WO2016112473A1 - 可插拔的等离子体放电管装置 - Google Patents

可插拔的等离子体放电管装置 Download PDF

Info

Publication number
WO2016112473A1
WO2016112473A1 PCT/CN2015/000023 CN2015000023W WO2016112473A1 WO 2016112473 A1 WO2016112473 A1 WO 2016112473A1 CN 2015000023 W CN2015000023 W CN 2015000023W WO 2016112473 A1 WO2016112473 A1 WO 2016112473A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
plasma
discharge tube
plasma discharge
housing
Prior art date
Application number
PCT/CN2015/000023
Other languages
English (en)
French (fr)
Inventor
王守国
Original Assignee
王守国
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王守国 filed Critical 王守国
Priority to CA2973123A priority Critical patent/CA2973123A1/en
Priority to EP15877393.7A priority patent/EP3247179B1/en
Priority to AU2015376829A priority patent/AU2015376829B2/en
Priority to US15/111,094 priority patent/US20170303381A1/en
Priority to JP2017536892A priority patent/JP6535746B2/ja
Priority to PCT/CN2015/000023 priority patent/WO2016112473A1/zh
Priority to RU2017127297A priority patent/RU2656333C1/ru
Priority to CN201580072642.5A priority patent/CN107432077B/zh
Priority to KR1020177020429A priority patent/KR20170105528A/ko
Publication of WO2016112473A1 publication Critical patent/WO2016112473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/44Applying ionised fluids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/4697Generating plasma using glow discharges
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/466Radiofrequency discharges using capacitive coupling means, e.g. electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/20Non-thermal plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces

Definitions

  • the invention relates to a pluggable plasma discharge tube device, in particular to a housing that can be hand-held, the plasma discharge tube is connected to the housing by plugging and unplugging, and the single-electrode discharge generates quasi-glow cooling.
  • Plasma device The plasma generated by the device is mainly used for disinfecting, sterilizing, facial beauty, treating skin tissue infection treatment and killing cancer cells on sensitive skin surfaces.
  • low temperature cold plasma can quickly kill various germs, viruses and cancer cells, and also has a skin cosmetic effect. This is because the low-temperature cold plasma contains a large amount of energy particles such as electrons, ions, and some active radicals. These energy particles act on human tissues and can kill various germs.
  • the macroscopic temperature of the plasma cannot be too high, and arc discharge cannot be formed, otherwise the skin will be burned and the human body is difficult to accept.
  • the low-temperature cold plasma capacitively coupled discharge method that has been commonly used in the past is: discharge between the capacitances formed by the two electrodes, and the generated plasma beam is ejected from the two electrodes by the air flow.
  • ZL200820180894.7 discloses an atmospheric pressure plasma beam irradiation apparatus, which is a typical dielectric barrier capacitively coupled discharge structure in which a high voltage electrode is inside the tube and a ground electrode is coated outside the tube. The direction in which the plasma jet flows out is between the two electrodes The direction of the ionization electric field is vertical.
  • the discharge condition of this structure when the human skin approaches the spout, it is easy to form an arc between the inner electrode and the human body. In order to prevent the electrode from forming an arc on the skin, this form of discharge requires the human skin to have a sufficiently long distance from the spout. .
  • the capacitive coupling discharge mode of the two electrodes is relatively complicated in structure.
  • the low-temperature cold plasma inductively coupled discharge method that is commonly used in the past is that the plasma generator is in the form of a spiral tube, and the two ends of the spiral tube are respectively connected to the two output ends of the power source.
  • the patent KR101260893 discloses the use of a solenoid coil electrode to generate a plasma. In this manner, the high voltage electrode is wound around the outside of the plasma generating tube, and is a discharge form of inductive coupling, and the discharge spiral tube cannot be directly held, and Electrode winding also has a certain difficulty in making.
  • CN 101848595A discloses a discharge form using a radio frequency power source.
  • the required electrode is a metal electrode, and the external electrode is coated with a ground electrode that is shielded from the outside.
  • the plasma discharge must also be an inert gas to form ionization. Discharge. When the RF is discharged, the electrode cannot directly contact the skin; in addition, when the RF is exposed, the external radiation is large, which may interfere with the use of other electrical appliances.
  • the plasma generating head emphasized by GB 2508176A is driven by a radio frequency power source, which forms a radio frequency tip discharge and directly ionizes the air. This discharge does not directly affect the treatment of human skin, but is used for the purpose of purifying the air.
  • the low-temperature cold plasma devices we have seen do not have the structural design of the electrode parts in the form of plugging and unplugging.
  • the part of the outside that is in contact with the human skin must be replaced when used in different patients to avoid possible cross infection.
  • plasma RF electric knives and high-frequency electrosurgical knives have been used to cut skin tissue. It is a plasma discharge arc that is used. This arc discharge has a large local energy and cannot be used for general skin surface infections. Surface-killing fungi are less suitable for just stimulating the activation of skin tissue for cosmetic purposes.
  • the gas ejected from the plasma nozzle needs to be extracted out of the body, and the suction pipe needs to be designed.
  • the suction device design of the concentric casing has not been seen yet.
  • the plasma generating device seen in the past is powered by a general AC power supply.
  • the usual supply voltage is 220V or 110V.
  • This is a switch that directly converts AC into DC and then drives it through high-frequency signals.
  • a pulse signal is formed to drive the high voltage transformer to form an external output of high frequency and high voltage.
  • the input power of the plasma power supply has not been seen before. It is connected to the low-voltage DC power adapter or connected to the battery.
  • the input interface of the power supply has no USB port connection. We have not seen the power supply through the USB interface with the computer.
  • a plasma device for sterilizing the skin surface can be produced.
  • the present invention provides a plasma generating device in which an insulating housing can be hand-held and covered with a single electrode, such a single-electrode self-sustaining discharge or a single-electrode surface.
  • Inductive polarization discharge solves the problem of insulation installation caused by the fact that two electrodes are used to form a capacitive coupling discharge.
  • the single-electrode plasma device has a simple structure and a low manufacturing cost.
  • the plasma discharge tube in contact with the human body in the present invention is designed to be plugged and connected, and is easier to replace without taking Come to contact with infection.
  • the object of the present invention is to use the device to disinfect, sterilize, cosmetically treat, treat skin tissue infections and kill cancer cells.
  • the input end of the plasma power supply is required to be connected to a low-voltage DC power supply, for example, a power adapter with a DC output of 12V or a USB
  • a low-voltage DC power supply for example, a power adapter with a DC output of 12V or a USB
  • the plasma discharge tube can generate a normal voltage plasma discharge.
  • This formed power connection is designed to be isolated from the usual 220V/ or 110V supply.
  • the plasma power supply is designed by DC low voltage isolation to ensure the safety of the plasma device when it is used by the human body.
  • the plasma power source is a single-electrode output power source, and the other output end of the power source is connected to the ground of the power source itself (as shown in FIG. 2), or may be in a floating state.
  • the output power of the power supply can be controlled by a potentiometer switch, or a remote digital switch can be used to control the discharge intensity.
  • the plasma power source is a unipolar output power source, and the required input
  • the output voltage range is 4 to 25 kV
  • the frequency range is 1 to 500 kHz
  • the power range is 0 to 100 W.
  • the method for inductive discharge of the plasma discharge tube of the present invention refers to: when the contact gap between the human skin and the discharge tube is within a range of 2 mm, or when the human skin contacts the outer surface of the discharge tube, the contact gap The air is broken down by the induced polarization charge on the surface of the discharge tube to form a quasi-glow cold plasma discharge (Fig. 5). When the distance of the discharge tube from the human skin exceeds 2 mm, no plasma discharge is generated.
  • the method of inductive discharge of the plasma discharge tube is characterized in that: a metal electrode rod is inserted into the sealed insulating tube at one end, and a part of the metal rod is exposed to the insulating tube, and the insulating tube can be a glass tube or can be used. ceramic pipe.
  • the ends of the sealed end of the plasma discharge tube can adopt different shapes (Fig. 4).
  • the discharge tube is formed by inserting a metal electrode rod into an insulated tube sealed at one end, a part of the metal rod is exposed outside the insulating tube, and the metal
  • the gap between the electrode rod and the inner wall of the insulating tube is filled with conductive powder.
  • the conductive powder may be aluminum powder, silver powder, graphite powder, etc., and a sealing seal is arranged at the nozzle, and the sealing glue may be made of conductive silica gel.
  • the method for inductive discharge of the plasma discharge tube of the present invention is characterized in that: the plasma discharge tube is connected to the hand-held housing by plugging and unplugging, and the plugging and connecting method is to make the plasma discharge tube
  • the metal rod passes through a rubber material positioning sleeve on a casing and is inserted into a sleeve of a metal female hole, which is fixed on an insulating bracket in the casing, the metal sleeve and the power source One of the output ends is connected, and the sealed end of the insulating tube is exposed to the outside of the hand-held housing.
  • the inductive discharge mode of the plasma discharge tube is characterized in that: a hand-held insulated housing is provided with a plasma power source, a fixed support frame, a connecting wire, a rubber material positioning sleeve, and a metal mother plug.
  • the hole, and the power control knob, the power input terminal and the like are arranged on the housing.
  • the device is integrated in a hand-held housing with the advantages of being small, lightweight and portable.
  • the in-tube induced discharge mode of the plasma discharge tube, the electricity in the housing The source is connected to the power adapter with a DC voltage of 12V or less through the connector plug ( Figure 6), or via a USB connector to the 5V battery ( Figure 7).
  • the invention has a self-sustaining discharge mode in a plasma tube for supplying a gas source, and the structure of the device is characterized in that: a medical plastic tube with two ends is opened, and the plastic tube is inserted into a hole in the hand-held housing through a plugging method. The connection is pulled out, and an elastic sealing ring is arranged in the opening of the air hole. After the plastic pipe is inserted into the air hole, it penetrates with the air inlet passage and the air supply source in the casing.
  • the self-sustaining discharge mode of the plasma tube with the gas supply source is characterized in that: a metal electrode is arranged in the air hole opening in the hand-held housing, and the end of the electrode is placed in a gas passage in the housing,
  • the end of the electrode may also be covered by an insulating medium tube which is connected to an output end of the plasma power source outside the hand-held housing through an electrode joint on the hand-held housing, the other output end of which is in its power supply line Ground connection.
  • the self-sustained discharge mode in the plasma tube with the gas supply source means that the inert gas is ionized to form a quasi-glow plasma jet when flowing through the electrode end portion in the casing, and the plasma jet passes through the plastic tube and from the plastic tube
  • the port is ejected outward ( Figure 9).
  • the intensity of the plasma jet is regulated by a power supply power switch knob and a gas flow switch.
  • the method of self-sustaining discharge in a plasma tube with a gas supply source is characterized in that: the nozzle of the plastic tube is provided with a certain distance from the end of the electrode, that is, the length of the plastic tube is required to be greater than 60 mm, and the size is limited for When the human skin approaches the plastic tube ejection opening, the electrode does not form an arc discharge to the human body.
  • the self-sustaining discharge mode of the plasma tube with the gas supply source is characterized in that: the outer part of the plastic tube can be further covered with a concentric outer plastic tube, and the outer plastic tube and the inner plastic tube are provided with a certain The gap, the outer plastic tube is longer than the length of the inner plastic tube by a certain range of 2 to 20 mm, and the outer plastic tube is also inserted into the air hole opening of the housing by plugging and unplugging, and the suction tube in the hand-held housing and the suction outside the housing
  • the gas pump penetrates, and the gas that discharges the discharge tube in the plasma is further passed by the suction pump from the air suction gap between the outer plastic tube and the inner tube. The road is pulled out.
  • the invention has a self-sustaining discharge in a plasma tube for supplying a gas source, and the hand-held housing and the plasma power source are connected by a cable, and the hand-held housing and the air supply source are connected by a gas pipe (see FIG. 8).
  • the gas source discharge device is also characterized in that the inert gas is argon gas, helium gas, or a mixed gas of the two.
  • FIG. 1 is a cross-sectional view showing the structure of an inductive discharge outside a plasma discharge tube according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the operation of the implementation of the technology.
  • FIG 3 is a cross-sectional view showing a method of plugging and unplugging a plasma discharge tube according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing another plasma tube outer inductive discharge tube of an end shape according to a second embodiment of the present invention.
  • Fig. 5 is a photographic view showing a pair of human skin discharges according to an embodiment of the present invention.
  • FIG. 6 is a photographic diagram of an overall device when a device is powered by a power adapter according to an embodiment of the present invention.
  • FIG. 7 is a schematic overall view of a device connected to a battery by using a UBS interface according to an embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a self-sustaining discharge structure in a plasma tube with a gas supply source according to Embodiment 3 of the present invention.
  • FIG. 9 is a photograph of a self-sustained discharge in a plasma tube with a gas supply source according to a third embodiment of the present invention.
  • FIG. 10 is a schematic view showing a self-sustaining structure of a plasma tube having another end shape of a gas supply source according to an embodiment of the present invention.
  • Figure 11 is a cross-sectional view showing the self-sustaining discharge structure of a plasma tube with a gas supply system having a gas supply source according to a fifth embodiment of the present invention.
  • a hand-held plastic housing 100 comprises a plasma power source 107, a plastic fixing bracket 106, a metal sleeve 103 and a connecting wire 104.
  • a power adjustment switch 105 is provided on the housing, and the power input terminal is connected to the plug 108 and the like.
  • the plasma discharge tube is connected to the hand-held housing 100 by plugging and unplugging.
  • the insertion and extraction connection method is that the metal electrode rod 101 end of the plasma discharge tube is fixed to the housing 100 through one end.
  • the upper rubber material positioning sleeve 103A is inserted into a metal sleeve 103 which is connected to the metal sleeve.
  • the metal sleeve 103 is made of a copper or stainless steel material and is fixed to the insulating bracket 106 in the housing 100.
  • the plug-and-pull connection mode of the plasma discharge tube and the housing 100 has the advantages of accurate positioning, convenient insertion and removal, and easy replacement after use.
  • the plasma discharge tube is formed by inserting a metal electrode rod 101 into an insulating tube 102 sealed at one end, and the metal electrode rod 101 may be made of copper, stainless steel or tungsten-copper alloy. A part of the metal electrode rod 101 is exposed outside the insulating tube 102, and a gap between the metal electrode rod 101 and the inner wall of the insulating tube is filled with the conductive powder 101A, and the conductive powder may be aluminum powder, silver powder, graphite powder or the like.
  • a sealant 101B is provided at the port of the insulating tube 102, and the sealant 101B can be made of conductive silica gel.
  • the plasma electrode tube thus produced has no air gap in the tube, and the internal gap discharge of the tube is avoided.
  • the out-of-tube inductive discharge mode of the plasma discharge tube refers to when the contact gap between the human skin and the discharge tube 102 is within a range of 2 mm, or the human skin is in contact with the outer surface of the discharge tube (insulation tube) 102. At this time, the air contacting the gap is broken by the induced polarization charge on the outer surface of the discharge tube 102 to form a quasi-glow cold plasma discharge. When the distance of the discharge tube from the human skin exceeds 2 mm, plasma discharge is no longer generated. The plasma discharge is performed in air without the need for an additional working gas, and the discharge intensity of the plasma can be adjusted by the switch knob 105.
  • the voltage output of the transformer output terminal of the plasma power source 107 required in the first embodiment of the present invention is 4 to 15 kV, the frequency range is 1 to 500 kHz, and the power range is 0 to 30 W.
  • the other output of the power supply is connected to its own ground, as shown in Figure 2.
  • the power supply required by the plasma power source 107 is a low voltage DC power supply within 12V, for example, a power adapter 300 is connected, as shown in FIG. 6, or is connected to the 5V power supply battery 200 through the USB interface 211, as shown in FIG.
  • the power supply connection of the plasma power source 107 is designed to ensure the safety of the plasma discharge tube when generating plasma discharge to the human body.
  • the plasma discharge tube of the closed end elbow shape is compared with the straight tube form of the first embodiment, and the generated plasma can be on the curved surface of the elbow.
  • An advantage of the design of such a structure is that the end of the plasma discharge tube is easily viewed from the side when discharged.
  • the other structural design of the second embodiment is identical to that of the first embodiment.
  • one end of the plasma discharge tube is inserted into the metal sleeve 103, and the metal sleeve 103 is connected to the output end of the plasma power source 107 through the wire 104. 2, 3 and 4.
  • no other electrodes were provided on the periphery of the plasma discharge tube.
  • 2 is a block diagram of a single-electrode plasma connection method and a power supply structure.
  • the device adopts a medical plastic tube 102A which is open at both ends, and the medical plastic tube 102A is connected to the connector on the hand-held housing 100 by plugging and unplugging.
  • the 100A is connected, and the connector 100A is provided with a circular air hole opening 103B for inserting and connecting.
  • the circular air hole opening 103B is provided with an elastic sealing ring 103C.
  • a single metal electrode 101 is disposed in the opening of the hand-held housing 100.
  • the single metal electrode 101 may be a copper rod, a stainless steel rod or a tungsten copper rod.
  • the end of the metal electrode 101 is in the housing.
  • the end of the metal rod electrode 101 may also be covered with a dielectric tube (such as a ceramic tube or a quartz tube), and the electrode rod 101 is
  • the electrode connector 108 is connected to the electrode connector 108 on the hand-held housing 100 via a wire 104.
  • the electrode connector 108 is connected to an output end of the plasma power source 107 outside the housing 100 through a wire 104A coated with an insulating material.
  • the other output is connected to a ground line in its power line; the input of the power source 107 is connected to a power adapter 300 whose output DC voltage is within 12V.
  • the inert gas of the gas supply source 109 passes through the end of the electrode 101, the inert gas is broken down to form a plasma self-sustaining jet discharge 111, which flows through the pluggable plastic tube 102A, And sprayed out from its nozzle.
  • the intensity of the plasma jet can be controlled by adjusting the output power of the power source and controlling the gas flow switch 109B.
  • the nozzle of the plastic tube 102A and the end of the electrode 101 are kept at a certain distance, that is, the length of the plastic tube 102A is required to be greater than 60 mm, and the diameter of the tube is: 1-20 mm, which is limited to When the human skin approaches the plastic tube ejection opening, the electrode 101 is prevented from directly forming an arc discharge with the human body.
  • the hand-held housing 100 and the power source 107 are connected by a cable 104A in the third embodiment; the hand-held housing 100 and the air supply source are connected through the air tube 109A.
  • the gas supply source 109 is an inert gas, and argon gas, helium gas, and a mixed gas of the two may be used.
  • the output of the plasma power source 107 required in the third embodiment of the present invention has a voltage range of 4 to 25 kV, a frequency range of 1 to 500 kHz, and a power range of 0 to 100 W.
  • the other end of the power supply is connected to its own ground wire, and its connection mode is as shown in FIG. 2 .
  • the power supply of the plasma power source 107 required in the third embodiment of the present invention is a low voltage DC power supply within 12V, for example, a power adapter 300 is connected, and the output voltage of the adapter 300 is 12V.
  • the plasma power source 107 is isolated from the normal 220V/ or 110V by low voltage direct current to ensure the safety of the plasma discharge tube when discharging the surface of the human body.
  • FIG. 10 is a schematic view showing the end structure of a self-sustained discharge in another end-shaped plasma tube for discharging a gas source according to Embodiment 4 of the present invention.
  • the difference between the embodiment and the third embodiment of the present invention is that the shape of the end of the plasma discharge tube is a plastic tube 102B using an elbow, and the shape is discharged, which can be conveniently used for plasma treatment of oral skin infection.
  • Figure 11 is a cross-sectional view showing the self-sustaining discharge structure of a plasma tube with a gas supply system having a gas supply source according to a fifth embodiment of the present invention.
  • the outer portion of the plastic tube 102A can be further covered with a concentric outer plastic tube 102C.
  • the outer plastic tube 102C and the inner plastic tube 102A are provided with a certain gap 110B.
  • the width of the gap 110B is within 1 mm, and the outer plastic tube 102C is smaller than the inner portion.
  • the length of the plastic tube 102A is longer than a certain range of 2 to 20 mm, and the outer plastic tube 102C is also inserted into the connector 100A of the hand-held housing 100 by plugging and unplugging, and through the suction tube 110A and the housing 100 in the hand-held housing 100.
  • the external getter pump 110 is connected to penetrate, and the gas discharged from the nozzle of the plasma inner discharge tube (plastic tube 102A) is separated from the gap 110B between the outer plastic tube 102C and the inner plastic tube 102A by the getter pump 110, and the hand-held housing.
  • the suction passage 110A in 100 is drawn outward.
  • the electrode structure, the connection mode, the air supply source and the power supply requirement in the fifth embodiment of the present invention described in FIG. 11 are identical to those in the third embodiment.
  • the difference is that a concentric outer plastic tube is placed outside the original plastic tube 102A, and an air suction passage and an air pump are provided.
  • the two tubes can also adopt a joint structure while maintaining a certain gap.
  • the plastic tubes used are all medical plastic materials.
  • the purpose of the inhalation system is for in vivo interventional plasma treatment, which is to pass the plasma gas flowing out of the end of the discharge tube.
  • the getter pump and the inspiratory tube are withdrawn from the body.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plasma Technology (AREA)
  • Electrotherapy Devices (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

一种可插拔的等离子体放电管装置,所述的装置包含一个与可手持壳体(100)通过插拔方式连接的等离子体放电管,该等离子体放电管内设一个单电极(101),在其外围不设有其它电极,该单电极(101)连接等离子体电源(107)的一个输出端,该等离子体电源(107)的另一个输出端连接其自身线路的地线,该等离子体电源(107)的输入端是连接12V以下的直流电源或电池,该等离子体的产生方式可为接触式的管外感应放电方式,或为有供气源的管内自持放电方式,该等离子体放电管能产生准辉光的常压冷等离子体。所产生的等离子体可用于对敏感表面的消毒、灭菌、治疗皮肤组织感染治疗以及癌细胞的杀灭。

Description

可插拔的等离子体放电管装置 技术领域
本发明涉及一种可插拔的等离子体放电管装置,尤其是涉及一个壳体可手持的、等离子体放电管是由插拔方式与壳体连接的、单电极放电的、产生准辉光冷等离子体的装置。该装置所产生的等离子体主要是用于对敏感皮肤表面的消毒、灭菌、面部美容、治疗皮肤组织感染治疗以及癌细胞的杀灭。
背景技术
人们已经普遍证明低温冷等离子体可以快速杀灭各种病菌、病毒和癌细胞,同时也具有皮肤美容的作用。这是由于低温冷等离子体的内包含大量的电子、离子以及一些活性自由基等能量粒子,这些能量粒子作用到人体组织,可以杀灭各种病菌。
由于人体有限的耐受性,等离子体在作用于人体皮肤表面灭菌及杀灭病毒时,等离子体的宏观温度不能太高,不能形成电弧放电,否则会灼伤皮肤,人体难以接受。
因此在处理人体皮肤表面时,寻找一个放电强度可以很好的控制的、常压下小功率的、均匀放电的、准辉光的低温冷等离子体是十分必要的。
过去人们普遍采用的低温冷等离子体电容耦合放电方式是:在两个电极所构成的电容之间的放电,所产生的等离子体束流是从两个电极之间由气流携带喷出的。例如ZL200820180894.7公开了常压等离子体束照射装置,该专利是典型的介质阻挡电容耦合的放电结构,其管内是高压电极,地电极包覆在管外。其等离子体射流流出的方向是与两个电极之间 的电离电场方向垂直的。对于这种结构的放电情况,当人体皮肤接近喷口时很容易在内电极和人体之间形成电弧,为了避免电极对皮肤形成电弧,这种形式的放电要求人体皮肤离开喷口要有足够长的距离。此外,这种两个电极的电容耦合放电方式,其结构相对繁杂。
过去人们普遍采用的低温冷等离子体电感耦合放电方式是:等离子体发生器是螺旋管形式,螺旋管的两端分别与电源的两个输出端连接。例如:专利KR101260893公开了采用螺线管线圈电极的方式产生等离子体,这种方式高压电极是缠绕在等离子体发生管的外部,是属于电感耦合的放电形式,该放电螺旋管无法直接手持,且电极缠绕也有一定的制作难度。
CN 101848595A公开了采用射频电源的放电形式,这种射频等离子体,所要求的电极是金属电极,其外部要包覆对外屏蔽的地电极,等离子体放电也必须是采用惰性气体氦气才能形成电离放电。射频放电时,电极不能直接接触皮肤;此外,射频外露时,对外辐射大,也会干扰其它电器使用。
GB 2508176A所强调的等离子体发生头,是采用射频电源驱动的,形成的是射频尖端放电,直接电离空气。这种放电不能直接作用于对人体皮肤的处理,只是用于净化空气的目的。
目前我们看到的这些低温冷等离子体装置,其电极部位都没有采用插拔连接的方式的结构设计。等离子体用于对人体放电时,其外部与人体皮肤接触的部位,在用于不同的患者时必须更换,以免带来可能的交叉感染。
过去所见到等离子体射频电刀和高频电刀是用于切割皮肤组织,它是利用的等离子体放电电弧,这种电弧放电局部能量比较大,不能用于一般性的皮肤表面感染,杀灭表面的真菌,更不适合只是刺激激活皮肤组织来用于美容的目的。
采用介入式等离子体对体内组织处理时,需要把从等离子体喷口喷出的气体再抽出体外,需要设计抽气管道,目前尚未没有见到同心套管的吸气装置设计。
过去所见到的等离子体发生装置,其电源是采用一般的交流供电,通常的供电电压是220V或110V,这种是供电是直接把AC变成DC,再通过高频信号所驱动的开关管形成脉冲信号来驱动高压变压器形成高频高压的对外输出。采用这种方式的电源,即使电源中设有短路保护、过流、过压保护等措施,但当等离子体放电电极对人体皮肤进行放电时,人们在心里上的都有恐惧感。目 前还尚未见到等离子体电源的输入供电是通过连接低压直流电源适配器或是与电池连接的设计,更没有电源的输入接口采用USB口的连接形式,我们商未见到通过与计算机USB接口供电就能产生用于皮肤表面灭菌的等离子体装置。
发明内容
为了克服上述常压低温冷等离子体设备的不足,本发明是提供一个绝缘壳体可手持的、内包覆一个单电极的等离子体发生装置,这种单电极自持放电或是采用单电极的表面感应极化放电,解决了通常采用两个电极构成电容耦合放电时,在制作安装时所带来的绝缘安装困难。单电极等离子体装置且结构简单、制作成本低。
为了避免等离子体发生器部位在与人体皮肤接触使用时,有可能带来的人体交叉感染,本发明中与人体接触的等离子体放电管,设计成为插拔连接方式,更易于更换,不会带来接触传染。
本发明的目的在于用该装置对人体皮肤的消毒、灭菌、美容、治疗皮肤组织感染治疗以及癌细胞的杀灭。
为了更好的保障等离子体放电管对人体放电时的安全性,所述的等离子体电源,其输入端要求是连接低压的直流电源,例如:连接输出为直流12V的电源适配器;或是通过USB接口连接直流5V的电池,以及通过USB接口与普通计算机的USB接口连接后,就可以使等离子体放电管产生常压等离子体放电。这种形成的供电连接,其目的是与通常的220V/或110V供电实现隔离。这种等离子体电源通过直流低压隔离的连接设计,保证了等离子体设备对人体使用时的安全性。
所述的等离子体电源是一个单电极输出的电源,该电源的另一个输出端是与电源自身的地线连接(如图2),也可以是处于悬浮状态。该电源的输出功率的大小可以通过电位器开关控制,也可以采用远程数码开关来控制其放电强度。
所述的等离子体电源是一个单极输出的电源,对其要求的输 出电压范围是4~25kV,频率范围是1~500kHz,功率范围是0~100W。
所述的本发明等离子体放电管的管外感应放电方式是指:当人体皮肤与放电管的接触间隙在2mm以内的范围时,或是人体皮肤在接触到放电管的外部表面时,接触间隙的空气被放电管表面的感应极化电荷击穿形成准辉光冷等离子体放电(如图5),该放电管离开人体皮肤的距离超过2mm时,就不再产生等离子体放电。
所述的等离子体放电管的管外感应放电方式,其特点是:一端密闭的绝缘管内插入一个金属电极杆,该金属杆的一部分外露出绝缘管,该绝缘管可以采用玻璃管,或是采用陶瓷管。为了适应不同曲面的处理,等离子体放电管的密闭端的端部可以采用不同的形状(如图4)。
所述的本发明等离子体放电管的管外感应放电方式,其放电管的制作方法是:在一个一端密闭的绝缘管内插入一个金属电极杆,该金属杆的一部分外露在该绝缘管外,金属电极杆与绝缘管内壁之间的间隙是灌入导电粉,该导电粉可为铝粉、银粉、石墨粉等,其管口处设有密封胶密封,该密封胶可以采用导电硅胶。
所述的本发明等离子体放电管的管外感应放电方式,其设备结构特点是:等离子体放电管是通过插拔方式与手持壳体连接的,其插拔连接方法是让等离子体放电管的金属杆穿过一个壳体上的橡胶材料定位套筒,再插入到一个金属母孔的套筒内,该金属母孔套筒是固定在壳体内的一个绝缘支架上,该金属套筒与电源的一个输出端连接,该绝缘管的密闭端是暴露在手持壳体的外部。
所述的等离子体放电管的管外感应放电方式,其设备结构特点是:一个可手持的绝缘壳体内设有一个等离子体电源、固定支撑架、连接导线、橡胶材料定位套筒、金属母插孔,以及在壳体上设有电源控制旋钮、电源输入端接头等。该设备是集成在一个可手持的壳体内的优点是体积小、重量轻、便于携带。
所述的等离子体放电管的管外感应放电方式,其壳体内的电 源是通过连接插头与壳体外的输出电压为直流12V以内的电源适配器连接(如图6),或是通过USB接头与5V的电池连接(如图7)。
所述的本发明有供气源的等离子体管内自持放电方式,其设备结构特点是:采用一个两端开口的医用塑料管,该塑料管是通过插拔方式与手持壳体上一个气孔开口插拔连接,该气孔开口内设有弹性密封圈。该塑料管插入该气孔口后,与壳体内的进气通道以及供气源贯通。
所述的有供气源的等离子体管内自持放电方式,其设备特点是:手持壳体上的气孔开口内设有一个金属电极,该电极的端部是置于壳体内的气体通道内,该电极的端部也可以采用绝缘介质管包覆,该电极通过手持壳体上的电极接头与手持壳体外的等离子体电源的一个输出端连接,该电源的另一个输出端是与其电源线路中的地线连接。
所述的有供气源的等离子体管内自持放电方式是指:惰性气体在流经壳体内的电极端部时被电离形成准辉光等离子体射流,该等离子体射流穿过塑料管并从其端口向外喷出(如图9)。该等离子体射流的强度是通过电源功率开关旋钮和气体流量开关调节。
所述的有供气源的等离子体管内自持放电方式,其特征在于:该塑料管的喷口与电极端部设有一定的距离,即该塑料管的长度是要求大于60mm,该尺寸限定是为了当人体皮肤接近塑料管喷射口时,电极不会对人体形成电弧放电。
所述的有供气源的等离子体管内自持放电方式,其特征还在于:该塑料管的外部可再套有一个同心的外塑料管,该外塑料管与内塑料管之间设有一定的间隙,外塑料管比内塑料管的长度长出一定的范围2~20mm,外塑料管也是通过插拔方式插入壳体的气孔开口中,并与手持壳体中的吸气管以及壳体外的吸气泵贯通,喷出等离子体内放电管的气体再由该吸气泵从外塑料管与内管之间间隙的吸气通 道向外抽出。
所述的本发明有供气源的等离子体管内自持放电形成,其手持壳体和等离子体电源是通过电缆连接,手持壳体和供气源之间是通过气管连接(如图8)。
所述的有供气源放电装置的特点还在于:惰性气体是采用氩气,或是氦气,或者是两者的混合气体。
附图说明
下面结合附图对本发明进一步的描述。
图1为本发明实施例一等离子体放电管管外感应放电形式结构剖视示意图。
图2是以简图的方式表示出该技术实施的工作原理图。
图3为本发明实施例一等离子体放电管插拔连接方式剖视示意图。
图4为本发明实施例二另一种端部形状的等离子体管外感应放电管剖视示意图。
图5为本发明实施例一对人体皮肤放电时的照片图。
图6为本发明实施例一设备采用电源适配器供电时的整体设备照片图。
图7为本发明实施例一设备采用UBS接口与电池连接供电时的整体照片图。
图8为本发明实施例三有供气源的等离子体管内自持放电结构剖视示意图。
图9为本发明实施例三有供气源的等离子体管内自持放电照片。
图10为本发明实施例四有供气源的另一种端部形状的等离子体管内自持放结构示意图。
图11为本发明实施例五有供气源的带有吸气系统的等离子体管内自持放电结构剖视示意图。
附图标记清单
100可手持的塑料壳体
100A壳体上带有开孔的塑料连接头
101金属电极
101A导电粉
101B导电硅胶
102绝缘管(陶瓷管或玻璃管)
102A医用塑件管
102B头部弯曲的医用塑料管
102C医用塑料外套管
103金属套筒
103A橡胶定位套筒
103B圆形气孔开口
103C橡胶密封圈
104导线
104A外包绝缘层的导线
105功率控制旋钮开关
106绝缘固定支架
107单极输出电源
108电极连接插头
108A气管连接头
109气体源
109A进气导管
109B气体流量控制开关
110抽气泵
110A抽气管
110B两个塑料管之间的间隙
111等离子体
200电池
201皮肤
211USB连接头
212双股连接线
300电源适配器
301电源连接插头
具体实施方式
实施例一
参照附图1、2、3和5所给出的是本发明具体实施例一的详细描述。其特征在于:一个可手持的塑料壳体100内包含有一个等离子体电源107、塑料固定支架106、金属套筒103、连接导线104。在该壳体上设有功率调节开关105,电源输入端连接插头108等。该实施例的优点是该设备部件都集成在手持壳体内,体积小、重量轻、容易操作。
参照图1和图3所示,等离子体放电管是通过插拔方式与手持壳体100连接的,其插拔连接方法是等离子体放电管的金属电极杆101端穿过一个固定在壳体100上的橡胶材料定位套筒103A,插入到一个金属套筒103内与该金属套筒连接,该金属套筒103是由铜或不锈钢材料制成,它被固定在壳体100内的绝缘支架106上, 并与电源107的一个输出端连接,该绝缘管102的密闭端是暴露在手持壳体100的外部。这种等离子体放电管与壳体100的插拔连接方式的优点是定位准确,插拔连接方便,易于使用后更换。
参照附图3,等离子体放电管的制作方法是:在一个一端密闭的绝缘管102内插入一个金属电极杆101,该金属电极杆101可以采用铜、不锈钢或钨铜合金等。该金属电极杆101的一部分是外露在该绝缘管102外,金属电极杆101与绝缘管内壁之间的间隙是灌入导电粉101A,该导电粉可为铝粉、银粉、石墨粉等。在绝缘管102的端口处设有密封胶101B密封,该密封胶101B可以采用导电硅胶。这样制成的等离子体电极管,其管内不会有空气间隙,避免了管内部间隙放电。
参照图5,等离子体放电管的管外感应放电方式是指当人体皮肤与放电管102的接触间隙在2mm以内的范围时,或是人体皮肤在接触到放电管(绝缘管)102的外部表面时,接触间隙的空气被放电管102外表面的感应极化电荷击穿形成准辉光的冷等离子体放电。该放电管离开人体皮肤的距离超过2mm时,就不再产生等离子体放电。该等离子体放电是在空气中进行,无需要额外的工作气体,该等离子体的放电强度可以通过开关旋钮105来调节。
参照图6和图7,本发明实施例一中所要求的等离子体电源107的变压器输出端的电压范围是4~15kV,频率范围是1~500kHz,功率范围是0~30W。该电源的另一输出端是与其自身的地线连接,如图2所示。
等离子体电源107所要求的供电是12V内的低压直流供电,例如:连接一个电源适配器300,如图6所示;或是通过USB接口211与5V供电电池200连接,如图7所示。这种等离子体电源107的供电连接设计是为了保证等离子体放电管对人体产生等离子体放电时的安全性。
实施例二
图4是本发明实施例二的等离子体管外感应放电管的端部是弯曲头,这是实施例二和实施例一的唯一不同之处。这种密闭端部弯头形状的等离子体放电管与实施例一的直管形式比较,其所产生的等离子体可以在弯头的弧面上。这种结构的设计的优点是:等离子体放电管的端部放电时,易于从侧面观察。该实施例二的其它结构设计与实施例一是完全相同。
在本发明实施例一和二中,等离子体放电管的一端是插入在金属套筒103中,该金属套筒103通过导线104与等离子体电源107的输出端连接,其连接方式参见图1、2、3和4。实施例一和二中,在等离子体放电管的外围不设有其它电极。图2为单电极等离子体连接方式以及电源结构原理框图。
实施例三
参照图8,是有供气源的等离子体管内自持放电方式,该设备是采用一个两端开口的医用塑料管102A,该医用塑料管102A是通过插拔方式与手持壳体100上的连接头100A连接,该连接头100A设有一个圆形的气孔开口103B实现插拔连接,该圆形的气孔开口103B内设有弹性密封圈103C,该塑料管102A插入壳体的气孔开口103B后,与手持壳体100内的进气通道109A以及供气源109形成气路贯通。
参照图8,在手持壳体100的开孔内设有一个单金属电极101,该单金属电极101可以是铜杆、不锈钢杆或是钨铜杆,该金属电极101的端部是在壳体100内的气体通道中,该金属杆电极101的端部也可以采用介质管(比如陶瓷管或石英管)包覆,该电极杆101是 通过导线104与手持壳体100上的电极接头108连接,该电极连接头108再通过包覆有绝缘材料的导线104A与壳体100外的等离子体电源107的一个输出端连接,该电源107的另一个输出端是与其电源线路中的地线连接;该电源107输入端是与输出直流电压在12V以内的电源适配器300连接。
参照图8和9,当供气源109的惰性气体通过电极101的端部时,惰性气体被击穿形成等离子体自持射流放电111,该等离子体射流111流过可插拔的塑料管102A,并从其管口向外喷出。该等离子体射流的强度可以通过调节电源的输出功率和控制气体流量开关109B来控制。
参照图8,该塑料管102A的喷口与电极101端部要保持一定的距离,即为该塑料管102A的长度是要求大于60mm,该管的直径范围是:1-20mm,该尺寸限定是为了当人体皮肤接近塑料管喷射口时,避免电极101直接与人体形成电弧放电。
参照图8的有供气源的等离子体管内自持放电结构,实施例三中手持壳体100和电源107是通过电缆104A连接;手持壳体100和供气源是通过气管109A连接。
供气源109为惰性气体,可以采用氩气、氦气以及两者的混合气体。
本发明实施例三中所要求的等离子体电源107的输出端输出的电压范围是4~25kV,频率范围是1~500kHz,功率范围是0~100W。该电源的另一端是与其自身的地线连接,其连接方式如图2所示。
本发明实施例三中所要求的等离子体电源107的供电是12V内的低压直流供电,例如:连接一个电源适配器300,该适配器300的输出电压为12V。这种等离子体电源107与通常的220V/或110V通过低压直流隔离的方式,保证了等离子体放电管对人体表面放电时的安全性。
实施例四
图10给出的本发明实施例四有供气源放电的另一种端部形状等离子体管内自持放电的端部结构示意图。它和本发明实施例三的区别是等离子体放电管端部形状是采用弯头的塑料管102B,该形状放电,可方便用于对口腔皮肤感染的等离子体治疗。
实施例五
图11为本发明实施例五有供气源的带有吸气系统的等离子体管内自持放电结构剖视示意图。该塑料管102A的外部可再套有一个同心的外塑料管102C,外塑料管102C与内塑料管102A之间设有一定的间隙110B,该间隙110B的宽度在1mm内,外塑料管102C比内塑料管102A的长度长出一定的范围2~20mm,外塑料管102C也是通过插拔方式插入手持壳体100的连接头100A中,并通过手持壳体100中的吸气管110A与壳体100外的吸气泵110连接贯通,喷出等离子体内放电管(塑料管102A)管口的气体,由吸气泵110从外塑料管102C与内塑料管102A之间的间隙110B,以及手持壳体100内的吸气通道110A向外抽出。
图11中所述的本发明实施例五中的电极结构、连接方式、供气源和电源要求与实施例三完全相同。不同之处是在原来的塑料管102A外又套了一个同心外塑料管,多出抽气通道和一个抽气泵。该两个管在保持其一定间隙的情况下,也可以采用连体结构。所采用的塑料管都是采用医用的塑料材料。
图11中的本发明实施例五,带有吸气系统的目的是用于体内介入式等离子体治疗,是把流出放电管端部的等离子体气体,通过 吸气泵和吸气管抽出体外。
上面参考附图结合具体的实施例对发明进行了描述,然而,需要说明的是,对于本领域的技术人员而言,在不脱离本实用新型的精神和范围的情况下,可以对上述实施例作出许多改变和修改,这些改变和修改都落在本实用新型的权利要求限定的范围内。

Claims (13)

  1. 一种可插拔的等离子体放电管装置,所述的装置包含一个与可手持壳体通过插拔方式连接的等离子体放电管,该等离子体放电管内设一个高频高压电极,在其外围不设有其它电极,该高频高压电极连接等离子体电源的一个输出端,该等离子体电源的另一个输出端连接其自身线路的地线,该等离子体电源的输入端是12V以下的直流电源或电池,该等离子体的产生方式可为接触式的管外感应放电方式,或为有供气源的管内自持放电方式,该等离子体放电管能产生准辉光的常压冷等离子体。
  2. 根据权利要求1所述的可插拔的等离子体放电管装置,其特征在于:一个可手持的壳体,该壳体是由塑料制成的,所述的等离子体放电管与手持壳体是通过插拔方式连接的绝缘管,该绝缘管可采用陶瓷管、玻璃管、或塑料管。
  3. 根据权利要求1所述的可插拔的等离子体放电管装置,其特征在于:所述的等离子体放电管内只设有一个电极,该电极的外围不再设有其它电极,该单电极是连接电源的高频高压变压器的一个输出端,该电源变压器的另一输出端是与其自身线路的地线连接或是处于悬浮状态。
  4. 根据权利要求1或3所述的可插拔的等离子体放电管装置,其特征在于:所要求的单电极输出的等离子体电源的输出端频率范围是1~500kHz,峰-峰电压范围是在4~25kV,输出的功率范围是0~100W。
  5. 根据权利要求1、3或4所述的可插拔的等离子体放电管装置,其特征在于:所要求的等离子体电源的输入端是连接12V以下的低压直流电源或电池,在该设备壳体上设有电源输出功率调节开关旋钮和电源供电连线插头等。
  6. 根据权利要求1所述的可插拔的等离子体放电管装置,其特征 在于:等离子体放电管的管外感应放电方式是指一个一端密闭另一端开口的绝缘管内插入一个金属电极杆,该金属杆作为一个单电极,该单电极暴露在绝缘管外有一定的长度,该单电极与绝缘管内壁之间的间隙是填入导电粉,在绝缘管管口处设有密封胶密封。
  7. 根据权利要求1或6所述的可插拔的等离子体放电管装置,其特征在于:该等离子体放电管是通过插拔方式与手持壳体连接的,其插拔连接方法是等离子体放电管的金属杆电极穿过壳体上的一个橡胶材料的定位孔套筒,插入到壳体内一个金属母孔的套筒内,该金属母孔套筒是固定在壳体内的塑料支架上,并与壳体内的一个电源的一个输出端连接,该等离子体放电管插入到手持壳体后,其密闭端是暴露在手持壳体的外部。
  8. 根据权利要求1、6或7所述的可插拔的等离子体放电管装置,其特征在于:该等离子体放电管的管外感应放电是当人体皮肤与放电管的接触间隙在2mm以内的范围时,或是绝缘管在接触到放电管的外部表面时,在接触间隙内的空气被放电管外表面的感应极化电荷击穿形成准辉光冷等离子体放电。
  9. 根据权利要求1所述的可插拔的等离子体放电管装置,其特征在于:有供气源的等离子体管内自持放电方式是采用一个两端开口的医用塑料管,该塑料管是通过插拔方式与手持壳体上的一个气孔开口连接,该塑料管插入壳体的气孔开口后,与壳体内的进气通道以及供气源贯通。
  10. 根据权利要求1或9所述的可插拔的等离子体放电管装置,其特征在于:该手持壳体的气孔开口内包含有一个电极,该单电极的外围不设有其它电极,该单电极的端部也可以采用绝缘介质管包覆,该单电极的端部是置于壳体内的气体通道中,该单电极是与壳体外的一个等离子体电源的输出端连接,该电源的另一个输出端是与其电源自身线路的地线连接。
  11. 根据权利要求1、9或10所述的可插拔的等离子体放电管装置,其特征在于:有供气源的等离子体管内自持放电方式是采用惰性气体流经手持壳体内的一个单电极端部时,被电离形成准辉光等离子体射流,该等离子体射流穿过塑料管并从其管口向外喷出。
  12. 根据权利要求1、9、10或11所述的可插拔的等离子体放电管装置,其特征在于:该塑料管的外部可再套一个同心的外塑料管,外塑料管与内塑料管之间设有一定的间隙,外塑料管比内塑料管的长度要求长出的范围是2~20mm,外塑料管是通过插拔方式插入壳体的气孔开口中,并通过手持壳体中的吸气管与壳体外的吸气泵连接,喷出等离子体内放电管的气体再由该吸气泵从该外塑料管包覆的吸气通道向外抽出。
  13. 使用权利要求1至12所述的可插拔的等离子体放电管装置,其特征在于:这种装置所要求的等离子体放电管,可以产生准辉光的低温冷等离子体,用于对敏感表面,尤其是对人体皮肤的消毒、灭菌、美容、治疗皮肤组织感染治疗以及癌细胞的杀灭。
PCT/CN2015/000023 2015-01-12 2015-01-12 可插拔的等离子体放电管装置 WO2016112473A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2973123A CA2973123A1 (en) 2015-01-12 2015-01-12 Plasma generating device and method for treating skin
EP15877393.7A EP3247179B1 (en) 2015-01-12 2015-01-12 Pluggable plasma discharge tube device
AU2015376829A AU2015376829B2 (en) 2015-01-12 2015-01-12 Plasma generating device and method for treatinig skin
US15/111,094 US20170303381A1 (en) 2015-01-12 2015-01-12 Plasma device with a replaceable (plug-in) discharge tube
JP2017536892A JP6535746B2 (ja) 2015-01-12 2015-01-12 挿入・引出可能なプラズマ放電管装置
PCT/CN2015/000023 WO2016112473A1 (zh) 2015-01-12 2015-01-12 可插拔的等离子体放电管装置
RU2017127297A RU2656333C1 (ru) 2015-01-12 2015-01-12 Плазменный прибор со сменной разрядной трубкой
CN201580072642.5A CN107432077B (zh) 2015-01-12 2015-01-12 可插拔的等离子体放电管装置
KR1020177020429A KR20170105528A (ko) 2015-01-12 2015-01-12 플러그형 플라즈마 방전관 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000023 WO2016112473A1 (zh) 2015-01-12 2015-01-12 可插拔的等离子体放电管装置

Publications (1)

Publication Number Publication Date
WO2016112473A1 true WO2016112473A1 (zh) 2016-07-21

Family

ID=56405087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000023 WO2016112473A1 (zh) 2015-01-12 2015-01-12 可插拔的等离子体放电管装置

Country Status (9)

Country Link
US (1) US20170303381A1 (zh)
EP (1) EP3247179B1 (zh)
JP (1) JP6535746B2 (zh)
KR (1) KR20170105528A (zh)
CN (1) CN107432077B (zh)
AU (1) AU2015376829B2 (zh)
CA (1) CA2973123A1 (zh)
RU (1) RU2656333C1 (zh)
WO (1) WO2016112473A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658931A (zh) * 2016-10-19 2017-05-10 南京航空航天大学 一种便捷式大气压常温等离子体射流产生装置
CN106993369A (zh) * 2017-05-24 2017-07-28 南京工业大学 具有人体保护功能的便携式低温等离子体发生装置
CN111175010A (zh) * 2020-01-08 2020-05-19 中国空气动力研究与发展中心超高速空气动力研究所 基于高频辉光的大口径高超声速低密度风洞流场显示系统
US11013100B2 (en) 2016-10-10 2021-05-18 University Of Strathclyde Plasma accelerator

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL226157B1 (pl) * 2014-10-21 2017-06-30 Inst Tech Materiałów Elektronicznych Mikrosonda do elektroporacji selektywnej i sposob wytwarzania takiej mikrosondy
JPWO2019093375A1 (ja) * 2017-11-08 2020-11-19 積水化学工業株式会社 プラズマ式治療装置
CN108210067A (zh) * 2017-12-30 2018-06-29 郑州赫恩电子信息技术有限公司 一种等离子体杀癌细胞理疗仪
MX2018006507A (es) * 2018-05-21 2019-05-30 Instituto Nac De Investigaciones Nucleares Reactor para aplicacion puntual de plasma no termico a presion atmosferica.
DE102018209735A1 (de) * 2018-06-15 2019-12-19 Terraplasma Gmbh Plasmaeinrichtung zur Behandlung von Körperoberflächen
JP6936190B2 (ja) * 2018-06-21 2021-09-15 積水化学工業株式会社 プラズマ式治療装置
JP2020000405A (ja) * 2018-06-27 2020-01-09 積水化学工業株式会社 プラズマ式治療装置
CN108848604A (zh) * 2018-07-18 2018-11-20 中国科学院电工研究所 一种便携式微空心阴极放电等离子体射流装置
US11130559B2 (en) * 2018-08-20 2021-09-28 Goodrich Corporation Heated panels with ballistic structures
CN108806084B (zh) * 2018-09-20 2023-08-25 深圳洛可可工业设计有限公司 一种售货装置
CN109350811B (zh) * 2018-12-07 2024-06-21 深圳市百瑞琪医疗器械有限公司 一种雾化装置
RU191942U1 (ru) * 2019-05-14 2019-08-28 Федеральное государственное бюджетное военное образовательное учреждение высшего образования "Военно-медицинская академия имени С.М. Кирова" Министерства обороны Российской Федерации (ВМедА) Портативный микрохирургический плазмаскальпель-коагулятор
RU2721756C1 (ru) * 2019-06-11 2020-05-22 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Способ получения охватывающего барьерного разряда и устройство для осуществления способа получения охватывающего барьерного разряда
CN110124474B (zh) * 2019-06-12 2024-07-26 青岛海琅智能装备有限公司 用于恶臭废气处理的双介质阻挡放电装置
DE102019122930A1 (de) * 2019-08-27 2021-03-04 Relyon Plasma Gmbh Vorrichtung zur Erzeugung einer Gasentladung
CN111068084B (zh) * 2019-12-24 2021-07-06 南京工业大学 一种便携充电式等离子体杀菌笔
EP4115713A4 (en) * 2020-03-02 2024-03-27 The Regents of the University of California PLASMA SOURCES FOR GENERATING COLD PLASMA
CN111388867A (zh) * 2020-03-27 2020-07-10 南京苏曼生物医学科技有限公司 一种应用等离子体电磁生物学效应的鼻炎治疗装置
CN112089984B (zh) * 2020-08-06 2023-09-22 苏州国科兴旺医疗设备有限公司 一种等离子体创伤修复的手持设备及使用方法
US20220304738A1 (en) * 2021-03-25 2022-09-29 Aesthetics Biomedical, Inc. Plasma fractionation device for skin rejuvenation
CN113350696B (zh) * 2021-06-10 2024-01-19 上海茜茜纤美美容科技有限公司 一种离子爆手具及系统
CN113993267A (zh) * 2021-11-04 2022-01-28 中国科学技术大学 一种便携式混合放电冷大气等离子体射流装置
JP7214821B1 (ja) 2021-12-01 2023-01-30 Tbcグループ株式会社 放電管とledとを備えた美容機器
CN114848463A (zh) * 2022-04-08 2022-08-05 华中科技大学 一种等离子体针灸装置及方法
WO2023232669A1 (de) * 2022-05-31 2023-12-07 neoplas med GmbH Vorrichtung zur führung plasmastrahlerzeugter spezies
WO2024082241A1 (zh) * 2022-10-20 2024-04-25 深圳市虎一科技有限公司 一种蒸烤箱及其加热制冷控制方法
CN116246471B (zh) * 2023-03-01 2024-01-19 河北省交通规划设计研究院有限公司 一种雷视融合追踪系统测试方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604846Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形外射冷等离子体发生器
CN2604847Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形内射冷等离子体发生器
JP2008041495A (ja) * 2006-08-08 2008-02-21 Adtec Plasma Technology Co Ltd マイクロ波プラズマトーチ
CN102523674A (zh) * 2011-11-30 2012-06-27 华中科技大学 手持式等离子体电筒
US20130153545A1 (en) * 2011-12-16 2013-06-20 Electronics And Telecommunications Research Institute Plasma jet assembly and plasma brush including the same
CN103418085A (zh) * 2012-05-25 2013-12-04 王守国 一种冷等离子体放电仪

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4781175A (en) * 1986-04-08 1988-11-01 C. R. Bard, Inc. Electrosurgical conductive gas stream technique of achieving improved eschar for coagulation
US5440094A (en) * 1994-04-07 1995-08-08 Douglas G. Carroll Plasma arc torch with removable anode ring
US6099523A (en) * 1995-06-27 2000-08-08 Jump Technologies Limited Cold plasma coagulator
US5909086A (en) * 1996-09-24 1999-06-01 Jump Technologies Limited Plasma generator for generating unipolar plasma
US6958063B1 (en) * 1999-04-22 2005-10-25 Soring Gmbh Medizintechnik Plasma generator for radio frequency surgery
US6362987B1 (en) * 2000-12-27 2002-03-26 John Yurek Wall mounted electrical outlet receptacle for providing low voltage DC current
US6870124B2 (en) * 2002-05-08 2005-03-22 Dana Corporation Plasma-assisted joining
RU2274923C2 (ru) * 2003-09-01 2006-04-20 Анатолий Николаевич Мальцев Способ получения пучков быстрых электронов, ионов, атомов, а также уф и рентгеновского излучения, озона и/или других химически активных молекул в плотных газах
ATE556745T1 (de) * 2005-01-18 2012-05-15 Alma Lasers Ltd Verbessertes system zur erwärmung von biologischem gewebe mit hf-energie
GB0503380D0 (en) * 2005-02-17 2005-03-23 Rhytec Ltd Tissue treatment system
AT502419B1 (de) * 2005-09-09 2007-08-15 Fronius Int Gmbh Schweissbrenner und verfahren zur prozesssteuerung einer schweissanlage
BRPI0820864A2 (pt) * 2007-12-10 2018-05-22 Construction Research & Technology Gmbh método e dispositivo para tratamento de superfícies
CN101227790B (zh) * 2008-01-25 2011-01-26 华中科技大学 等离子体喷流装置
GB0920112D0 (en) * 2009-11-17 2009-12-30 Linde Ag Treatment device
GB201006383D0 (en) * 2010-04-16 2010-06-02 Linde Ag Device for providing a flow of plasma
CN201643445U (zh) * 2010-04-27 2010-11-24 嘉兴江林电子科技有限公司 接触式等离子体放电仪
CN102238794A (zh) * 2010-04-27 2011-11-09 嘉兴江林电子科技有限公司 接触式等离子体放电笔
EP2707098A4 (en) * 2011-05-13 2014-05-07 Thomas J Sheperak SYSTEM, APPARATUS AND METHOD FOR CARRYING OUT PLASMA-DIRECTED ELECTRON BEAM INJURY
CN202444686U (zh) * 2012-02-02 2012-09-19 中国印刷科学技术研究所 新型封装放电电极板
JP2013206767A (ja) * 2012-03-29 2013-10-07 Asahi Organic Chemicals Industry Co Ltd プラズマ生成方法及び装置
DE102012103362A1 (de) * 2012-04-18 2013-10-24 Chen Xiaobo Plasma-Behandlungsgerät
GB2501484A (en) * 2012-04-24 2013-10-30 Linde Ag Plasma tooth treatment device
GB2501933A (en) * 2012-05-09 2013-11-13 Linde Ag device for providing a flow of non-thermal plasma
GB2509063A (en) * 2012-12-18 2014-06-25 Linde Ag Plasma device with earth electrode
EP3417827B1 (en) * 2013-01-22 2022-08-31 Frederick Guy Kit for tooth and bone restoration via plasma deposition
GB201401144D0 (en) * 2014-01-23 2014-03-12 Linde Ag Plasma device
CN205336628U (zh) * 2015-11-02 2016-06-22 安徽理工大学 一种即插即用双电源供电的便携式等离子体发生装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2604846Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形外射冷等离子体发生器
CN2604847Y (zh) * 2003-02-26 2004-02-25 王守国 常压射频圆筒形内射冷等离子体发生器
JP2008041495A (ja) * 2006-08-08 2008-02-21 Adtec Plasma Technology Co Ltd マイクロ波プラズマトーチ
CN102523674A (zh) * 2011-11-30 2012-06-27 华中科技大学 手持式等离子体电筒
US20130153545A1 (en) * 2011-12-16 2013-06-20 Electronics And Telecommunications Research Institute Plasma jet assembly and plasma brush including the same
CN103418085A (zh) * 2012-05-25 2013-12-04 王守国 一种冷等离子体放电仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3247179A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11013100B2 (en) 2016-10-10 2021-05-18 University Of Strathclyde Plasma accelerator
CN106658931A (zh) * 2016-10-19 2017-05-10 南京航空航天大学 一种便捷式大气压常温等离子体射流产生装置
CN106993369A (zh) * 2017-05-24 2017-07-28 南京工业大学 具有人体保护功能的便携式低温等离子体发生装置
CN111175010A (zh) * 2020-01-08 2020-05-19 中国空气动力研究与发展中心超高速空气动力研究所 基于高频辉光的大口径高超声速低密度风洞流场显示系统

Also Published As

Publication number Publication date
EP3247179B1 (en) 2020-12-30
EP3247179A1 (en) 2017-11-22
JP2018504202A (ja) 2018-02-15
RU2656333C1 (ru) 2018-06-05
CN107432077B (zh) 2021-03-19
EP3247179A4 (en) 2018-08-22
CA2973123A1 (en) 2016-07-21
AU2015376829B2 (en) 2019-08-15
JP6535746B2 (ja) 2019-06-26
US20170303381A1 (en) 2017-10-19
AU2015376829A1 (en) 2017-08-17
KR20170105528A (ko) 2017-09-19
CN107432077A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
WO2016112473A1 (zh) 可插拔的等离子体放电管装置
JP5615359B2 (ja) 粒子の削減または除去に関する改善
CN107710879B (zh) 用于使用非热等离子体处理皮肤的设备
CN206024220U (zh) 一种低温等离子体射流装置
JP2018504202A5 (zh)
CN110574140B (zh) 大气压等离子体装置
US20120100524A1 (en) Tubular floating electrode dielectric barrier discharge for applications in sterilization and tissue bonding
JP2006526442A (ja) ガス放電により発生されたプラズマにより生きている細胞を包含する生物学材料の処理
AU2006239843A8 (en) Methods for non-thermal application of gas plasma to living tissue
US20160331437A1 (en) Plasma device
CN105396227B (zh) 一种医用阵列式微等离子体皮肤治疗装置
CN106658931A (zh) 一种便捷式大气压常温等离子体射流产生装置
CN103418085A (zh) 一种冷等离子体放电仪
CN103418086A (zh) 利用高电压产生等离子体的伤口处理装置
KR101662160B1 (ko) 플라즈마를 이용한 피부 치료 장치
TWI685356B (zh) 手持式冷等離子發生器
CN112007276B (zh) 一种低温等离子体灭菌笔
CN102238794A (zh) 接触式等离子体放电笔
JP6638916B2 (ja) プラズマ照射装置用ハンドピース
CN205584605U (zh) 一种刷状低温等离子体射流装置
CN105879217A (zh) 感应等离子体笔
CN113730232A (zh) 基于等离子体技术的3d一体式可充电穴位按摩装置
TWM579530U (zh) Handheld cold plasma generator
CN104582227B (zh) 一种可触式等离子体处理系统
CN106344148A (zh) 一种电介质阻挡放电等离子皮肤医疗设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15111094

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2973123

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017536892

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015877393

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177020429

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017127297

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015376829

Country of ref document: AU

Date of ref document: 20150112

Kind code of ref document: A