plurality of application electrodes 11 and a plurality of ground electrodes 12 are combined in another embodiment, one of the plurality of electrodes of each type is the first electrode, and each of the plurality of electrodes of the other type is It is a second electrode. Further, in the present embodiment, the dielectric 13 is provided only between the ground electrode 12 and the catalyst film 100, but in addition to the space between the ground electrode 12 and the catalyst film 100, the dielectric 13 and the application electrode 11 are provided. It may be provided between the catalyst membrane 100.
印加電極11は、電源14によって電圧が印加される電極である。接地電極12は、接地線12aによって接地されている。そして、印加電極11、接地電極12および誘電体13は、被処理気体が通過できる通気性を有する構造である。具体的には、印加電極11と接地電極12と誘電体13の構造としては、格子状や簾状、パンチング加工などによる多孔状やエキスパンドメッシュ状、ハニカム状の構造が挙げられ、これらの構造を2種以上組み合わせた構造であってもよい。印加電極11、接地電極12については、針状の構造でもよい。また、印加電極11と接地電極12と誘電体13は、上記した形状・構造のうち、同じ形状・構造であってもよい。図2では、印加電極11はメッシュのように開口が小さく多数存在し、接地電極12と誘電体13はパンチングによる多孔状のように開口が大きく少数存在している。 The application electrode 11 is an electrode to which a voltage is applied by the power supply 14. The ground electrode 12 is grounded by the ground line 12a. The application electrode 11, the ground electrode 12, and the dielectric 13 have a breathable structure through which the gas to be treated can pass. Specifically, examples of the structure of the application electrode 11, the ground electrode 12, and the dielectric 13 include a lattice shape, a ridge shape, a porous shape by punching process, an expanded mesh shape, and a honeycomb structure. The structure which combined 2 or more types may be sufficient. The application electrode 11 and the ground electrode 12 may have a needle-like structure. Further, the application electrode 11, the ground electrode 12, and the dielectric 13 may have the same shape or structure among the above-described shapes and structures. In FIG. 2, the application electrode 11 has a large number of small openings such as meshes, and the ground electrode 12 and the dielectric 13 have a large number of small openings such as porous by punching.
矢印A方向からプラズマ発生部に供給される被処理気体は、印加電極11に形成される開口を介して、印加電極11と誘電体13との間に形成される低温プラズマ反応層に到達する。低温プラズマ反応層に到達した被処理気体は、プラズマ発生部の外部に直接排出されるか、誘電体13に形成される開口と接地電極12に形成される開口を介して、プラズマ発生部の外部に排出される。つまり、プラズマ発生部には、印加電極11と接地電極12と誘電体13に形成される開口、及び、印加電極11と誘電体13との間に形成される低温プラズマ反応層によって構成される流路が形成されている。 The to-be-processed gas supplied to the plasma generation part from the arrow A direction reaches the low temperature plasma reaction layer formed between the application electrode 11 and the dielectric 13 through the opening formed in the application electrode 11. The gas to be treated that has reached the low temperature plasma reaction layer is either discharged directly to the outside of the plasma generating portion, or outside the plasma generating portion through the opening formed in the dielectric 13 and the opening formed in the ground electrode 12. Discharged into That is, in the plasma generating portion, a flow constituted by the application electrode 11, the opening formed in the ground electrode 12 and the dielectric 13, and the low temperature plasma reaction layer formed between the application electrode 11 and the dielectric 13 A path is formed.
プラズマ発生部に形成される流路のうち、低温プラズマ反応層(印加電極11と誘電体13との間)には、誘電体13と印加電極11に密着する触媒体膜100が配置されている。このため、流路を流れて低温プラズマ反応層に到達した被処理気体は、細孔を介して触媒体膜100を通過することができる。従って、被処理気体中の有害成分は、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。 In the low temperature plasma reaction layer (between the application electrode 11 and the dielectric 13) in the flow path formed in the plasma generation part, the catalyst film 100 in close contact with the dielectric 13 and the application electrode 11 is disposed. . For this reason, the to-be-processed gas which flows through the flow path and reaches the low temperature plasma reaction layer can pass through the catalyst membrane 100 through the pores. Therefore, harmful components in the gas to be treated are oxidized and decomposed by the function of the catalyst film 100 on which the plasma acts.
ガス処理装置200に用いられる印加電極11および接地電極12としては、電極として機能する材料を用いることができる。印加電極11、接地電極12の材料としては、例えば、Cu、Ag、Au、Ni、Cr、Fe、Al、Ti、W、Ta、Mo、Coなどの金属やその合金を用いることができる。 As the application electrode 11 and the ground electrode 12 used in the gas treatment apparatus 200, materials that function as electrodes can be used. As a material of the application electrode 11 and the ground electrode 12, for example, a metal such as Cu, Ag, Au, Ni, Cr, Fe, Al, Ti, W, Ta, Mo, or Co, or an alloy thereof can be used.
誘電体13は、絶縁体となる性質を有していればよい。誘電体13の材料としては、例えば、ZrO2、γ-Al2O3、α-Al2O3、θ-Al2O3、η-Al2O3、アモルファスのAl2O3、アルミナナイトライド、ムライト、ステアライト、フォルステライト、コーディエライト、チタン酸マグネシウム、チタン酸バリウム、SiC、Si3N4、Si-SiC、マイカ、ガラスなどの無機材料や、ポリイミド、液晶ポリマー、PTFE(poly tetra fluoro ethylene)、ETFE(ethylene tetra fluoro ethylene)、PVF(poly vinyl fluoride)、PVDF(poly vinylidene difluoride)、ポリエーテルイミド、ポリアミドイミドなどの高分子材料が挙げられる。耐プラズマ性、耐熱性を考慮すると無機材料がより好ましい。 The dielectric 13 may have the property of being an insulator. As a material of the dielectric 13, for example, ZrO 2 , γ-Al 2 O 3 , α-Al 2 O 3 , θ-Al 2 O 3 , η-Al 2 O 3 , amorphous Al 2 O 3 , alumina nitride Ride, mullite, stearite, forsterite, cordierite, magnesium titanate, barium titanate, SiC, Si 3 N 4 , Si-SiC, mica, inorganic materials such as glass, polyimide, liquid crystal polymer, PTFE (poly Examples include polymeric materials such as tetra fluoro ethylene, ETFE (ethylene tetra fluoro ethylene), PVF (poly vinyl fluoride), PVDF (poly vinylidene difluoride), polyether imide, and polyamide imide. In view of plasma resistance and heat resistance, inorganic materials are more preferable.
なお、上述したように触媒体膜100が誘電体としての機能も備える場合(例えば、触媒体膜100の一部が絶縁体であるような場合)、触媒体膜100を誘電体としても利用できるため、誘電体13を備えなくてもよい。また、本実施形態のガス処理装置200において、流路に流れる被処理気体の量や、流速などの使用条件は、特に限定されない。例えば、ガス処理装置200に送風機を接続し、所定量の被処理気体を所定の流速で流路に送ってもよく、ガス処理装置200を被処理気体中に放置し、自然に被処理気体が流路に流れ込むだけであってもよい。 As described above, when the catalyst film 100 also has a function as a dielectric (for example, when a part of the catalyst film 100 is an insulator), the catalyst film 100 can also be used as a dielectric. Therefore, the dielectric 13 may not be provided. Further, in the gas processing apparatus 200 of the present embodiment, the usage conditions such as the amount of the processing target gas flowing in the flow path and the flow rate are not particularly limited. For example, a blower may be connected to the gas processing apparatus 200, and a predetermined amount of gas to be treated may be sent to the flow path at a predetermined flow rate, or the gas treatment apparatus 200 is left in the gas to be treated, and the gas to be treated is naturally It may only flow into the flow path.
電源14は、高電圧を印加可能な電源である。電源14としては、交流高電圧、パルス高電圧などの高電圧電源、DCバイアスに交流あるいはパルスを重畳させた電源などを用いることができる。交流高電圧の例としては、正弦波交流、矩形波交流、三角波交流、鋸波交流などが挙げられる。この電源14により、印加電極11と接地電極12と誘電体13によって形成される放電空間にプラズマが発生するように、印加電極11と接地電極12との間に所定の電圧を印加すればよい。電源14による印加電圧は、被処理気体に含まれる有害成分の濃度などにより変動するが、通常1〜20kV、好ましくは2〜10kVとすることができる。なお、プラズマを発生させるために電源14から供給される電力により発生させる放電の種類としては、プラズマを発生させることができれば特に限定されないが、たとえば無声放電や沿面放電やコロナ放電やパルス放電などであればよい。また、これらの放電が2種類以上組み合わされて発生してプラズマを発生させてもよい。 The power supply 14 is a power supply to which a high voltage can be applied. As the power supply 14, a high voltage power supply such as an AC high voltage or a pulse high voltage, a power supply in which an alternating current or a pulse is superimposed on a DC bias, or the like can be used. Examples of AC high voltage include sine wave AC, rectangular wave AC, triangular wave AC, sawtooth AC and the like. A predetermined voltage may be applied between the application electrode 11 and the ground electrode 12 so that plasma is generated in the discharge space formed by the application electrode 11, the ground electrode 12, and the dielectric 13 by the power supply 14. The voltage applied by the power source 14 fluctuates depending on the concentration of harmful components contained in the gas to be treated, etc., but may be generally 1 to 20 kV, preferably 2 to 10 kV. The type of discharge generated by the power supplied from the power supply 14 for generating plasma is not particularly limited as long as the plasma can be generated. For example, silent discharge, creeping discharge, corona discharge, pulse discharge, etc. I hope there is. Also, two or more of these discharges may be generated in combination to generate plasma.
また、電源14の出力周波数は、高周波数が好ましく、具体的には0.5kHz以上とすることができる。さらには0.5kHz以上30kHz以下が好ましく、より好ましくは1kHz以上20kHz以下がよい。周波数が0.5kHzよりも小さいと中間生成物やオゾンの生成量が増えることがあり、30kHzよりも大きいと処理対象とするいずれの有害成分についても酸化による分解が抑制されることがある。 Further, the output frequency of the power supply 14 is preferably a high frequency, and specifically, can be 0.5 kHz or more. Furthermore, 0.5 kHz or more and 30 kHz or less are preferable, and more preferably 1 kHz or more and 20 kHz or less. If the frequency is less than 0.5 kHz, the amount of intermediate products and ozone produced may increase, and if it is greater than 30 kHz, the decomposition by oxidation may be suppressed for any harmful component to be treated.
なお、本実施形態では、誘電体13を接地電極12に密着させた構成としたが、これに限られない。プラズマを発生させることができればよく、誘電体13が、少なくとも印加電極11と接地電極12のいずれかに密着していればよい。また、印加電極11と接地電極12のそれぞれに誘電体13を密着して配置し、その2つの誘電体13の間に触媒体膜100を備える構成にしてもよい。さらに、触媒体膜100を上述した基材上に形成する場合、誘電体13を基材としても利用できる。 Although the dielectric 13 is in close contact with the ground electrode 12 in the present embodiment, the present invention is not limited to this. It is sufficient that the plasma can be generated, and the dielectric 13 should be in close contact with at least one of the application electrode 11 and the ground electrode 12. Alternatively, the dielectric 13 may be disposed in close contact with each of the application electrode 11 and the ground electrode 12, and the catalyst film 100 may be provided between the two dielectrics 13. Furthermore, when the catalyst film 100 is formed on the above-described base material, the dielectric 13 can also be used as a base material.
次に、第2実施形態のガス処理装置300を説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。 Next, a gas treatment apparatus 300 of the second embodiment will be described. In the present embodiment, the same reference numerals are used for members having the same functions as the members described in the first embodiment, and the detailed description will be omitted. The differences from the first embodiment are mainly described below.
図3は、第2実施形態のガス処理装置300の断面の一部を模式的に表した図である。本実施形態のガス処理装置300は、無声放電によりプラズマを発生させる。本実施形態のガス処理装置300は、印加電極11と接地電極12との間に、対向する2つの誘電体13が配置される積層構造であり、それぞれの誘電体13は、印加電極11と接地電極12に密着している。 FIG. 3: is the figure which represented typically a part of cross section of the gas processing apparatus 300 of 2nd Embodiment. The gas processing apparatus 300 of the present embodiment generates plasma by silent discharge. The gas processing apparatus 300 of the present embodiment has a laminated structure in which two opposing dielectrics 13 are disposed between the application electrode 11 and the ground electrode 12, and each of the dielectrics 13 corresponds to the application electrode 11 and the ground. It is in close contact with the electrode 12.
ガス処理装置300は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13の間に放電による低温プラズマ反応層を形成する。なお、図3では、印加電極11と接地電極12の両方に対して誘電体13がそれぞれ密着して積層されているが、誘電体13はいずれか一つだけでもよい。 The gas processing apparatus 300 forms a low temperature plasma reaction layer between the two dielectrics 13 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high voltage power supply 14. In FIG. 3, the dielectrics 13 are stacked in close contact with both the application electrode 11 and the ground electrode 12, but only one of the dielectrics 13 may be provided.
本実施形態のガス処理装置300において、印加電極11,接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。このため、図3の矢印a方向からプラズマ発生部に供給される被処理気体は、2つの誘電体13の間に形成される低温プラズマ反応層を通過して、プラズマ発生部の外部に排出される(矢印b方向)。つまり、プラズマ発生部には、2つの誘電体13の間に形成される低温プラズマ反応層(プラズマが存在する領域)によって構成される流路が形成されている。低温プラズマ反応層に形成される流路には、異なる誘電体13に密着する、対向する2つの触媒体膜100が所定の間隔をあけて配置されている。このため、低温プラズマ反応層を流れる被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の有害成分は、第一実施形態と同様に、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。なお、触媒体膜100は、誘電体13に密着してもよく、密着していなくてもよい。処理する被処理気体の量にもよるが、流路における圧力損失が高くなる場合は、触媒体膜100は、誘電体13に密着していない方がよい。なお、本実施形態も、触媒体膜100を誘電体13としても利用してもよく、また、誘電体13を触媒体膜100が形成される基材としても利用できる。 In the gas processing apparatus 300 of the present embodiment, the application electrode 11, the ground electrode 12, and the dielectric 13 have a non-air-permeable structure through which the gas to be treated does not pass. For this reason, the gas to be treated supplied to the plasma generation unit from the direction of arrow a in FIG. 3 passes through the low temperature plasma reaction layer formed between the two dielectrics 13 and is discharged to the outside of the plasma generation unit. (Direction of arrow b). That is, in the plasma generating portion, a flow path constituted by a low temperature plasma reaction layer (a region where plasma exists) formed between the two dielectrics 13 is formed. In the flow path formed in the low temperature plasma reaction layer, two opposing catalyst films 100 in close contact with different dielectrics 13 are disposed at a predetermined interval. Therefore, the processing target gas flowing through the low temperature plasma reaction layer can pass through the catalyst film 100 through the mesopores. Therefore, the harmful components in the gas to be treated are oxidized and decomposed by the function of the catalyst film 100 on which the plasma acts, as in the first embodiment. The catalyst film 100 may or may not be in close contact with the dielectric 13. Although depending on the amount of the gas to be treated, if the pressure loss in the flow path is high, the catalyst film 100 should not be in close contact with the dielectric 13. Also in the present embodiment, the catalyst film 100 may be used as the dielectric 13, and the dielectric 13 may also be used as a base on which the catalyst film 100 is formed.
ガス処理装置300は、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の有害成分を効率よく分解できる。ガス処理装置300は、処理対象の有害成分の量や、流速などの使用条件に応じて、有害成分を効率よく酸化して分解できるように設置される。触媒体膜100は単層でも複数層に分けてもどちらでもよく、任意に設定できる。 The gas processing device 300 can easily secure a flow path by having a multilayer structure. Therefore, the amount of gas to be treated can be easily increased, and a large amount of harmful components can be efficiently decomposed. The gas processing apparatus 300 is installed so that the harmful components can be efficiently oxidized and decomposed according to the amount of harmful components to be treated and the use conditions such as the flow velocity. The catalyst film 100 may be a single layer or a plurality of layers, and may be set arbitrarily.
次に、第3実施形態のガス処理装置400について説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。 Next, a gas treatment apparatus 400 according to a third embodiment will be described. In the present embodiment, the same reference numerals are used for members having the same functions as the members described in the first embodiment, and the detailed description will be omitted. The differences from the first embodiment are mainly described below.
図4は、第3実施形態のガス処理装置400の断面の一部を模式的に表した図である。本実施形態のガス処理装置400には、対向する2つの接地電極12と、2つの接地電極12の間に配置される2つの誘電体13と、2つの誘電体13の間に配置される印加電極11とが設けられている。接地電極12と誘電体13は、互いに密着しており、誘電体13と印加電極11は、所定の間隔をあけて配置されている。ガス処理装置400は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13と印加電極11との間にプラズマを発生させることができ、印加電極11を挟む2つのプラズマ反応層を形成することができる。 FIG. 4: is the figure which represented typically a part of cross section of the gas processing apparatus 400 of 3rd Embodiment. In the gas processing apparatus 400 of the present embodiment, an application is provided between two opposing ground electrodes 12, two dielectrics 13 disposed between the two ground electrodes 12, and two dielectrics 13. An electrode 11 is provided. The ground electrode 12 and the dielectric 13 are in close contact with each other, and the dielectric 13 and the application electrode 11 are disposed at a predetermined interval. The gas processing apparatus 400 generates plasma between the two dielectrics 13 and the application electrode 11 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high voltage power supply 14. As a result, two plasma reaction layers sandwiching the application electrode 11 can be formed.
本実施形態のガス処理装置400において、接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。一方、印加電極11は、複数の開口を有しており、被処理気体が通過する通気性の有る構造である。このため、図3の矢印a方向からプラズマ発生部に供給される被処理気体は、印加電極11に形成される開口を介して2つのプラズマ反応層を移動しながら、低温プラズマ反応層を通過し、プラズマ発生部の外部に排出される。つまり、プラズマ発生部には、印加電極11に形成される開口、及び、2つのプラズマ反応層によって構成される流路が形成されている。 In the gas processing apparatus 400 of the present embodiment, the ground electrode 12 and the dielectric 13 have a non-air-permeable structure through which the process gas does not pass. On the other hand, the application electrode 11 has a plurality of openings, and has a gas-permeable structure through which the gas to be treated passes. For this reason, the gas to be treated supplied to the plasma generating portion from the direction of arrow a in FIG. 3 passes through the low temperature plasma reaction layer while moving through the two plasma reaction layers through the opening formed in the application electrode 11. And are discharged to the outside of the plasma generation unit. That is, in the plasma generating portion, an opening formed in the application electrode 11 and a flow path constituted by two plasma reaction layers are formed.
プラズマ発生部に形成される流路のうち、2つの低温プラズマ反応層(2つの誘電体13と印加電極11との間)には、印加電極11に密着する触媒体膜100がそれぞれ配置されている。このため、流路を移動する被処理気体は、細孔を介して触媒体膜100を通過することができる。従って、被処理気体中の有害成分は、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。 A catalyst film 100 in close contact with the application electrode 11 is disposed in each of two low temperature plasma reaction layers (between the two dielectrics 13 and the application electrode 11) in the flow path formed in the plasma generation portion. There is. For this reason, the to-be-processed gas which moves a flow path can pass the catalyst body film | membrane 100 through a pore. Therefore, harmful components in the gas to be treated are oxidized and decomposed by the function of the catalyst film 100 on which the plasma acts.
ガス処理装置400は、第2実施形態のガス処理装置300と同様に、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の有害成分を効率よく分解できる。ガス処理装置400は、処理対象の有害成分の量や、流速などの使用条件に応じて、有害成分を効率よく酸化して分解できるように設置される。触媒体膜100は単層でも複数層に分けてもどちらでもよく、任意に設定できる。 Similar to the gas processing apparatus 300 of the second embodiment, the gas processing apparatus 400 has a multilayer structure, which makes it easy to secure the flow path. Therefore, the amount of gas to be treated can be easily increased, and a large amount of harmful components can be efficiently decomposed. The gas processing apparatus 400 is installed so that the harmful components can be efficiently oxidized and decomposed according to the amount of harmful components to be treated and the use conditions such as the flow velocity. The catalyst film 100 may be a single layer or a plurality of layers, and may be set arbitrarily.
次に、第4実施形態のガス処理装置500について説明する。本実施形態において、第1実施形態で説明した部材と同一の機能を有する部材については、同一の符号を用い、詳細な説明は省略する。以下、第1実施形態と異なる点について、主に説明する。 Next, a gas processing apparatus 500 of the fourth embodiment will be described. In the present embodiment, the same reference numerals are used for members having the same functions as the members described in the first embodiment, and the detailed description will be omitted. The differences from the first embodiment are mainly described below.
図5は、第4実施形態のガス処理装置500の断面の一部を模式的に表した図である。本実施形態のガス処理装置500は、無声放電によりプラズマを発生させ、有害成分を分解する。本実施形態のガス処理装置500では、筒型の印加電極11と触媒体膜100と誘電体13が、円柱状の接地電極12を中心軸として、年輪状に径方向外側に積層して構成される円筒状の構造である。 FIG. 5: is the figure which represented typically a part of cross section of the gas processing apparatus 500 of 4th Embodiment. The gas processing apparatus 500 of the present embodiment generates plasma by silent discharge to decompose harmful components. In the gas processing apparatus 500 of the present embodiment, the cylindrical application electrode 11, the catalyst film 100, and the dielectric 13 are laminated radially outward in an annual ring shape with the cylindrical ground electrode 12 as a central axis. It has a cylindrical structure.
ガス処理装置500において、誘電体13は、2つ設けられている。一方の誘電体13は、接地電極12の径方向外側に配置されるとともに、接地電極12に密着している。他方の誘電体13は、印加電極11の径方向内側に配置されるとともに、印加電極11に密着している。ガス処理装置500は、高電圧電源14を用いて印加電極11と接地電極12との間に電圧を印加することにより、2つの誘電体13の間に放電による低温プラズマ反応層を形成することができる。なお、図5では、印加電極11と接地電極12ともにそれぞれに対して誘電体13が密着して積層されているが、誘電体13はいずれか一つだけでもよい。 In the gas processing apparatus 500, two dielectrics 13 are provided. One dielectric 13 is disposed radially outside the ground electrode 12 and is in close contact with the ground electrode 12. The other dielectric 13 is disposed radially inward of the application electrode 11 and is in close contact with the application electrode 11. The gas processing apparatus 500 can form a low temperature plasma reaction layer by discharge between two dielectrics 13 by applying a voltage between the application electrode 11 and the ground electrode 12 using the high voltage power supply 14 it can. In FIG. 5, the dielectric 13 is in close contact with and laminated on each of the application electrode 11 and the ground electrode 12. However, only one dielectric 13 may be provided.
本実施形態のガス処理装置500において、印加電極11,接地電極12及び誘電体13は、被処理気体が通過しない通気性のない構造である。このため、円形の両端面の一方(図4の矢印a方向)からプラズマ発生部に供給される被処理気体は、2つの誘電体13の間に形成される低温プラズマ反応層を通過して、他方の端面側から排出される(図4の矢印b方向)。つまり、プラズマ発生部には、2つの誘電体13の間に形成される低温プラズマ反応層によって構成される流路が形成されている。低温プラズマ反応層に形成される流路には、2つの誘電体13と離隔する触媒体膜100が配置されている。このため、低温プラズマ反応層を流れる被処理気体は、メソ孔を介して触媒体膜100を通過することができる。従って、被処理気体中の有害成分は、第1〜第3実施形態と同様に、プラズマが作用する触媒体膜100の機能によって、酸化されて分解される。なお、図5において、触媒体膜100と2つの誘電体13との間には、空間が形成されている。また、触媒体膜100は、一方の誘電体13に密着していてもよいし、密着していなくてもよい。 In the gas processing apparatus 500 of the present embodiment, the application electrode 11, the ground electrode 12, and the dielectric 13 have a structure that does not allow gas to be treated to pass therethrough. Therefore, the gas to be treated supplied to the plasma generating portion from one of the circular end faces (the direction of the arrow a in FIG. 4) passes through the low temperature plasma reaction layer formed between the two dielectrics 13 It is discharged from the other end face side (arrow b direction in FIG. 4). That is, in the plasma generation portion, a flow path constituted by the low temperature plasma reaction layer formed between the two dielectrics 13 is formed. A catalyst film 100 separated from the two dielectrics 13 is disposed in the flow path formed in the low temperature plasma reaction layer. Therefore, the processing target gas flowing through the low temperature plasma reaction layer can pass through the catalyst film 100 through the mesopores. Therefore, the harmful components in the gas to be treated are oxidized and decomposed by the function of the catalyst film 100 on which the plasma acts, as in the first to third embodiments. In FIG. 5, a space is formed between the catalyst film 100 and the two dielectrics 13. In addition, the catalyst film 100 may be in close contact with one of the dielectrics 13 or may not be in close contact.
本実施形態のガス処理装置500のように、年輪状の多層構造としてもよく、多層構造とすることで、流路を確保しやすくなる。このため、処理するガス量を増やしやすくなり、多量の有害成分を効率よく分解できる。ガス処理装置500は、処理対象の有害成分の量や、流速などの使用条件に応じて、処理対象ガスを効率よく酸化して分解できるように、触媒体膜100の筒型年輪状の枚数は複数でも一枚でも任意に設定できる。 As in the gas processing device 500 of the present embodiment, the annual ring-shaped multilayer structure may be used, and the multilayer structure makes it easy to secure the flow path. Therefore, the amount of gas to be treated can be easily increased, and a large amount of harmful components can be efficiently decomposed. The number of cylindrical annual rings of the catalyst film 100 is such that the gas processing apparatus 500 can efficiently oxidize and decompose the gas to be treated according to the amount of harmful components to be treated and the use conditions such as the flow rate. It is possible to optionally set one or more pieces.
ここで、第1〜第4実施形態のガス処理装置において、被処理気体に含まれる有害成分を処理する場合には、電源14によって、印加電極11に電圧を印加した状態で、有害成分を含む被処理気体を流路に供給する。これにより、流路を流れて細孔に到達する被処理気体中の有害成分は、触媒体膜100により加温することなく常温で酸化して分解される。さらに、被処理気体中の有害成分は、プラズマにより酸化して分解されることもある。
また、触媒体膜100のみであれば、有害成分との接触により触媒体膜100表面(より具体的には、表面において開口する細孔中の触媒粒子)が被毒し、触媒活性が失われたり、ホルムアルデヒドなどの反応中間体を生じたりすることがある。第1〜第4実施形態のガス処理装置においては、プラズマを併用することにより触媒体膜100の表面がクリーニングされ触媒活性がさらに長期間保たれる。さらに、第1〜第4実施形態のガス処理装置においては反応中間体の生成量もほとんどなく、有害成分の酸化による分解をさらに長期間維持することができる。
Here, in the gas processing apparatuses according to the first to fourth embodiments, when the harmful component contained in the gas to be treated is treated, the harmful component is contained in a state where a voltage is applied to the application electrode 11 by the power supply 14. The gas to be treated is supplied to the flow path. As a result, harmful components in the gas to be treated that flow in the flow path and reach the pores are oxidized and decomposed at normal temperature without being heated by the catalyst film 100. Furthermore, harmful components in the gas to be treated may be oxidized and decomposed by plasma.
Moreover, if the catalyst film 100 alone is in contact with harmful components, the surface of the catalyst film 100 (more specifically, the catalyst particles in the pores opening on the surface) is poisoned and the catalyst activity is lost. And may form reaction intermediates such as formaldehyde. In the gas processing apparatus of the first to fourth embodiments, the surface of the catalyst film 100 is cleaned by using plasma together, and the catalytic activity is maintained for a long time. Furthermore, in the gas treatment devices of the first to fourth embodiments, the amount of reaction intermediates produced is also very small, and the decomposition by the oxidation of harmful components can be maintained for a longer period of time.
また、第1実施形態のガス処理装置200では、印加電極11をガスの流れ方向における上流側に配置するとして説明したが、これに限られず、接地電極12側からガスを流してもよい。 Further, in the gas processing apparatus 200 of the first embodiment, the application electrode 11 is described as being disposed on the upstream side in the gas flow direction. However, the present invention is not limited thereto, and gas may flow from the ground electrode 12 side.
以上説明した第1〜第4実施形態のガス処理装置は、優れた触媒活性を有するとともに、その触媒活性を持続できる触媒体膜100と、プラズマとの組み合わせにより、反応中間体の生成を抑制できると共に、分解処理の過程で触媒体膜100(具体的には触媒粒子)が被毒しても、プラズマによって触媒体膜100がクリーニングされるため、触媒体膜100の触媒活性をさらに長期間持続することができる。従って、第1〜第4実施形態のガス処理装置によれば、さらに長期間有害成分を酸化して分解可能なガス処理装置を実現できる。 The gas processing apparatuses according to the first to fourth embodiments described above can suppress the formation of reaction intermediates by combining the catalyst film 100 capable of maintaining the catalytic activity and maintaining the catalytic activity, and plasma. At the same time, even if the catalyst film 100 (specifically, catalyst particles) is poisoned in the process of decomposition treatment, the catalyst film 100 is cleaned by plasma, so the catalyst activity of the catalyst film 100 is maintained for a longer period of time can do. Therefore, according to the gas processing apparatuses of the first to fourth embodiments, it is possible to realize a gas processing apparatus capable of oxidizing and decomposing harmful components for a long time.
次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。 Next, the present invention will be more specifically described by way of examples. However, the present invention is not limited to only these examples.
[実施例1]
(酸化ジルコニウム粒子含有酸化ジルコニウム膜を固定化したガラス基板)
0.2gの界面活性剤(P123)に対し、エタノールを1mL加え20分間攪拌してA液を得た。
また、0.58gのジルコニウム(IV)プロポキシド(Zr(OPr)4)に対し、酢酸0.286mLおよび純水0.1mLと酸化ジルコニウム粒子(新日本電工(株)製)0.5gを加え、10分間攪拌してB液を得た。
B液にA液を加えた後、塩酸を0.093mL加え、1時間攪拌し多孔質酸化ジルコニウム膜の前駆体溶液を得た。
その後、多孔質酸化ジルコニウム膜の前駆体溶液を用い、ガラス基板上にスピンコーターを用いて回転数3000rpmで成膜した。成膜したガラス基板をシャーレに入れ、−20℃, 20%RH環境下(冷凍庫)で2時間静置した。冷凍庫から出し、常温に戻してからシャーレの蓋を開けてガラス基板を取り出した。電気炉で450℃,4時間焼成し、多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。なお、昇温および降温は毎分1℃で行った。
ビーカーに所定濃度の塩化金酸水溶液を入れ、ウォーターバスで70℃に加温した。0.1Mの水酸化ナトリウム水溶液をゆっくり加えていき、pHを7に調節した。塩化金酸水溶液を常温まで冷やし、メソポーラス酸化ジルコニウム膜を固定化したガラス基板を浸し、約15分減圧して脱気した。再度ウォーターバスにて70℃まで加温し、70℃に到達してから1時間攪拌した。多孔質酸化ジルコニウム膜を固定化したガラス基板を取り出し、純水で5回洗浄し、ウエスで余分な水分を取り除いた。電気炉で300℃, 2時間焼成し、Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は890nm、基板面積に対する膜質量は0.587mg/cm2であり、酸化ジルコニウム粒子と多孔体(触媒粒子を除いた触媒体領域、以下同じ)の質量比率は77:23であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.063g/cm2であった。Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニア膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
Example 1
(Glass substrate on which zirconium oxide particle-containing zirconium oxide film is immobilized)
1 mL of ethanol was added to 0.2 g of surfactant (P123) and stirred for 20 minutes to obtain solution A.
Furthermore, 0.286 mL of acetic acid, 0.1 mL of pure water and 0.5 g of zirconium oxide particles (manufactured by Shin Nippon Electric Co., Ltd.) are added to 0.58 g of zirconium (IV) propoxide (Zr (OPr) 4) The mixture was stirred for 10 minutes to obtain solution B.
After adding solution A to solution B, 0.093 mL of hydrochloric acid was added, and the mixture was stirred for 1 hour to obtain a precursor solution of a porous zirconium oxide film.
Thereafter, using a precursor solution of a porous zirconium oxide film, a film was formed on a glass substrate using a spin coater at a rotational speed of 3000 rpm. The formed glass substrate was placed in a petri dish, and allowed to stand for 2 hours in an environment (freezer) at -20 ° C and 20% RH. After removing from the freezer and returning to normal temperature, the lid of the petri dish was opened to take out the glass substrate. It baked at 450 degreeC for 4 hours with an electric furnace, and obtained the glass substrate which fixed the porous zirconium oxide film | membrane. The temperature was raised and lowered at 1 ° C./min.
The aqueous solution of chloroauric acid having a predetermined concentration was placed in a beaker and heated to 70 ° C. with a water bath. The pH was adjusted to 7 by slow addition of 0.1 M aqueous sodium hydroxide solution. The chloroauric acid aqueous solution was cooled to normal temperature, and the glass substrate on which the mesoporous zirconium oxide film was immobilized was immersed and degassed for about 15 minutes under reduced pressure. The mixture was heated again to 70 ° C. with a water bath and stirred for 1 hour after reaching 70 ° C. The glass substrate on which the porous zirconium oxide film was immobilized was taken out and washed five times with pure water, and excess water was removed with a rag. The glass substrate was sintered at 300 ° C. for 2 hours in an electric furnace to obtain an Au-supported porous zirconium oxide film immobilized thereon.
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 890 nm and the film mass with respect to the substrate area was 0.587 mg / cm 2 , and the zirconium oxide particles and the porous body (the catalyst particles were removed The mass ratio of the medium area, hereinafter the same) was 77:23. Further, when measured by atomic absorption, the supported amount of Au relative to the substrate area was 0.063 g / cm 2 . The glass substrate on which the Au-supporting porous zirconium oxide film is immobilized is measured by the BET method, and the specific surface area, pore volume and pore diameter of the porous zirconia oxide film are 148 m 2 / g and 0.38 g / cm, respectively. 3 , 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[実施例2]
(酸化チタン粒子含有酸化ジルコニウム膜を固定化したガラス基板)
酸化ジルコニウム粒子を酸化チタン粒子(日本アエロジル(株)製)に替えた以外は実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は1614nm、基板面積に対する膜質量は0.830mg/cm2であり、酸化チタン粒子と多孔体の質量比率は77:23であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.102g/cm2であった。Au担持メソポーラス酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、メソポーラス酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
Example 2
(Glass substrate on which titanium oxide particle-containing zirconium oxide film is immobilized)
A glass substrate on which an Au-supporting porous zirconium oxide film was immobilized was obtained in the same manner as in Example 1 except that the zirconium oxide particles were changed to titanium oxide particles (manufactured by Nippon Aerosil Co., Ltd.).
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 1614 nm, the film mass to the substrate area was 0.830 mg / cm 2 , and the mass ratio of titanium oxide particles to the porous body was 77:23. Met. Further, when measured by atomic absorption, the amount of Au supported on the substrate area was 0.102 g / cm 2 . The glass substrate on which the Au-supported mesoporous zirconium oxide film is immobilized is measured by BET method, and the specific surface area, pore volume, and pore diameter of the mesoporous zirconium oxide film are 148 m 2 / g and 0.38 g / cm 3 , respectively. It was 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[実施例3]
(酸化ジルコニウム粒子含有酸化ジルコニウム膜を固定化したガラス基板)
焼成温度を350℃に替えた以外は実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は1236nm、基板面積に対する膜質量は0.823mg/cm2であり、酸化ジルコニウム粒子と多孔体の体積比率は77:23であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.095g/cm2であった。Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ220m2/g、0.45g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
[Example 3]
(Glass substrate on which zirconium oxide particle-containing zirconium oxide film is immobilized)
A glass substrate on which an Au-supported porous zirconium oxide film was immobilized was obtained in the same manner as in Example 1 except that the firing temperature was changed to 350 ° C.
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 1236 nm, the film mass with respect to the substrate area was 0.823 mg / cm 2 , and the volume ratio of zirconium oxide particles to the porous body was 77:23 Met. Further, when measured by atomic absorption, the amount of Au supported on the substrate area was 0.095 g / cm 2 . The glass substrate on which the Au-supporting porous zirconium oxide film is immobilized is measured by the BET method, and the specific surface area, pore volume, and pore diameter of the porous zirconium oxide film are 220 m 2 / g and 0.45 g / cm, respectively. 3 , 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[実施例4]
(酸化セリウム粒子含有酸化ジルコニウム膜を固定化したガラス基板(1))
酸化ジルコニウム粒子0.5gを酸化セリウム粒子(信越化学(株)製)1.0gに替えた以外は実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は1790nm、基板面積に対する膜質量は1.532mg/cm2であり、酸化セリウム粒子と多孔体の質量比率は87:33であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.272g/cm2であった。Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
Example 4
(Glass substrate on which a zirconium oxide film containing cerium oxide particles is immobilized (1))
A glass substrate on which an Au-supporting porous zirconium oxide film was immobilized was obtained in the same manner as in Example 1 except that 0.5 g of zirconium oxide particles was changed to 1.0 g of cerium oxide particles (manufactured by Shin-Etsu Chemical Co., Ltd.) .
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 1790 nm, the film mass with respect to the substrate area was 1.532 mg / cm 2 , and the mass ratio of the cerium oxide particles to the porous body was 87:33 Met. Further, when measured by atomic absorption, the supported amount of Au relative to the substrate area was 0.272 g / cm 2 . The glass substrate on which the Au-supporting porous zirconium oxide film is immobilized is measured by BET method, and the specific surface area, pore volume and pore diameter of the porous zirconium oxide film are 148 m 2 / g and 0.38 g / cm, respectively. 3 , 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[実施例5]
(酸化セリウム粒子含有酸化ジルコニウム膜を固定化したガラス基板(2))
酸化ジルコニウム粒子を酸化セリウム粒子(信越化学(株)製)に替えた以外は実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は834nm、基板面積に対する膜質量は0.749mg/cm2であり、酸化セリウム粒子と多孔体の質量比率は77:13であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.173g/cm2であった。Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
[Example 5]
(Glass substrate on which a zirconium oxide film containing cerium oxide particles is immobilized (2))
A glass substrate on which an Au-supporting porous zirconium oxide film was immobilized was obtained in the same manner as in Example 1 except that the zirconium oxide particles were changed to cerium oxide particles (manufactured by Shin-Etsu Chemical Co., Ltd.).
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 834 nm, the film mass to the substrate area was 0.749 mg / cm 2 , and the mass ratio of the cerium oxide particles to the porous body was 77:13. Met. Further, when measured by atomic absorption, the supported amount of Au relative to the substrate area was 0.173 g / cm 2 . The glass substrate on which the Au-supporting porous zirconium oxide film is immobilized is measured by BET method, and the specific surface area, pore volume and pore diameter of the porous zirconium oxide film are 148 m 2 / g and 0.38 g / cm, respectively. 3 , 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[実施例6]
(酸化セリウム粒子含有酸化ジルコニウム膜を固定化したガラス基板(3))
酸化ジルコニウム粒子0.5gを酸化セリウム粒子(信越化学(株)製)0.3gに替えた以外は実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は571nm、基板面積に対する膜質量は0.387mg/cm2であり、酸化セリウム粒子と多孔体の質量比率は67:23であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.075g/cm2であった。Au担持多孔質酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニウム膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
[Example 6]
(Glass substrate on which a zirconium oxide film containing cerium oxide particles is immobilized (3))
A glass substrate on which an Au-supporting porous zirconium oxide film was immobilized was obtained in the same manner as in Example 1 except that 0.5 g of zirconium oxide particles was changed to 0.3 g of cerium oxide particles (manufactured by Shin-Etsu Chemical Co., Ltd.) .
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 571 nm, the film mass relative to the substrate area was 0.387 mg / cm 2 , and the mass ratio of the cerium oxide particles to the porous body was 67:23 Met. Moreover, when measured by atomic absorption, the supported amount of Au with respect to the substrate area was 0.075 g / cm 2 . The glass substrate on which the Au-supporting porous zirconium oxide film is immobilized is measured by BET method, and the specific surface area, pore volume and pore diameter of the porous zirconium oxide film are 148 m 2 / g and 0.38 g / cm, respectively. 3 , 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[比較例1]
酸化ジルコニウム粒子を用いないで前駆体溶液を調製したこと以外は、実施例1と同様の方法でAu担持多孔質酸化ジルコニウム膜を固定化したガラス基板を得た。
Au担持多孔質酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は109nm、基板面積に対する膜質量は0.082mg/cm2であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.018mg/cm2であった。Au担持酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、多孔質酸化ジルコニア膜の比表面積、細孔容積、細孔径がそれぞれ148m2/g、0.38g/cm3、3.28nmであった。また、Auの粒径をTEMで観察したところ、2.5nmであった。
Comparative Example 1
A glass substrate on which an Au-supporting porous zirconium oxide film was immobilized was obtained by the same method as in Example 1 except that a precursor solution was prepared without using zirconium oxide particles.
When the film thickness and mass of the Au-supporting porous zirconium oxide film were measured, the film thickness was 109 nm, and the film mass with respect to the substrate area was 0.082 mg / cm 2 . In addition, when measured by atomic absorption, the amount of Au supported on the substrate area was 0.018 mg / cm 2 . The glass substrate on which the Au-supported zirconium oxide film is immobilized is measured by BET method, and the specific surface area, pore volume and pore diameter of the porous zirconia oxide film are 148 m 2 / g and 0.38 g / cm 3 , respectively. It was 3.28 nm. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
[比較例2]
無機微粒子として、市販の酸化ジルコニウム微粒子(日本電工株式会社製、PCS)をメタノールに10.0質量%分散して、塩酸でpHを4.0に調整した後、ビーズミルにより平均粒子径20nmに粉砕分散した。その後、得られた分散溶液を用い、ガラス基板上にスピンコーターを用いて回転数3000rpmで成膜し、酸化ジルコニウム微粒子のみを固定化したガラス基板を得た。実施例1と同様の方法でAu担持酸化ジルコニウム微粒子膜を固定化したガラス基板を得た。尚、この膜は微粒子のみで構成されているためガラス基板との密着性が悪く、衝撃等を加えると膜は脱落してしまった。
Au担持酸化ジルコニウム膜の膜厚および質量を測定したところ、膜厚は156nm、基板面積に対する膜質量は0.106mg/cm2であった。また、原子吸光で測定したところ、基板面積に対するAuの担持量は0.014mg/cm2であった。Au担持酸化ジルコニウム膜を固定化したガラス基板をBET法による測定を実施したところ、酸化ジルコニウム膜の比表面積は10m2/gであり、この酸化ジルコニウム膜はメソポーラス構造を有していないことが確認された。また、Auの粒径をTEMで観察したところ、2.5nmであった。
実施例1〜6及び比較例1、2で得られた触媒体膜の特性を表1に示す。
Comparative Example 2
A commercially available zirconium oxide fine particle (PCD, manufactured by Nippon Denko Corporation) was dispersed as 10.0% by mass in methanol as inorganic fine particles, and the pH was adjusted to 4.0 with hydrochloric acid, and then pulverized and dispersed to an average particle diameter of 20 nm by a bead mill. . Thereafter, using the obtained dispersion, a film was formed on a glass substrate at a rotational speed of 3000 rpm using a spin coater, to obtain a glass substrate on which only zirconium oxide fine particles were immobilized. In the same manner as in Example 1, a glass substrate on which the Au-supported zirconium oxide fine particle film was immobilized was obtained. In addition, since this film | membrane was comprised only with microparticles | fine-particles, adhesiveness with a glass substrate was bad, and the film fell off when an impact etc. were added.
When the film thickness and mass of the Au-supported zirconium oxide film were measured, the film thickness was 156 nm, and the film mass with respect to the substrate area was 0.106 mg / cm 2 . Further, when measured by atomic absorption, the supported amount of Au relative to the substrate area was 0.014 mg / cm 2 . When a glass substrate on which an Au-supported zirconium oxide film is immobilized is measured by BET method, it is confirmed that the specific surface area of the zirconium oxide film is 10 m 2 / g and this zirconium oxide film does not have a mesoporous structure It was done. Moreover, when the particle size of Au was observed by TEM, it was 2.5 nm.
The characteristics of the catalyst membranes obtained in Examples 1 to 6 and Comparative Examples 1 and 2 are shown in Table 1.
(CO除去試験)
有害成分として一酸化炭素(CO)を用い、実施例及び比較例の触媒体膜のCO酸化反応を評価した。具体的には、実施例及び比較例の触媒体膜を固定化したガラス基板を所定の流路幅および高さ(幅5cm、高さ1mm)となるように流路内に設置した試験装置を用意した。一酸化炭素(濃度1,000ppm)と空気を混合して被処理気体を調製し、流量をマスフローコントローラーで制御しながら、被処理気体を当該流路に供給し、CO除去試験を実施した。
(CO removal test)
The carbon monoxide oxidation (CO) was used as a harmful | toxic component, and the CO oxidation reaction of the catalyst body film of the Example and the comparative example was evaluated. Specifically, a test apparatus in which glass substrates on which the catalyst films of the Examples and Comparative Examples are immobilized is installed in a flow channel so as to have a predetermined flow channel width and height (width 5 cm, height 1 mm). Prepared. Carbon monoxide (concentration 1,000 ppm) and air were mixed to prepare a gas to be treated, and the gas to be treated was supplied to the flow path while the flow rate was controlled by a mass flow controller, and a CO removal test was performed.
試験装置による処理前の被処理気体と処理後の被処理気体の分析は長光路(2.5m)のガスセルを装填した赤外分光光度計(FTIR-6000、日本分光株式会社製)を用いた。反応条件は一酸化炭素濃度1,000ppm、酸素濃度20%、相対湿度50%、ガス流量0.1L/min、触媒サイズ25cm2、反応温度は室温、処理時間1時間とした。 In the analysis of the gas to be treated before treatment and the gas to be treated after treatment by the test apparatus, an infrared spectrophotometer (FTIR-6000, manufactured by JASCO Corporation) loaded with a gas cell with a long light path (2.5 m) was used. The reaction conditions were: carbon monoxide concentration 1,000 ppm, oxygen concentration 20%, relative humidity 50%, gas flow rate 0.1 L / min, catalyst size 25 cm 2 , reaction temperature room temperature, treatment time 1 hour.
上述した赤外分光光度計を用いて、試験装置に供給する前の被処理気体中のCO濃度(以下、「初期CO濃度」ともいう)と、試験装置で1時間処理した後の被処理気体中のCO濃度(以下、「反応後CO濃度」ともいう)を測定し、以下の式を用いてCO除去率を算出した。
CO除去率(%)={(初期CO濃度 − 反応後CO濃度)/初期CO濃度}×100
The concentration of CO in the gas to be treated (hereinafter also referred to as “initial CO concentration”) before being supplied to the test apparatus using the infrared spectrophotometer described above, and the gas to be treated after being treated for 1 hour in the test device The concentration of CO in the medium (hereinafter, also referred to as “the concentration of CO after reaction”) was measured, and the CO removal rate was calculated using the following equation.
CO removal rate (%) = {(initial CO concentration-post-reaction CO concentration) / initial CO concentration} × 100
(試験例1)
実施例1で得られたガラス基板を試験装置に設置し、CO除去試験を実施した。
(試験例2)
実施例2で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(試験例3)
実施例3で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(試験例4)
実施例4で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(試験例5)
実施例5で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(試験例6)
比較例1で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(試験例7)
比較例2で得られたガラス基板を試験装置に設置し、試験例1と同様な方法でCO除去試験を実施した。
(Test Example 1)
The glass substrate obtained in Example 1 was placed in a test apparatus, and a CO removal test was performed.
(Test Example 2)
The glass substrate obtained in Example 2 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
(Test Example 3)
The glass substrate obtained in Example 3 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
(Test Example 4)
The glass substrate obtained in Example 4 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
Test Example 5
The glass substrate obtained in Example 5 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
(Test Example 6)
The glass substrate obtained in Comparative Example 1 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
Test Example 7
The glass substrate obtained in Comparative Example 2 was placed in a test apparatus, and the CO removal test was performed in the same manner as in Test Example 1.
試験例1〜7でのCO除去率を表2に示す。 The CO removal rates in Test Examples 1 to 7 are shown in Table 2.
表1に示すように、実施例1〜6の触媒体膜は比較例1および2の触媒体膜と比較して、単位面積あたりの膜質量および金粒子担持量が大きく、触媒粒子を多く担持していることが確認できた。
また、表2に示すように、実施例1〜5の触媒体膜を用いた試験例1〜5はCO除去率がいずれも30%以上となった、一方、比較例1、2の試験例6〜7はCO除去率が4%以下であった。これらの結果から実施例1〜5の多孔質触媒体膜は比較例1および2の触媒体膜と比較して優れた触媒活性を有することが確認された。以上の結果から、本発明の有効性が示された。
As shown in Table 1, compared with the catalyst films of Comparative Examples 1 and 2, the catalyst films of Examples 1 to 6 have a large film mass per unit area and a large amount of gold particles supported, and carry a large number of catalyst particles. I was able to confirm that I was doing.
In addition, as shown in Table 2, in Examples 1 to 5 in which the catalyst films of Examples 1 to 5 were used, the CO removal rate was 30% or more in all cases. 6 to 7 had a CO removal rate of 4% or less. From these results, it was confirmed that the porous catalyst membranes of Examples 1 to 5 have superior catalytic activity as compared with the catalyst membranes of Comparative Examples 1 and 2. The above results show the effectiveness of the present invention.
Claims (17)
膜内において前記膜支持体領域と隣接し、膜表面において開口する細孔を有する多孔質であり、細孔内に貴金属および/または貴金属酸化物を含む触媒粒子が担持されている触媒体領域とを備えることを特徴とする多孔質触媒体膜。 A membrane support region configured to be one or more selected from the group consisting of solid particles, fibers, an aggregate of fibers or solid particles, and a monolithic structure, and which assists in maintaining the shape of the membrane;
A catalyst body region which is porous adjacent to the membrane support region in the membrane and has pores opened at the membrane surface, and in which the catalyst particles containing noble metal and / or noble metal oxide are supported in the pores A porous catalyst membrane characterized by comprising:
焼成および/または還元処理を行い前記膜状体の細孔内に酸化触媒粒子を形成することを含むことを特徴とする、請求項1から15のいずれか一つに記載の多孔質触媒体膜の製造方法。 A film-like body having pores obtained by applying a solution containing solid particles, a hydrolyzate of alkoxysilane or metal alkoxide, and a surfactant to a substrate followed by calcination, a noble metal contained in the oxidation catalyst particle, and And / or contacting with a solution in which the metal compound corresponding to the noble metal oxide is dissolved,
The porous catalyst membrane according to any one of claims 1 to 15, comprising forming an oxidation catalyst particle in pores of the membrane by calcination and / or reduction treatment. Manufacturing method.
前記プラズマ発生部によって発生した前記プラズマが存在する領域に形成される、被処理気体が流れる流路と、
前記流路に配置される請求項1から15のいずれか一つに記載の多孔質触媒体膜と、を備えることを特徴とするガス処理装置。
At least a first electrode, a second electrode, and a dielectric disposed between the first electrode and the second electrode, and between the first electrode and the second electrode A plasma generation unit that generates a plasma by applying a voltage to generate a discharge;
A flow path through which a gas to be treated flows, which is formed in a region where the plasma generated by the plasma generation unit is present;
A gas processing apparatus comprising: the porous catalyst membrane according to any one of claims 1 to 15 disposed in the flow path.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174077A JP7063562B2 (en) | 2017-09-11 | 2017-09-11 | Porous catalyst membrane and gas treatment equipment using it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017174077A JP7063562B2 (en) | 2017-09-11 | 2017-09-11 | Porous catalyst membrane and gas treatment equipment using it |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019048269A true JP2019048269A (en) | 2019-03-28 |
JP7063562B2 JP7063562B2 (en) | 2022-05-09 |
Family
ID=65905292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017174077A Active JP7063562B2 (en) | 2017-09-11 | 2017-09-11 | Porous catalyst membrane and gas treatment equipment using it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7063562B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108404657A (en) * | 2018-05-11 | 2018-08-17 | 章旭明 | A kind of electric discharge basic unit, catalytic converter and waste gas cleaning system |
CN115926617A (en) * | 2022-12-01 | 2023-04-07 | 广东美的白色家电技术创新中心有限公司 | Coating and preparation method and application thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187149A (en) * | 1989-01-12 | 1990-07-23 | Toyota Autom Loom Works Ltd | Pellet for carrying catalyst |
JP2006326530A (en) * | 2005-05-27 | 2006-12-07 | Hiroshima Univ | Nanoporous titanium oxide membrane and method for treating volatile organic compound using the same |
US20070222116A1 (en) * | 2004-07-12 | 2007-09-27 | Aspen Aerogels, Inc. | High strength, nanoporous bodies reinforced with fibrous materials |
JP2008049280A (en) * | 2006-08-25 | 2008-03-06 | National Institute Of Advanced Industrial & Technology | Method for promoting low-temperature oxidation reaction using noble metal nanoparticle-carrying metal oxide catalyst |
JP2012061393A (en) * | 2010-09-14 | 2012-03-29 | Nbc Meshtec Inc | Gas cleaning method using low temperature plasma and catalyst filter, and cleaning device therefor |
WO2013042328A1 (en) * | 2011-09-21 | 2013-03-28 | 株式会社Nbcメッシュテック | Device and method for gas treatment using low-temperature plasma and catalyst medium |
JP2013078759A (en) * | 2011-09-21 | 2013-05-02 | Nbc Meshtec Inc | Combustion exhaust gas treating unit and co2 supply apparatus |
-
2017
- 2017-09-11 JP JP2017174077A patent/JP7063562B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02187149A (en) * | 1989-01-12 | 1990-07-23 | Toyota Autom Loom Works Ltd | Pellet for carrying catalyst |
US20070222116A1 (en) * | 2004-07-12 | 2007-09-27 | Aspen Aerogels, Inc. | High strength, nanoporous bodies reinforced with fibrous materials |
JP2006326530A (en) * | 2005-05-27 | 2006-12-07 | Hiroshima Univ | Nanoporous titanium oxide membrane and method for treating volatile organic compound using the same |
JP2008049280A (en) * | 2006-08-25 | 2008-03-06 | National Institute Of Advanced Industrial & Technology | Method for promoting low-temperature oxidation reaction using noble metal nanoparticle-carrying metal oxide catalyst |
JP2012061393A (en) * | 2010-09-14 | 2012-03-29 | Nbc Meshtec Inc | Gas cleaning method using low temperature plasma and catalyst filter, and cleaning device therefor |
WO2013042328A1 (en) * | 2011-09-21 | 2013-03-28 | 株式会社Nbcメッシュテック | Device and method for gas treatment using low-temperature plasma and catalyst medium |
JP2013078759A (en) * | 2011-09-21 | 2013-05-02 | Nbc Meshtec Inc | Combustion exhaust gas treating unit and co2 supply apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108404657A (en) * | 2018-05-11 | 2018-08-17 | 章旭明 | A kind of electric discharge basic unit, catalytic converter and waste gas cleaning system |
CN115926617A (en) * | 2022-12-01 | 2023-04-07 | 广东美的白色家电技术创新中心有限公司 | Coating and preparation method and application thereof |
CN115926617B (en) * | 2022-12-01 | 2024-02-02 | 广东美的白色家电技术创新中心有限公司 | Coating and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP7063562B2 (en) | 2022-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7082376B2 (en) | Mesoporous catalyst and gas treatment equipment using it | |
JP6111198B2 (en) | Gas processing apparatus and method using low temperature plasma and catalyst body | |
JP5959383B2 (en) | Combustion exhaust gas treatment unit and CO2 supply device | |
JP5999747B2 (en) | Gas purification method and purification device using low temperature plasma and catalytic filter | |
JP7063562B2 (en) | Porous catalyst membrane and gas treatment equipment using it | |
JP2001070802A (en) | Photocatalyst film and its production | |
JP2007098197A (en) | Manufacturing method of photocatalyst material | |
JP2016193428A (en) | Catalyst-carrying electrode and gas treatment device prepared therewith | |
JP6373035B2 (en) | Gas processing equipment | |
JP2009190008A (en) | Method for producing dielectric laminate and apparatus for removing particulate carbon-containing compound by using the laminate obtained thereby | |
JPWO2012023612A1 (en) | Method for producing photocatalytic film and photocatalytic film | |
JP2002085967A (en) | Photocatalyst membrane and method of producing the same | |
KR20210014472A (en) | Window system comprising visible light active photocatalyst for air cleaning | |
JP2002113369A (en) | Photocatalyst and method of manufacturing the same | |
JP2003299965A (en) | Photocatalyst material and production method of the same | |
WO2019239936A1 (en) | Porous iron oxide catalyst body | |
JP3911355B2 (en) | Method for producing photocatalyst | |
JP7311288B2 (en) | catalytic filter | |
JP4465841B2 (en) | Hazardous gas treatment sheet and manufacturing method thereof | |
JP5604197B2 (en) | Cerium oxide catalyst support for VOC decomposition | |
JP4298593B2 (en) | Photocatalyst carrier and method for producing the same | |
JP7165345B2 (en) | Method for decomposing amine-based compound and catalyst for decomposing amine-based compound | |
JP2001232190A (en) | Photocatalyst membrane and method for producing the same | |
KR20240070263A (en) | Method for manufacturing hollow fiber type photocatalyst and the hollow fiber type photocatalyst thereby and photocatalyst filter comprising the same | |
KR20220115180A (en) | Method for manufacturing air purifying photocatalyst composite fiber assembly and air cleaning photocatalyst composite fiber assembly manufactured therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210611 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210622 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7063562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |