WO2016112829A1 - 一种可消除相邻转轮磁干涉的直读表 - Google Patents

一种可消除相邻转轮磁干涉的直读表 Download PDF

Info

Publication number
WO2016112829A1
WO2016112829A1 PCT/CN2016/070543 CN2016070543W WO2016112829A1 WO 2016112829 A1 WO2016112829 A1 WO 2016112829A1 CN 2016070543 W CN2016070543 W CN 2016070543W WO 2016112829 A1 WO2016112829 A1 WO 2016112829A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
permanent magnet
axis
angle sensor
magnetic field
Prior art date
Application number
PCT/CN2016/070543
Other languages
English (en)
French (fr)
Inventor
迪克詹姆斯·G
周志敏
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2017536844A priority Critical patent/JP6649390B2/ja
Priority to EP16737055.0A priority patent/EP3246670B1/en
Priority to US15/543,356 priority patent/US10794752B2/en
Publication of WO2016112829A1 publication Critical patent/WO2016112829A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/586Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters constructions of coils, magnetic circuits, accessories therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/60Circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/06Indicating or recording devices
    • G01F15/065Indicating or recording devices with transmission devices, e.g. mechanical
    • G01F15/066Indicating or recording devices with transmission devices, e.g. mechanical involving magnetic transmission devices

Definitions

  • the present invention relates to the field of magnetic sensors, and more particularly to a direct reading table that can eliminate magnetic interference of adjacent rotating wheels.
  • the direct reading electronic flow meter comprises a plurality of coaxial rotating wheels, wherein the rotating wheels have a set transmission ratio relationship, and by detecting the angular position of each rotating wheel and passing through a transmission ratio relationship between the rotating wheels, That is, the total number of turns of the electronic flow meter can be calculated.
  • the combination of the magnetic angle sensor and the permanent magnet wheel can be used to measure the position of the coaxial wheel, but in a system consisting of a single permanent magnet wheel and a magnetic angle sensor, the magnetic angle sensor can accurately measure the permanent magnet rotation. The rotational position and angle of the wheel.
  • the direct reading water meter of the multi-permanent magnet wheel system the following problems exist:
  • the magnetic sensor Since the distance between the permanent magnet runners is not too far apart, the magnetic sensor receives interference magnetic fields from other permanent magnet runners in addition to the magnetic field from the corresponding permanent magnet runner. In this case, The magnetic field angle calculated by the two output voltages of the magnetic angle sensor is no longer linear with the rotation angle of the permanent magnet wheel.
  • the solution is usually to introduce a soft magnetic material between the permanent magnet runners to achieve magnetic shielding, which on the one hand will increase the manufacturing cost of the read-only water meter, on the other hand, it may also change the magnetic circuit of the system and increase the complexity of the magnetic field distribution. Sex, introducing nonlinear components.
  • the present invention proposes a direct reading table that can eliminate the magnetic interference of adjacent rotating wheels, and does not rely on increasing the magnetic shielding, and the original magnetic field measured by the magnetic sensor is determined by an algorithm. It turns into a correcting magnetic field, and according to its output signal, the interference magnetic field is eliminated, so that accurate information of the rotation angle is obtained.
  • the invention provides a direct reading table capable of eliminating magnetic interference of adjacent rotating wheels, the direct reading table comprising N permanent magnet rotating wheels and N corresponding two-axis magnetic angle sensors, the ith magnetic angle
  • the sensor senses the linear superposition of the required magnetic field generated by the i-th permanent magnet wheel and the interference magnetic field generated by the other N-1 permanent magnet runners along the mutually perpendicular X-axis and Y-axis, and generates a permanent magnet runner that interferes with the magnetic field.
  • j permanent magnet runners, and j ⁇ i characterized in that the direct reading table comprises:
  • the original output sine/cosine signals of all N of the two-axis magnetic angle sensors can be sampled at high speed and form a sampling element of the original signal matrix [V/V p ] k (i) raw of N*1,
  • a storage element of a correction matrix [C ij ] of N*N can be stored
  • the original signal matrix [V / V p] k ( i) raw of elements V xi / V pxi or V yi / V pyi, V xi and V yj correspond to the i-th biaxially outputs the original signal in the X and Y axes of the two axial magnetic angle sensor, V pxi V pyi respectively and the i-th output of the X-axis and Y-axis two axially biaxial magnetic angle sensor original
  • the peak value of the signal, [V/V p ] k (i) raw , [V/V p ] k corr(i) is the N*1 original signal matrix and the correction signal matrix of the biaxial magnetic angle sensor, respectively.
  • each of said two biaxial magnetic angle sensor outputs a positive value / cosine signals of the curve after the offset process.
  • the correction matrix [C ij ] is obtained by finite element calculation or calculated by direct measurement data.
  • Each correction coefficient of the correction matrix [C ij ] depends on geometric parameters of each of the permanent magnet runners, the relative position of the permanent magnet runner and the two-axis magnetic angle sensor, and a magnetization state such as a permanent magnet runner The magnetization direction, magnetization, when the geometric parameters of the permanent magnet runner are the same and the magnetization states are the same, then the correction coefficients of the correction matrix [C ij ] are the same.
  • the water meter does not include a soft magnetic shielding material between the permanent magnet runners.
  • the permanent magnet runner has a cylindrical shape and has two magnetization modes, one of which is parallel to the over-diameter direction of the permanent magnet runner, and the other of which is perpendicular to the upper and lower bottom faces of the permanent magnet runner, and in two halves.
  • the cylinder has an anti-parallel magnetization direction.
  • the two-axis magnetic angle sensor is an X-Y dual-axis angle sensor.
  • the two-axis magnetic angle sensor is an AMR, GMR or TMR magnetic angle sensor.
  • the component of the non-linear voltage signal output acting on the biaxial magnetic angle sensor is reduced to greatly improve the accuracy of the post-correction measurement.
  • the magnetic field strength of the permanent magnet wheel is reduced, thereby reducing the rotation amplitude of the pinned layer of the two-axis magnetic angle sensor, and the The nonlinear component of the curve of the magnetic field measurement angle of the two-axis magnetic angle sensor according to the rotation angle of the magnetic field reduces the nonlinear component of the original sine and cosine output voltage signal, thereby improving the accuracy after correction.
  • Raising the magnetic design of the permanent magnet wheel to maintain a rotating magnetic field at the position of the two-axis magnetic angle sensor The amplitude is constant to reduce the nonlinear component of the original sine and cosine output voltage signal, improving the accuracy of the correction.
  • the required magnetic field is higher than the interference magnetic field to improve the accuracy after correction.
  • the two-axis magnetic angle sensor is close to the rotation axis of the permanent magnet wheel to improve the accuracy after correction.
  • a method for eliminating magnetic interference of adjacent rotating wheels in a direct reading water meter comprising N permanent magnet runners and N corresponding two-axis magnetic angle sensors, wherein the i-th magnetic angle sensor senses The magnetic field is the superposition of the magnetic field of the i-th permanent magnet wheel to be detected, and the magnetic field of the interference magnetic field, that is, other N-1 jth (j not equal to i) permanent magnet reels, the N original magnetic angle sensor output to the biaxial positive / cosine signals into the original signal a N * 1 matrix of [V i / V pi] raw , V xi, V pxi and V yi, V pyi respectively corresponding to the magnetic angle sensor biaxially
  • the two original output signals along the X-axis and the Y-axis and their peaks are characterized by the original output positive/cosine signal matrix [V i /V pi ] raw and an N*N of the N*1
  • the correction matrix [C ij ] is multiplie
  • Figure 1 is a schematic diagram of a direct reading system for two permanent magnet runners and two magnetic angle sensors.
  • Figure 2 is a diagram showing the relative position and rotating magnetic field of the permanent magnet runner and the magnetic angle sensor.
  • Figure 3 is a magnetization state diagram of a permanent magnet rotor: a) parallel magnetization in the diameter direction; b) magnetization in the vertical bottom surface.
  • Figure 4 is a schematic diagram of a multi-permanent magnet runner and a magnetic angle sensor direct reading meter system.
  • Figure 5 is a table 1 of a correction factor matrix comprising five permanent magnet runners and a magnetic angle sensor system.
  • Fig. 6 is a table 2 showing the rotation angles of the respective magnetic reels including the five permanent magnet reels and the magnetic angle sensor system.
  • Figure 7 is a table 3 of the raw output signals including five permanent magnet runner and magnetic angle sensor systems.
  • Figure 8 is a table 4 of the calculated values of the original rotation angle for the five permanent magnet runner and magnetic angle sensor systems.
  • Figure 9 is a table 5 of a corrected output signal comprising five permanent magnet runner and magnetic angle sensor systems.
  • Figure 10 is a rotation angle of each magnetic wheel including five permanent magnet runners and a magnetic angle sensor system. And the error of Table 6.
  • Figure 11 is a graph comparing the corrected and uncorrected angular errors of the water meter.
  • Figure 12 is a signal processing diagram of a multi-permanent magnet runner read-only straight meter system.
  • Figure 1 is the simplest case where the system is a direct reading table containing two permanent magnet runners m1 (i.e., 11) and m2 (i.e., 12) and corresponding magnetic angle sensors s1 (i.e., 21) and s2 (i.e., 22).
  • the positional relationship between one of the permanent magnet runners 13 and the magnetic angle sensor 23 and the magnetic field generated by the permanent magnet runner 13 at the magnetic angle sensor 23 are as shown in FIG. 2, and Bi is a rotating magnetic field, which can be decomposed into vertical phases.
  • the X, Y magnetic field components B xi and B yi , the magnetic angle sensor 23 in the figure is located near the central axis of the permanent magnet runner 13, and may actually be located in other working regions deviating from the axis.
  • 3 is a view showing two magnetization states of the permanent magnet runner, one of which is shown in FIG. 3(a), and the permanent magnet runner 14 has a magnetization direction parallel to the diameter of the bottom surface thereof, and FIG. 3(b)
  • the two 180 degree semi-cylinders of the permanent magnet runner 15 have magnetization directions perpendicular to the direction of the upper and lower bottom faces, respectively, and the two semi-cylinders have anti-parallel magnetization directions.
  • the X-direction magnetic field component B x1 sensed by the S1 magnetic angle sensor 21 can be expressed as the X magnetic field component B x11 and the permanent magnet reel m2 (i.e., 12) generated by the permanent magnet reel m1 (i.e., 11) are generated there.
  • the linear superposition of the magnetic field component B x21 ; likewise, the X-direction magnetic field component B x2 sensed by the S2 magnetic angle sensor 22 can be expressed as the X-direction magnetic field component B x12 and the permanent generated by the permanent magnet reel m1 (ie 11).
  • the magnetic field amplitude of the permanent magnet wheel m1 at the magnetic angle sensor s1 is C (R11), and its angle with the X axis is ⁇ 1
  • the magnetic field of the permanent magnet wheel m1 at the magnetic angle sensor s2 is assumed.
  • the amplitude is C(R12), and its angle with the X axis is also ⁇ 1
  • the magnetic fields of the permanent magnet wheel m2 at the magnetic angle sensors s1 and s2 are C(R21) and C(R22), respectively.
  • the angle with the X axis is the same as ⁇ 2 :
  • S1 magnetic angle sensor is a magnetic field component in the X direction and a magnetic angle sensor B x1 s2 B x2 magnetic field component in the X direction, respectively:
  • the angles ⁇ 1 and ⁇ 2 are the values of the voltage signal V xi outputted by the x-axis sensor in the magnetic angle sensors m1 and m2 with respect to the peak value V xpi , and the voltage signal V yi output by the Y-axis sensor, respectively.
  • the value after the regularity with respect to the peak value V ypi is a cosine curve:
  • V xi V xpi cos ⁇ i (9)
  • the magnetic angle sensor output V xi /V pxi corresponds to the cosine curve of the output original signal of the i-th biaxial magnetic angle sensor along the X-axis axis.
  • the magnetic field component B y1 of the magnetic angle sensor s1 in the Y direction and the magnetic field component B y2 of the magnetic angle sensor s2 in the Y direction are respectively:
  • V yi is a sinusoid
  • V yi V ypi sin ⁇ i (14)
  • the magnetic angle sensor output V yi /V pyi corresponds to the output original signal of the i-th biaxial magnetic angle sensor along the Y-axis axial direction being sinusoidal.
  • the direct reading meter system of the above two permanent magnet runners and two magnetic angle sensors is extended to include n permanent magnet runners 16, 17 and 19 as shown in FIG. 4 and a plurality of magnetic angle sensors 26, 27 and 29
  • the magnetic field components in the X and Y directions sensed by each magnetic angle sensor are:
  • the X and Y magnetic field components are represented as a matrix:
  • the positive diagonal term corresponds to the required item
  • the non-positive diagonal term corresponds to the interference term
  • the magnetic field generated by the corresponding i-th permanent magnet wheel is a required magnetic field
  • the other N-1 permanent magnet runners generate interference magnetic fields.
  • These permanent magnet rotors that generate interference magnetic fields are the jth permanent magnet rotor, where j ⁇ i, and the i-th magnetic angle sensor is perpendicular to each other.
  • the shaft and the Y-axis sense the linear superposition of the required magnetic field generated by the i-th permanent magnet wheel and the disturbing magnetic field generated by the other N-1 permanent magnet runners. It can be seen that the coefficient matrix is common to the X and Y magnetic fields, ie
  • the coefficient matrix of the interference term is:
  • the coefficient matrix corresponding to the required item is:
  • the required magnetic field term has the following approximate relationship:
  • a direct reading watch composed of N permanent magnet runners and N magnetic angle sensors, the permanent magnet runner and the magnetic angle sensor have the following features: the magnetic angle sensor is an XY biaxial angle sensor, which is parallel to the permanent magnet The position of the bottom of the runner.
  • the magnetic angle sensor is an AMR, TMR or GMR magnetoresistive sensor, when it is a TMR or GMR spin valve, reducing the rotation from the pinning layer under an external magnetic field helps to reduce the nonlinearity of the system.
  • the magnetic field of the permanent magnet runner should not be too strong under the premise of satisfying saturation; secondly, it is also required to introduce a soft magnetic material such as a shielding material that interferes with the magnetic field distribution; third, if the magnetic angle sensor is as far as possible
  • the linear working area on the surface of the permanent magnet runner can increase the linearity if the magnetic angle sensor is as close as possible to the rotational axis position.
  • V xi, V pxi and V yi, V pyi output respectively each of two magnetic angular sensors are / cosine signals may deviate from the curve that there may be the cosine output equation in this case need to go through the offset After the offset processing, the above values are obtained.
  • the correction coefficient C jj depends on the geometry of the permanent magnet wheel, the permanent magnet wheel and the permanent magnet wheel relative to the two-axis magnetic angle sensor and the magnetization of the permanent magnet wheel.
  • the state is the magnetization direction, the magnetization; if the geometrical dimensions of the above-mentioned permanent magnet runners are the same and the magnetization states are the same, the correction coefficients of the correction matrix are the same, the correction coefficients and their matrices can be obtained by finite element calculation, or by directly measuring the data. Calculated.
  • FIG. 10 is the corrected rotation angle and error of each magnetic wheel including five permanent magnet runners and a magnetic angle sensor system.
  • Figure 12 is a direct reading table capable of eliminating magnetic interference of adjacent rotating wheels, comprising N permanent magnet runners 31, 32 to 3N, and corresponding N dual-axis angular sensors, namely 41, 42 to 4N (where permanent magnets)
  • the arithmetic element finally calculates the rotational angular position of the i-th permanent magnet runner according to [V/V p ] k corr(i).
  • the magnetic magnetic shielding material is not included between the permanent magnet runners, and the disturbing magnetic field can be eliminated.
  • the output of the direct reading table is processed by the arithmetic element 52 and output from the I/O element 54.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种可消除相邻转轮磁干涉的直读表,包括N个共轴永磁转轮(31,32到3N)以及对应磁角度传感器(41,42到4N)、采样元件(51)、存储元件(53)和运算元件(52),磁角度传感器(41,42到4N)感受需要磁场即来自所测量永磁转轮(31,32到3N)的磁场,以及干扰磁场即来自其它永磁转轮(31,32到3N)磁场的线性叠加,采样元件(51)对N个磁角度传感器(41,42到4N)的原始输出信号进行采样形成N*1的原始信号矩阵[V/V p] k(i) raw,存储元件(53)存储N*N的校正矩阵[C ij],运算元件(52)进行校正信号矩阵[V/V p] kcorr(i)=[V/V p] k(i) raw-sum{C(i,j)*[V/V p] k(j) raw}的运算,从而消除干扰磁场并根据矫正信号计算出永磁转轮(31,32到3N)的旋转角度,该直读表具有计算简单、精确度高、不需要引入磁屏蔽的优点。

Description

一种可消除相邻转轮磁干涉的直读表 技术领域
本发明涉及磁性传感器领域,特别涉及一种可消除相邻转轮磁干涉的直读表。
背景技术
直读式电子流量表包括多个共轴的转轮,所述转轮之间具有设定的传动比关系,通过对各转轮的角度位置的检测,并通过相互之间的传动比关系,即可以计算出电子流量表的总圈数。采用磁角度传感器以及永磁转轮的组合可以实现对共轴的转轮位置的测量,但是在单个永磁转轮和磁角度传感器构成的系统中,磁性角度传感器可以精确的测量出永磁转轮的旋转位置和角度。但是在多永磁转轮系统的直读式水表中,则存在以下问题:
由于永磁转轮之间距离间隔不能太远,磁性传感器除了检测到来自所对应的永磁转轮的磁场之外,还受到来自于其它永磁转轮的干扰磁场,在这种情况下,磁角度传感器的两路输出电压计算得到的磁场角度随永磁转轮的旋转角度不再是线性。
解决方法通常为在永磁转轮之间引入软磁材料实现磁性屏蔽,这样一方面将增加只读式水表的制造成本,另一方面,还可能改变系统的磁路,增加磁场的分布的复杂性,引入非线性的成分。
发明内容
为了解决永磁转轮之间相互干扰的问题,本发明提出了一种可消除相邻转轮磁干涉的直读表,不依赖于增加磁屏蔽,通过算法,将磁性传感器所测量的原始磁场转变成矫正磁场,并根据其输出信号实现对干扰磁场的排除,从而得到旋转角度的精确的信息。
本发明所提出的一种可消除相邻转轮磁干涉的直读表,所述直读表包括N个永磁转轮以及N个对应的双轴磁角度传感器,所述第i个磁角度传感器沿相互垂直的X轴和Y轴感受第i个永磁转轮产生的需要磁场以及其它N-1个永磁转轮产生的干扰磁场的线性叠加,产生干扰磁场的永磁转轮为第j个永磁转轮,且j≠i,其特征在于所述直读表包括:
可以对所有N个所述双轴磁角度传感器的原始输出正/余弦信号进行高速采样并形成一个N*1的原始信号矩阵[V/Vp]k(i)raw的采样元件,
可以储存N*N的校正矩阵[Cij]的存储元件,
和进行[V/Vp]kcorr(i)=[V/Vp]k(i)raw-sum{C(i,j)*[V/Vp]k(j)raw}数学运算、以消除干扰磁场而获得所述永磁转轮的旋转角度的运算元件,
k=x或y,原始信号矩阵[V/Vp]k(i)raw中的元素为Vxi/Vpxi或Vyi/Vpyi,Vxi和Vyj分别对应所述第i个双轴磁角度传感器的沿X轴和Y轴两个轴向的输出原始信号,Vpxi和Vpyi分别对应所述第i个双轴磁角度传感器的沿X轴和Y轴两个轴向的输出原始信号的峰值,[V/Vp]k(i)raw,[V/Vp]kcorr(i)分别是所述双轴磁角度角度传感器的N*1原始信号矩阵和校正信号矩阵。
所述原始信号Vxi、Vpxi和Vyi、Vpyi分别为所述各双轴磁角度传感器两个输出正/余弦信号曲线经过偏移处理之后的数值。
所述校正矩阵[Cij]通过有限元计算获得,或者通过直接测量数据计算得到。
所述校正矩阵[Cij]的各校正系数取决于各所述永磁转轮的几何参数,所述永磁转轮与所述双轴磁角度传感器的相对位置以及磁化状态如永磁转轮的磁化方向,磁化强度,当永磁转轮的几何参数相同、磁化状态相同时,则所述校正矩阵[Cij]的校正系数相同。
所述水表中在所述永磁转轮之间不包含软磁屏蔽材料。
所述永磁转轮为圆柱形,具有两种磁化方式,其一为平行于永磁转轮的过直径方向,其二为沿垂直于永磁转轮的上下底面方向,且在两个半圆柱内具有反平行磁化方向。
所述双轴磁角度传感器为X-Y双轴角度传感器。
所述双轴磁角度传感器为AMR、GMR或TMR磁角度传感器。
减小所述作用在所述双轴磁角度传感器上的非线性电压信号输出的成分以大大提高校正后测量的精度。
当所述双轴磁角度传感器为GMR或TMR自旋阀传感器时,降低所述永磁转轮的磁场强度,从而减小所述双轴磁角度传感器钉扎层的旋转幅度,可以减小所述双轴磁角度传感器的磁场测量角随磁场旋转角度的曲线的非线性成分,从而减小所述原始正余弦输出电压信号的非线性成分,从而提高校正后的精度。
提高所述永磁转轮磁设计以保持所述双轴磁角度传感器位置的旋转磁场 的幅度的恒定从而减小所述原始正余弦输出电压信号的非线性成分,提高校正后的精度。
所述需要磁场高于所述干扰磁场时以提高校正后的精度。
所述双轴磁角度传感器靠近所述永磁转轮的旋转轴时以提高校正后的精度。
一种消除直读式水表中相邻转轮磁干涉的方法,所述直读式水表包括N个永磁转轮以及N个对应的双轴磁角度传感器,所述第i个磁角度传感器感受的磁场为其需要磁场即所要检测的第i个永磁转轮的磁场以及干扰磁场即其它N-1个第j(j不等于i)个永磁转轮的磁场的叠加,所述N个双轴磁角度传感器的原始输出正/余弦信号组成一个N*1的原始信号矩阵[Vi/Vpi]raw,Vxi、Vpxi和Vyi、Vpyi分别对应所述双轴磁角度传感器的沿X轴和Y轴两个轴向的原始输出信号及其峰值,其特征在于,将所述N*1的原始输出正/余弦信号矩阵[Vi/Vpi]raw和一个N*N的校正矩阵[Cij]相乘即可以获得N个双轴磁角度传感器的校正信号组成的一个N*1的信号校正矩阵[Vi/Vpi]correct,即:
经过所述校正矩阵[Cij]的转换之后,根据所述校正信号矩阵[Vix/Vxpi]correct以及[Viy/Vypi]correct获得消除所述干扰磁场之后的所述需要磁场所产生的信号,并直接计算出所述各永磁转轮的实际旋转角度。
附图说明
图1为两个永磁转轮和两个磁角度传感器的直读表系统示意图。
图2为永磁转轮和磁角度传感器相对位置和旋转磁场图。
图3为永磁转轮磁化状态图:a)平行过直径方向磁化;b)垂直底面磁化。
图4为多永磁转轮和磁角度传感器直读表系统示意图。
图5为包含5个永磁转轮和磁角度传感器系统的校正因子矩阵的表1。
图6为包含5个永磁转轮和磁角度传感器系统的各磁转轮旋转角度的表2。
图7为包含5个永磁转轮和磁角度传感器系统的原始输出信号的表3。
图8为包含5个永磁转轮和磁角度传感器系统的原始旋转角度计算值的表4。
图9为包含5个永磁转轮和磁角度传感器系统的校正输出信号的表5。
图10为包含5个永磁转轮和磁角度传感器系统的各磁转轮矫正旋转角度 及误差的表6。
图11为水表校正后和未校正的角度误差比较图。
图12为多永磁转轮只读直表系统信号处理图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例一
图1为最简单的情况,系统为包含两个永磁转轮m1(即11)和m2(即12)及对应的磁角度传感器s1(即21)和s2(即22)的直读表。其中一个永磁转轮13与磁角度传感器23之间的位置关系以及永磁转轮13在磁角度传感器23处所产生的磁场关系如图2所示,Bi为旋转磁场,可以分解成相垂直的X、Y磁场分量Bxi和Byi,图中磁角度传感器23位于永磁转轮13的中心轴附近,实际上,也可以位于偏离轴心的其他工作区域。图3为所述永磁转轮具有的两种磁化状态,其一为图3(a)所示,永磁转轮14具有平行于其底面直径方向的磁化方向,其二如图3(b)所示,永磁转轮15的两个180度半圆柱内分别具有垂直于上下底面方向的磁化方向,且两个半圆柱内具有反平行的磁化方向。
S1磁角度传感器21所感受的X方向磁场分量Bx1可以表示为永磁转轮m1(即11)在该处所产生的X磁场分量Bx11和永磁转轮m2(即12)在该处所产生的磁场分量Bx21的线性叠加;同样,S2磁角度传感器22所感受的X方向磁场分量Bx2可以表示为永磁转轮m1(即11)在该处所产生的X方向磁场分量Bx12和永磁转轮m2(即12)在该处所产生的Bx22的线性叠加:
Bx1=Bx11+Bx21  (1)
Bx2=Bx12+By22  (2)
进一步的,假设永磁转轮m1在磁角度传感器s1处的磁场幅度为C(R11),其与X轴的夹角为θ1,同时假设永磁转轮m1在磁角度传感器s2处的磁场幅度为C(R12),其与X轴的夹角也为θ1,同样,假设永磁转轮m2在磁角度传感器s1和s2处的磁场分别为C(R21)和C(R22),其与X轴夹角分别同为θ2
Figure PCTCN2016070543-appb-000001
Figure PCTCN2016070543-appb-000002
Figure PCTCN2016070543-appb-000003
则磁角度传感器s1在X方向上的磁场分量Bx1和磁角度传感器s2在X方向上的磁场分量Bx2分别为:
Bx1=C(R11)cos(θ1)+C(R21)cos(θ2)  (7)
Bx2=C(R12)cos(θ1)+C(R22)cos(θ2)  (8)
其中,在测量时,θ1和θ2角度分别为磁角度传感器m1和m2中的x轴传感器输出的电压信号Vxi相对于峰值Vxpi正则之后的值、Y轴传感器输出的电压信号Vyi相对于峰值Vypi正则之后的值。由于Vxi为余弦曲线:
Vxi=Vxpi cosθi  (9)
Figure PCTCN2016070543-appb-000005
磁角度传感器输出Vxi/Vpxi对应于第i个双轴磁角度传感器的沿X轴轴向的输出原始信号为余弦曲线。
同样,对于y轴分量,也有类似的关系,磁角度传感器s1在Y方向上的磁场分量By1和磁角度传感器s2在Y方向上的磁场分量By2分别为:
By1=By11+By21  (10)
By2=By12+By22  (11)
By1=C(R11)sin(θ1)+C(R21)sin(θ2)  (12)
By2=C(R12)sin(θ1)+C(R22)sin(θ2)  (13)
而Vyi为正弦曲线:
Vyi=Vypi sinθi  (14)
故,
Figure PCTCN2016070543-appb-000006
磁角度传感器输出Vyi/Vpyi对应于第i个双轴磁角度传感器的沿Y轴轴向的输出原始信号为正弦曲线。
将以上两个永磁转轮和两个磁角度传感器的直读表系统拓展到包含如图4所示的n个永磁转轮16,17和19以及多个磁角度传感器26,27和29,则每个磁角度传感器所感受的X和Y方向磁场分量分别为:
Figure PCTCN2016070543-appb-000007
Figure PCTCN2016070543-appb-000008
Figure PCTCN2016070543-appb-000009
则对于包含N个永磁转轮和N个磁角度传感器的只读式水表,将X和Y磁场分量表示为矩阵的形式:
Figure PCTCN2016070543-appb-000010
Figure PCTCN2016070543-appb-000011
其中正对角项对应需要项,非正对角项对应为干扰项,即对于第i个磁角度传感器而言,其所对应的第i个永磁转轮所产生的磁场为需要磁场,而其它N-1个永磁转轮产生的是干扰磁场,这些产生干扰磁场的永磁转轮为第j个永磁转轮,其中j≠i,而第i个磁角度传感器沿相互垂直的X轴和Y轴感受到的是第i个永磁转轮产生的需要磁场以及其它N-1个永磁转轮产生的干扰磁场的线性叠加。可以看出,系数矩阵对于X和Y磁场时共同的,即
Figure PCTCN2016070543-appb-000012
其中干扰项的系数矩阵为:
Figure PCTCN2016070543-appb-000013
而需要项对应的系数矩阵为:
Figure PCTCN2016070543-appb-000014
如果最近邻的相邻干扰项小于需要项,传感器的磁场角度主要由需要项来决定,则所需要磁场项具有如下近似关系:
|Bd|=|V|correct≈{|Cd|-|Cint|}|V|raw  (23)
其中,|Bd|为需要磁场,|V|correct为需要磁场所在磁角度传感器中产生的信号,|V|raw为磁角度传感器中产生的实际信号(包含有干扰磁场产生的信号)。
则导致如下近似结果,X方向所需要磁场信号和Y方向所需要的磁场信号分别为:
Figure PCTCN2016070543-appb-000015
其中,
Figure PCTCN2016070543-appb-000017
为校正矩阵,
则此时各个永磁转轮所对应的旋转角度可以根据上述消除干扰的磁场计算为:
Figure PCTCN2016070543-appb-000018
Figure PCTCN2016070543-appb-000019
由N个永磁转轮和N个磁角度传感器构成的直读表,其永磁转轮和磁角度传感器具有如下特征:所述的磁角度传感器为X-Y双轴角度传感器,位于平行于永磁转轮底面的位置上。
由于上述校正矩阵是基于各个永磁转轮在磁角度位置处的磁场的线性叠加,因此,其精度依赖于减小系统的非线性因素。第一,由于所述磁角度传感器为AMR,TMR或者GMR磁阻传感器,当为TMR或GMR自旋阀时,减小来自于钉扎层在外磁场下的转动有助于减小系统的非线性,因此要求永磁转轮尽可能在满足饱和的前提下的磁场不能太强;第二,还要求系统中不要引入屏蔽材料等干扰磁场分布的软磁材料;第三,如果磁角度传感器尽可能的处于永磁转轮表面的线性工作区,如果磁角度传感器尽可能的靠近旋转轴心位置,则能够提高其线性。通过提高永磁转轮磁设计以保持旋转磁场的幅度的恒定有助于减小所述输出电压信号的非线性成分,提高校正后的精度。
此外,Vxi、Vpxi和Vyi、Vpyi分别为所述各磁角度传感器两个输出正/余弦信号曲线在输出时可能存在着偏离所述正余弦方程的可能,此时需要经过偏移校正(offset)处理之后,得到上述数值。
此外,根据以上分析可以看出,所述校正系数Cjj取决于永磁转轮、永磁转轮之间以及永磁转轮相对于双轴磁角度传感器的几何尺寸以及永磁转轮的磁化状态如磁化方向,磁化强度;如果上述永磁转轮的几何尺寸相同、磁化状态相同,则所述校正矩阵的校正系数相同,校正系数及其矩阵可以通过有限元计算获得,或者通过直接测量数据计算得到。
实施例二
以下以包含5个永磁转轮以及5个磁角度传感器的直读表为例来对以上 消除磁干扰的算法进行检验,即N=5时,其校正因子矩阵如图5所示,图6为包含5个永磁转轮和磁角度传感器系统的各永磁转轮旋转角度,图7为包含5个永磁转轮和磁角度传感器系统的对应的原始输出信号,图8为包含5个永磁转轮和磁角度传感器系统的原始旋转角度计算值,图9为包含5个永磁转轮和磁角度传感器系统的校正输出信号,图10为包含5个永磁转轮和磁角度传感器系统的各磁转轮矫正旋转角度及误差。对图10中的校正和未校正的旋转角度误差值随5个永磁转轮的旋转角度的关系如图11所示,可以看出,未校正的角度误差在2-5度之间,而校正后的角度误差在0.5度以下,因此试验结果验证了校准算法的有效性。
实施例三
图12为一种可消除相邻转轮磁干涉的直读表,包含N个永磁转轮31,32到3N,以及对应的N个双轴角度传感器即41,42到4N(其中永磁转轮和双轴角度传感器为一一对应关系),以及可以对所有N个所述双轴磁角度传感器的原始输出正/余弦信号进行高速采样并形成一个N*1的原始信号矩阵[V/Vp]k(i)raw的采样元件51,可以储存N*N的校正矩阵[Cij]的存储元件53,和进行[V/Vp]kcorr(i)=[V/Vp]k(i)raw-sum{C(i,j)*[V/Vp]k(j)raw}数学运算、以消除干扰磁场的运算元件52,其中,在本例中,所述采样元件为A/D转换器,所述运算元件为MCU微处理器,存储元件53为存储器,其既可以外置于MCU之外,也可以内置于MCU内部。运算元件最终根据[V/Vp]kcorr(i)计算出所述第i个所述永磁转轮的旋转角度位置。该直读表中,在永磁转轮之间不包含软磁屏蔽材料,即可消除干扰磁场。
上述原始信号矩阵[V/Vp]k(i)raw中,k=x或y,Vxi、Vpxi和Vyi、Vpyi分别对应所述第i个双轴磁角度传感器的沿X轴和Y轴两个轴向的输出信号及其峰值,[V/Vp]k(i)raw,[V/Vp]kcorr(i)分别是所述双轴磁角度传感器的N*1原始信号矩阵和校正信号矩阵。
直读表的输出经过运算元件52处理之后,从I/O元件54输出。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化,本发明中的实施也可以进行不同组合变化,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

  1. 一种可消除相邻转轮磁干涉的直读表,所述直读表包括N个永磁转轮以及N个对应的双轴磁角度传感器,所述第i个磁角度传感器沿相互垂直的X轴和Y轴感受第i个永磁转轮产生的需要磁场以及其它N-1个永磁转轮产生的干扰磁场的线性叠加,产生干扰磁场的永磁转轮为第j个永磁转轮,且j≠i,其特征在于所述直读表包括:
    对所有N个所述双轴磁角度传感器的原始输出正/余弦信号分别进行高速采样并形成一个N*1的原始信号矩阵[V/Vp]k(i)raw的采样元件,
    储存N*N的校正矩阵[Cij]的存储元件,
    和进行[V/Vp]kcorr(i)=[V/Vp]k(i)raw-sum{C(i,j)*[V/Vp]k(j)raw}数学运算、以消除干扰磁场而获得所述永磁转轮的旋转角度的运算元件,
    k=x或y,原始信号矩阵[V/Vp]k(i)raw中的元素为Vxi/Vpxi或Vyi/Vpyi,Vxi、和Vyi分别对应所述第i个双轴磁角度传感器的沿X轴和Y轴两个轴向的输出原始信号,Vpxi和Vpyi分别对应所述第i个双轴磁角度传感器的沿X轴和Y轴两个轴向的输出原始信号的峰值,[V/Vp]k(i)raw,[V/Vp]kcorr(i)分别是所述双轴磁角度传感器的N*1原始信号矩阵和校正信号矩阵。
  2. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述原始信号Vxi、Vpxi和Vyi、Vpyi分别为所述各双轴磁角度传感器两个输出正/余弦信号曲线经过偏移处理之后的数值。
  3. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述校正矩阵[Cij]通过有限元计算获得,或者通过直接测量数据计算得到。
  4. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述校正矩阵[Cij]的各校正系数取决于各所述永磁转轮的几何参数、所述永磁转轮与所述双轴磁角度传感器的相对位置以及永磁转轮的磁化方向和磁化强度;当永磁转轮的几何参数相同、磁化状态相同时,则所述校正矩阵[Cij]的校正系数相同。
  5. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述直读表中在所述永磁转轮之间不包含软磁屏蔽材料。
  6. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述永磁转轮为圆柱形,所述永磁转轮磁化方向为平行于所述永磁转轮过直径方向,或为沿垂直于所述永磁转轮底面方向,且在两个半圆柱内具 有反平行磁化方向。
  7. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述双轴磁角度传感器为X-Y双轴角度传感器。
  8. 根据权利要求1或7所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述双轴磁角度传感器为AMR、GMR或TMR磁角度传感器。
  9. 根据权利要求1所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,减小所述作用在所述双轴磁角度传感器上的非线性电压信号输出的成分以提高校正后测量的精度。
  10. 根据权利要求9所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,当所述双轴磁角度传感器为GMR或TMR自旋阀传感器时,降低所述永磁转轮的磁场强度,从而减小所述双轴磁角度传感器钉扎层的旋转幅度,以减小所述双轴磁角度传感器的磁场测量角度随磁场旋转角度的曲线的非线性成分,从而减小所述原始正/余弦输出电压信号的非线性成分,提高校正后的精度。
  11. 根据权利要求9所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,提高所述永磁转轮磁设计以保持所述双轴磁角度传感器位置的旋转磁场的幅度的恒定从而减小所述原始正余弦输出电压信号的非线性成分,提高校正后的精度。
  12. 根据权利要求9所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述需要磁场高于所述干扰磁场以提高校正后的精度。
  13. 根据权利要求9所述的一种可消除相邻转轮磁干涉的直读表,其特征在于,所述双轴磁角度传感器靠近所述永磁转轮的旋转轴以提高校正后精度。
  14. 一种消除直读式水表中相邻转轮磁干涉的方法,所述直读式水表包括N个永磁转轮以及N个对应的双轴磁角度传感器,所述第i个磁角度传感器感受的磁场为其需要磁场即所要检测的第i个永磁转轮的磁场以及干扰磁场即其它N-1个第i(i不等于i)个永磁转轮的磁场的叠加,所述N个双轴磁角度传感器的原始输出正/余弦信号组成一个N*1的原始信号矩阵[Vi/Vpi]raw,Vxi、Vpxi和Vyi、Vpyi分别对应所述双轴磁角度传感器的沿X轴和Y轴两个轴向的原始输出信号及其峰值,其特征在于,将所述N*1的原始输出正/余弦信号矩阵[Vi/Vpi]raw和一个N*N的校正矩阵[Cij]相乘即可以获得N个双轴磁角度传感器的校正信号组成的一个N*1的信号校正矩阵[Vi/Vpi]correct,即:
    经过所述校正矩阵[Cij]的转换之后,根据所述校正信号矩阵[Vix/Vxpi]correct以及[Viy/Vypi]correct获得消除所述干扰磁场之后的所述需要磁场所产生的信号,并直接计算出所述各永磁转轮的实际旋转角度。
PCT/CN2016/070543 2015-01-14 2016-01-11 一种可消除相邻转轮磁干涉的直读表 WO2016112829A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017536844A JP6649390B2 (ja) 2015-01-14 2016-01-11 隣接する回転輪の磁気干渉を解消可能な直読式メータ
EP16737055.0A EP3246670B1 (en) 2015-01-14 2016-01-11 Direct-reading meter capable of eliminating magnetic interference of adjacent rotary wheels
US15/543,356 US10794752B2 (en) 2015-01-14 2016-01-11 Direct-read meter capable of eliminating magnetic interference of adjacent rotating wheels

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201520024560.0 2015-01-14
CN201520024560 2015-01-14
CN201510029996.3 2015-01-21
CN201510029996.3A CN104568041B (zh) 2015-01-14 2015-01-21 一种可消除相邻转轮磁干涉的直读表

Publications (1)

Publication Number Publication Date
WO2016112829A1 true WO2016112829A1 (zh) 2016-07-21

Family

ID=53084638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/070543 WO2016112829A1 (zh) 2015-01-14 2016-01-11 一种可消除相邻转轮磁干涉的直读表

Country Status (5)

Country Link
US (1) US10794752B2 (zh)
EP (1) EP3246670B1 (zh)
JP (1) JP6649390B2 (zh)
CN (2) CN104568041B (zh)
WO (1) WO2016112829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794752B2 (en) 2015-01-14 2020-10-06 MultiDimension Technology Co., Ltd. Direct-read meter capable of eliminating magnetic interference of adjacent rotating wheels

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10371739B2 (en) 2015-10-30 2019-08-06 Landis+Gyr Llc Arrangement for detecting a meter maintenance condition using winding resistance
KR102261619B1 (ko) 2015-11-30 2021-06-07 본스인코오포레이티드 플로트를 통한 유체 레벨 검출
US11183878B2 (en) 2017-08-07 2021-11-23 Landis+Gyr Innovations, Inc. Maintaining connectivity information for meters and transformers located in a power distribution network
US10908198B2 (en) 2017-08-07 2021-02-02 Landis+Gyr Innovations, Inc. Determining meter phase using interval voltage measurements
US10393791B2 (en) 2017-09-28 2019-08-27 Landis+Gyr Llc Detection of deteriorated electrical connections in a meter using temperature sensing and time-variable thresholds
US10690519B2 (en) 2018-02-23 2020-06-23 Landis+Gyr Innovations, Inc. Meter reading sensor using TMR and hall effect sensors
WO2020056288A1 (en) * 2018-09-14 2020-03-19 KSR IP Holdings, LLC Coupler element shapes for inductive position sensors
US11536754B2 (en) 2019-08-15 2022-12-27 Landis+Gyr Innovations, Inc. Electricity meter with fault tolerant power supply
US11226357B2 (en) 2019-09-27 2022-01-18 Landis+Gyr Innovations, Inc. Electrical arc detection for electric meter socket connections
US11245260B2 (en) 2020-02-25 2022-02-08 Landis+Gyr Innovations, Inc. Automatic discovery of electrical supply network topology and phase
US11429401B2 (en) 2020-03-04 2022-08-30 Landis+Gyr Innovations, Inc. Navigating a user interface of a utility meter with touch-based interactions
US11646602B2 (en) 2020-03-11 2023-05-09 Landis+Gyr Innovations, Inc. Topology and phase detection for electrical supply network
US11536745B2 (en) 2020-03-18 2022-12-27 Landis+Gyr Innovations, Inc. Electric meter installation issue detection based on orientation change
US11385074B2 (en) 2020-03-18 2022-07-12 Landis+Gyr Innovations, Inc. Programming electric meter global positioning system coordinates using smart device
US11359934B2 (en) 2020-03-24 2022-06-14 Landis+Gyr Innovations, Inc. Variable rate monitoring in flow-based metering systems
US11515725B2 (en) 2020-09-21 2022-11-29 Landis+Gyr Innovations, Inc. Autonomous topology validation for electrical supply network

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110140918A1 (en) * 2009-12-16 2011-06-16 Robert Bosch Gmbh Magnetic field communication arrangement and method
US8051723B2 (en) * 2008-04-11 2011-11-08 Performance Meter, Inc. Encoder-type register for an automatic water meter reader
CN102359804A (zh) * 2011-09-06 2012-02-22 黄华 直读式水表计度器
CN203116756U (zh) * 2013-01-09 2013-08-07 江苏多维科技有限公司 一种角度磁编码器和电子水表
CN103968860A (zh) * 2013-02-01 2014-08-06 江苏多维科技有限公司 绝对式磁旋转编码器
CN104568041A (zh) * 2015-01-14 2015-04-29 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097183A (en) * 1998-04-14 2000-08-01 Honeywell International Inc. Position detection apparatus with correction for non-linear sensor regions
DE10210184A1 (de) * 2002-03-07 2003-09-18 Philips Intellectual Property Anordnung zum Bestimmen der Position eines Bewegungsgeberelements
US7394244B2 (en) * 2003-10-22 2008-07-01 Parker-Hannifan Corporation Through-wall position sensor
JP3848670B1 (ja) * 2005-07-20 2006-11-22 株式会社トーメンエレクトロニクス 回転角度検出装置
CN103925933B (zh) * 2013-01-11 2016-12-28 江苏多维科技有限公司 一种多圈绝对磁编码器
CN104111099B (zh) * 2013-04-18 2017-12-19 江苏多维科技有限公司 一种电子水表

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8051723B2 (en) * 2008-04-11 2011-11-08 Performance Meter, Inc. Encoder-type register for an automatic water meter reader
US20110140918A1 (en) * 2009-12-16 2011-06-16 Robert Bosch Gmbh Magnetic field communication arrangement and method
CN102359804A (zh) * 2011-09-06 2012-02-22 黄华 直读式水表计度器
CN203116756U (zh) * 2013-01-09 2013-08-07 江苏多维科技有限公司 一种角度磁编码器和电子水表
CN103968860A (zh) * 2013-02-01 2014-08-06 江苏多维科技有限公司 绝对式磁旋转编码器
CN104568041A (zh) * 2015-01-14 2015-04-29 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表
CN204421990U (zh) * 2015-01-14 2015-06-24 江苏多维科技有限公司 一种可消除相邻转轮磁干涉的直读表

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10794752B2 (en) 2015-01-14 2020-10-06 MultiDimension Technology Co., Ltd. Direct-read meter capable of eliminating magnetic interference of adjacent rotating wheels

Also Published As

Publication number Publication date
JP2018506033A (ja) 2018-03-01
US10794752B2 (en) 2020-10-06
CN104568041B (zh) 2018-01-26
CN104568041A (zh) 2015-04-29
EP3246670A1 (en) 2017-11-22
EP3246670A4 (en) 2018-10-03
US20180073910A1 (en) 2018-03-15
CN204421990U (zh) 2015-06-24
EP3246670B1 (en) 2020-04-22
JP6649390B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2016112829A1 (zh) 一种可消除相邻转轮磁干涉的直读表
US8232795B2 (en) Magnetic sensor
US8736256B2 (en) Rotating field sensor
US10545032B2 (en) Angle sensor and angle sensor system
US20160169707A1 (en) Rotating field sensor
JP5928236B2 (ja) 回転磁界センサ
CN101836085A (zh) 使用定向跟踪无接触地感测旋转和角度位置的方法和设备
US11119162B2 (en) Angle sensor and angle sensor system
US20150066426A1 (en) Rotating field sensor
US11353526B2 (en) Rotational angle detection device
CN107588793A (zh) 基于离散正余弦变换的磁性角度传感器校准方法
CN111721326A (zh) 角度传感器及检测装置
JP4194485B2 (ja) 角度検出センサ
CN115494435A (zh) 用于确定磁体和操纵杆的取向的设备和方法
US11774234B2 (en) Angle sensor calibration method for safety measure without full rotation
JP5812046B2 (ja) 回転磁界センサ
CN111562524B (zh) 信号处理电路和磁传感器系统
CN110749276B (zh) 角度传感器的修正装置及角度传感器
JP5928234B2 (ja) 回転磁界センサ
CN110749277B (zh) 角度传感器的修正装置及角度传感器
CN211205181U (zh) 角度传感器和修正参数计算单元
JP5928235B2 (ja) 回転磁界センサ
JP6003371B2 (ja) 回転磁界センサ
Hsiao et al. Effect of Assembly Errors on Position Accuracy in a Rotary Magnetic Recording System
CN116379898A (zh) 具有误差检测的磁位置传感器设备、方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017536844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016737055

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15543356

Country of ref document: US