WO2016111132A1 - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell Download PDF

Info

Publication number
WO2016111132A1
WO2016111132A1 PCT/JP2015/085296 JP2015085296W WO2016111132A1 WO 2016111132 A1 WO2016111132 A1 WO 2016111132A1 JP 2015085296 W JP2015085296 W JP 2015085296W WO 2016111132 A1 WO2016111132 A1 WO 2016111132A1
Authority
WO
WIPO (PCT)
Prior art keywords
dopant
diffusion layer
oxide film
phosphorus
concentration
Prior art date
Application number
PCT/JP2015/085296
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016550661A priority Critical patent/JPWO2016111132A1/en
Priority to TW105100262A priority patent/TW201637232A/en
Publication of WO2016111132A1 publication Critical patent/WO2016111132A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell using a semiconductor substrate.
  • a selective emitter structure in which a high-concentration doping layer is formed below the electrode and a low-concentration doping layer is formed in a region other than the high-concentration doping layer on the light-receiving surface side is used for high efficiency.
  • the low-concentration doping layer can suppress the absorption of incident light and obtain a good short-circuit current, and can further suppress the recombination loss of photogenerated carriers. Contribute to realization.
  • the high-concentration doping layer can reduce the contact resistance between the electrode and the semiconductor substrate, and thus contributes to the realization of a good curve factor in the solar cell.
  • Patent Document 1 discloses that a semiconductor substrate is heat-treated after a dopant paste is printed and formed in a comb shape on the light receiving surface side of the semiconductor substrate.
  • the dopant in the dopant paste is thermally diffused into the semiconductor substrate to form a first diffusion region which is a high concentration dopant diffusion layer having a high dopant concentration.
  • the dopant component volatilized from the dopant paste in the gas phase adheres to the surface of the semiconductor substrate, it is thermally diffused into the semiconductor substrate and is a low-concentration dopant diffusion layer having a dopant concentration lower than that of the first diffusion region.
  • the diffusion region is formed.
  • a first diffusion region having a high dopant concentration and a second diffusion region having a lower dopant concentration than the first diffusion region are formed by a single heat treatment.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell manufacturing method capable of forming a dopant diffusion layer by preventing diffusion of a volatile component from a dopant paste to a substrate.
  • the present invention provides a first oxide film having a thickness of greater than 50 nm and less than or equal to 200 nm on a first surface of a first conductivity type semiconductor substrate.
  • 4 steps are described in order to solve the above-described problems and achieve the object.
  • the present invention it is possible to prevent the diffusion of the volatile component from the dopant paste to the substrate and form the dopant diffusion layer.
  • FIG. 3 is a schematic cross-sectional view of a relevant part showing the solar battery cell according to the first embodiment.
  • a flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment.
  • the characteristic view which shows the relationship between the film thickness of the protective oxide film in Embodiment 1, and the sheet resistance of a pad part and a blank part
  • a flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment.
  • a flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 3.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment A flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 4.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment.
  • Schematic top view showing the solar cell according to the fifth embodiment Schematic diagram showing the bottom surface of the solar cell according to the fifth embodiment.
  • Cross-sectional schematic diagram of relevant parts showing a solar cell according to a fifth embodiment A flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 5.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment.
  • FIG. Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment.
  • a flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 7.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment.
  • Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment.
  • FIG. 1 is a schematic top view showing a solar battery cell 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the relevant part showing the solar battery cell 1 according to the first embodiment of the present invention, and is a relevant part cross-sectional view taken along line AA in FIG.
  • the n-type light-receiving surface side dopant diffusion layer 3 in which phosphorus which is a p-type dopant is diffused as the first dopant is the light-receiving surface side of the p-type semiconductor substrate 2.
  • a semiconductor substrate 11 having a pn junction is formed.
  • An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 3.
  • a p-type single crystal silicon substrate is used as the semiconductor substrate 2.
  • the semiconductor substrate 2 made of a p-type single crystal silicon substrate may be referred to as a p-type silicon substrate 2.
  • the semiconductor substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate may be used.
  • a texture structure for confining light is formed on the light receiving surface side of the semiconductor substrate 11, that is, the light receiving surface side of the n-type light receiving surface side dopant diffusion layer 3, a texture structure for confining light is formed.
  • the texture structure is formed by minute irregularities called textures.
  • the minute unevenness increases the area of the light receiving surface that absorbs light from the outside, suppresses the reflectance on the light receiving surface, and efficiently confines the light in the solar battery cell 1.
  • a pyramidal protrusion is formed. Is done.
  • the dimension of the minute irregularities is very small with one side of one protrusion being about 0.1 ⁇ m to 10 ⁇ m, and is not shown as an irregular shape in FIG. 2 and the following drawings.
  • the antireflection film 4 is composed of a silicon nitride film (SiN) that is an insulating film.
  • the antireflection film 4 is not limited to a silicon nitride film, and may be formed of an insulating film such as a silicon oxide film (SiO 2 ) or a titanium oxide film (TiO 2 ).
  • a plurality of elongated light receiving surface side grid electrodes 5a are provided side by side on the light receiving surface side of the semiconductor substrate 11, and the light receiving surface side bus electrode 5b that is electrically connected to the light receiving surface side grid electrode 5a is provided on the light receiving surface side grid electrode. 5a, and is electrically connected to the light-receiving surface side high-concentration dopant diffusion layer 3a of the n-type light-receiving surface side dopant diffusion layer 3 at the bottom surface portion.
  • the light receiving surface side grid electrode 5a and the light receiving surface side bus electrode 5b are made of a silver material.
  • the light-receiving surface side grid electrode 5a collects electricity generated inside the semiconductor substrate 11 in which linear patterns having a line width of about 50 ⁇ m are arranged in parallel at intervals of about 2 mm.
  • the light-receiving surface side bus electrode 5b has a width of about 1 mm to 3 mm, and two to four are arranged in parallel per solar cell, and electricity collected by the light-receiving surface side grid electrode 5a is externally supplied. Take out.
  • the light-receiving surface side grid electrode 5a and the light-receiving surface-side bus electrode 5b constitute the light-receiving surface-side electrode 5, which is a first electrode having a comb shape.
  • Electrode material of the light-receiving surface side electrode of the silicon solar cell As the electrode material of the light-receiving surface side electrode of the silicon solar cell, a silver paste is usually used and a frit-shaped lead boron glass is added.
  • Lead boron glass has a property of being melted by heating at, for example, about 750 ° C. to 850 ° C. and corroding silicon nitride.
  • a method for manufacturing a crystalline silicon solar cell a method of obtaining electrical contact between a silicon substrate and a silver paste using the characteristics of glass frit is used.
  • the back surface side electrode 6 containing an aluminum material is provided on the entire back surface of the semiconductor substrate 11 which is the surface facing the light receiving surface.
  • a back side BSF (Back Surface Field) layer 7 which is a p + layer containing a p-type dopant in a higher concentration than the p-type silicon substrate 2, is formed on the surface layer portion of the back surface of the semiconductor substrate 11.
  • the back side BSF layer 7 is provided in order to obtain the BSF effect, and the electron concentration of the semiconductor substrate 2 is increased by an electric field having a band structure so that the electrons in the semiconductor substrate 2 do not disappear.
  • the n-type light-receiving surface side dopant diffusion layer 3 In the solar cell 1, two types of layers are formed as the n-type light-receiving surface side dopant diffusion layer 3 to form a selective emitter structure.
  • the surface layer portion of the p-type silicon substrate 2 on the light-receiving surface side light-receiving surface-side high-concentration dopant diffusion in which the n-type dopant is diffused at a relatively high concentration in the lower region of the light-receiving surface-side electrode 5 and its peripheral region Layer 3a is formed.
  • the solar cell 1 has a selective emitter structure including the light receiving surface side high concentration dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b.
  • the light receiving surface side high concentration dopant diffusion layer 3a is a low resistance diffusion layer having a lower electrical resistance than the light receiving surface side low concentration dopant diffusion layer 3b.
  • the light receiving surface side low concentration dopant diffusion layer 3b is a high resistance diffusion layer having a higher electric resistance than the light receiving surface side high concentration dopant diffusion layer 3a.
  • the second diffusion concentration of the light receiving surface side high concentration dopant diffusion layer 3a is the first diffusion concentration and the dopant diffusion concentration of the light receiving surface side low concentration dopant diffusion layer 3b is the second diffusion concentration, the second diffusion concentration is It becomes lower than 1 diffusion concentration. Further, when the electric resistance value of the light receiving surface side high concentration dopant diffusion layer 3a is the first electric resistance value and the electric resistance value of the light receiving surface side low concentration dopant diffusion layer 3b is the second electric resistance value, the second electric resistance value is obtained. Becomes larger than the first electric resistance value.
  • the light receiving surface side electrode 5 described above is formed on the light receiving surface side high concentration dopant diffusion layer 3a.
  • the light receiving surface side high-concentration dopant diffusion layer 3a In the light receiving surface side high-concentration dopant diffusion layer 3a, light is incident on the solar cell 1 in the region where the light receiving surface side electrode 5 is not formed and the region where the light receiving surface side low concentration dopant diffusion layer 3b is formed. It becomes the light receiving surface.
  • a light receiving surface side high-concentration dopant diffusion layer 3 a having a low electric resistance is formed below the light receiving surface side electrode 5, and the contact resistance between the semiconductor substrate 11 and the light receiving surface side electrode 5. Is made smaller.
  • a light receiving surface side low concentration dopant diffusion layer 3b having a low dopant concentration is formed to reduce the carrier recombination rate.
  • FIG. 3 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 1 according to the first embodiment of the present invention.
  • 4 to 13 are cross-sectional views of relevant parts for explaining the manufacturing steps of the solar battery cell 1 according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of steps S101 and S102 of FIG.
  • step S ⁇ b> 101 a p-type silicon substrate 2 is prepared as the semiconductor substrate 2.
  • the p-type silicon substrate 2 is manufactured by cutting and slicing a single crystal silicon ingot obtained by pulling a single crystal into a desired size and thickness using a cutting machine such as a band saw or a multi-wire saw.
  • the damage layer of time remains. Accordingly, the damage layer is also removed, and the surface of the p-type silicon substrate 2 is etched to remove the damage layer that occurs when the silicon substrate is cut out and exists near the surface of the p-type silicon substrate 2.
  • Step S102 forms a texture structure by forming minute irregularities on the surface of the p-type silicon substrate 2. Since the minute unevenness is very fine, it is not expressed as an uneven shape in FIGS.
  • a chemical solution obtained by mixing 10% isopropyl alcohol with 6% sodium hydroxide (NaOH) aqueous solution is used for the formation of the texture structure.
  • the surface of the p-type silicon substrate 2 is etched by immersing the p-type silicon substrate 2 sliced into a plate shape in a chemical solution set at 80 ° C. for 10 minutes, and the entire surface of the p-type silicon substrate 2 is textured. A structure is obtained.
  • step S101 may be performed in step S102.
  • a chemical solution in which isopropyl alcohol is mixed in an NaOH aqueous solution is used, but a chemical solution obtained by adding a commercially available texture etching additive to an alkaline aqueous solution such as an NaOH aqueous solution or a potassium hydroxide (KOH) aqueous solution may be used. It doesn't matter.
  • a mixed solution of hydrofluoric acid and nitric acid can be used.
  • FIG. 5 is an explanatory diagram of step S105 in FIG.
  • the protective oxide film 13 is formed as a first oxide film on both the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2.
  • the formation of the protective oxide film 13 is realized by performing dry oxidation or wet oxidation. Specifically, for example, a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is inserted into a quartz tube of a horizontal furnace heated to about 700 ° C. to 800 ° C. Is done.
  • the temperature in the quartz tube is raised to 1100 ° C., and when the temperature in the quartz tube reaches 1100 ° C., oxygen is allowed to flow into the quartz tube for 30 minutes. After 30 minutes, the introduction of oxygen is stopped and the gas introduced into the quartz tube is switched to nitrogen. Then, after the temperature in the quartz tube is lowered again to about 700 ° C. to 800 ° C., the boat is taken out from the quartz tube. At this time, an oxide film is formed with a film thickness of about 60 nm on the front and back surfaces of the p-type silicon substrate 2.
  • wet oxidation is a method in which pure water is bubbled with oxygen and oxygen containing water vapor is introduced into the furnace.
  • wet oxidation for example, by introducing oxygen containing water vapor into the quartz tube for 15 minutes in a state where the temperature in the quartz tube is 930 ° C., an oxide film of about 60 nm can be obtained. .
  • FIG. 6 is an explanatory diagram of step S106 in FIG. Step S ⁇ b> 106 is a step of printing a dopant paste as a first diffusion source on the protective oxide film 13.
  • a phosphorus-containing dopant paste 14 which is a resin paste containing a phosphorus oxide is selectively printed on the protective oxide film 13 using a screen printing method.
  • the printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel.
  • the pattern is After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
  • the printing method of the phosphorus containing dopant paste 14 is not restricted to the screen printing method, The inkjet method or the method of discharging directly from a nozzle can be used.
  • FIG. 7 is an explanatory diagram of step S107 in FIG.
  • Step S107 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed.
  • a boat on which the p-type silicon substrate 2 is placed is placed in a horizontal furnace, and the p-type silicon substrate 2 is heat-treated at about 960 ° C. for 10 minutes.
  • phosphorus which is a dopant component in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, thereby providing the first dopant.
  • a light receiving surface side high concentration dopant diffusion layer 3a which is a diffusion layer and has a sheet resistance of about 25 ⁇ / ⁇ is formed. That is, phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and diffuses into the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to form the light-receiving surface side high-concentration dopant diffusion layer 3a.
  • the light-receiving surface side high-concentration dopant diffusion layer 3 a is the same as the printing pattern of the phosphorus-containing dopant paste 14. It is formed in a comb-shaped pattern. Note that phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is adjacent to the region immediately below the phosphorus-containing dopant paste 14 and the region immediately below in the plane direction of the p-type silicon substrate 2. It spreads slightly in the area and diffuses. In the present specification, the region including the adjacent region is referred to as a region immediately below.
  • the protective oxide film 13 prevents the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment from diffusing into the p-type silicon substrate 2 other than the region immediately below.
  • the function and effect of the protective oxide film 13 formed in step S105 will be described.
  • the dopant component is volatilized from the surface of the phosphorus-containing dopant paste 14 into the atmosphere.
  • the inventor's experiment indicates that the dopant component volatilized in the process of the heat treatment in step S107 is inhibited by the protective oxide film 13 and does not diffuse into the p-type silicon substrate 2 under the protective oxide film 13. It became clear.
  • the degree of inhibition by which the protective oxide film 13 inhibits the stripped dopant component depends on the thickness of the protective oxide film 13. Therefore, hereinafter, the relationship between the thickness of the protective oxide film 13 and the degree of inhibition will be described with reference to the results of basic experiments.
  • the inventors prepared a plurality of 156 mm square p-type silicon substrates having a texture structure for basic experiments. Thereafter, protective oxide films having various thicknesses were formed on the surface of the p-type silicon substrate by a method similar to step S105 in FIG. The thickness range of the protective oxide film was set to 0 nm to 230 nm corresponding to the absence of the oxide film.
  • a phosphorus-containing dopant paste was printed and formed on the surface of one surface of the p-type silicon substrate by a method similar to step S106 in FIG. Thereafter, a heat treatment was performed on the p-type silicon substrate by a method similar to step S107 in FIG.
  • a special test pattern was used as the printing pattern of the phosphorus-containing dopant paste.
  • the test pattern is formed on the substantially entire surface of both sides of a 156 mm square p-type silicon substrate with the comb pattern described in step S106 of FIG. 3, and a 10 mm square partially filled with a dopant paste, and This is a pattern in which a blank portion is formed in which a dopant paste is not formed at all on a 10 mm square.
  • a portion partially filled with 10 mm square with a dopant paste is referred to as a pad portion.
  • a blank part where no dopant paste is partially formed on a 10 mm square is called a blank part.
  • the pad portion is provided in order to confirm a change in sheet resistance in a region where the dopant paste is formed in the p-type silicon substrate in a later step.
  • the blank part is provided in order to confirm the change of the sheet resistance by the volatile component from a dopant paste in the area
  • Evaluation of sheet resistance requires an evaluation area of about 10 mm square in order to measure four terminals by contacting four probes in a row at 1 mm intervals.
  • FIG. 14 shows the results of measuring the sheet resistance of the pad portion and the blank portion after removal of the protective oxide film and phosphorus-containing dopant paste.
  • FIG. 14 is a characteristic diagram showing the relationship between the thickness of the protective oxide film and the sheet resistance of the pad portion and blank portion in the first embodiment.
  • the sheet resistance of the blank portion increased rapidly.
  • the film thickness of the protective oxide film was larger than 50 nm, it was found that the sheet resistance of the blank portion was about 300 ⁇ / ⁇ or more, and the value hardly functioned as the diffusion layer. This indicates that phosphorus has a slower diffusion rate in the oxide film than that in silicon, and the oxide film functions as a diffusion protective film.
  • the sheet resistance increased slowly with respect to the increase in the protective oxide film thickness.
  • the thickness of the protective oxide film exceeds 200 nm
  • the sheet resistance of the pad portion exceeds 300 ⁇ / ⁇ and does not function as a diffusion layer.
  • the protective oxide film prevents the diffusion of volatile components from the dopant paste to the surface of the p-type silicon substrate. It was found that phosphorus was diffused from the dopant paste immediately below the dopant paste.
  • the film thickness of the protective oxide film is set to 200 nm or less, the sheet resistance of the p-type silicon substrate immediately below the dopant paste tends to gradually increase according to the film thickness.
  • the heat treatment conditions may be changed according to the thickness of the protective oxide film.
  • FIG. 8 is an explanatory diagram of step S108 in FIG.
  • Step S108 is a step of removing the protective oxide film 13 and the phosphorus-containing dopant paste 14.
  • the protective oxide film 13 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 240 seconds.
  • FIG. 9 is an explanatory diagram of step S103 in FIG.
  • the light receiving surface side low-concentration dopant diffusion layer 3b is formed on each of the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2. Or it is the process of performing the thermal diffusion which forms the low concentration dopant diffusion layer 3c.
  • the light-receiving surface side low-concentration dopant diffusion layer 3b and low-concentration dopant diffusion layer 3c are formed by inserting the p-type silicon substrate 2 having a textured structure into a thermal diffusion furnace and presenting phosphorus oxychloride (POCl 3 ) vapor. Realized by heat treatment below.
  • POCl 3 phosphorus oxychloride
  • a quartz glass boat on which 300 p-type silicon substrates 2 are placed at an interval of 3.5 mm is inserted into a quartz tube of a horizontal furnace heated to about 750 ° C. While introducing 10 SLM of nitrogen, the temperature in the quartz tube is raised to 820 ° C., and a material gas is allowed to flow into the quartz tube for 10 minutes.
  • the material gas is a POCl 3 vapor obtained by bubbling nitrogen gas through POCl 3 sealed in a glass container. After 10 minutes, the introduction of the material gas is stopped, and the inside of the quartz tube is maintained at 820 ° C. for another 10 minutes.
  • the surface layer on the surface of the p-type silicon substrate 2, that is, the surface layer on the light-receiving surface side of the p-type silicon substrate 2, is a second dopant diffusion layer having a uniform concentration of phosphorus lower than that of the first dopant diffusion layer.
  • the light-receiving surface-side low-concentration dopant diffusion layer 3b diffused in (1) is formed in a region where the light-receiving surface-side high-concentration dopant diffusion layer 3a is not formed.
  • a phosphorus-containing glass layer 12 which is an oxide-containing glass layer containing phosphorus and is formed on the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b.
  • a low concentration dopant diffusion layer 3c in which phosphorus is diffused at a uniform concentration is formed on the surface layer on the back surface of the p-type silicon substrate 2.
  • a phosphorus-containing glass layer 12 that is an oxide-containing glass layer containing impurities and containing phosphorus is formed on the low-concentration dopant diffusion layer 3c.
  • step S103 The region where the light-receiving surface side high-concentration dopant diffusion layer 3a is already formed before the thermal diffusion of step S103 is present on the light-receiving surface side of the p-type silicon substrate 2, but the light-receiving surface side formed in step S103
  • the dopant concentration of the low-concentration dopant diffusion layer 3b is relatively lower than the dopant concentration of the light-receiving surface side high-concentration dopant diffusion layer 3a. For this reason, even after the step S103, the light-receiving surface side high-concentration dopant diffusion layer 3a remains on the light-receiving surface side of the p-type silicon substrate 2 with a high concentration.
  • the light-receiving surface side high-concentration dopant diffusion layer 3a partially exists on the light-receiving surface side of the p-type silicon substrate 2 after step S103, and fills the space between the light-receiving surface-side high-concentration dopant diffusion layers 3a. There is a light-receiving surface side low-concentration dopant diffusion layer 3b.
  • the low-concentration dopant diffusion layer 3c obtained as described above has a sheet resistance of about 100 ⁇ / ⁇ measured by the four-terminal method.
  • the sheet resistance measurement cannot be accurately performed on the light receiving surface side because it is affected by the light receiving surface side high-concentration dopant diffusion layer 3a. Therefore, the inventor evaluates the low-concentration dopant diffusion layer 3c on the back surface of the p-type silicon substrate 2 without the light-receiving surface side high-concentration dopant diffusion layer 3a.
  • a vertical furnace may be used instead of the horizontal furnace.
  • a material other than POCl 3 can be used as the material gas.
  • the dopant for forming the n-type light-receiving surface side low-concentration dopant diffusion layer 3b and the n-type low-concentration dopant diffusion layer 3c in step S103 is an n-type dopant that can be used for the formation of solar cells. Good.
  • FIG. 10 is an explanatory diagram of step S104 in FIG.
  • Step S104 is a step of removing the phosphorus-containing glass layer 12.
  • the phosphorus-containing glass layer 12 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 60 seconds.
  • FIG. 11 is an explanatory diagram of step S109 in FIG.
  • Step S109 is a process of forming the antireflection film 4.
  • the antireflection film 4 is formed by forming a silicon nitride film having a refractive index of 2.1 and a film thickness of 80 nm on the light-receiving surface side dopant diffusion layer 3, that is, on the light-receiving surface side high-concentration dopant diffusion layer 3a and on the light-receiving surface side.
  • a film is formed on the low-concentration dopant diffusion layer 3b.
  • the silicon nitride film functions not only as the antireflection film 4 but also as a passivation film for suppressing surface recombination on the light receiving surface side of the p-type silicon substrate 2.
  • FIG. 12 is an explanatory diagram of step S110 in FIG.
  • Step S110 is a process of printing an electrode.
  • an aluminum (Al) -containing paste 15 for forming a back-side electrode containing aluminum (Al) is screen-printed on the entire surface of the low-concentration dopant diffusion layer 3c, and the back surface side before firing.
  • An electrode is formed.
  • the Al-containing paste 15 is dried at 250 ° C. for 5 minutes, on the light-receiving surface side of the p-type silicon substrate 2, the silver (Ag) -containing paste 16 for forming the light-receiving surface side electrode containing silver (Ag) is antireflective. Screen printing is performed on the film 4 to form the light-receiving surface side electrode 5 before firing.
  • the printing pattern of the Ag-containing paste 16 has the same comb shape as the light-receiving surface side high-concentration dopant diffusion layer 3a, and a pattern in which linear patterns with a line width of 50 ⁇ m are arranged in parallel at intervals of 2 mm, and four lines with a line width of 1 mm. It is a comb-shaped pattern which consists of the pattern which arranged the parallel pattern in parallel. Further, the Ag-containing paste 16 is printed at a position included in a region having a width of 150 ⁇ m and a region having a width of 1.2 mm of the pattern of the phosphorus-containing dopant paste 14 formed in Step S106. That is, the Ag-containing paste 16 is printed at a position included in a 150 ⁇ m wide region and a 1.2 mm wide region of the pattern of the light receiving surface side high concentration dopant diffusion layer 3a.
  • the printing position of the Ag-containing paste 16 needs to be aligned with the pattern of the light receiving surface side high concentration dopant diffusion layer 3a.
  • the region of the light receiving surface side high-concentration dopant diffusion layer 3a is image-recognized using an infrared camera, and the printing position of the Ag-containing paste 16 is determined.
  • a cross mark for alignment is printed on the outer peripheral edge of the p-type silicon substrate 2 by a laser processing machine at the time of step S101, and the phosphorus-containing dopant paste printing step of step S106 In the printing process of the Ag-containing paste 16 in step S110, the cross mark may be used as a reference.
  • the printing position of the Ag-containing paste 16 may be determined by recognizing three points on the outer shape of the p-type silicon substrate 2 in Step S106 and Step S110. If the printing position of the Ag-containing paste 16 is shifted, the light receiving surface side electrode 5 is formed on the light receiving surface side low-concentration dopant diffusion layer 3b, and the light receiving surface side dopant diffusion layer 3 and the light receiving surface side electrode 5 are formed. As a result, the fill factor deteriorates due to the increase in contact resistance, and the open circuit voltage deteriorates due to increased surface recombination. For this reason, it is important to align the printing position of the Ag-containing paste 16 with the pattern of the light-receiving surface side high-concentration dopant diffusion layer 3a.
  • FIG. 13 is an explanatory diagram of step S111 in FIG.
  • Step S111 is a step of performing a heat treatment to form an electrode by firing a paste for forming an electrode.
  • the p-type silicon substrate 2 on which the electrode forming paste is formed is placed in a tunnel furnace and heat-treated at a peak temperature of 800 ° C. for 3 seconds for a short time.
  • the resin component in the paste disappears, and in the Ag-containing paste 16, the contained glass particles penetrate the silicon nitride film of the antireflection film 4, and the Ag particles contact the light-receiving surface side high-concentration dopant diffusion layer 3a. And electrical continuity is obtained. Thereby, the light-receiving surface side electrode 5 is obtained.
  • Al contained in the Al-containing paste 15 reacts with silicon on the back surface of the p-type silicon substrate 2 to form an aluminum-silicon (Al—Si) alloy, and low-concentration dopant diffusion on the back surface of the p-type silicon substrate 2.
  • the layer 3c is penetrated by an Al—Si alloy, and Al is diffused into the silicon on the back surface of the p-type silicon substrate 2 to form the back surface side BSF layer 7. Thereby, the back surface side electrode 6 is obtained.
  • the solar battery cell 1 in which the light-receiving surface side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the surface direction of the p-type silicon substrate 2 shown in FIGS. it can.
  • the semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate.
  • the conductivity type of each member in the first embodiment may be reversed.
  • a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps.
  • a solar battery cell provided can be obtained.
  • the protective oxide film 13 having a thickness of 50 nm to 200 nm is formed on the p-type silicon substrate 2. Then, a phosphorus-containing dopant paste 14 is printed in a predetermined pattern on the protective oxide film 13 and heat treatment is performed. For this reason, the p-type silicon substrate 2 covered with the protective oxide film 13 is not diffused by the dopant component volatilized from the phosphorus-containing dopant paste 14, and the dopant in the low-concentration dopant diffusion layer 3c formed in a later step. Inhomogeneity of the diffusion concentration of the components can be eliminated.
  • the solar cell 1 having the selective emitter structure including the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b is replaced with the phosphorus-containing dopant paste 14
  • the volatilization component from can be easily obtained by preventing diffusion of the volatilization component into the p-type silicon substrate 2. That is, a photovoltaic cell having uniform power generation characteristics in the plane direction in which variations in power generation characteristics due to non-uniformity of the dopant concentration of the light-receiving surface side low-concentration dopant diffusion layer 3b in the plane direction of the p-type silicon substrate 2 are prevented. 1 can be easily obtained.
  • FIG. 15 is the flowchart which showed the process flow of the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention.
  • 16 to 21 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment of the present invention.
  • step S105 in the flowchart of FIG. 3 in the first embodiment, thermal diffusion in step S103 and phosphorus-containing glass in step S104. Perform layer removal.
  • no heat treatment exceeding 800 ° C. is performed after the formation of the light receiving surface side high concentration dopant diffusion layer 3a.
  • the dopant on the surface of the light receiving surface side high concentration dopant diffusion layer 3a is not diffused into the light receiving surface side high concentration dopant diffusion layer 3a by the heat treatment exceeding 800 ° C. Therefore, a good electrode contact can be maintained without reducing the surface dopant concentration of the light-receiving surface side high-concentration dopant diffusion layer 3a due to heat treatment exceeding 800 ° C.
  • Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
  • FIG. 16 is an explanatory diagram of step S103 in FIG.
  • Step S103 is a heat for forming the low-concentration dopant diffusion layer 3c on both sides of the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2.
  • This is a step of performing diffusion.
  • Formation of the low-concentration dopant diffusion layer 3c is realized by placing the p-type silicon substrate 2 on which the texture structure is formed in a thermal diffusion furnace and heat-treating it in the presence of phosphorus oxychloride (POCl 3 ) vapor.
  • POCl 3 phosphorus oxychloride
  • a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C. While introducing 10 SLM of nitrogen, the temperature in the quartz tube is raised to 820 ° C., and a material gas is allowed to flow into the quartz tube for 10 minutes.
  • the material gas is a POCl 3 vapor obtained by bubbling nitrogen gas through POCl 3 sealed in a glass container. After 10 minutes, the introduction of the material gas is stopped, the inside of the quartz tube is maintained at 820 ° C. for another 10 minutes, the temperature is lowered to 750 ° C., and the boat is taken out of the quartz tube.
  • a low-concentration dopant which is a second dopant diffusion layer in which phosphorus is diffused at a uniform concentration lower than that of the first dopant diffusion layer in the plane direction of the p-type silicon substrate 2.
  • the diffusion layer 3c and the phosphorus-containing glass layer 12 that is an impurity-containing glass layer that is an oxide film and contains phosphorus are formed in this order.
  • the low-concentration dopant diffusion layer 3c thus obtained has a sheet resistance measured by the four-terminal method of about 100 ⁇ / ⁇ .
  • a vertical furnace may be used instead of the horizontal furnace.
  • a material other than POCl 3 can be used as the material gas.
  • the dopant for forming the n-type low-concentration dopant diffusion layer 3c may be any n-type dopant that can be used for forming the solar battery cell.
  • FIG. 17 is an explanatory diagram of step S104 in FIG.
  • Step S104 is a step of removing the phosphorus-containing glass layer 12.
  • the phosphorus-containing glass layer 12 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 60 seconds.
  • FIG. 18 is an explanatory diagram of step S105 of FIG.
  • Step S105 is a step of forming the protective oxide film 13 as a first oxide film on the low-concentration dopant diffusion layer 3c on the first surface side which becomes the light receiving surface in the p-type silicon substrate 2.
  • a silicon oxide film is formed by a chemical vapor deposition (CVD) method using silane (SiH 4 ) as a material gas.
  • SiH 4 silane
  • a silicon oxide film having a thickness of 120 nm is formed by exposing the p-type silicon substrate 2 heated to 500 ° C. in a mixed atmosphere of silane and oxygen (O 2 ) at atmospheric pressure.
  • the atmospheric pressure CVD method is employed because it can be formed at a low temperature and a high film formation rate, but a thermal oxide film formed by wet oxidation or dry oxidation can also be used as the protective oxide film 13.
  • wet oxidation and dry oxidation have a high process temperature of about 900 ° C. to 1000 ° C., it should be noted that the dopant concentration profile in the low-concentration dopant diffusion layer 3 c formed earlier changes. In wet oxidation and dry oxidation, it is preferable to take into account changes due to the process temperature in the dopant concentration profile in the low-concentration dopant diffusion layer 3c previously formed.
  • FIG. 19 is an explanatory diagram of step S106 in FIG. Step S ⁇ b> 106 is a step of printing a dopant paste as a first diffusion source on the protective oxide film 13.
  • a phosphorus-containing dopant paste 14 which is a resin paste containing a phosphorus oxide is selectively printed on the protective oxide film 13 using a screen printing method.
  • the printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel.
  • the pattern is After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
  • the printing method of the phosphorus containing dopant paste 14 is not restricted to the screen printing method, The inkjet method or the method of discharging directly from a nozzle can be used.
  • FIG. 20 is an explanatory diagram of step S107 of FIG.
  • Step S107 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed.
  • a boat on which the p-type silicon substrate 2 is placed is loaded into a horizontal furnace similar to step S103, and the p-type silicon substrate 2 is heat-treated at 960 ° C. for 10 minutes.
  • phosphorus which is a dopant component in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, thereby providing the first dopant.
  • a light receiving surface side high concentration dopant diffusion layer 3a which is a diffusion layer and has a sheet resistance of about 25 ⁇ / ⁇ is formed. That is, phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and diffuses into the low-concentration dopant diffusion layer 3c and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to increase the light receiving surface side height.
  • a concentration dopant diffusion layer 3a is formed.
  • the light-receiving surface side high-concentration dopant diffusion layer 3 a is the same as the printing pattern of the phosphorus-containing dopant paste 14. It is formed in a comb-shaped pattern. Note that phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is adjacent to the region immediately below the phosphorus-containing dopant paste 14 and the region immediately below in the plane direction of the p-type silicon substrate 2. It spreads slightly in the area and diffuses.
  • the protective oxide film 13 prevents the diffusion of the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment into the low-concentration dopant diffusion layer 3c. That is, in the low-concentration dopant diffusion layer 3c on the light-receiving surface side, phosphorus other than the region immediately below the phosphorus-containing dopant paste 14 does not diffuse phosphorus as a dopant component from the phosphorus-containing dopant paste 14, and the sheet resistance is 100 ⁇ / ⁇ It remains about the same level.
  • the light-receiving surface-side high-concentration dopant diffusion layer 3a is formed in the region immediately below the phosphorus-containing dopant paste 14, and the light-receiving surface-side high-concentration dopant diffusion is formed.
  • the region where the layer 3a is not formed becomes the light receiving surface side low-concentration dopant diffusion layer 3b. Thereby, the light-receiving surface side dopant diffusion layer 3 is formed, and the semiconductor substrate 11 is obtained.
  • the thickness of the protective oxide film 13 is set to be greater than 50 nm and equal to or less than 200 nm, the dopant component volatilized during the heat treatment in Step S107 is inhibited by the protective oxide film 13.
  • the light-receiving surface side high-concentration dopant is diffused by diffusing the dopant component from the phosphorus-containing dopant paste 14 into the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 without diffusing into the p-type silicon substrate 2.
  • Layer 3a can be formed.
  • the film thickness that can penetrate the protective oxide film 13 differs between the diffusion of the dopant component volatilized during the heat treatment in step S107 and the direct diffusion from the phosphorus-containing dopant paste 14. Is used to eliminate non-uniformity of the dopant concentration due to diffusion of the volatilized dopant component.
  • the concentration of the low-concentration dopant diffusion layer 3c previously formed is that of the p-type silicon substrate 2. It is possible to prevent non-uniformity in the plane.
  • FIG. 21 is an explanatory diagram of step S108 in FIG.
  • Step S108 is a step of removing the protective oxide film 13 and the phosphorus-containing dopant paste 14.
  • the protective oxide film 13 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 240 seconds.
  • the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
  • the solar cell 1 having the selective emitter structure including the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b is converted into the phosphorus-containing dopant paste 14
  • the volatilization component from can be easily obtained by preventing diffusion of the volatilization component into the p-type silicon substrate 2. That is, a photovoltaic cell having uniform power generation characteristics in the plane direction in which variations in power generation characteristics due to non-uniformity of the dopant concentration of the light-receiving surface side low-concentration dopant diffusion layer 3b in the plane direction of the p-type silicon substrate 2 are prevented. 1 can be easily obtained.
  • the heat treatment is not performed at a temperature exceeding 800 ° C. after the formation of the light receiving surface side high concentration dopant diffusion layer 3a, the surface dopant concentration of the light receiving surface side high concentration dopant diffusion layer 3a. It is possible to maintain a good electrode contact without lowering.
  • FIG. 22 is a flowchart showing a process flow of the method for manufacturing a solar battery cell according to the third embodiment of the present invention.
  • 23 to 26 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment of the present invention.
  • the same steps as those in FIGS. 3 and 15 are denoted by the same reference numerals.
  • the same members as those in the above-described embodiment are denoted by the same reference numerals.
  • the protective oxide film is formed during the thermal diffusion process in step S103.
  • the phosphorus-containing glass layer 12 that is an oxide film is formed to have a thickness of about 20 nm. At this film thickness, diffusion from the volatilized component of the dopant paste is inhibited in the heat treatment process of the dopant paste in step S107. Not enough to Therefore, in the third embodiment, a dry oxidation process at 1100 ° C. for 30 minutes or a wet oxidation process at 930 ° C. for 15 minutes is inserted in the latter half of the thermal diffusion process in step S103 of the second embodiment.
  • Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
  • FIG. 23 is an explanatory diagram of step S201 in FIG.
  • step S201 thermal diffusion is performed to form the low-concentration dopant diffusion layer 3c on the surface of the p-type silicon substrate 2, and the phosphorus-containing glass layer 12 formed by thermal diffusion remains on the p-type silicon substrate 2.
  • the protective oxide film 13 is formed.
  • the thermal diffusion for forming the low-concentration dopant diffusion layer 3c is performed in the same manner as in the second embodiment.
  • a dry oxidation process at 1100 ° C. for 30 minutes or a wet oxidation process at 930 ° C. for 15 minutes is performed.
  • the quartz tube is heated to about 1000 ° C. to 1100 ° C. while introducing 10 SLM nitrogen without taking out the boat, and the material gas is allowed to flow into the quartz tube for 10 minutes.
  • the material gas is an oxygen gas that does not contain water vapor.
  • the quartz tube is heated to about 930 ° C. to 1030 ° C. while introducing 10 SLM nitrogen without taking out the boat, and the material gas is allowed to flow into the quartz tube for 15 minutes. .
  • the material gas is an oxygen gas containing water vapor.
  • FIG. 24 is an explanatory diagram of step S202 of FIG.
  • Step S202 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 13 on the light receiving surface side.
  • the phosphorus-containing dopant paste 14 is printed in the same manner as in the second embodiment.
  • FIG. 25 is an explanatory diagram of step S203 of FIG.
  • Step S203 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed.
  • the p-type silicon substrate 2 is heat-treated at 960 ° C. for 10 minutes in the same manner as in step S107 of the first embodiment.
  • phosphorus in the phosphorus-containing dopant paste 14 thermally diffuses into the p-type silicon substrate 2 directly below the phosphorus-containing dopant paste 14 through the protective oxide film 13, and step S107.
  • the light receiving surface side high concentration dopant diffusion layer 3a is formed.
  • the phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and the phosphorus-containing glass layer 12, and the low-concentration dopant diffusion layer 3c and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14
  • the light receiving surface side high-concentration dopant diffusion layer 3a is formed.
  • FIG. 26 is an explanatory diagram of step S204 of FIG.
  • Step S204 is a step of removing the protective oxide film 13, the phosphorus-containing glass layer 12, and the phosphorus-containing dopant paste 14.
  • the protective oxide film 13, the phosphorus-containing glass layer 12 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution, as in the second embodiment. .
  • the state of p-type silicon substrate 2 after step S204 is the same as that after step S108 of the first embodiment.
  • the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
  • the semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate.
  • the conductivity type of each member in the third embodiment may be reversed.
  • a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps.
  • the solar cell 1 provided can be easily obtained by preventing the volatilization component from the phosphorus-containing dopant paste 14 from diffusing into the p-type silicon substrate 2.
  • the protective oxide film 13 is formed in the state in which the phosphorus-containing glass layer 12 formed in the thermal diffusion process of step S201 remains on the low-concentration dopant diffusion layer 3c. Heating at about 1100 ° C. or about 930 ° C. and heating at about 960 ° C. as a heat treatment in step S203. By applying these heats, phosphorus is further diffused from the phosphorus-containing glass layer 12 into the p-type silicon substrate 2. For this reason, it is necessary to adjust the phosphorus content in the phosphorus-containing glass layer 12.
  • the light receiving surface-side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the plane direction of the p-type silicon substrate 2 as compared with the case of the first embodiment. It can be obtained by the number of steps. Therefore, a solar cell in which the dopant concentration in the low concentration diffusion region is uniform in the plane of the semiconductor substrate can be manufactured by a simpler method.
  • FIG. 27 is a flowchart showing a process flow of the method for manufacturing a solar battery cell according to the fourth embodiment of the present invention.
  • 28 to 35 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment of the present invention.
  • the same members as those in the above-described embodiment are denoted by the same reference numerals.
  • FIG. 28 is an explanatory diagram of steps S301 and S302 of FIG. In step S301 and step S302, the same processing as in step S101 and step S102 of the first embodiment is performed.
  • FIG. 29 is an explanatory diagram of step S303 in FIG.
  • a phosphorus-containing oxide film 31 and a protective oxide film 32 are formed as oxide films on the light-receiving surface side of the p-type silicon substrate 2.
  • a silicon oxide film is formed by an atmospheric pressure CVD method using silane (SiH 4 ), oxygen (O 2 ), and phosphine (PH 3 ) as material gases.
  • SiH 4 silane
  • O 2 oxygen
  • PH 3 phosphine
  • the p-type silicon substrate 2 heated to 500 ° C. is exposed to a mixed atmosphere of silane, oxygen and phosphine at atmospheric pressure, so that phosphorus is first contained on the light-receiving surface side of the p-type silicon substrate 2.
  • a phosphorus-containing oxide film 31 that is a first lower oxide film having a thickness of 30 nm is formed. Thereafter, mixing of phosphine is stopped, and the p-type silicon substrate 2 is exposed in a mixed atmosphere of silane and oxygen, so that a protective oxide film that is a 120 nm-thickness first oxide film not containing phosphorus is formed. 32 is formed on the phosphorus-containing oxide film 31.
  • the phosphorus concentration in the phosphorus-containing oxide film 31 is lower than that of the phosphorus-containing dopant paste 14.
  • FIG. 30 is an explanatory diagram of step S304 of FIG.
  • Step S304 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 32.
  • Printing of the phosphorus-containing dopant paste 14 is performed in the same manner as in step S106 of the first embodiment.
  • the printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern.
  • the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
  • FIG. 31 is an explanatory diagram of step S305 in FIG.
  • Step S305 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed.
  • a boat on which the p-type silicon substrate 2 is placed is placed in a horizontal furnace, and the p-type silicon substrate 2 is heat-treated at 960 ° C. for 15 minutes.
  • phosphorus which is a dopant component in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 32 and the phosphorus-containing oxide film 31 and thermally diffuses into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14.
  • phosphorus in the phosphorus-containing oxide film 31 is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, and the light-receiving surface side high-concentration dopant diffusion layer 3a having a sheet resistance of about 20 ⁇ / ⁇ is formed. It is formed.
  • the light receiving surface side high-concentration dopant diffusion layer 3 a is formed in the same comb-shaped pattern as the printing pattern of the phosphorus-containing dopant paste 14.
  • the dopant component of the phosphorus-containing dopant paste 14 does not diffuse in the region other than the region immediately below the phosphorus-containing dopant paste 14.
  • phosphorus in the phosphorus-containing oxide film 31 is thermally diffused into the surface layer on the light-receiving surface side of the p-type silicon substrate 2 in a region other than the region immediately below the phosphorus-containing dopant paste 14.
  • a light-receiving surface side low concentration dopant diffusion layer 3b having a sheet resistance of about 100 ⁇ / ⁇ is formed as a third dopant diffusion layer in which phosphorus is diffused at a uniform concentration in the surface direction of the p-type silicon substrate 2.
  • the light receiving surface side dopant diffusion layer 3 having the light receiving surface side high concentration dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b is formed.
  • the light receiving surface side dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 have a uniform dopant concentration. It is possible to form the layer 3 with fewer steps than in the first embodiment.
  • the laminated film of the phosphorus-containing oxide film 31 and the protective oxide film 32 which are oxide films is formed on the p-type silicon substrate 2 because the phosphorus-containing oxide film 31 contains phosphorus.
  • this laminated film plays a role of preventing the dopant component volatilized from the phosphorus-containing dopant paste 14 from diffusing into the light receiving surface side low-concentration dopant diffusion layer 3b.
  • the thickness of the laminated film as an oxide film is up to 200 nm, the dopant can be diffused from the phosphorus-containing dopant paste 14 to the p-type silicon substrate 2 through the laminated film. Since the phosphorus-containing oxide film 31 is protected by the protective oxide film 32, it is possible to prevent phosphorus in the phosphorus-containing oxide film 31 from volatilizing in the atmosphere during the heat treatment. It is possible to efficiently diffuse phosphorus into the substrate 2.
  • the protective oxide film 32 functions as a protective film. Therefore, the light-receiving surface side low-concentration dopant diffusion layer 3b in which phosphorus is diffused at a uniform concentration that is not affected by the volatilization component from the phosphorus-containing dopant paste 14 is obtained.
  • a protective oxide film 32 having a thickness of 120 nm is deposited on the phosphorus-containing oxide film 31 as a capping film.
  • the oxide film 31 may be 150 nm and the protective oxide film 32 may not be formed. Even when only the phosphorus-containing oxide film 31 is provided with a film thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 32, the dopant component volatilized from the phosphorus-containing dopant paste 14 is received by the phosphorus-containing oxide film 31. It plays a role of preventing diffusion to the surface-side low-concentration dopant diffusion layer 3b.
  • FIG. 32 is an explanatory diagram of step S306 in FIG.
  • Step S306 is a step of removing the protective oxide film 32 and the phosphorus-containing oxide film 31, which are oxide films, and the phosphorus-containing dopant paste 14.
  • the removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
  • FIG. 33 is an explanatory diagram of step S307 in FIG.
  • Step S307 is a step of forming the antireflection film 4.
  • the formation of the antireflection film 4 is performed in the same manner as in step S109 of the first embodiment.
  • FIG. 34 is an explanatory diagram of step S308 in FIG.
  • Step S308 is a step of printing an electrode.
  • the electrodes are printed in the same manner as in step S110 of the first embodiment by printing the Al-containing paste 15 and the Ag-containing paste 16.
  • the Al-containing paste 15 is printed on the silicon surface on the back surface of the p-type silicon substrate 2.
  • FIG. 35 is an explanatory diagram of step S309 in FIG.
  • Step S309 is a step of performing a heat treatment to form an electrode by firing an electrode forming paste.
  • the electrode heat treatment is performed in the same manner as in step S111 of the first embodiment.
  • the solar battery cell 1 in which the light-receiving surface side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the surface direction of the p-type silicon substrate 2 shown in FIGS. it can.
  • the semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate.
  • the conductivity type of each member in the fourth embodiment may be reversed.
  • a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps.
  • a solar battery cell provided can be obtained.
  • the laminated film of the phosphorus-containing oxide film 31 that is an oxide film and the protective oxide film 32 prevents diffusion of the volatile component of the dopant paste into the low-concentration dopant diffusion layer during heat treatment.
  • this laminated film is used as a dopant diffusion source.
  • FIG. 36 is a schematic top view showing the solar battery cell 41 according to the fifth embodiment of the present invention.
  • FIG. 37 is a schematic bottom view showing the solar battery cell 41 according to the fifth embodiment of the present invention.
  • FIG. 38 is a schematic cross-sectional view of the relevant part showing a solar battery cell 41 according to the fifth embodiment of the present invention, and is a relevant part cross-sectional view taken along line BB in FIGS. 36 and 37.
  • a p-type light-receiving surface side dopant diffusion layer 43 in which boron (B) is diffused is formed on the entire light-receiving surface of the n-type semiconductor substrate 42, and a pn junction is formed.
  • a semiconductor substrate 51 is formed.
  • An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 43.
  • an n-type single crystal silicon substrate is used as the semiconductor substrate 42.
  • the semiconductor substrate 42 made of an n-type single crystal silicon substrate may be referred to as an n-type silicon substrate 42.
  • the semiconductor substrate 42 is not limited to an n-type single crystal silicon substrate, and an n-type polycrystalline silicon substrate may be used.
  • a texture structure is formed on the light receiving surface side of the n-type silicon substrate 42, that is, on the light receiving surface side of the p-type light receiving surface side dopant diffusion layer 43. Since the fine unevenness of the texture structure is very fine, it is not shown as an uneven shape in FIG. 38 and the following drawings.
  • a plurality of elongated light receiving surface side grid electrodes 45a are arranged side by side on the light receiving surface side of the semiconductor substrate 42, and a light receiving surface side bus electrode 45b that is electrically connected to the light receiving surface side grid electrode 45a is connected to the light receiving surface side grid electrode 45a. They are provided so as to be orthogonal to each other, and are electrically connected to the p-type light-receiving surface side dopant diffusion layer 43 at the bottom surface portion.
  • the light receiving surface side grid electrode 45a and the light receiving surface side bus electrode 45b are made of a silver material.
  • the light-receiving surface-side grid electrode 45a and the light-receiving-surface-side bus electrode 45b are electrically connected to the p-type light-receiving-surface-side dopant diffusion layer 43, except that the light-receiving-surface-side grid electrode 5a and the light-receiving-surface-side bus electrode 5b described above. It is formed with the same composition.
  • the light-receiving surface side grid electrode 45a and the light-receiving surface-side bus electrode 45b constitute a light-receiving surface-side electrode 45 that is a first electrode having a comb shape.
  • a plurality of elongated backside grid electrodes 46a are arranged side by side on the backside that is the surface facing the light receiving surface in the semiconductor substrate 42, and the backside bus electrode 46b that is electrically connected to the backside grid electrode 46a is provided on the backside. It is provided so as to be orthogonal to the side grid electrode 46a, and is electrically connected to the back-side high-concentration dopant diffusion layer 47a of the n-type back-side dopant diffusion layer 47 at the bottom part.
  • the back side grid electrode 46a and the back side bus electrode 46b are made of a silver material.
  • the back-side grid electrode 46a and the back-side bus electrode 46b constitute a back-side electrode 46 that is a second electrode having a comb shape. Further, on the backside dopant diffusion layer 47, a backside passivation film 48 made of an insulating film is formed.
  • the n-type backside dopant diffusion layer 47 is an n-type dopant diffusion layer in which phosphorus is diffused as an n-type dopant in the surface layer on the backside of the semiconductor substrate 42.
  • two types of layers are formed as the n-type backside dopant diffusion layer 47 to form a selective diffusion structure. That is, in the surface layer portion on the back surface side of the n-type silicon substrate 42, the back-side high-concentration dopant diffusion layer in which the n-type dopant is relatively diffused in the lower region of the back-side electrode 46 and its peripheral region. 47a is formed.
  • a low-concentration dopant diffusion layer 47b is formed.
  • the back side high concentration dopant diffusion layer 47a is a low resistance diffusion layer having a lower electrical resistance than the back side low concentration dopant diffusion layer 47b.
  • the back side low concentration dopant diffusion layer 47b is a high resistance diffusion layer having a higher electrical resistance than the back side high concentration dopant diffusion layer 47a.
  • the back side dopant diffusion layer 47 is configured by the back side high concentration dopant diffusion layer 47a and the back side low concentration dopant diffusion layer 47b.
  • the fourth diffusion concentration is the third diffusion concentration. It becomes lower than the concentration.
  • the electrical resistance value of the back-side high-concentration dopant diffusion layer 47a is the third electrical resistance value and the electrical resistance value of the back-side low-concentration dopant diffusion layer 47b is the fourth electrical resistance value, the fourth electrical resistance value is It becomes larger than the third electric resistance value.
  • the back side low-concentration dopant diffusion layer 47b suppresses carrier recombination on the back side of the n-type silicon substrate 42 as a BSF layer. Therefore, a good open circuit voltage can be obtained. Moreover, since the back surface side high concentration dopant diffusion layer 47a reduces the contact resistance of the back surface side dopant diffusion layer 47 and the back surface side electrode 46, a favorable curve factor can be obtained.
  • FIG. 39 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 41 according to the fifth embodiment of the present invention.
  • 40 to 49 are cross-sectional views of relevant parts for explaining manufacturing steps of the solar battery cell 41 according to the fifth embodiment of the present invention.
  • FIG. 40 is an explanatory diagram of step S401 and step S402 of FIG.
  • steps S401 and S402 the same processes as those in steps S101 and S102 of the first embodiment are performed except that the n-type silicon substrate 2 is used as the semiconductor substrate 42.
  • FIG. 41 is an explanatory diagram of step S403 in FIG.
  • Step S403 is a process of performing thermal diffusion for forming a p-type dopant diffusion layer 43a on the surface of the n-type silicon substrate.
  • Formation of the dopant diffusion layer 43a is realized by placing the n-type silicon substrate 42 on which the texture structure is formed in a thermal diffusion furnace and heat-treating it in the presence of boron tribromide (BBr 3 ) vapor.
  • BBr 3 boron tribromide
  • a quartz glass boat on which 300 n-type silicon substrates 42 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C.
  • the temperature in the quartz tube is raised to 940 ° C., and the material gas is allowed to flow into the quartz tube for 10 minutes.
  • the material gas is BBr 3 vapor obtained by bubbling nitrogen gas through BBr 3 sealed in a glass container.
  • a boron-containing glass layer 52 as a layer is formed in this order.
  • the p-type dopant diffusion layer 43a thus obtained has a sheet resistance of about 90 ⁇ / ⁇ measured by the four-terminal method.
  • a vertical furnace may be used instead of the horizontal furnace.
  • a material other than BBr 3 can be used as long as it is a p-type dopant. Note that the material gas, it is also possible to use materials other than BBr 3.
  • the dopant for forming the p-type dopant diffusion layer 43a may be any p-type dopant that can be used for forming the solar battery cell.
  • FIG. 42 is an explanatory diagram of step S404 of FIG.
  • Step S404 is a step of removing the p-type dopant diffusion layer 43a and the boron-containing glass layer 52, which are dopant-containing layers formed on the back surface opposite to the light receiving surface in the n-type silicon substrate 42.
  • the chemical solution does not enter the surface of the n-type silicon substrate 42 and the dopant on the back surface. Only the containing layer can be removed.
  • the n-type silicon substrate 42 that has passed through the chemical bath is washed with shower rinse, the surface alteration layer is removed with a 10% aqueous KOH solution at room temperature, further washed with shower rinse, and dried with an air knife.
  • the p-type dopant diffusion layer 43a which is the dopant diffusion layer on the back surface of the n-type silicon substrate 42 is removed, and the p-type dopant diffusion layer 43a remaining on the surface of the n-type silicon substrate 42 becomes the p-type light-receiving surface.
  • the side dopant diffusion layer 43 is formed.
  • FIG. 43 is an explanatory diagram of step S405 of FIG.
  • Step S405 is a step of forming a phosphorus-containing oxide film 53 and a protective oxide film 54, which are back-surface oxide films, as second oxide films on the back-surface side of the n-type silicon substrate 42.
  • a phosphorus-containing oxide film 53 that is a second lower oxide film having a thickness of 30 nm and a protective oxide film that is a second upper oxide film having a thickness of 120 nm are used.
  • 54 are formed on the back surface side of the n-type silicon substrate 42 in this order.
  • the phosphorus concentration in the phosphorus-containing oxide film 53 is lower than that of the phosphorus-containing dopant paste 14.
  • FIG. 44 is an explanatory diagram of step S406 of FIG.
  • Step S406 is a step of selectively printing the phosphorus-containing dopant paste 14 as the backside dopant paste as the third diffusion source on the protective oxide film 54 on the backside of the n-type silicon substrate 42.
  • Printing of the phosphorus-containing dopant paste 14 is performed in the same manner as in step S106 of the first embodiment.
  • the printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern.
  • the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
  • FIG. 45 is an explanatory diagram of step S407 of FIG.
  • Step S407 is a process of heat-treating the n-type silicon substrate 42 on which the phosphorus-containing dopant paste 14 is printed.
  • a boat on which an n-type silicon substrate 42 is placed is placed in a horizontal furnace, and the n-type silicon substrate 42 is heat-treated at 960 ° C. for 15 minutes.
  • phosphorus as a dopant component in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 54 and the phosphorus-containing oxide film 53 and is thermally diffused into the n-type silicon substrate 42 immediately below the phosphorus-containing dopant paste 14. .
  • phosphorus in the phosphorus-containing oxide film 53 immediately below the phosphorus-containing dopant paste 14 is thermally diffused into the n-type silicon substrate 42 immediately below the phosphorus-containing dopant paste 14.
  • a back-side high-concentration dopant diffusion layer 47a that is a fourth dopant diffusion layer and has a sheet resistance of about 20 ⁇ / ⁇ is formed.
  • the back-side high-concentration dopant diffusion layer 47 a is formed in the same comb-shaped pattern as the printing pattern of the phosphorus-containing dopant paste 14.
  • the dopant component of the phosphorus-containing dopant paste 14 does not diffuse in the region other than the region immediately below the phosphorus-containing dopant paste 14.
  • phosphorus in the phosphorus-containing oxide film 53 is thermally diffused to the surface layer on the back surface side of the n-type silicon substrate 42 in a region other than the region immediately below the phosphorus-containing dopant paste 14.
  • a back side low-concentration dopant diffusion layer 47b having a sheet resistance of about 100 ⁇ / ⁇ is formed as a fifth dopant diffusion layer in which phosphorus is diffused at a uniform concentration in the surface direction of the n-type silicon substrate.
  • the back surface side dopant diffusion layer 47 which has the back surface side high concentration dopant diffusion layer 47a and the back surface side low concentration dopant diffusion layer 47b is formed.
  • the laminated film of the phosphorus-containing oxide film 53 that is an oxide film and the protective oxide film 54 is a diffusion source of phosphorus to the n-type silicon substrate 42 because the phosphorus-containing oxide film 53 contains phosphorus. Is the fourth diffusion source.
  • this laminated film plays a role of preventing the dopant component volatilized from the phosphorus-containing dopant paste 14 from diffusing into the backside low-concentration dopant diffusion layer 47b.
  • the thickness of the laminated film is up to 200 nm, it is possible to diffuse the dopant from the phosphorus-containing dopant paste 14 to the n-type silicon substrate 42 through the laminated film. Since the phosphorus-containing oxide film 53 is protected by the protective oxide film 54, the phosphorus in the phosphorus-containing oxide film 53 can be prevented from volatilizing in the atmosphere during the heat treatment. It is possible to efficiently diffuse phosphorus into the substrate 42.
  • the protective oxide film 54 functions as a protective film. Therefore, the back-side low-concentration dopant diffusion layer 47b in which phosphorus is diffused at a uniform concentration that is not affected by the volatilization component from the phosphorus-containing dopant paste 14 is obtained.
  • a protective oxide film 54 having a thickness of 120 nm is formed on the phosphorus-containing oxide film 53 as a capping film so that phosphorus is not volatilized from the phosphorus-containing oxide film 53 in the heat treatment process.
  • the protective oxide film 54 may be formed to have a thickness of 150 nm. Even when only the phosphorus-containing oxide film 53 is provided with a thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 54, the phosphorus-containing oxide film 53 has a dopant component volatilized from the phosphorus-containing dopant paste 14 on the back surface. It plays a role of preventing diffusion to the side low-concentration dopant diffusion layer 47b.
  • FIG. 46 is an explanatory diagram of step S408 of FIG.
  • Step S408 is a step of removing the boron-containing glass layer 52, the protective oxide film 54, the phosphorus-containing oxide film 53, and the phosphorus-containing dopant paste 14 that are oxide films.
  • the removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the n-type silicon substrate 42 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
  • FIG. 47 is an explanatory diagram of steps S409 and S410 of FIG.
  • Step S409 is a process of forming the antireflection film 4.
  • the antireflection film 4 is formed by forming a silicon nitride film having a refractive index of 2.1 and a film thickness of 80 nm on the light receiving surface side dopant diffusion layer 43 by the same method as in step S109 of the first embodiment.
  • the p-type light-receiving surface side dopant diffusion layer 43 is a p-type layer in which boron is diffused, an alumina film having a negative fixed charge is used to obtain good passivation performance.
  • Step S ⁇ b> 410 is a step of forming the back surface side passivation film 48.
  • a silicon nitride film is formed on the back surface side dopant diffusion layer 47 in the same manner as the antireflection film 4.
  • FIG. 48 is an explanatory diagram of step S411 in FIG.
  • Step S411 is a process of printing an electrode.
  • the electrodes are printed by the same method as in step S110 of the first embodiment, and the silver-containing paste 55 and the silver-aluminum-containing paste 56 containing Ag and Al are printed.
  • the light-receiving surface side of the n-type silicon substrate 42 is a p-type light-receiving surface-side dopant diffusion layer 43 in which boron is diffused. Therefore, the light-receiving surface-side electrode 45 and the light-receiving surface-side dopant diffusion layer In order to maintain sufficient electrical continuity with 43, an Ag paste containing about 3% by weight of Al is used.
  • the silver-containing paste 55 is printed on the back surface side passivation film 48 on the back surface of the n-type silicon substrate 42.
  • the silver-aluminum-containing paste 56 is printed on the antireflection film 4 in the same comb-shaped pattern as in the first embodiment.
  • the printed pattern of the silver-containing paste 55 has the same comb shape as the back-side high-concentration dopant diffusion layer 47a, a pattern in which linear patterns with a line width of 50 ⁇ m are arranged in parallel at intervals of 2 mm, and four linear shapes with a line width of 1 mm. It is a comb-shaped pattern composed of patterns in which patterns are arranged in parallel. Further, the silver-containing paste 55 is printed at a position included in a region having a width of 150 ⁇ m and a region having a width of 1.2 mm of the pattern of the phosphorus-containing dopant paste 14 formed in step S406. That is, the silver-containing paste 55 is printed at a position included in a 150 ⁇ m wide region and a 1.2 mm wide region of the pattern of the back side high-concentration dopant diffusion layer 47a.
  • the printing position of the silver-containing paste 55 needs to be aligned with the pattern of the back side high-concentration dopant diffusion layer 47a.
  • the printing position of the silver-containing paste 55 can be aligned by the method described in step S110 in the first embodiment. If the printing position of the silver-containing paste 55 is shifted, the back-side electrode 46 is formed on the back-side low-concentration dopant diffusion layer 47b, and the contact resistance between the back-side dopant diffusion layer 47 and the back-side electrode 46. As a result, the fill factor deteriorates, and the open circuit voltage deteriorates due to increased surface recombination of carriers. For this reason, it is important to align the printing position of the silver-containing paste 55 with the pattern of the back-side high-concentration dopant diffusion layer 47a.
  • FIG. 49 is an explanatory diagram of step S412 of FIG.
  • Step S412 is a step of performing a heat treatment to form an electrode by baking a paste for forming an electrode.
  • the electrode heat treatment is performed in the same manner as in step S111 of the first embodiment.
  • the resin component in a paste lose
  • the glass particles contained in the silver-aluminum-containing paste 56 penetrate the silicon nitride film, and the Ag particles come into contact with the light receiving surface side dopant diffusion layer 43 to obtain electrical conduction.
  • the light-receiving surface side electrode 45 is obtained.
  • Ag particles contained in the silver-containing paste 55 come into contact with the back side high-concentration dopant diffusion layer 47a to obtain electrical conduction.
  • the back surface side electrode 46 is obtained.
  • a solar battery cell 41 having a uniform dopant concentration in the back-side low-concentration dopant diffusion layer 47b in the surface direction of the n-type silicon substrate 42 shown in FIGS. 36 to 38 can be obtained. .
  • the semiconductor substrate 42 may be a p-type single crystal silicon substrate or a p-type polycrystalline silicon substrate.
  • the conductivity type of each member in the fifth embodiment may be reversed.
  • a p-type backside low-concentration dopant diffusion layer having the configuration shown in FIGS. 36 to 38 and having a uniform dopant concentration in the plane direction of the p-type silicon substrate is provided. A solar battery cell can be obtained.
  • a laminated film of the phosphorus-containing oxide film 53 and the protective oxide film 54 as an oxide film is formed on the back surface of the n-type silicon substrate 42 by 50 nm. A film thickness of 200 nm or less is formed. Then, the phosphorus-containing dopant paste 14 is printed in a predetermined pattern on the protective oxide film 54 and heat treatment is performed. Therefore, the back surface of the n-type silicon substrate 42 covered with the protective oxide film 54 is not diffused by the dopant component volatilized from the phosphorus-containing dopant paste 14, and the diffusion of the dopant component in the back-side low-concentration dopant diffusion layer 47 b. Concentration non-uniformity can be eliminated.
  • the solar battery cell 41 having a selective diffusion structure including the back-side low-concentration dopant diffusion layer 47b having a uniform dopant concentration in the surface direction can be efficiently obtained with a small number of steps.
  • the solar battery cell 41 having uniform power generation characteristics in the plane direction can be easily obtained.
  • FIG. 50 is a schematic cross-sectional view of the relevant part showing a solar battery cell 61 according to the sixth embodiment of the present invention, and is a relevant part cross-sectional view corresponding to FIG.
  • symbol is attached
  • description is abbreviate
  • the difference between the solar battery cell 61 and the solar battery cell 41 according to the fifth embodiment is the configuration of the light-receiving surface side dopant diffusion layer. Therefore, below, the light-receiving surface side dopant diffusion layer different from the photovoltaic cell 41 is demonstrated.
  • a p-type light-receiving surface side dopant diffusion layer 63 in which boron (B) is diffused is formed on the entire light-receiving surface of the n-type semiconductor substrate 42, and a pn junction is formed.
  • a semiconductor substrate 71 is formed.
  • An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 63.
  • the p-type light-receiving surface side dopant diffusion layer 63 is formed in the solar battery cell 61. That is, in the surface layer portion on the light receiving surface side of the n-type silicon substrate 42, the light receiving surface side high concentration in which the p-type dopant is relatively diffused in the lower region of the light receiving surface side electrode 45 and its peripheral region. A dopant diffusion layer 63a is formed.
  • a side low-concentration dopant diffusion layer 63b is formed.
  • the light receiving surface side high concentration dopant diffusion layer 63a is a low resistance diffusion layer having a lower electrical resistance than the light receiving surface side low concentration dopant diffusion layer 63b.
  • the light receiving surface side low concentration dopant diffusion layer 63b is a high resistance diffusion layer having a higher electrical resistance than the light receiving surface side high concentration dopant diffusion layer 63a.
  • the dopant diffusion concentration of the light receiving surface side high concentration dopant diffusion layer 63a is the fifth diffusion concentration and the dopant diffusion concentration of the light receiving surface side low concentration dopant diffusion layer 63b is the sixth diffusion concentration
  • the sixth diffusion concentration is It becomes lower than 5 diffusion density.
  • the electric resistance value of the light receiving surface side high concentration dopant diffusion layer 63a is the fifth electric resistance value and the electric resistance value of the light receiving surface side low concentration dopant diffusion layer 63b is the sixth electric resistance value
  • the sixth electric resistance value is obtained. Becomes larger than the fifth electric resistance value.
  • the light receiving surface side high-concentration dopant diffusion layer 63a has a contact resistance between the light receiving surface side dopant diffusion layer 63 and the light receiving surface side electrode 45. Since it reduces, a favorable fill factor can be obtained. In addition, the light receiving surface side low-concentration dopant diffusion layer 63b reduces the recombination rate of carriers on the light receiving surface side of the n-type silicon substrate.
  • FIG. 51 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 61 according to the sixth embodiment of the present invention.
  • 52 to 61 are cross-sectional views of relevant parts for explaining the manufacturing steps of the solar battery cell 61 according to the sixth embodiment of the present invention.
  • FIG. 52 is an explanatory diagram of steps S501 and S502 of FIG. In steps S501 and S502, the same processes as those in steps S101 and S102 of the first embodiment are performed except that the n-type silicon substrate 42 is prepared as a semiconductor substrate.
  • FIG. 53 is an explanatory diagram of step S503 in FIG.
  • a boron-containing oxide film 64 and a protective oxide film 65 are formed on the light receiving surface side of the n-type silicon substrate 42 as the light receiving surface side oxide film.
  • a silicon oxide film is formed by an atmospheric pressure CVD method using silane, oxygen, and diborane (B 2 H 6 ) as material gases.
  • the n-type silicon substrate 42 heated to about 450 ° C. to 550 ° C. is exposed to a mixed atmosphere of silane, oxygen, and diborane at atmospheric pressure, so that the n-type silicon substrate 42 first has a light-receiving surface side.
  • a boron-containing oxide film 64 having a thickness of 30 nm containing boron is formed. Thereafter, the mixing of diborane is stopped, and the n-type silicon substrate 42 is exposed in a mixed atmosphere of silane and oxygen, so that the protective oxide film 65 having a thickness of 120 nm not containing boron is changed to a boron-containing oxide film 64. Form on top.
  • the boron-containing concentration in the boron-containing oxide film 64 is lower than that of the boron-containing dopant paste 66.
  • a protective oxide film 65 having a thickness of 120 nm is formed on the boron-containing oxide film 64 as a capping film so that boron is not volatilized from the boron-containing oxide film 64 in the atmosphere in the heat treatment process.
  • the protective oxide film 65 may not be formed with a thickness of 150 nm. Even when only the boron-containing oxide film 64 is provided with a film thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 65, the boron-containing oxide film 64 is a dopant component volatilized from a boron-containing dopant paste 66 described later. Plays a role of preventing diffusion to the light receiving surface side low concentration dopant diffusion layer 63b.
  • FIG. 54 is an explanatory diagram of step S504 in FIG.
  • Step S504 is a step of forming a phosphorus-containing oxide film 53 and a protective oxide film 54, which are back-surface oxide films, on the back surface side of the n-type silicon substrate 42.
  • the phosphorous-containing oxide film 53 having a thickness of 30 nm and the protective oxide film 54 having a thickness of 120 nm are formed in this order in the same manner as in step S303 in FIG. 27 in the fourth embodiment. It is formed on the back side.
  • a protective oxide film 54 having a thickness of 120 nm is deposited on the phosphorus-containing oxide film 53 as a capping film.
  • the protective oxide film 54 may not be formed by setting 53 to 150 nm.
  • FIG. 55 is an explanatory diagram of step S505 of FIG.
  • Step S505 is a step of selectively printing a boron-containing dopant paste 66 as a light-receiving surface side dopant paste on the protective oxide film 65 on the light-receiving surface side of the n-type silicon substrate 42.
  • a resin paste containing boron oxide is printed on the protective oxide film 65 using a screen printing method.
  • the printed pattern of the boron-containing dopant paste 66 is a comb-shaped pattern composed of a pattern in which linear patterns with a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns with a line width of 1.2 mm are arranged in parallel. Pattern. After printing, the boron-containing dopant paste 66 is dried at 250 ° C. for 5 minutes.
  • the printing method of the boron-containing dopant paste 66 is not limited to the screen printing method, and an ink jet method or a method of directly discharging from a nozzle can be used.
  • FIG. 56 is an explanatory diagram of step S506 in FIG.
  • Step S506 is a step of selectively printing the phosphorus-containing dopant paste 14 as the backside dopant paste on the protective oxide film 54 on the backside of the n-type silicon substrate 42.
  • the phosphorus-containing dopant paste 14 is printed by the same method as in the first embodiment.
  • the printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 ⁇ m are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern.
  • the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
  • FIG. 57 is an explanatory diagram of step S507 in FIG.
  • Step S507 is a process of heat-treating the n-type silicon substrate 42 on which the boron-containing dopant paste 66 and the phosphorus-containing dopant paste 14 are printed. Specifically, a boat on which an n-type silicon substrate 42 is placed is placed in a horizontal furnace, and the n-type silicon substrate 42 is heat-treated at 960 ° C. for 15 minutes.
  • boron which is a dopant component in the boron-containing dopant paste 66, penetrates the protective oxide film 65 and the boron-containing oxide film 64 directly below the boron-containing dopant paste 66 on the light-receiving surface side of the n-type silicon substrate 42.
  • the n-type silicon substrate 42 is thermally diffused.
  • boron in the boron-containing oxide film 64 immediately below the boron-containing dopant paste 66 is thermally diffused into the n-type silicon substrate 42 immediately below the boron-containing dopant paste 66.
  • a light-receiving surface side high-concentration dopant diffusion layer 63 a having a sheet resistance of about 30 ⁇ / ⁇ is formed on the surface layer of the n-type silicon substrate 42 immediately below the boron-containing dopant paste 66.
  • the light-receiving surface side high-concentration dopant diffusion layer 63 a is formed in the same comb-shaped pattern as the printing pattern of the boron-containing dopant paste 66.
  • the dopant component of the boron-containing dopant paste 66 does not diffuse in the region other than the region immediately below the boron-containing dopant paste 66.
  • the boron in the boron-containing oxide film 64 is thermally diffused into the surface layer on the back surface side of the n-type silicon substrate 42 in the region other than the region immediately below the boron-containing dopant paste 66.
  • a light-receiving surface side low-concentration dopant diffusion layer 63b having a sheet resistance of about 90 ⁇ / ⁇ is formed in which boron is diffused at a uniform concentration in the surface direction of the n-type silicon substrate.
  • the light receiving surface side dopant diffusion layer 63 of the selective emitter structure having the light receiving surface side high concentration dopant diffusion layer 63a and the light receiving surface side low concentration dopant diffusion layer 63b is formed.
  • the boron-containing oxide film 64 that is an oxide film and the protective oxide film 65 are formed of a boron diffusion source to the n-type silicon substrate 42 because the boron-containing oxide film 64 contains boron. It becomes.
  • this laminated film plays a role of preventing the dopant component volatilized from the boron-containing dopant paste 66 from diffusing into the light receiving surface side low-concentration dopant diffusion layer 63b.
  • the thickness of the laminated film is up to 200 nm, the dopant can be diffused from the boron-containing dopant paste 66 to the n-type silicon substrate 42 through the laminated film. Since the boron-containing oxide film 64 is protected by the protective oxide film 65, the boron in the boron-containing oxide film 64 can be prevented from volatilizing in the atmosphere during the heat treatment. Boron can be efficiently diffused into the substrate 42.
  • the back surface selective diffusion BSF layer which consists of the back surface side dopant diffusion layer 47 which has the back surface side high concentration dopant diffusion layer 47a and the back surface side low concentration dopant diffusion layer 47b is formed. Accordingly, the selective emitter structure on the light receiving surface side and the back surface selective diffusion BSF layer can be formed simultaneously by one heat treatment.
  • FIG. 58 is an explanatory diagram of step S508 of FIG.
  • Step S508 is a process of removing the dopant paste and the oxide film.
  • the phosphorus-containing dopant paste 14 and the boron-containing dopant paste 66 are removed.
  • the protective oxide film 65, the boron-containing oxide film 64, the protective oxide film 54, and the phosphorus-containing oxide film 53, which are oxide films, are removed.
  • the removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the n-type silicon substrate 42 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
  • FIG. 59 is an explanatory diagram of steps S509 and S510 of FIG.
  • Step S509 is a step of forming the antireflection film 4 on the light receiving surface side dopant diffusion layer 63.
  • the formation of the antireflection film 4 is performed in the same manner as in step S409 of the fifth embodiment.
  • Step S ⁇ b> 510 is a step of forming the back surface side passivation film 48.
  • As the back surface side passivation film 48 a silicon nitride film is formed on the back surface side dopant diffusion layer 47 in the same manner as the antireflection film 4.
  • FIG. 60 is an explanatory diagram of step S511 of FIG.
  • Step S511 is a process of printing an electrode.
  • the electrode printing is performed in the same manner as step S411 in the fifth embodiment.
  • the printed pattern of the silver-aluminum-containing paste 56 has the same comb shape as the light-receiving surface side high-concentration dopant diffusion layer 63a, and a pattern in which linear patterns with a line width of 50 ⁇ m are arranged in parallel at intervals of 2 mm and 4 with a line width of 1 mm.
  • This is a comb-shaped pattern composed of a pattern in which linear patterns of books are arranged in parallel.
  • the silver-aluminum-containing paste 56 is printed at a position included in a region having a width of 150 ⁇ m and a region having a width of 1.2 mm of the pattern of the boron-containing dopant paste 66 formed in step S505. That is, the silver-aluminum-containing paste 56 is printed at a position included in a 150 ⁇ m wide region and a 1.2 mm wide region of the pattern of the light receiving surface side high concentration dopant diffusion layer 63a.
  • the printing position of the silver-aluminum-containing paste 56 needs to be aligned with the pattern of the light receiving surface side high-concentration dopant diffusion layer 63a.
  • the alignment of the printing position of the silver-aluminum-containing paste 56 can be performed by the method described in the description of step S110 in the first embodiment.
  • FIG. 61 is an explanatory diagram of step S512 of FIG.
  • Step S512 is a step of performing a heat treatment to form an electrode by firing an electrode forming paste.
  • the electrode heat treatment is performed in the same manner as in step S111 of the first embodiment.
  • the resin component in a paste lose
  • the glass particles contained in the silver-aluminum-containing paste 56 penetrate the silicon nitride film, and the Ag particles come into contact with the light receiving surface side high-concentration dopant diffusion layer 63a to obtain electrical conduction. Thereby, the light-receiving surface side electrode 45 is obtained.
  • Ag particles contained in the silver-containing paste 55 come into contact with the back side high-concentration dopant diffusion layer 47a to obtain electrical conduction. Thereby, the back surface side electrode 46 is obtained.
  • a solar cell 61 having a p-type back-side low-concentration dopant diffusion layer 47b having a uniform dopant concentration in the direction can be obtained.
  • the semiconductor substrate 42 may be a p-type single crystal silicon substrate or a p-type polycrystalline silicon substrate.
  • the conductivity type of each member in the sixth embodiment may be reversed.
  • an n-type light-receiving surface side low-concentration dopant diffusion layer having a configuration shown in FIG. 50 and having a uniform dopant concentration in the surface direction of the p-type silicon substrate by performing the above-described steps, and p-type A p-type back-side low-concentration dopant diffusion layer having a uniform dopant concentration in the surface direction of the silicon substrate can be obtained.
  • a light-receiving surface side selective emitter layer including a low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the p-type silicon substrate, and a low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the p-type silicon substrate.
  • the selective diffusion BSF structure on the back side can be formed simultaneously by one heat treatment.
  • the selective emitter structure including the layers and the selective diffusion BSF layer including the low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the n-type silicon substrate 42 can be simultaneously formed by one heat treatment. Therefore, according to the sixth embodiment, the solar battery cell 61 having the light receiving surface side selective emitter structure and the back surface side selective diffusion BSF layer can be efficiently formed with a small number of steps.
  • FIG. 62 is a flowchart showing a process flow of a method for manufacturing a solar battery cell according to the seventh embodiment of the present invention.
  • 63 to 67 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar cell according to the seventh embodiment of the present invention. 62, the same steps as those in FIGS. 3 and 22 are denoted by the same reference numerals. In FIGS. 63 to 67, the same members as those in the above-described embodiment are denoted by the same reference numerals.
  • step S701 instead of performing the thermal diffusion and the protective oxide film formation in step S201, the ion implantation in step S701 is performed. In step S702, thermal diffusion and protective oxide film formation are performed.
  • Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
  • FIG. 63 is an explanatory diagram of step S701 in FIG.
  • Step S701 is a step of forming an ion implantation layer 81 by implanting phosphorus ions, which are the first dopant, by ion implantation on one surface of the p-type silicon substrate 2 on the light receiving surface side.
  • the material gas is PH 3 gas
  • the implantation energy is 6.5 keV
  • the ion dose is 5 ⁇ 10 15 (atoms / cm 2 ).
  • FIG. 64 is an explanatory diagram of step S702 of FIG. Step S702 heat-treats the p-type silicon substrate 2 in which phosphorus has been implanted into one surface by an ion implantation method, so that phosphorus implanted into the ion implanted layer 81 at a higher concentration than the light receiving surface side low-concentration dopant diffusion layer 3b.
  • This is a step of diffusing from the surface layer of the p-type silicon substrate 2 in the depth direction of the p-type silicon substrate 2, that is, in the inner direction of the p-type silicon substrate 2.
  • a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C.
  • the temperature inside the quartz tube is raised to 900 ° C. while introducing nitrogen, and when the temperature in the quartz tube reaches 900 ° C., oxygen is allowed to flow into the quartz tube for 30 minutes and held for 30 minutes.
  • the inside of the quartz tube is heated to 1050 ° C. while introducing oxygen, and is further maintained for 70 minutes.
  • the introduction of oxygen is stopped, and the gas introduced into the quartz tube is switched to nitrogen.
  • the boat is taken out from the quartz tube.
  • phosphorus is diffused at a uniform concentration in the surface layer on the surface of the p-type silicon substrate 2, that is, on the light-receiving surface side of the p-type silicon substrate 2, for example, low-concentration dopant diffusion with a sheet resistance of 90 ⁇ / ⁇ .
  • Layer 82 is formed.
  • a protective oxide film 83 is formed on the low concentration dopant diffusion layer 82.
  • a protective oxide film 83 is formed on the back surface of the p-type silicon substrate 2. Thereby, for example, a protective oxide film 83 having a film thickness of 65 nm can be obtained.
  • FIG. 65 is an explanatory diagram of step S202 of FIG.
  • Step S202 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 83 on the light receiving surface side.
  • the phosphorus-containing dopant paste 14 is printed in the same manner as in the third embodiment.
  • FIG. 66 is an explanatory diagram of step S203 of FIG.
  • Step S203 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed.
  • the p-type silicon substrate 2 is heat-treated at about 960 ° C. for 10 minutes as in step S203 of the third embodiment.
  • phosphorus in the phosphorus-containing dopant paste 14 is thermally diffused into the p-type silicon substrate 2 directly below the phosphorus-containing dopant paste 14 through the protective oxide film 83, and the light-receiving surface side high-concentration dopant diffusion layer 3a is formed.
  • phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 83 and diffuses into the low-concentration dopant diffusion layer 82 and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to receive the light receiving surface.
  • a high concentration dopant diffusion layer 3a is formed.
  • the protective oxide film 83 prevents the diffusion of the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment into the low-concentration dopant diffusion layer 82. That is, in the low-concentration dopant diffusion layer 82 on the light-receiving surface side, the region other than the region immediately below the phosphorus-containing dopant paste 14 does not diffuse phosphorus as a dopant component from the phosphorus-containing dopant paste 14, and the sheet resistance is 90 ⁇ / ⁇ It remains about the same level.
  • the light receiving surface side high concentration dopant diffusion layer 3 a is formed immediately below the phosphorus-containing dopant paste 14, and the light receiving surface side high concentration dopant diffusion is formed.
  • the region where the layer 3a is not formed becomes the light receiving surface side low-concentration dopant diffusion layer 3b.
  • FIG. 67 is an explanatory diagram of step S703 in FIG.
  • Step S204 is a process of removing the protective oxide film 83 and the phosphorus-containing dopant paste 14.
  • the protective oxide film 83 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution, as in the third embodiment.
  • the state of the p-type silicon substrate 2 after step S204 is such that there is no low-concentration dopant diffusion layer 3c on the back side of the p-type silicon substrate 2 after step S204 of the third embodiment.
  • the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side high concentration dopant diffusion layer 3a are formed on the surface layer of the surface of the p-type silicon substrate 2, that is, the surface layer on the light-receiving surface side of the p-type silicon substrate 2.
  • a light-receiving surface side low-concentration dopant diffusion layer 3b which is a second dopant diffusion layer formed in a region not formed and phosphorous is diffused at a uniform concentration lower than that of the first dopant diffusion layer, is formed.
  • the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
  • the side low concentration dopant diffusion layer 3b can be obtained. Therefore, it is possible to manufacture a solar cell in which the in-plane uniformity of the dopant concentration in the low concentration diffusion region is more uniform in the plane of the semiconductor substrate.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, or can be combined with the technique of the above embodiment.
  • a part of the configuration can be omitted or changed without departing from the gist of the present invention.

Abstract

This method for manufacturing a solar cell comprises: a first step wherein a first oxide film having a film thickness of more than 50 nm but 200 nm or less is formed on a first surface of a semiconductor substrate of a first conductivity type; a second step wherein a first diffusion source that contains a first dopant is selectively formed on the first oxide film; a third step wherein the semiconductor substrate, on which the first diffusion source has been formed, is subjected to a heat treatment, thereby forming a first dopant diffused layer, in which the first dopant is diffused, in a region of the superficial layer of the first surface, said region being immediately below the first diffusion source; and a fourth step wherein an electrode is formed on the first dopant diffused layer.

Description

太陽電池の製造方法Manufacturing method of solar cell
 本発明は、半導体基板を用いた太陽電池の製造方法に関するものである。 The present invention relates to a method for manufacturing a solar cell using a semiconductor substrate.
 太陽電池では、高効率化のため、受光面側において、電極下部に高濃度のドーピング層を形成し、高濃度のドーピング層以外の領域に低濃度のドーピング層を形成した選択エミッタ構造が用いられている。低濃度のドーピング層は、入射された光の吸収を抑制し良好な短絡電流を得ることができ、さらに光生成キャリアの再結合損失を抑制することができるため、太陽電池において良好な開放電圧の実現に寄与する。一方、高濃度のドーピング層は、電極と半導体基板との接触抵抗を低減することができるため、太陽電池において良好な曲線因子の実現に寄与する。 In solar cells, a selective emitter structure in which a high-concentration doping layer is formed below the electrode and a low-concentration doping layer is formed in a region other than the high-concentration doping layer on the light-receiving surface side is used for high efficiency. ing. The low-concentration doping layer can suppress the absorption of incident light and obtain a good short-circuit current, and can further suppress the recombination loss of photogenerated carriers. Contribute to realization. On the other hand, the high-concentration doping layer can reduce the contact resistance between the electrode and the semiconductor substrate, and thus contributes to the realization of a good curve factor in the solar cell.
 選択エミッタ構造の形成方法として、特許文献1には、半導体基板の受光面側に櫛形形状にドーパントペーストを印刷形成した後に半導体基板の熱処理を行うことが示されている。熱処理を行うことにより、ドーパントペースト内のドーパントが半導体基板内に熱拡散し、ドーパント濃度の高い高濃度ドーパント拡散層である第1の拡散領域を形成する。同時に、ドーパントペーストから気相中に揮発したドーパント成分が半導体基板表面に付着した後、半導体基板内へ熱拡散され、第1の拡散領域よりもドーパント濃度の低い低濃度ドーパント拡散層である第2の拡散領域を形成する。これにより、一度の熱処理でドーパント濃度の高い第1の拡散領域と第1の拡散領域よりもドーパント濃度の低い第2の拡散領域とが形成される。 As a method for forming a selective emitter structure, Patent Document 1 discloses that a semiconductor substrate is heat-treated after a dopant paste is printed and formed in a comb shape on the light receiving surface side of the semiconductor substrate. By performing the heat treatment, the dopant in the dopant paste is thermally diffused into the semiconductor substrate to form a first diffusion region which is a high concentration dopant diffusion layer having a high dopant concentration. At the same time, after the dopant component volatilized from the dopant paste in the gas phase adheres to the surface of the semiconductor substrate, it is thermally diffused into the semiconductor substrate and is a low-concentration dopant diffusion layer having a dopant concentration lower than that of the first diffusion region. The diffusion region is formed. Thus, a first diffusion region having a high dopant concentration and a second diffusion region having a lower dopant concentration than the first diffusion region are formed by a single heat treatment.
特開2007-235174号公報JP 2007-235174 A
 しかしながら、特許文献1の技術では、ドーパントペーストからの揮発成分が半導体基板に拡散して低濃度ドーパント拡散層が形成されるため、ドーパント濃度が均一な低濃度ドーパント拡散層を形成することができない、という問題がある。この場合には、低濃度ドーパント拡散層におけるドーパント濃度の不均一に起因して、太陽電池の面内において発電特性のばらつきが生じる。 However, in the technique of Patent Document 1, since a low concentration dopant diffusion layer is formed by diffusing volatile components from the dopant paste into the semiconductor substrate, a low concentration dopant diffusion layer having a uniform dopant concentration cannot be formed. There is a problem. In this case, due to the non-uniformity of the dopant concentration in the low concentration dopant diffusion layer, the power generation characteristics vary in the plane of the solar cell.
 本発明は、上記に鑑みてなされたものであって、ドーパントペーストからの揮散成分の基板への拡散を防止してドーパント拡散層を形成できる太陽電池の製造方法を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell manufacturing method capable of forming a dopant diffusion layer by preventing diffusion of a volatile component from a dopant paste to a substrate.
 上述した課題を解決し、目的を達成するために、本発明は、第1導電型の半導体基板の第1面に、膜厚が50nmより大、且つ200nm以下の第1酸化膜を形成する第1工程と、第1ドーパントを含んだ第1拡散源を前記第1酸化膜上に選択的に形成する第2工程と、前記第1拡散源が形成された前記半導体基板を熱処理して、前記第1面の表層における前記第1拡散源の直下領域に前記第1ドーパントが拡散した第1のドーパント拡散層を形成する第3工程と、前記第1のドーパント拡散層上に電極を形成する第4工程と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a first oxide film having a thickness of greater than 50 nm and less than or equal to 200 nm on a first surface of a first conductivity type semiconductor substrate. A first step, a second step of selectively forming a first diffusion source containing a first dopant on the first oxide film, and a heat treatment of the semiconductor substrate on which the first diffusion source is formed, A third step of forming a first dopant diffusion layer in which the first dopant is diffused in a region immediately below the first diffusion source on the surface layer of the first surface; and a step of forming an electrode on the first dopant diffusion layer. And 4 steps.
 本発明によれば、ドーパントペーストからの揮散成分の基板への拡散を防止してドーパント拡散層を形成できる、という効果を奏する。 According to the present invention, it is possible to prevent the diffusion of the volatile component from the dopant paste to the substrate and form the dopant diffusion layer.
実施の形態1にかかる太陽電池セルを示す上面模式図Schematic top view showing the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルを示す要部断面模式図FIG. 3 is a schematic cross-sectional view of a relevant part showing the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 1. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the first embodiment. 実施の形態1における保護用酸化膜の膜厚とパッド部およびブランク部のシート抵抗との関係を示す特性図The characteristic view which shows the relationship between the film thickness of the protective oxide film in Embodiment 1, and the sheet resistance of a pad part and a blank part 実施の形態2にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 2. FIG. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment. 実施の形態3にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 3. 実施の形態3にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment. 実施の形態3にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment. 実施の形態3にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment. 実施の形態3にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment. 実施の形態4にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 4. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment. 実施の形態5にかかる太陽電池を示す上面模式図Schematic top view showing the solar cell according to the fifth embodiment. 実施の形態5にかかる太陽電池を示す下面模式図Schematic diagram showing the bottom surface of the solar cell according to the fifth embodiment. 実施の形態5にかかる太陽電池を示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a solar cell according to a fifth embodiment. 実施の形態5にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 5. FIG. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態5にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the fifth embodiment. 実施の形態6にかかる太陽電池セルを示す要部断面模式図Cross-sectional schematic diagram of relevant parts showing a solar battery cell according to a sixth embodiment. 実施の形態6にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 6. FIG. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態6にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the sixth embodiment. 実施の形態7にかかる太陽電池セルの製造方法を示すフローチャートA flowchart which shows the manufacturing method of the photovoltaic cell concerning Embodiment 7. FIG. 実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment. 実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment. 実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment. 実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment. 実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図Cross-sectional view of relevant parts for explaining the manufacturing process of the solar battery cell according to the seventh embodiment.
 以下に、本発明の実施の形態にかかる太陽電池の製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、以下に示す図面においては、理解の容易のため、各部材の縮尺が実際とは異なる場合がある。各図面間においても同様である。 Hereinafter, a method for manufacturing a solar cell according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In the drawings shown below, the scale of each member may be different from the actual scale for easy understanding. The same applies between the drawings.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池セル1を示す上面模式図である。図2は、本発明の実施の形態1にかかる太陽電池セル1を示す要部断面模式図であり、図1の線分A-Aにおける要部断面図である。
Embodiment 1 FIG.
FIG. 1 is a schematic top view showing a solar battery cell 1 according to Embodiment 1 of the present invention. FIG. 2 is a schematic cross-sectional view of the relevant part showing the solar battery cell 1 according to the first embodiment of the present invention, and is a relevant part cross-sectional view taken along line AA in FIG.
 本実施の形態1にかかる太陽電池セル1においては、第1ドーパントとしてp型のドーパントであるリンが拡散されたn型の受光面側ドーパント拡散層3がp型の半導体基板2の受光面側の全体に形成されて、pn接合を有する半導体基板11が形成されている。また、受光面側ドーパント拡散層3上には、絶縁膜からなる反射防止膜4が形成されている。 In the solar cell 1 according to the first embodiment, the n-type light-receiving surface side dopant diffusion layer 3 in which phosphorus which is a p-type dopant is diffused as the first dopant is the light-receiving surface side of the p-type semiconductor substrate 2. A semiconductor substrate 11 having a pn junction is formed. An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 3.
 半導体基板2としては、p型の単結晶シリコン基板を用いている。以下では、p型の単結晶シリコン基板からなる半導体基板2をp型シリコン基板2と呼ぶ場合がある。なお、半導体基板2はp型の単結晶シリコン基板に限定されるものではなく、p型の多結晶シリコン基板を用いてもよい。 As the semiconductor substrate 2, a p-type single crystal silicon substrate is used. Hereinafter, the semiconductor substrate 2 made of a p-type single crystal silicon substrate may be referred to as a p-type silicon substrate 2. The semiconductor substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate may be used.
 半導体基板11における受光面側、すなわちn型の受光面側ドーパント拡散層3における受光面側には、光を閉じ込めるためのテクスチャ構造が形成されている。テクスチャ構造は、テクスチャと呼ばれる微小凹凸により形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、効率良く光を太陽電池セル1に閉じ込める構造となっており、たとえばピラミッド形状の突起が形成される。微小凹凸の寸法は、一つの突起の一辺が0.1μm~10μm程度であり、非常に微細であるため、図2および以下の図面では凹凸形状として図示していない。 On the light receiving surface side of the semiconductor substrate 11, that is, the light receiving surface side of the n-type light receiving surface side dopant diffusion layer 3, a texture structure for confining light is formed. The texture structure is formed by minute irregularities called textures. The minute unevenness increases the area of the light receiving surface that absorbs light from the outside, suppresses the reflectance on the light receiving surface, and efficiently confines the light in the solar battery cell 1. For example, a pyramidal protrusion is formed. Is done. The dimension of the minute irregularities is very small with one side of one protrusion being about 0.1 μm to 10 μm, and is not shown as an irregular shape in FIG. 2 and the following drawings.
 反射防止膜4は、絶縁膜である窒化シリコン膜(SiN)で構成される。なお、反射防止膜4は、窒化シリコン膜に限定されず、シリコン酸化膜(SiO)または酸化チタン膜(TiO)などの絶縁膜により形成されてもよい。 The antireflection film 4 is composed of a silicon nitride film (SiN) that is an insulating film. The antireflection film 4 is not limited to a silicon nitride film, and may be formed of an insulating film such as a silicon oxide film (SiO 2 ) or a titanium oxide film (TiO 2 ).
 また、半導体基板11における受光面側には、長尺細長の受光面側グリッド電極5aが複数並べて設けられ、この受光面側グリッド電極5aと導通する受光面側バス電極5bが受光面側グリッド電極5aと直交するように設けられており、それぞれ底面部においてn型の受光面側ドーパント拡散層3の受光面側高濃度ドーパント拡散層3aに電気的に接続している。受光面側グリッド電極5aおよび受光面側バス電極5bは銀材料により構成されている。 In addition, a plurality of elongated light receiving surface side grid electrodes 5a are provided side by side on the light receiving surface side of the semiconductor substrate 11, and the light receiving surface side bus electrode 5b that is electrically connected to the light receiving surface side grid electrode 5a is provided on the light receiving surface side grid electrode. 5a, and is electrically connected to the light-receiving surface side high-concentration dopant diffusion layer 3a of the n-type light-receiving surface side dopant diffusion layer 3 at the bottom surface portion. The light receiving surface side grid electrode 5a and the light receiving surface side bus electrode 5b are made of a silver material.
 受光面側グリッド電極5aは、線幅50μm程度の線状パターンが2mm程度の間隔で平行配列され、半導体基板11の内部で発電した電気を集電する。また、受光面側バス電極5bは、1mm~3mm程度の幅を有するとともに太陽電池セル1枚当たりに2本~4本が平行配列され、受光面側グリッド電極5aで集電した電気を外部に取り出す。そして、受光面側グリッド電極5aと受光面側バス電極5bとにより、櫛形状を呈する第1電極である受光面側電極5が構成される。 The light-receiving surface side grid electrode 5a collects electricity generated inside the semiconductor substrate 11 in which linear patterns having a line width of about 50 μm are arranged in parallel at intervals of about 2 mm. The light-receiving surface side bus electrode 5b has a width of about 1 mm to 3 mm, and two to four are arranged in parallel per solar cell, and electricity collected by the light-receiving surface side grid electrode 5a is externally supplied. Take out. The light-receiving surface side grid electrode 5a and the light-receiving surface-side bus electrode 5b constitute the light-receiving surface-side electrode 5, which is a first electrode having a comb shape.
 シリコン太陽電池の受光面側電極の電極材料には、通常、銀ペーストが用いられ、フリット状の鉛ボロンガラスが添加されている。鉛ボロンガラスは、たとえば750℃~850℃程度の加熱で溶解し、窒化シリコンを侵食する性質を有している。また一般に、結晶系シリコン太陽電池の製造方法においては、ガラスフリットの特性を利用してシリコン基板と銀ペーストとの電気的接触を得る方法が用いられている。 As the electrode material of the light-receiving surface side electrode of the silicon solar cell, a silver paste is usually used and a frit-shaped lead boron glass is added. Lead boron glass has a property of being melted by heating at, for example, about 750 ° C. to 850 ° C. and corroding silicon nitride. In general, in a method for manufacturing a crystalline silicon solar cell, a method of obtaining electrical contact between a silicon substrate and a silver paste using the characteristics of glass frit is used.
 一方、半導体基板11において受光面と対向する面である裏面には、全体にわたってアルミニウム材料を含有する裏面側電極6が設けられている。また、半導体基板11における裏面の表層部には、p型のドーパントをp型シリコン基板2よりも高濃度に含んだp+層である裏面側BSF(Back Surface Field)層7が形成されている。裏面側BSF層7は、BSF効果を得るために設けられ、半導体基板2中の電子が消滅しないようにバンド構造の電界で半導体基板2の電子濃度を高めるようにする。 On the other hand, the back surface side electrode 6 containing an aluminum material is provided on the entire back surface of the semiconductor substrate 11 which is the surface facing the light receiving surface. Further, a back side BSF (Back Surface Field) layer 7, which is a p + layer containing a p-type dopant in a higher concentration than the p-type silicon substrate 2, is formed on the surface layer portion of the back surface of the semiconductor substrate 11. The back side BSF layer 7 is provided in order to obtain the BSF effect, and the electron concentration of the semiconductor substrate 2 is increased by an electric field having a band structure so that the electrons in the semiconductor substrate 2 do not disappear.
 そして、太陽電池セル1においては、n型の受光面側ドーパント拡散層3として2種類の層が形成されて選択エミッタ構造が形成されている。p型シリコン基板2における受光面側の表層部において、受光面側電極5の下部領域およびその周辺領域には、n型のドーパントが相対的に高濃度に拡散された受光面側高濃度ドーパント拡散層3aが形成されている。また、p型シリコン基板2における受光面側の表層部において、受光面側高濃度ドーパント拡散層3aが形成されていない領域には、n型のドーパントが相対的に低濃度に拡散された受光面側低濃度ドーパント拡散層3bが形成されている。すなわち、太陽電池セル1は、受光面側高濃度ドーパント拡散層3aと受光面側低濃度ドーパント拡散層3bとを備える選択エミッタ構造を有する。受光面側高濃度ドーパント拡散層3aは、受光面側低濃度ドーパント拡散層3bに比べて低い電気抵抗を有する低抵抗拡散層である。受光面側低濃度ドーパント拡散層3bは、受光面側高濃度ドーパント拡散層3aに比べて高い電気抵抗を有する高抵抗拡散層である。 In the solar cell 1, two types of layers are formed as the n-type light-receiving surface side dopant diffusion layer 3 to form a selective emitter structure. In the surface layer portion of the p-type silicon substrate 2 on the light-receiving surface side, light-receiving surface-side high-concentration dopant diffusion in which the n-type dopant is diffused at a relatively high concentration in the lower region of the light-receiving surface-side electrode 5 and its peripheral region Layer 3a is formed. Further, in the surface layer portion of the p-type silicon substrate 2 on the light-receiving surface side, the light-receiving surface in which the n-type dopant is diffused at a relatively low concentration in the region where the light-receiving surface-side high-concentration dopant diffusion layer 3a is not formed. A side low-concentration dopant diffusion layer 3b is formed. That is, the solar cell 1 has a selective emitter structure including the light receiving surface side high concentration dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b. The light receiving surface side high concentration dopant diffusion layer 3a is a low resistance diffusion layer having a lower electrical resistance than the light receiving surface side low concentration dopant diffusion layer 3b. The light receiving surface side low concentration dopant diffusion layer 3b is a high resistance diffusion layer having a higher electric resistance than the light receiving surface side high concentration dopant diffusion layer 3a.
 したがって、受光面側高濃度ドーパント拡散層3aのドーパント拡散濃度を第1拡散濃度とし、受光面側低濃度ドーパント拡散層3bのドーパント拡散濃度を第2拡散濃度とすると、第2拡散濃度は、第1拡散濃度よりも低くなる。また、受光面側高濃度ドーパント拡散層3aの電気抵抗値を第1電気抵抗値とし、受光面側低濃度ドーパント拡散層3bの電気抵抗値を第2電気抵抗値とすると、第2電気抵抗値は、第1電気抵抗値よりも大きくなる。 Therefore, if the dopant diffusion concentration of the light receiving surface side high concentration dopant diffusion layer 3a is the first diffusion concentration and the dopant diffusion concentration of the light receiving surface side low concentration dopant diffusion layer 3b is the second diffusion concentration, the second diffusion concentration is It becomes lower than 1 diffusion concentration. Further, when the electric resistance value of the light receiving surface side high concentration dopant diffusion layer 3a is the first electric resistance value and the electric resistance value of the light receiving surface side low concentration dopant diffusion layer 3b is the second electric resistance value, the second electric resistance value is obtained. Becomes larger than the first electric resistance value.
 上述した受光面側電極5は、受光面側高濃度ドーパント拡散層3a上に形成されている。また、受光面側高濃度ドーパント拡散層3aにおいて受光面側電極5が形成されていない領域および受光面側低濃度ドーパント拡散層3bが形成されている領域が、太陽電池セル1に光が入射する受光面となる。そして、太陽電池セル1では、受光面側電極5の下部には電気抵抗の低い受光面側高濃度ドーパント拡散層3aが形成されて、半導体基板11と受光面側電極5との間の接触抵抗を小さくしている。また、半導体基板11の受光面側における受光面側高濃度ドーパント拡散層3a以外の領域にはドーパント濃度の低い受光面側低濃度ドーパント拡散層3bが形成されて、キャリアの再結合速度を小さくする。 The light receiving surface side electrode 5 described above is formed on the light receiving surface side high concentration dopant diffusion layer 3a. In the light receiving surface side high-concentration dopant diffusion layer 3a, light is incident on the solar cell 1 in the region where the light receiving surface side electrode 5 is not formed and the region where the light receiving surface side low concentration dopant diffusion layer 3b is formed. It becomes the light receiving surface. In the solar battery cell 1, a light receiving surface side high-concentration dopant diffusion layer 3 a having a low electric resistance is formed below the light receiving surface side electrode 5, and the contact resistance between the semiconductor substrate 11 and the light receiving surface side electrode 5. Is made smaller. Further, in the region other than the light receiving surface side high concentration dopant diffusion layer 3a on the light receiving surface side of the semiconductor substrate 11, a light receiving surface side low concentration dopant diffusion layer 3b having a low dopant concentration is formed to reduce the carrier recombination rate. .
 つぎに、本実施の形態1にかかる太陽電池セル1の製造方法について図3~図14を参照しながら説明する。図3は、本発明の実施の形態1にかかる太陽電池セル1の製造方法のプロセスフローを示したフローチャートである。図4~図13は、本発明の実施の形態1にかかる太陽電池セル1の製造工程を説明する要部断面図である。 Next, a method for manufacturing the solar cell 1 according to the first embodiment will be described with reference to FIGS. FIG. 3 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 1 according to the first embodiment of the present invention. 4 to 13 are cross-sectional views of relevant parts for explaining the manufacturing steps of the solar battery cell 1 according to the first embodiment of the present invention.
 図4は、図3のステップS101およびステップS102の説明図である。ステップS101では、半導体基板2としてp型シリコン基板2を用意する。p型シリコン基板2は、単結晶引き上げで得られた単結晶シリコンインゴットをバンドソーまたはマルチワイヤーソー等の切断装置を用いて所望のサイズおよび厚さにカットおよびスライスして製造するため、表面にスライス時のダメージ層が残っている。そこで、ダメージ層の除去も兼ねて、p型シリコン基板2の表面をエッチングすることにより、シリコン基板の切り出し時に発生してp型シリコン基板2の表面近くに存在するダメージ層を取り除く。 FIG. 4 is an explanatory diagram of steps S101 and S102 of FIG. In step S <b> 101, a p-type silicon substrate 2 is prepared as the semiconductor substrate 2. The p-type silicon substrate 2 is manufactured by cutting and slicing a single crystal silicon ingot obtained by pulling a single crystal into a desired size and thickness using a cutting machine such as a band saw or a multi-wire saw. The damage layer of time remains. Accordingly, the damage layer is also removed, and the surface of the p-type silicon substrate 2 is etched to remove the damage layer that occurs when the silicon substrate is cut out and exists near the surface of the p-type silicon substrate 2.
 ステップS102は、p型シリコン基板2の表面に微小凹凸を形成してテクスチャ構造を形成する。微小凹凸は非常に微細であるため、図4~図13では凹凸形状として表現していない。テクスチャ構造の形成には、6%の水酸化ナトリウム(NaOH)水溶液にイソプロピルアルコール(isopropyl alcohol)を10%混合した薬液を用いる。板状にスライスされたp型シリコン基板2を、80℃に設定された薬液中に10分浸漬することで、p型シリコン基板2の表面がエッチングされてp型シリコン基板2の表面全面にテクスチャ構造が得られる。 Step S102 forms a texture structure by forming minute irregularities on the surface of the p-type silicon substrate 2. Since the minute unevenness is very fine, it is not expressed as an uneven shape in FIGS. For the formation of the texture structure, a chemical solution obtained by mixing 10% isopropyl alcohol with 6% sodium hydroxide (NaOH) aqueous solution is used. The surface of the p-type silicon substrate 2 is etched by immersing the p-type silicon substrate 2 sliced into a plate shape in a chemical solution set at 80 ° C. for 10 minutes, and the entire surface of the p-type silicon substrate 2 is textured. A structure is obtained.
 上記のエッチング条件ではp型シリコン基板2の表面が10μm程度の深さでエッチングされるので、スライス時にp型シリコン基板2の表面に形成されたダメージ層も同時に除去できる。したがって、ステップS101におけるダメージ層の除去をステップS102で兼ねてもよい。ここではNaOH水溶液にイソプロピルアルコールを混入した薬液を用いる場合について示したが、NaOH水溶液または水酸化カリウム(KOH)水溶液等のアルカリ性水溶液に、市販のテクスチャエッチング用添加剤を加えた薬液を用いてもかまわない。また、p型シリコン基板2が多結晶シリコン基板である場合は、フッ酸と硝酸との混合液を用いることもできる。 Since the surface of the p-type silicon substrate 2 is etched at a depth of about 10 μm under the above etching conditions, the damage layer formed on the surface of the p-type silicon substrate 2 at the time of slicing can be removed at the same time. Therefore, the removal of the damaged layer in step S101 may be performed in step S102. Here, the case where a chemical solution in which isopropyl alcohol is mixed in an NaOH aqueous solution is used, but a chemical solution obtained by adding a commercially available texture etching additive to an alkaline aqueous solution such as an NaOH aqueous solution or a potassium hydroxide (KOH) aqueous solution may be used. It doesn't matter. In addition, when the p-type silicon substrate 2 is a polycrystalline silicon substrate, a mixed solution of hydrofluoric acid and nitric acid can be used.
 図5は、図3のステップS105の説明図である。ステップS105は、p型シリコン基板2における、太陽電池セル1の受光面となる第1面と、太陽電池セル1の裏面となる第2面との両面に第1酸化膜として保護用酸化膜13を形成する工程である。保護用酸化膜13の形成は、ドライ酸化またはウエット酸化を実施することで実現される。具体的には、たとえば300枚のp型シリコン基板2が3.5mm間隔で載置された石英ガラス製のボートが、700℃~800℃程度に加熱された横型炉の石英チューブ内へ装入される。10SLMの窒素を導入しながら石英チューブ内を1100℃℃まで昇温し、石英チューブ内の温度が1100℃に到達すると石英チューブ内へ酸素を30分間流す。30分後に酸素の導入を停止し、石英チューブ内に導入するガスを窒素に切り替える。そして、石英チューブ内を再び700℃~800℃程度まで降温した後、ボートを石英チューブから取り出す。このとき、p型シリコン基板2の表裏面には、酸化膜が60nm程度の膜厚で形成される。ここでは、保護用酸化膜13の形成に、高温下の石英チューブ内に酸素を導入するドライ酸化を用いたが、石英チューブ内に水蒸気を導入するウエット酸化を用いてもよい。ウエット酸化とは、純水を酸素でバブリングし、水蒸気を含んだ酸素を炉内へ導入する方法である。ウエット酸化を用いる場合は、たとえば石英チューブ内の温度が930℃の状態で、水蒸気を含んだ酸素を15分間、石英チューブ内に導入することで、60nm程度の酸化膜を得ることが可能である。 FIG. 5 is an explanatory diagram of step S105 in FIG. In step S105, the protective oxide film 13 is formed as a first oxide film on both the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2. Is a step of forming. The formation of the protective oxide film 13 is realized by performing dry oxidation or wet oxidation. Specifically, for example, a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is inserted into a quartz tube of a horizontal furnace heated to about 700 ° C. to 800 ° C. Is done. While introducing 10 SLM nitrogen, the temperature in the quartz tube is raised to 1100 ° C., and when the temperature in the quartz tube reaches 1100 ° C., oxygen is allowed to flow into the quartz tube for 30 minutes. After 30 minutes, the introduction of oxygen is stopped and the gas introduced into the quartz tube is switched to nitrogen. Then, after the temperature in the quartz tube is lowered again to about 700 ° C. to 800 ° C., the boat is taken out from the quartz tube. At this time, an oxide film is formed with a film thickness of about 60 nm on the front and back surfaces of the p-type silicon substrate 2. Here, dry oxidation in which oxygen is introduced into the quartz tube at a high temperature is used for forming the protective oxide film 13, but wet oxidation in which water vapor is introduced into the quartz tube may be used. Wet oxidation is a method in which pure water is bubbled with oxygen and oxygen containing water vapor is introduced into the furnace. When wet oxidation is used, for example, by introducing oxygen containing water vapor into the quartz tube for 15 minutes in a state where the temperature in the quartz tube is 930 ° C., an oxide film of about 60 nm can be obtained. .
 図6は、図3のステップS106の説明図である。ステップS106は、保護用酸化膜13上に第1拡散源としてドーパントペーストを印刷する工程である。ここでは、ドーパントペーストとして、リン酸化物を含んだ樹脂ペーストであるリン含有ドーパントペースト14をスクリーン印刷法を用いて保護用酸化膜13上に選択的に印刷する。リン含有ドーパントペースト14の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンとする。印刷後、リン含有ドーパントペースト14を250℃で5分間乾燥させる。なお、リン含有ドーパントペースト14の印刷方法はスクリーン印刷法に限らず、インクジェット法またはノズルから直接吐出する方法を用いることができる。 FIG. 6 is an explanatory diagram of step S106 in FIG. Step S <b> 106 is a step of printing a dopant paste as a first diffusion source on the protective oxide film 13. Here, as the dopant paste, a phosphorus-containing dopant paste 14 which is a resin paste containing a phosphorus oxide is selectively printed on the protective oxide film 13 using a screen printing method. The printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. The pattern is After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes. In addition, the printing method of the phosphorus containing dopant paste 14 is not restricted to the screen printing method, The inkjet method or the method of discharging directly from a nozzle can be used.
 図7は、図3のステップS107の説明図である。ステップS107は、リン含有ドーパントペースト14が印刷されたp型シリコン基板2を熱処理する工程である。横型炉にp型シリコン基板2を載置したボートを装入し、960℃程度で10分間、p型シリコン基板2を熱処理する。この熱処理により、リン含有ドーパントペースト14内のドーパント成分であるリンが、保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、第1のドーパント拡散層でありシート抵抗が25Ω/□程度の受光面側高濃度ドーパント拡散層3aが形成される。すなわち、リン含有ドーパントペースト14内のリンが保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下領域におけるp型シリコン基板2に拡散して受光面側高濃度ドーパント拡散層3aが形成される。リン含有ドーパントペースト14内のリンが該リン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散するため、受光面側高濃度ドーパント拡散層3aはリン含有ドーパントペースト14の印刷パターンと同じ櫛形状のパターンで形成される。なお、リン含有ドーパントペースト14内のドーパント成分であるリンは、保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下領域、およびp型シリコン基板2の面方向においてこの直下領域に隣接する領域にも僅かに広がって拡散する。本明細書では、この隣接する領域も含めて、直下領域と呼ぶ。 FIG. 7 is an explanatory diagram of step S107 in FIG. Step S107 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed. A boat on which the p-type silicon substrate 2 is placed is placed in a horizontal furnace, and the p-type silicon substrate 2 is heat-treated at about 960 ° C. for 10 minutes. By this heat treatment, phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, thereby providing the first dopant. A light receiving surface side high concentration dopant diffusion layer 3a which is a diffusion layer and has a sheet resistance of about 25Ω / □ is formed. That is, phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and diffuses into the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to form the light-receiving surface side high-concentration dopant diffusion layer 3a. The Since phosphorus in the phosphorus-containing dopant paste 14 is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, the light-receiving surface side high-concentration dopant diffusion layer 3 a is the same as the printing pattern of the phosphorus-containing dopant paste 14. It is formed in a comb-shaped pattern. Note that phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is adjacent to the region immediately below the phosphorus-containing dopant paste 14 and the region immediately below in the plane direction of the p-type silicon substrate 2. It spreads slightly in the area and diffuses. In the present specification, the region including the adjacent region is referred to as a region immediately below.
 一方、保護用酸化膜13は、熱処理時におけるリン含有ドーパントペースト14から揮散したドーパント成分が、直下領域以外のp型シリコン基板2へ拡散することを防止する。以下に、ステップS105で形成した保護用酸化膜13の作用効果について説明する。ステップS107の熱処理の過程でリン含有ドーパントペースト14の表面から雰囲気中にドーパント成分が揮散する。ここで、ステップS107の熱処理の過程で揮散したドーパント成分は保護用酸化膜13に阻害されて、保護用酸化膜13の下のp型シリコン基板2中へは拡散しないことが本発明者の実験により明らかとなった。 On the other hand, the protective oxide film 13 prevents the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment from diffusing into the p-type silicon substrate 2 other than the region immediately below. Hereinafter, the function and effect of the protective oxide film 13 formed in step S105 will be described. In the course of the heat treatment in step S107, the dopant component is volatilized from the surface of the phosphorus-containing dopant paste 14 into the atmosphere. Here, the inventor's experiment indicates that the dopant component volatilized in the process of the heat treatment in step S107 is inhibited by the protective oxide film 13 and does not diffuse into the p-type silicon substrate 2 under the protective oxide film 13. It became clear.
 揮散したドーパント成分を保護用酸化膜13が阻害する阻害度合いは、保護用酸化膜13の膜厚による。そこで、以下では保護用酸化膜13の膜厚と阻害度合いとの関係を、基礎実験の結果を示しながら説明する。発明者らは基礎実験のために、テクスチャ構造を形成した、156mm角のp型シリコン基板を複数枚、準備した。その後、図3のステップS105に類似の方法で、様々な膜厚の保護用酸化膜をp型シリコン基板の表面に形成した。保護用酸化膜の膜厚の範囲は、酸化膜無しに対応する0nmから、230nmまでとした。その後、図3のステップS106に類似の方法で、リン含有ドーパントペーストをp型シリコン基板の一面側の表面に印刷形成した。その後、図3のステップS107に類似の方法でp型シリコン基板に熱処理を実施した。 The degree of inhibition by which the protective oxide film 13 inhibits the stripped dopant component depends on the thickness of the protective oxide film 13. Therefore, hereinafter, the relationship between the thickness of the protective oxide film 13 and the degree of inhibition will be described with reference to the results of basic experiments. The inventors prepared a plurality of 156 mm square p-type silicon substrates having a texture structure for basic experiments. Thereafter, protective oxide films having various thicknesses were formed on the surface of the p-type silicon substrate by a method similar to step S105 in FIG. The thickness range of the protective oxide film was set to 0 nm to 230 nm corresponding to the absence of the oxide film. Thereafter, a phosphorus-containing dopant paste was printed and formed on the surface of one surface of the p-type silicon substrate by a method similar to step S106 in FIG. Thereafter, a heat treatment was performed on the p-type silicon substrate by a method similar to step S107 in FIG.
 ここで、リン含有ドーパントペーストの印刷パターンは、特殊なテストパターンを用いた。テストパターンは、156mm角のp型シリコン基板における両面のほぼ全面に、図3のステップS106で説明した櫛形パターンを形成し、部分的に10mm角にドーパントペーストで塗りつぶした部分を併設し、かつ、部分的に10mm角にドーパントペーストを全く形成しない空白部分を設けたパターンである。以下、部分的に10mm角にドーパントペーストで塗りつぶした部分を、パッド部と呼ぶ。また、部分的に10mm角にドーパントペーストを全く形成しない空白部分を、ブランク部と呼ぶ。パッド部は、後工程で、p型シリコン基板においてドーパントペーストが形成された領域のシート抵抗の変化を確認するために設けている。また、ブランク部は、p型シリコン基板におけるドーパントペーストの形成されていない領域においてドーパントペーストからの揮発成分によるシート抵抗の変化を確認するために設けている。シート抵抗の評価は1mm間隔でプローブを1列に4本接触させて4端子測定するために、10mm角程度の評価領域が必要である。 Here, a special test pattern was used as the printing pattern of the phosphorus-containing dopant paste. The test pattern is formed on the substantially entire surface of both sides of a 156 mm square p-type silicon substrate with the comb pattern described in step S106 of FIG. 3, and a 10 mm square partially filled with a dopant paste, and This is a pattern in which a blank portion is formed in which a dopant paste is not formed at all on a 10 mm square. Hereinafter, a portion partially filled with 10 mm square with a dopant paste is referred to as a pad portion. A blank part where no dopant paste is partially formed on a 10 mm square is called a blank part. The pad portion is provided in order to confirm a change in sheet resistance in a region where the dopant paste is formed in the p-type silicon substrate in a later step. Moreover, the blank part is provided in order to confirm the change of the sheet resistance by the volatile component from a dopant paste in the area | region in which the dopant paste is not formed in a p-type silicon substrate. Evaluation of sheet resistance requires an evaluation area of about 10 mm square in order to measure four terminals by contacting four probes in a row at 1 mm intervals.
 熱処理後、図3のステップS108に類似の方法で保護用酸化膜およびリン含有ドーパントペーストの除去を実施した。保護用酸化膜およびリン含有ドーパントペーストの除去後のパッド部およびブランク部のシート抵抗を測定した結果を図14に示す。図14は、実施の形態1における保護用酸化膜の膜厚とパッド部およびブランク部のシート抵抗との関係を示す特性図である。p型シリコン基板の表面に保護用酸化膜がない場合、すなわち保護用酸化膜の膜厚が0nmの場合は、ドーパントペーストを形成していないブランク部でも100Ω/□程度のシート抵抗を示し、すなわち隣接ドーパントペーストからの揮発成分によりリンの拡散が成されていることが分かった。 After the heat treatment, the protective oxide film and the phosphorus-containing dopant paste were removed by a method similar to step S108 in FIG. FIG. 14 shows the results of measuring the sheet resistance of the pad portion and the blank portion after removal of the protective oxide film and phosphorus-containing dopant paste. FIG. 14 is a characteristic diagram showing the relationship between the thickness of the protective oxide film and the sheet resistance of the pad portion and blank portion in the first embodiment. When there is no protective oxide film on the surface of the p-type silicon substrate, that is, when the thickness of the protective oxide film is 0 nm, a sheet resistance of about 100 Ω / □ is exhibited even in a blank portion where no dopant paste is formed, It was found that phosphorus was diffused by volatile components from the adjacent dopant paste.
 一方、p型シリコン基板の表面に保護用酸化膜を形成し、保護用酸化膜の膜厚を厚くしていくと、ブランク部のシート抵抗は急激に増加した。そして、保護用酸化膜の膜厚が50nmより大の場合は、ブランク部のシート抵抗は300Ω/□程度以上となり、拡散層としてはほとんど機能しない値となることが分かった。このことは、リンはシリコン中の拡散速度よりも酸化膜中の拡散速度の方が遅く、酸化膜が拡散保護膜として機能することを示している。 On the other hand, when a protective oxide film was formed on the surface of the p-type silicon substrate and the protective oxide film was thickened, the sheet resistance of the blank portion increased rapidly. And when the film thickness of the protective oxide film was larger than 50 nm, it was found that the sheet resistance of the blank portion was about 300Ω / □ or more, and the value hardly functioned as the diffusion layer. This indicates that phosphorus has a slower diffusion rate in the oxide film than that in silicon, and the oxide film functions as a diffusion protective film.
 一方、パッド部では保護用酸化膜を形成しても、保護用酸化膜の膜厚増加に対するシート抵抗の増加がゆるやかであった。ただし、保護用酸化膜の膜厚が200nmを超える場合には、パッド部のシート抵抗は300Ω/□を超え、拡散層として機能しなくなることが分かった。 On the other hand, even when the protective oxide film was formed on the pad portion, the sheet resistance increased slowly with respect to the increase in the protective oxide film thickness. However, it was found that when the thickness of the protective oxide film exceeds 200 nm, the sheet resistance of the pad portion exceeds 300 Ω / □ and does not function as a diffusion layer.
 以上のことから、保護用酸化膜を50nmから200nmの間の膜厚で形成することにより、保護用酸化膜が、p型シリコン基板の表面に対するドーパントペーストからの揮発成分の拡散を防止する保護膜として機能し、ドーパントペースト直下には該ドーパントペーストからリンの拡散が成されることがわかった。ここで、保護用酸化膜の膜厚を200nm以下に設定してもドーパントペースト直下のp型シリコン基板のシート抵抗は膜厚に応じて徐々に増加する傾向がある。この場合は、所望のシート抵抗のp型シリコン基板を得るためには、保護用酸化膜の膜厚に応じて熱処理条件を変更すればよい。 From the above, by forming the protective oxide film with a film thickness between 50 nm and 200 nm, the protective oxide film prevents the diffusion of volatile components from the dopant paste to the surface of the p-type silicon substrate. It was found that phosphorus was diffused from the dopant paste immediately below the dopant paste. Here, even if the film thickness of the protective oxide film is set to 200 nm or less, the sheet resistance of the p-type silicon substrate immediately below the dopant paste tends to gradually increase according to the film thickness. In this case, in order to obtain a p-type silicon substrate having a desired sheet resistance, the heat treatment conditions may be changed according to the thickness of the protective oxide film.
 図8は、図3のステップS108の説明図である。ステップS108は、保護用酸化膜13およびリン含有ドーパントペースト14を除去する工程である。保護用酸化膜13およびリン含有ドーパントペースト14の除去は、p型シリコン基板2を10%フッ酸水溶液に240秒程度浸漬することにより行うことができる。 FIG. 8 is an explanatory diagram of step S108 in FIG. Step S108 is a step of removing the protective oxide film 13 and the phosphorus-containing dopant paste 14. The protective oxide film 13 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 240 seconds.
 図9は、図3のステップS103の説明図である。ステップS103は、p型シリコン基板2における、太陽電池セル1の受光面となる第1面と、太陽電池セル1の裏面となる第2面とのそれぞれに、受光面側低濃度ドーパント拡散層3bまたは低濃度ドーパント拡散層3cを形成する熱拡散を行う工程である。受光面側低濃度ドーパント拡散層3bと低濃度ドーパント拡散層3cとの形成は、テクスチャ構造が形成されたp型シリコン基板2を熱拡散炉に装入し、オキシ塩化リン(POCl)蒸気存在下で熱処理することで実現される。具体的には、たとえば300枚のp型シリコン基板2が3.5mm間隔で載置された石英ガラス製のボートが、750℃程度に加熱された横型炉の石英チューブ内へ装入される。10SLMの窒素を導入しながら石英チューブ内を820℃まで昇温し、石英チューブ内へ材料ガスを10分間流す。材料ガスは、ガラス容器に封入されたPOClに窒素ガスをバブリングさせて、POCl蒸気としたものである。10分後に材料ガスの導入を停止し、さらに10分間、石英チューブ内を820℃に維持した後、再び750℃まで降温し、ボートを石英チューブから取り出す。 FIG. 9 is an explanatory diagram of step S103 in FIG. In step S103, the light receiving surface side low-concentration dopant diffusion layer 3b is formed on each of the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2. Or it is the process of performing the thermal diffusion which forms the low concentration dopant diffusion layer 3c. The light-receiving surface side low-concentration dopant diffusion layer 3b and low-concentration dopant diffusion layer 3c are formed by inserting the p-type silicon substrate 2 having a textured structure into a thermal diffusion furnace and presenting phosphorus oxychloride (POCl 3 ) vapor. Realized by heat treatment below. Specifically, for example, a quartz glass boat on which 300 p-type silicon substrates 2 are placed at an interval of 3.5 mm is inserted into a quartz tube of a horizontal furnace heated to about 750 ° C. While introducing 10 SLM of nitrogen, the temperature in the quartz tube is raised to 820 ° C., and a material gas is allowed to flow into the quartz tube for 10 minutes. The material gas is a POCl 3 vapor obtained by bubbling nitrogen gas through POCl 3 sealed in a glass container. After 10 minutes, the introduction of the material gas is stopped, and the inside of the quartz tube is maintained at 820 ° C. for another 10 minutes.
 このとき、p型シリコン基板2の表面の表層、すなわちp型シリコン基板2の受光面側の表層には、第2のドーパント拡散層でありリンが第1のドーパント拡散層よりも低い均一な濃度で拡散した受光面側低濃度ドーパント拡散層3bが、受光面側高濃度ドーパント拡散層3aの形成されていない領域に形成されている。さらに、酸化膜でありリンを含有した不純物含有ガラス層であるリン含有ガラス層12が受光面側高濃度ドーパント拡散層3aと受光面側低濃度ドーパント拡散層3bとの上に形成されている。また、p型シリコン基板2の裏面の表層には、リンが均一な濃度で拡散した低濃度ドーパント拡散層3cが形成されている。さらに、酸化膜でありリンを含有した不純物含有ガラス層であるリン含有ガラス層12が、低濃度ドーパント拡散層3cの上に形成されている。 At this time, the surface layer on the surface of the p-type silicon substrate 2, that is, the surface layer on the light-receiving surface side of the p-type silicon substrate 2, is a second dopant diffusion layer having a uniform concentration of phosphorus lower than that of the first dopant diffusion layer. The light-receiving surface-side low-concentration dopant diffusion layer 3b diffused in (1) is formed in a region where the light-receiving surface-side high-concentration dopant diffusion layer 3a is not formed. Further, a phosphorus-containing glass layer 12 which is an oxide-containing glass layer containing phosphorus and is formed on the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b. Also, a low concentration dopant diffusion layer 3c in which phosphorus is diffused at a uniform concentration is formed on the surface layer on the back surface of the p-type silicon substrate 2. Further, a phosphorus-containing glass layer 12 that is an oxide-containing glass layer containing impurities and containing phosphorus is formed on the low-concentration dopant diffusion layer 3c.
 p型シリコン基板2の受光面側にはステップS103の熱拡散を実施する前に既に受光面側高濃度ドーパント拡散層3aが形成された領域が存在するが、ステップS103で形成される受光面側低濃度ドーパント拡散層3bのドーパント濃度は、受光面側高濃度ドーパント拡散層3aのドーパント濃度よりも相対的に低濃度である。このため、ステップS103の工程を経た後も、受光面側高濃度ドーパント拡散層3aは高濃度のまま、p型シリコン基板2の受光面側に残存する。したがって、ステップS103を経た後のp型シリコン基板2の受光面側は、受光面側高濃度ドーパント拡散層3aが部分的に存在し、受光面側高濃度ドーパント拡散層3aの間を埋めるように受光面側低濃度ドーパント拡散層3bが存在する。 The region where the light-receiving surface side high-concentration dopant diffusion layer 3a is already formed before the thermal diffusion of step S103 is present on the light-receiving surface side of the p-type silicon substrate 2, but the light-receiving surface side formed in step S103 The dopant concentration of the low-concentration dopant diffusion layer 3b is relatively lower than the dopant concentration of the light-receiving surface side high-concentration dopant diffusion layer 3a. For this reason, even after the step S103, the light-receiving surface side high-concentration dopant diffusion layer 3a remains on the light-receiving surface side of the p-type silicon substrate 2 with a high concentration. Therefore, the light-receiving surface side high-concentration dopant diffusion layer 3a partially exists on the light-receiving surface side of the p-type silicon substrate 2 after step S103, and fills the space between the light-receiving surface-side high-concentration dopant diffusion layers 3a. There is a light-receiving surface side low-concentration dopant diffusion layer 3b.
 また、上記のようにして得られる低濃度ドーパント拡散層3cは、4端子法で測定するシート抵抗が100Ω/□程度となる。シート抵抗の測定は、受光面側高濃度ドーパント拡散層3aの影響を受けるため、受光面側では正確に行えない。そこで発明者は、受光面側高濃度ドーパント拡散層3aの無い、p型シリコン基板2の裏面の低濃度ドーパント拡散層3cを評価している。 The low-concentration dopant diffusion layer 3c obtained as described above has a sheet resistance of about 100Ω / □ measured by the four-terminal method. The sheet resistance measurement cannot be accurately performed on the light receiving surface side because it is affected by the light receiving surface side high-concentration dopant diffusion layer 3a. Therefore, the inventor evaluates the low-concentration dopant diffusion layer 3c on the back surface of the p-type silicon substrate 2 without the light-receiving surface side high-concentration dopant diffusion layer 3a.
 横型炉の代わりに縦型炉を使用してもよい。なお、材料ガスには、POCl以外の材料を使用することも可能である。また、ステップS103においてn型の受光面側低濃度ドーパント拡散層3bおよびn型の低濃度ドーパント拡散層3cを形成するためのドーパントは、太陽電池セルの形成に使用可能なn型ドーパントであればよい。 A vertical furnace may be used instead of the horizontal furnace. A material other than POCl 3 can be used as the material gas. In addition, the dopant for forming the n-type light-receiving surface side low-concentration dopant diffusion layer 3b and the n-type low-concentration dopant diffusion layer 3c in step S103 is an n-type dopant that can be used for the formation of solar cells. Good.
 図10は、図3のステップS104の説明図である。ステップS104は、リン含有ガラス層12を除去する工程である。リン含有ガラス層12は、10%フッ酸水溶液にp型シリコン基板2を60秒程度浸漬することで除去可能である。 FIG. 10 is an explanatory diagram of step S104 in FIG. Step S104 is a step of removing the phosphorus-containing glass layer 12. The phosphorus-containing glass layer 12 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 60 seconds.
 図11は、図3のステップS109の説明図である。ステップS109は、反射防止膜4を形成する工程である。反射防止膜4の形成は、屈折率2.1、膜厚80nmの窒化シリコン膜をプラズマCVD方式により受光面側ドーパント拡散層3上、すなわち受光面側高濃度ドーパント拡散層3a上および受光面側低濃度ドーパント拡散層3b上に成膜する。窒化シリコン膜は反射防止膜4としてだけでなく、p型シリコン基板2の受光面側の表面再結合を抑制するためのパッシベーション膜としても機能する。 FIG. 11 is an explanatory diagram of step S109 in FIG. Step S109 is a process of forming the antireflection film 4. The antireflection film 4 is formed by forming a silicon nitride film having a refractive index of 2.1 and a film thickness of 80 nm on the light-receiving surface side dopant diffusion layer 3, that is, on the light-receiving surface side high-concentration dopant diffusion layer 3a and on the light-receiving surface side. A film is formed on the low-concentration dopant diffusion layer 3b. The silicon nitride film functions not only as the antireflection film 4 but also as a passivation film for suppressing surface recombination on the light receiving surface side of the p-type silicon substrate 2.
 図12は、図3のステップS110の説明図である。ステップS110は、電極を印刷する工程である。p型シリコン基板2の裏面では、低濃度ドーパント拡散層3c上の全面に、アルミニウム(Al)を含有する裏面側電極形成用のアルミニウム(Al)含有ペースト15をスクリーン印刷して焼成前の裏面側電極を形成する。Al含有ペースト15を250℃で5分乾燥させた後、p型シリコン基板2の受光面側において、銀(Ag)を含有する受光面側電極形成用の銀(Ag)含有ペースト16を反射防止膜4上にスクリーン印刷し、焼成前の受光面側電極5を形成する。 FIG. 12 is an explanatory diagram of step S110 in FIG. Step S110 is a process of printing an electrode. On the back surface of the p-type silicon substrate 2, an aluminum (Al) -containing paste 15 for forming a back-side electrode containing aluminum (Al) is screen-printed on the entire surface of the low-concentration dopant diffusion layer 3c, and the back surface side before firing. An electrode is formed. After the Al-containing paste 15 is dried at 250 ° C. for 5 minutes, on the light-receiving surface side of the p-type silicon substrate 2, the silver (Ag) -containing paste 16 for forming the light-receiving surface side electrode containing silver (Ag) is antireflective. Screen printing is performed on the film 4 to form the light-receiving surface side electrode 5 before firing.
 Ag含有ペースト16の印刷パターンは、受光面側高濃度ドーパント拡散層3aと同じ櫛形状であり、線幅50μmの線状パターンを2mm間隔で平行配列したパターンと、線幅1mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。また、Ag含有ペースト16は、ステップS106で形成したリン含有ドーパントペースト14のパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。すなわち、Ag含有ペースト16は、受光面側高濃度ドーパント拡散層3aのパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。 The printing pattern of the Ag-containing paste 16 has the same comb shape as the light-receiving surface side high-concentration dopant diffusion layer 3a, and a pattern in which linear patterns with a line width of 50 μm are arranged in parallel at intervals of 2 mm, and four lines with a line width of 1 mm. It is a comb-shaped pattern which consists of the pattern which arranged the parallel pattern in parallel. Further, the Ag-containing paste 16 is printed at a position included in a region having a width of 150 μm and a region having a width of 1.2 mm of the pattern of the phosphorus-containing dopant paste 14 formed in Step S106. That is, the Ag-containing paste 16 is printed at a position included in a 150 μm wide region and a 1.2 mm wide region of the pattern of the light receiving surface side high concentration dopant diffusion layer 3a.
 Ag含有ペースト16の印刷位置は、受光面側高濃度ドーパント拡散層3aのパターンに位置合わせする必要がある。赤外カメラを用いて受光面側高濃度ドーパント拡散層3aの領域を画像認識して、Ag含有ペースト16の印刷位置を決定する。赤外カメラを用いた画像認識以外にも、ステップS101の時点でp型シリコン基板2の外周縁部に位置合わせ用の十字マークをレーザ加工機で印字し、ステップS106のリン含有ドーパントペースト印刷工程と、ステップS110におけるAg含有ペースト16の印刷工程とにおいて、それぞれ十字マークを基準に位置合わせしてもよい。また、ステップS106とステップS110とでp型シリコン基板2の外形の3点を認識することでAg含有ペースト16の印刷位置を決定してもよい。仮にAg含有ペースト16の印刷位置にずれが生じた場合には、受光面側電極5が受光面側低濃度ドーパント拡散層3b上に形成され、受光面側ドーパント拡散層3と受光面側電極5との接触抵抗の増大による曲線因子の悪化、表面再結合増大による開放電圧の悪化が生じる。このため、Ag含有ペースト16の印刷位置の受光面側高濃度ドーパント拡散層3aのパターンへの位置合わせは重要である。 The printing position of the Ag-containing paste 16 needs to be aligned with the pattern of the light receiving surface side high concentration dopant diffusion layer 3a. The region of the light receiving surface side high-concentration dopant diffusion layer 3a is image-recognized using an infrared camera, and the printing position of the Ag-containing paste 16 is determined. In addition to image recognition using an infrared camera, a cross mark for alignment is printed on the outer peripheral edge of the p-type silicon substrate 2 by a laser processing machine at the time of step S101, and the phosphorus-containing dopant paste printing step of step S106 In the printing process of the Ag-containing paste 16 in step S110, the cross mark may be used as a reference. Further, the printing position of the Ag-containing paste 16 may be determined by recognizing three points on the outer shape of the p-type silicon substrate 2 in Step S106 and Step S110. If the printing position of the Ag-containing paste 16 is shifted, the light receiving surface side electrode 5 is formed on the light receiving surface side low-concentration dopant diffusion layer 3b, and the light receiving surface side dopant diffusion layer 3 and the light receiving surface side electrode 5 are formed. As a result, the fill factor deteriorates due to the increase in contact resistance, and the open circuit voltage deteriorates due to increased surface recombination. For this reason, it is important to align the printing position of the Ag-containing paste 16 with the pattern of the light-receiving surface side high-concentration dopant diffusion layer 3a.
 図13は、図3のステップS111の説明図である。ステップS111は、電極形成用のペーストを焼成して電極を形成する熱処理を行う工程である。電極形成用のペーストが形成されたp型シリコン基板2をトンネル炉へ装入し、ピーク温度800℃、3秒で短時間熱処理する。これにより、ペースト中の樹脂成分が消失し、Ag含有ペースト16では、含有されるガラス粒子が反射防止膜4の窒化シリコン膜を貫通し、Ag粒子が受光面側高濃度ドーパント拡散層3aに接触し、電気的導通を得る。これにより、受光面側電極5が得られる。 FIG. 13 is an explanatory diagram of step S111 in FIG. Step S111 is a step of performing a heat treatment to form an electrode by firing a paste for forming an electrode. The p-type silicon substrate 2 on which the electrode forming paste is formed is placed in a tunnel furnace and heat-treated at a peak temperature of 800 ° C. for 3 seconds for a short time. As a result, the resin component in the paste disappears, and in the Ag-containing paste 16, the contained glass particles penetrate the silicon nitride film of the antireflection film 4, and the Ag particles contact the light-receiving surface side high-concentration dopant diffusion layer 3a. And electrical continuity is obtained. Thereby, the light-receiving surface side electrode 5 is obtained.
 また、Al含有ペースト15に含有されるAlはp型シリコン基板2の裏面のシリコンと反応してアルミニウム-シリコン(Al-Si)合金を形成し、p型シリコン基板2の裏面の低濃度ドーパント拡散層3cをAl-Si合金が貫通し、さらにp型シリコン基板2の裏面のシリコン内へAlが拡散して裏面側BSF層7を形成する。これにより、裏面側電極6が得られる。 Further, Al contained in the Al-containing paste 15 reacts with silicon on the back surface of the p-type silicon substrate 2 to form an aluminum-silicon (Al—Si) alloy, and low-concentration dopant diffusion on the back surface of the p-type silicon substrate 2. The layer 3c is penetrated by an Al—Si alloy, and Al is diffused into the silicon on the back surface of the p-type silicon substrate 2 to form the back surface side BSF layer 7. Thereby, the back surface side electrode 6 is obtained.
 以上の工程を実施することにより、図1および図2に示す、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を得ることができる。 By performing the above steps, it is possible to obtain the solar battery cell 1 in which the light-receiving surface side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the surface direction of the p-type silicon substrate 2 shown in FIGS. it can.
 なお、半導体基板2としてn型の単結晶のシリコン基板またはn型の多結晶シリコン基板を用いてもよい。この場合は、本実施の形態1における各部材の導電型を逆にすればよい。この場合も上述した工程を実施することにより、図1および図2に示す構成を有し、n型シリコン基板の面方向において均一なドーパント濃度を有するp型の受光面側低濃度ドーパント拡散層を備える太陽電池セルを得ることができる。 The semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate. In this case, the conductivity type of each member in the first embodiment may be reversed. Also in this case, a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps. A solar battery cell provided can be obtained.
 上述したように、本実施の形態1にかかる太陽電池の製造方法においては、p型シリコン基板2に、50nmより大、200nm以下の膜厚の保護用酸化膜13を形成する。そして、保護用酸化膜13上にリン含有ドーパントペースト14を既定のパターンで印刷して熱処理を行う。このため、保護用酸化膜13に覆われたp型シリコン基板2にはリン含有ドーパントペースト14から揮発したドーパント成分による拡散がなされず、後の工程で形成される低濃度ドーパント拡散層3cにおけるドーパント成分の拡散濃度の不均一性を排除することができる。 As described above, in the method for manufacturing a solar cell according to the first embodiment, the protective oxide film 13 having a thickness of 50 nm to 200 nm is formed on the p-type silicon substrate 2. Then, a phosphorus-containing dopant paste 14 is printed in a predetermined pattern on the protective oxide film 13 and heat treatment is performed. For this reason, the p-type silicon substrate 2 covered with the protective oxide film 13 is not diffused by the dopant component volatilized from the phosphorus-containing dopant paste 14, and the dopant in the low-concentration dopant diffusion layer 3c formed in a later step. Inhomogeneity of the diffusion concentration of the components can be eliminated.
 これにより、実施の形態1によれば、受光面側高濃度ドーパント拡散層3aと、受光面側低濃度ドーパント拡散層3bとを備える選択エミッタ構造を有する太陽電池セル1を、リン含有ドーパントペースト14からの揮散成分のp型シリコン基板2への拡散を防止して容易に得ることができる。すなわち、p型シリコン基板2の面方向における受光面側低濃度ドーパント拡散層3bのドーパント濃度の不均一に起因した発電特性のばらつきが防止された、面方向において均一な発電特性を有する太陽電池セル1を容易に得ることができる。 Thus, according to the first embodiment, the solar cell 1 having the selective emitter structure including the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b is replaced with the phosphorus-containing dopant paste 14 The volatilization component from can be easily obtained by preventing diffusion of the volatilization component into the p-type silicon substrate 2. That is, a photovoltaic cell having uniform power generation characteristics in the plane direction in which variations in power generation characteristics due to non-uniformity of the dopant concentration of the light-receiving surface side low-concentration dopant diffusion layer 3b in the plane direction of the p-type silicon substrate 2 are prevented. 1 can be easily obtained.
実施の形態2.
 実施の形態2では、実施の形態1にかかる太陽電池の製造方法の変形例について図15~図21を参照しながら説明する。図15は、本発明の実施の形態2にかかる太陽電池セルの製造方法のプロセスフローを示したフローチャートである。図16~図21は、本発明の実施の形態2にかかる太陽電池セルの製造工程を説明する要部断面図である。
Embodiment 2. FIG.
In the second embodiment, a modification of the solar cell manufacturing method according to the first embodiment will be described with reference to FIGS. FIG. 15: is the flowchart which showed the process flow of the manufacturing method of the photovoltaic cell concerning Embodiment 2 of this invention. 16 to 21 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the second embodiment of the present invention.
 本実施の形態2にかかる太陽電池セルの製造方法では、実施の形態1における図3のフローチャートのうちステップS105の保護用酸化膜形成より前に、ステップS103の熱拡散およびステップS104のリン含有ガラス層除去を実施する。これにより、受光面側高濃度ドーパント拡散層3aの形成後に800℃を超える熱処理を行うことがない。このため、800℃を超える熱処理により受光面側高濃度ドーパント拡散層3aの表面のドーパントが受光面側高濃度ドーパント拡散層3aの内部に拡散してしまうことが無い。したがって、800℃を超える熱処理に起因して受光面側高濃度ドーパント拡散層3aの表面ドーパント濃度を低下させることが無く、良好な電極コンタクトを維持することができる。 In the method of manufacturing a solar cell according to the second embodiment, before the protective oxide film is formed in step S105 in the flowchart of FIG. 3 in the first embodiment, thermal diffusion in step S103 and phosphorus-containing glass in step S104. Perform layer removal. Thus, no heat treatment exceeding 800 ° C. is performed after the formation of the light receiving surface side high concentration dopant diffusion layer 3a. For this reason, the dopant on the surface of the light receiving surface side high concentration dopant diffusion layer 3a is not diffused into the light receiving surface side high concentration dopant diffusion layer 3a by the heat treatment exceeding 800 ° C. Therefore, a good electrode contact can be maintained without reducing the surface dopant concentration of the light-receiving surface side high-concentration dopant diffusion layer 3a due to heat treatment exceeding 800 ° C.
 本発明の実施の形態2では、まず、実施の形態1の場合と同様にステップS101およびステップS102を行う。 In Embodiment 2 of the present invention, first, Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
 図16は、図15のステップS103の説明図である。ステップS103は、p型シリコン基板2における、太陽電池セル1の受光面となる第1面と、太陽電池セル1の裏面となる第2面との両面に低濃度ドーパント拡散層3cを形成する熱拡散を行う工程である。低濃度ドーパント拡散層3cの形成は、テクスチャ構造が形成されたp型シリコン基板2を熱拡散炉に装入し、オキシ塩化リン(POCl)蒸気存在下で熱処理することで実現される。具体的には、たとえば300枚のp型シリコン基板2が3.5mm間隔で載置された石英ガラス製のボートが、750℃に加熱された横型炉の石英チューブ内へ装入される。10SLMの窒素を導入しながら石英チューブ内を820℃まで昇温し、石英チューブ内へ材料ガスを10分間流す。材料ガスは、ガラス容器に封入されたPOClに窒素ガスをバブリングさせて、POCl蒸気としたものである。10分後に材料ガスの導入を停止し、さらに10分間、石英チューブ内を820℃で維持し、再び750℃まで降温し、ボートを石英チューブから取り出す。このときp型シリコン基板2の表裏面には、p型シリコン基板2の面方向においてリンが第1のドーパント拡散層よりも低い均一な濃度で拡散した第2のドーパント拡散層である低濃度ドーパント拡散層3cと、酸化膜でありリンを含有した不純物含有ガラス層であるリン含有ガラス層12とがこの順で形成されている。また、このようにして得られる低濃度ドーパント拡散層3cは、4端子法で測定するシート抵抗が100Ω/□程度となる。横型炉の代わりに縦型炉を使用してもよい。なお、材料ガスには、POCl以外の材料を使用することも可能である。また、n型の低濃度ドーパント拡散層3cの形成を形成するためのドーパントは、太陽電池セルの形成に使用可能なn型ドーパントであればよい。 FIG. 16 is an explanatory diagram of step S103 in FIG. Step S103 is a heat for forming the low-concentration dopant diffusion layer 3c on both sides of the first surface serving as the light receiving surface of the solar cell 1 and the second surface serving as the back surface of the solar cell 1 in the p-type silicon substrate 2. This is a step of performing diffusion. Formation of the low-concentration dopant diffusion layer 3c is realized by placing the p-type silicon substrate 2 on which the texture structure is formed in a thermal diffusion furnace and heat-treating it in the presence of phosphorus oxychloride (POCl 3 ) vapor. Specifically, for example, a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C. While introducing 10 SLM of nitrogen, the temperature in the quartz tube is raised to 820 ° C., and a material gas is allowed to flow into the quartz tube for 10 minutes. The material gas is a POCl 3 vapor obtained by bubbling nitrogen gas through POCl 3 sealed in a glass container. After 10 minutes, the introduction of the material gas is stopped, the inside of the quartz tube is maintained at 820 ° C. for another 10 minutes, the temperature is lowered to 750 ° C., and the boat is taken out of the quartz tube. At this time, on the front and back surfaces of the p-type silicon substrate 2, a low-concentration dopant which is a second dopant diffusion layer in which phosphorus is diffused at a uniform concentration lower than that of the first dopant diffusion layer in the plane direction of the p-type silicon substrate 2. The diffusion layer 3c and the phosphorus-containing glass layer 12 that is an impurity-containing glass layer that is an oxide film and contains phosphorus are formed in this order. Further, the low-concentration dopant diffusion layer 3c thus obtained has a sheet resistance measured by the four-terminal method of about 100Ω / □. A vertical furnace may be used instead of the horizontal furnace. A material other than POCl 3 can be used as the material gas. The dopant for forming the n-type low-concentration dopant diffusion layer 3c may be any n-type dopant that can be used for forming the solar battery cell.
 図17は、図15のステップS104の説明図である。ステップS104は、リン含有ガラス層12を除去する工程である。リン含有ガラス層12は、10%フッ酸水溶液にp型シリコン基板2を60秒程度浸漬することで除去可能である。 FIG. 17 is an explanatory diagram of step S104 in FIG. Step S104 is a step of removing the phosphorus-containing glass layer 12. The phosphorus-containing glass layer 12 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 60 seconds.
 図18は、図15のステップS105の説明図である。ステップS105は、p型シリコン基板2において受光面となる第1面側の低濃度ドーパント拡散層3c上に第1酸化膜として保護用酸化膜13を形成する工程である。保護用酸化膜13として、シラン(SiH)を材料ガスとした常圧化学蒸着(Chemical Vapor Deposition:CVD)法によりシリコン酸化膜を形成する。具体的には、500℃に加熱したp型シリコン基板2を大気圧のシランと酸素(O)との混合雰囲気中に曝露することで120nmの膜厚のシリコン酸化膜を形成する。常圧CVD法は低温で成膜レートの早い成膜が可能なため採用したが、ウエット酸化あるいはドライ酸化により形成した熱酸化膜も、保護用酸化膜13として使用可能である。ただし、ウエット酸化およびドライ酸化は、プロセス温度が900℃~1000℃程度と高いため、先に形成された低濃度ドーパント拡散層3c中のドーパントの濃度プロファイルが変化することに留意する必要がある。なお、ウエット酸化およびドライ酸化においては、先に形成された低濃度ドーパント拡散層3c中のドーパントの濃度プロファイルを、プロセス温度に起因した変化を考慮しておくことが好ましい。 FIG. 18 is an explanatory diagram of step S105 of FIG. Step S105 is a step of forming the protective oxide film 13 as a first oxide film on the low-concentration dopant diffusion layer 3c on the first surface side which becomes the light receiving surface in the p-type silicon substrate 2. As the protective oxide film 13, a silicon oxide film is formed by a chemical vapor deposition (CVD) method using silane (SiH 4 ) as a material gas. Specifically, a silicon oxide film having a thickness of 120 nm is formed by exposing the p-type silicon substrate 2 heated to 500 ° C. in a mixed atmosphere of silane and oxygen (O 2 ) at atmospheric pressure. The atmospheric pressure CVD method is employed because it can be formed at a low temperature and a high film formation rate, but a thermal oxide film formed by wet oxidation or dry oxidation can also be used as the protective oxide film 13. However, since wet oxidation and dry oxidation have a high process temperature of about 900 ° C. to 1000 ° C., it should be noted that the dopant concentration profile in the low-concentration dopant diffusion layer 3 c formed earlier changes. In wet oxidation and dry oxidation, it is preferable to take into account changes due to the process temperature in the dopant concentration profile in the low-concentration dopant diffusion layer 3c previously formed.
 図19は、図15のステップS106の説明図である。ステップS106は、保護用酸化膜13上に第1拡散源としてドーパントペーストを印刷する工程である。ここでは、ドーパントペーストとして、リン酸化物を含んだ樹脂ペーストであるリン含有ドーパントペースト14をスクリーン印刷法を用いて保護用酸化膜13上に選択的に印刷する。リン含有ドーパントペースト14の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンとする。印刷後、リン含有ドーパントペースト14を250℃で5分間乾燥させる。なお、リン含有ドーパントペースト14の印刷方法はスクリーン印刷法に限らず、インクジェット法またはノズルから直接吐出する方法を用いることができる。 FIG. 19 is an explanatory diagram of step S106 in FIG. Step S <b> 106 is a step of printing a dopant paste as a first diffusion source on the protective oxide film 13. Here, as the dopant paste, a phosphorus-containing dopant paste 14 which is a resin paste containing a phosphorus oxide is selectively printed on the protective oxide film 13 using a screen printing method. The printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. The pattern is After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes. In addition, the printing method of the phosphorus containing dopant paste 14 is not restricted to the screen printing method, The inkjet method or the method of discharging directly from a nozzle can be used.
 図20は、図15のステップS107の説明図である。ステップS107は、リン含有ドーパントペースト14が印刷されたp型シリコン基板2を熱処理する工程である。ステップS103と同様の横型炉にp型シリコン基板2を載置したボートを装入し、960℃で10分間、p型シリコン基板2を熱処理する。この熱処理により、リン含有ドーパントペースト14内のドーパント成分であるリンが、保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、第1のドーパント拡散層でありシート抵抗が25Ω/□程度の受光面側高濃度ドーパント拡散層3aが形成される。すなわち、リン含有ドーパントペースト14内のリンが保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下領域における低濃度ドーパント拡散層3cとp型シリコン基板2とに拡散して受光面側高濃度ドーパント拡散層3aが形成される。リン含有ドーパントペースト14内のリンが該リン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散するため、受光面側高濃度ドーパント拡散層3aはリン含有ドーパントペースト14の印刷パターンと同じ櫛形状のパターンで形成される。なお、リン含有ドーパントペースト14内のドーパント成分であるリンは、保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下領域、およびp型シリコン基板2の面方向においてこの直下領域に隣接する領域にも僅かに広がって拡散する。 FIG. 20 is an explanatory diagram of step S107 of FIG. Step S107 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed. A boat on which the p-type silicon substrate 2 is placed is loaded into a horizontal furnace similar to step S103, and the p-type silicon substrate 2 is heat-treated at 960 ° C. for 10 minutes. By this heat treatment, phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, thereby providing the first dopant. A light receiving surface side high concentration dopant diffusion layer 3a which is a diffusion layer and has a sheet resistance of about 25Ω / □ is formed. That is, phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and diffuses into the low-concentration dopant diffusion layer 3c and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to increase the light receiving surface side height. A concentration dopant diffusion layer 3a is formed. Since phosphorus in the phosphorus-containing dopant paste 14 is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, the light-receiving surface side high-concentration dopant diffusion layer 3 a is the same as the printing pattern of the phosphorus-containing dopant paste 14. It is formed in a comb-shaped pattern. Note that phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 13 and is adjacent to the region immediately below the phosphorus-containing dopant paste 14 and the region immediately below in the plane direction of the p-type silicon substrate 2. It spreads slightly in the area and diffuses.
 一方、保護用酸化膜13は、実施の形態1で説明した通り、熱処理時におけるリン含有ドーパントペースト14から揮散したドーパント成分の低濃度ドーパント拡散層3cへの拡散を防止する。すなわち、受光面側の低濃度ドーパント拡散層3cにおいてリン含有ドーパントペースト14の直下の領域以外の領域は、リン含有ドーパントペースト14からドーパント成分であるリンが拡散することがなく、シート抵抗は100Ω/□程度のままである。したがって、p型シリコン基板2の受光面側の低濃度ドーパント拡散層3cのうち、リン含有ドーパントペースト14の直下領域に受光面側高濃度ドーパント拡散層3aが形成され、受光面側高濃度ドーパント拡散層3aが形成されない領域が受光面側低濃度ドーパント拡散層3bとなる。これにより、受光面側ドーパント拡散層3が形成され、半導体基板11が得られる。 On the other hand, as described in the first embodiment, the protective oxide film 13 prevents the diffusion of the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment into the low-concentration dopant diffusion layer 3c. That is, in the low-concentration dopant diffusion layer 3c on the light-receiving surface side, phosphorus other than the region immediately below the phosphorus-containing dopant paste 14 does not diffuse phosphorus as a dopant component from the phosphorus-containing dopant paste 14, and the sheet resistance is 100Ω / □ It remains about the same level. Therefore, among the low-concentration dopant diffusion layer 3c on the light-receiving surface side of the p-type silicon substrate 2, the light-receiving surface-side high-concentration dopant diffusion layer 3a is formed in the region immediately below the phosphorus-containing dopant paste 14, and the light-receiving surface-side high-concentration dopant diffusion is formed. The region where the layer 3a is not formed becomes the light receiving surface side low-concentration dopant diffusion layer 3b. Thereby, the light-receiving surface side dopant diffusion layer 3 is formed, and the semiconductor substrate 11 is obtained.
 したがって、実施の形態1で説明した通り、保護用酸化膜13の膜厚を50nmより大、200nm以下とすることにより、ステップS107の熱処理の過程で揮散したドーパント成分は保護用酸化膜13に阻害されてp型シリコン基板2へは拡散せず、且つリン含有ドーパントペースト14の直下の領域のp型シリコン基板2へはリン含有ドーパントペースト14からドーパント成分を拡散させて受光面側高濃度ドーパント拡散層3aを形成できる。すなわち、本実施の形態2では、ステップS107の熱処理の過程で揮散したドーパント成分の拡散と、リン含有ドーパントペースト14からの直接の拡散とでは、保護用酸化膜13を貫通できる膜厚が異なることを利用して、揮散したドーパント成分の拡散に起因したドーパント濃度の不均一性を排除している。これにより、リン含有ドーパントペースト14を用いた熱拡散により受光面側高濃度ドーパント拡散層3aを形成する際に、先に形成されている低濃度ドーパント拡散層3cの濃度がp型シリコン基板2の面内において不均一になることを防止できる。 Therefore, as described in the first embodiment, by setting the thickness of the protective oxide film 13 to be greater than 50 nm and equal to or less than 200 nm, the dopant component volatilized during the heat treatment in Step S107 is inhibited by the protective oxide film 13. The light-receiving surface side high-concentration dopant is diffused by diffusing the dopant component from the phosphorus-containing dopant paste 14 into the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 without diffusing into the p-type silicon substrate 2. Layer 3a can be formed. That is, in the present second embodiment, the film thickness that can penetrate the protective oxide film 13 differs between the diffusion of the dopant component volatilized during the heat treatment in step S107 and the direct diffusion from the phosphorus-containing dopant paste 14. Is used to eliminate non-uniformity of the dopant concentration due to diffusion of the volatilized dopant component. As a result, when the light-receiving surface side high-concentration dopant diffusion layer 3a is formed by thermal diffusion using the phosphorus-containing dopant paste 14, the concentration of the low-concentration dopant diffusion layer 3c previously formed is that of the p-type silicon substrate 2. It is possible to prevent non-uniformity in the plane.
 図21は、図15のステップS108の説明図である。ステップS108は、保護用酸化膜13およびリン含有ドーパントペースト14を除去する工程である。保護用酸化膜13およびリン含有ドーパントペースト14の除去は、p型シリコン基板2を10%フッ酸水溶液に240秒程度浸漬することにより行うことができる。 FIG. 21 is an explanatory diagram of step S108 in FIG. Step S108 is a step of removing the protective oxide film 13 and the phosphorus-containing dopant paste 14. The protective oxide film 13 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 240 seconds.
 これ以降は、実施の形態1の場合と同様に、ステップS109~ステップS111を行うことにより、図1および図2に示す、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を得ることができる。 Thereafter, as in the case of the first embodiment, by performing steps S109 to S111, the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
 これにより、実施の形態2によれば、受光面側高濃度ドーパント拡散層3aと、受光面側低濃度ドーパント拡散層3bとを備える選択エミッタ構造を有する太陽電池セル1を、リン含有ドーパントペースト14からの揮散成分のp型シリコン基板2への拡散を防止して容易に得ることができる。すなわち、p型シリコン基板2の面方向における受光面側低濃度ドーパント拡散層3bのドーパント濃度の不均一に起因した発電特性のばらつきが防止された、面方向において均一な発電特性を有する太陽電池セル1を容易に得ることができる。また、実施の形態2によれば、受光面側高濃度ドーパント拡散層3aの形成後に800℃を超える温度で熱処理を実施することがないため、受光面側高濃度ドーパント拡散層3aの表面ドーパント濃度を低下させることがなく、良好な電極コンタクトを維持することができる。 Thus, according to the second embodiment, the solar cell 1 having the selective emitter structure including the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side low concentration dopant diffusion layer 3b is converted into the phosphorus-containing dopant paste 14 The volatilization component from can be easily obtained by preventing diffusion of the volatilization component into the p-type silicon substrate 2. That is, a photovoltaic cell having uniform power generation characteristics in the plane direction in which variations in power generation characteristics due to non-uniformity of the dopant concentration of the light-receiving surface side low-concentration dopant diffusion layer 3b in the plane direction of the p-type silicon substrate 2 are prevented. 1 can be easily obtained. Further, according to the second embodiment, since the heat treatment is not performed at a temperature exceeding 800 ° C. after the formation of the light receiving surface side high concentration dopant diffusion layer 3a, the surface dopant concentration of the light receiving surface side high concentration dopant diffusion layer 3a. It is possible to maintain a good electrode contact without lowering.
実施の形態3.
 実施の形態3では、実施の形態2にかかる太陽電池の製造方法の変形例について図22~図26を参照しながら説明する。図22は、本発明の実施の形態3にかかる太陽電池セルの製造方法のプロセスフローを示したフローチャートである。図23~図26は、本発明の実施の形態3にかかる太陽電池セルの製造工程を説明する要部断面図である。なお、図22において、図3、図15と同じ工程については同じ番号を付している。また、図23~図26においては、上述した実施の形態と同じ部材については同じ番号を付している。
Embodiment 3 FIG.
In the third embodiment, a modification of the method for manufacturing a solar cell according to the second embodiment will be described with reference to FIGS. FIG. 22 is a flowchart showing a process flow of the method for manufacturing a solar battery cell according to the third embodiment of the present invention. 23 to 26 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the third embodiment of the present invention. In FIG. 22, the same steps as those in FIGS. 3 and 15 are denoted by the same reference numerals. In FIGS. 23 to 26, the same members as those in the above-described embodiment are denoted by the same reference numerals.
 本実施の形態3にかかる太陽電池セルの製造方法では、実施の形態2における図15のフローチャートのうちステップS104のリン含有ガラス層除去の工程と、ステップS105の保護用酸化膜形成の工程とが省略されるとともに、ステップS103の熱拡散の工程中に保護用酸化膜形成を実施する。実施の形態2におけるステップS103では、酸化膜であるリン含有ガラス層12が20nm程度形成されるが、この膜厚ではステップS107のドーパントペーストの熱処理工程で、ドーパントペーストの揮散成分からの拡散を阻害するには不十分である。そこで、本実施の形態3では、実施の形態2のステップS103の熱拡散工程の後半に1100℃、30分のドライ酸化工程、または930℃、15分のウエット酸化工程を装入する。 In the solar cell manufacturing method according to the third embodiment, the step of removing the phosphorus-containing glass layer in step S104 and the step of forming the protective oxide film in step S105 in the flowchart of FIG. 15 in the second embodiment. In addition, the protective oxide film is formed during the thermal diffusion process in step S103. In step S103 in the second embodiment, the phosphorus-containing glass layer 12 that is an oxide film is formed to have a thickness of about 20 nm. At this film thickness, diffusion from the volatilized component of the dopant paste is inhibited in the heat treatment process of the dopant paste in step S107. Not enough to Therefore, in the third embodiment, a dry oxidation process at 1100 ° C. for 30 minutes or a wet oxidation process at 930 ° C. for 15 minutes is inserted in the latter half of the thermal diffusion process in step S103 of the second embodiment.
 本発明の実施の形態3では、まず、実施の形態1の場合と同様にステップS101およびステップS102を行う。 In Embodiment 3 of the present invention, first, Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
 図23は、図22のステップS201の説明図である。ステップS201は、p型シリコン基板2の表面に低濃度ドーパント拡散層3cを形成する熱拡散を行い、さらに熱拡散で形成されるリン含有ガラス層12がp型シリコン基板2上に残存した状態で保護用酸化膜13を形成する工程である。低濃度ドーパント拡散層3cを形成する熱拡散は、実施の形態2の場合と同様に行う。このときp型シリコン基板2の表裏面には、p型シリコン基板2の面方向においてリンが均一な濃度で拡散した低濃度ドーパント拡散層3cと、酸化膜でありリンを含有した不純物含有ガラス層であるリン含有ガラス層12とがこの順で形成される。 FIG. 23 is an explanatory diagram of step S201 in FIG. In step S201, thermal diffusion is performed to form the low-concentration dopant diffusion layer 3c on the surface of the p-type silicon substrate 2, and the phosphorus-containing glass layer 12 formed by thermal diffusion remains on the p-type silicon substrate 2. In this step, the protective oxide film 13 is formed. The thermal diffusion for forming the low-concentration dopant diffusion layer 3c is performed in the same manner as in the second embodiment. At this time, on the front and back surfaces of the p-type silicon substrate 2, a low-concentration dopant diffusion layer 3c in which phosphorus is diffused at a uniform concentration in the surface direction of the p-type silicon substrate 2, and an impurity-containing glass layer that is an oxide film and contains phosphorus And the phosphorus-containing glass layer 12 are formed in this order.
 そして、熱拡散の後、1100℃、30分のドライ酸化工程、または930℃、15分のウエット酸化工程を実施する。ドライ酸化工程では、熱拡散を行った後にボートを取り出さずに10SLMの窒素を導入しながら石英チューブ内を1000℃~1100℃程度まで昇温し、石英チューブ内へ材料ガスを10分間流す。材料ガスは、水蒸気を含まない酸素ガスである。また、ウエット酸化工程では、熱拡散を行った後にボートを取り出さずに10SLMの窒素を導入しながら石英チューブ内を930℃~1030℃程度まで昇温し、石英チューブ内へ材料ガスを15分間流す。材料ガスは、水蒸気を含む酸素ガスである。これにより、p型シリコン基板2の表裏面におけるリン含有ガラス層12上に保護用酸化膜13が形成される。 Then, after thermal diffusion, a dry oxidation process at 1100 ° C. for 30 minutes or a wet oxidation process at 930 ° C. for 15 minutes is performed. In the dry oxidation process, after thermal diffusion, the quartz tube is heated to about 1000 ° C. to 1100 ° C. while introducing 10 SLM nitrogen without taking out the boat, and the material gas is allowed to flow into the quartz tube for 10 minutes. The material gas is an oxygen gas that does not contain water vapor. In the wet oxidation process, after the thermal diffusion, the quartz tube is heated to about 930 ° C. to 1030 ° C. while introducing 10 SLM nitrogen without taking out the boat, and the material gas is allowed to flow into the quartz tube for 15 minutes. . The material gas is an oxygen gas containing water vapor. Thereby, the protective oxide film 13 is formed on the phosphorus-containing glass layers 12 on the front and back surfaces of the p-type silicon substrate 2.
 図24は、図22のステップS202の説明図である。ステップS202は、受光面側の保護用酸化膜13上にリン含有ドーパントペースト14を選択的に印刷する工程である。リン含有ドーパントペースト14の印刷は、実施の形態2の場合と同様に行う。 FIG. 24 is an explanatory diagram of step S202 of FIG. Step S202 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 13 on the light receiving surface side. The phosphorus-containing dopant paste 14 is printed in the same manner as in the second embodiment.
 図25は、図22のステップS203の説明図である。ステップS203は、リン含有ドーパントペースト14を印刷したp型シリコン基板2を熱処理する工程である。p型シリコン基板2の熱処理は、実施の形態1のステップS107と同様にして、960℃で10分間、p型シリコン基板2を熱処理する。この熱処理により、ステップS107と同様に、リン含有ドーパントペースト14内のリンが、保護用酸化膜13を貫通してリン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、ステップS107と同様に、受光面側高濃度ドーパント拡散層3aが形成される。すなわち、リン含有ドーパントペースト14内のリンが保護用酸化膜13とリン含有ガラス層12とを貫通してリン含有ドーパントペースト14の直下の領域における低濃度ドーパント拡散層3cとp型シリコン基板2とに拡散して受光面側高濃度ドーパント拡散層3aが形成される。 FIG. 25 is an explanatory diagram of step S203 of FIG. Step S203 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed. The p-type silicon substrate 2 is heat-treated at 960 ° C. for 10 minutes in the same manner as in step S107 of the first embodiment. By this heat treatment, as in step S107, phosphorus in the phosphorus-containing dopant paste 14 thermally diffuses into the p-type silicon substrate 2 directly below the phosphorus-containing dopant paste 14 through the protective oxide film 13, and step S107. Similarly to the above, the light receiving surface side high concentration dopant diffusion layer 3a is formed. That is, the phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 13 and the phosphorus-containing glass layer 12, and the low-concentration dopant diffusion layer 3c and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 The light receiving surface side high-concentration dopant diffusion layer 3a is formed.
 図26は、図22のステップS204の説明図である。ステップS204は、保護用酸化膜13、リン含有ガラス層12およびリン含有ドーパントペースト14を除去する工程である。保護用酸化膜13、リン含有ガラス層12およびリン含有ドーパントペースト14の除去は、実施の形態2の場合と同様にp型シリコン基板2を10%フッ酸水溶液に浸漬することにより行うことができる。ステップS204の実施後のp型シリコン基板2の状態は、実施の形態1のステップS108の実施後と同じ状態になる。 FIG. 26 is an explanatory diagram of step S204 of FIG. Step S204 is a step of removing the protective oxide film 13, the phosphorus-containing glass layer 12, and the phosphorus-containing dopant paste 14. The protective oxide film 13, the phosphorus-containing glass layer 12 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution, as in the second embodiment. . The state of p-type silicon substrate 2 after step S204 is the same as that after step S108 of the first embodiment.
 これ以降は、実施の形態2の場合と同様に、ステップS109~ステップS111を行うことにより、図1および図2に示す、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を得ることができる。 Thereafter, similarly to the second embodiment, by performing steps S109 to S111, the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
 なお、半導体基板2としてn型の単結晶のシリコン基板またはn型の多結晶シリコン基板を用いてもよい。この場合は、本実施の形態3における各部材の導電型を逆にすればよい。この場合も上述した工程を実施することにより、図1および図2に示す構成を有し、n型シリコン基板の面方向において均一なドーパント濃度を有するp型の受光面側低濃度ドーパント拡散層を備える太陽電池セル1をリン含有ドーパントペースト14からの揮散成分のp型シリコン基板2への拡散を防止して容易に得ることができる。 The semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate. In this case, the conductivity type of each member in the third embodiment may be reversed. Also in this case, a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps. The solar cell 1 provided can be easily obtained by preventing the volatilization component from the phosphorus-containing dopant paste 14 from diffusing into the p-type silicon substrate 2.
 本実施の形態3で注意すべきことは、ステップS201の熱拡散工程で形成されるリン含有ガラス層12が低濃度ドーパント拡散層3c上に残存した状態で、保護用酸化膜13の形成工程として1100℃程度または930℃程度で加熱すること、またステップS203で熱処理として960℃程度で加熱することである。これらの熱印加によりリン含有ガラス層12からp型シリコン基板2内へさらにリンが拡散される。このため、リン含有ガラス層12中のリン含有量を調節する必要がある。 What should be noted in the third embodiment is that the protective oxide film 13 is formed in the state in which the phosphorus-containing glass layer 12 formed in the thermal diffusion process of step S201 remains on the low-concentration dopant diffusion layer 3c. Heating at about 1100 ° C. or about 930 ° C. and heating at about 960 ° C. as a heat treatment in step S203. By applying these heats, phosphorus is further diffused from the phosphorus-containing glass layer 12 into the p-type silicon substrate 2. For this reason, it is necessary to adjust the phosphorus content in the phosphorus-containing glass layer 12.
 上述した実施の形態3によれば、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を、実施の形態1の場合よりも少ない工程数で得ることができる。したがって、低濃度拡散領域におけるドーパント濃度が半導体基板の面内において均一な太陽電池をより簡便な方法で製造できる。 According to the above-described third embodiment, the light receiving surface-side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the plane direction of the p-type silicon substrate 2 as compared with the case of the first embodiment. It can be obtained by the number of steps. Therefore, a solar cell in which the dopant concentration in the low concentration diffusion region is uniform in the plane of the semiconductor substrate can be manufactured by a simpler method.
実施の形態4.
 本実施の形態4にかかる太陽電池セルの製造方法について図27~図35を参照しながら説明する。図27は、本発明の実施の形態4にかかる太陽電池セルの製造方法のプロセスフローを示したフローチャートである。図28~図35は、本発明の実施の形態4にかかる太陽電池セルの製造工程を説明する要部断面図である。なお、図28~図35においては、上述した実施の形態と同じ部材については同じ番号を付している。
Embodiment 4 FIG.
A method for manufacturing a solar battery cell according to the fourth embodiment will be described with reference to FIGS. FIG. 27 is a flowchart showing a process flow of the method for manufacturing a solar battery cell according to the fourth embodiment of the present invention. 28 to 35 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar battery cell according to the fourth embodiment of the present invention. In FIGS. 28 to 35, the same members as those in the above-described embodiment are denoted by the same reference numerals.
 図28は、図27のステップS301およびステップS302の説明図である。ステップS301およびステップS302では、実施の形態1のステップS101およびステップS102と同じ処理を実施する。 FIG. 28 is an explanatory diagram of steps S301 and S302 of FIG. In step S301 and step S302, the same processing as in step S101 and step S102 of the first embodiment is performed.
 図29は、図27のステップS303の説明図である。ステップS303では、p型シリコン基板2の受光面側に酸化膜としてリン含有酸化膜31および保護用酸化膜32を形成する工程である。ここではシラン(SiH)と酸素(O)とホスフィン(PH)とを材料ガスとした常圧CVD法によりシリコン酸化膜を形成する。具体的には、500℃に加熱したp型シリコン基板2を大気圧のシランと酸素とホスフィンとの混合雰囲気中に曝露することで、まずp型シリコン基板2の受光面側に、リンを含有する30nmの膜厚の第1下層酸化膜であるリン含有酸化膜31を形成する。この後、ホスフィンの混合を停止し、シランと酸素との混合雰囲気中にp型シリコン基板2を曝露することで、リンを含有しない120nmの膜厚の第1上層酸化膜である保護用酸化膜32をリン含有酸化膜31上に形成する。リン含有酸化膜31におけるリンの含有濃度は、リン含有ドーパントペースト14よりも低い。 FIG. 29 is an explanatory diagram of step S303 in FIG. In step S303, a phosphorus-containing oxide film 31 and a protective oxide film 32 are formed as oxide films on the light-receiving surface side of the p-type silicon substrate 2. Here, a silicon oxide film is formed by an atmospheric pressure CVD method using silane (SiH 4 ), oxygen (O 2 ), and phosphine (PH 3 ) as material gases. Specifically, the p-type silicon substrate 2 heated to 500 ° C. is exposed to a mixed atmosphere of silane, oxygen and phosphine at atmospheric pressure, so that phosphorus is first contained on the light-receiving surface side of the p-type silicon substrate 2. A phosphorus-containing oxide film 31 that is a first lower oxide film having a thickness of 30 nm is formed. Thereafter, mixing of phosphine is stopped, and the p-type silicon substrate 2 is exposed in a mixed atmosphere of silane and oxygen, so that a protective oxide film that is a 120 nm-thickness first oxide film not containing phosphorus is formed. 32 is formed on the phosphorus-containing oxide film 31. The phosphorus concentration in the phosphorus-containing oxide film 31 is lower than that of the phosphorus-containing dopant paste 14.
 図30は、図27のステップS304の説明図である。ステップS304は、保護用酸化膜32上にリン含有ドーパントペースト14を選択的に印刷する工程である。リン含有ドーパントペースト14の印刷は、実施の形態1のステップS106と同様に行う。リン含有ドーパントペースト14の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。印刷後、リン含有ドーパントペースト14を250℃で5分間乾燥させる。 FIG. 30 is an explanatory diagram of step S304 of FIG. Step S304 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 32. Printing of the phosphorus-containing dopant paste 14 is performed in the same manner as in step S106 of the first embodiment. The printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern. After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
 図31は、図27のステップS305の説明図である。ステップS305は、リン含有ドーパントペースト14を印刷したp型シリコン基板2を熱処理する工程である。具体的には、横型炉にp型シリコン基板2を載置したボートを装入し、960℃で15分間、p型シリコン基板2を熱処理する。この熱処理により、リン含有ドーパントペースト14内のドーパント成分であるリンが、保護用酸化膜32およびリン含有酸化膜31を貫通してリン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、またリン含有酸化膜31内のリンが、リン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、シート抵抗が20Ω/□程度の受光面側高濃度ドーパント拡散層3aが形成される。受光面側高濃度ドーパント拡散層3aは、リン含有ドーパントペースト14の印刷パターンと同じ櫛形状のパターンで形成される。 FIG. 31 is an explanatory diagram of step S305 in FIG. Step S305 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed. Specifically, a boat on which the p-type silicon substrate 2 is placed is placed in a horizontal furnace, and the p-type silicon substrate 2 is heat-treated at 960 ° C. for 15 minutes. By this heat treatment, phosphorus, which is a dopant component in the phosphorus-containing dopant paste 14, penetrates the protective oxide film 32 and the phosphorus-containing oxide film 31 and thermally diffuses into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14. In addition, phosphorus in the phosphorus-containing oxide film 31 is thermally diffused into the p-type silicon substrate 2 immediately below the phosphorus-containing dopant paste 14, and the light-receiving surface side high-concentration dopant diffusion layer 3a having a sheet resistance of about 20Ω / □ is formed. It is formed. The light receiving surface side high-concentration dopant diffusion layer 3 a is formed in the same comb-shaped pattern as the printing pattern of the phosphorus-containing dopant paste 14.
 一方、p型シリコン基板2の受光面側の表層において、リン含有ドーパントペースト14の直下領域以外の領域は、リン含有ドーパントペースト14のドーパント成分が拡散することがない。しかし、リン含有酸化膜31内のリンが、リン含有ドーパントペースト14の直下領域以外の領域のp型シリコン基板2の受光面側の表層に熱拡散する。そして、p型シリコン基板2の面方向においてリンが均一な濃度で拡散した第3のドーパント拡散層であり、シート抵抗が100Ω/□程度の受光面側低濃度ドーパント拡散層3bが形成される。これにより、受光面側高濃度ドーパント拡散層3aと受光面側低濃度ドーパント拡散層3bとを有する受光面側ドーパント拡散層3が形成される。 On the other hand, in the surface layer on the light-receiving surface side of the p-type silicon substrate 2, the dopant component of the phosphorus-containing dopant paste 14 does not diffuse in the region other than the region immediately below the phosphorus-containing dopant paste 14. However, phosphorus in the phosphorus-containing oxide film 31 is thermally diffused into the surface layer on the light-receiving surface side of the p-type silicon substrate 2 in a region other than the region immediately below the phosphorus-containing dopant paste 14. Then, a light-receiving surface side low concentration dopant diffusion layer 3b having a sheet resistance of about 100Ω / □ is formed as a third dopant diffusion layer in which phosphorus is diffused at a uniform concentration in the surface direction of the p-type silicon substrate 2. Thereby, the light receiving surface side dopant diffusion layer 3 having the light receiving surface side high concentration dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b is formed.
 上記の工程を実施することにより、受光面側高濃度ドーパント拡散層3aと、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する受光面側ドーパント拡散層3を、実施の形態1の場合よりも少ない工程数で形成することが可能である。 By performing the above steps, the light receiving surface side dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 have a uniform dopant concentration. It is possible to form the layer 3 with fewer steps than in the first embodiment.
 ここで、本実施の形態4では、酸化膜であるリン含有酸化膜31と保護用酸化膜32との積層膜は、リン含有酸化膜31がリンを含有するためp型シリコン基板2へのリンの拡散源となる第2拡散源である。また、この積層膜は、リン含有ドーパントペースト14から揮散したドーパント成分が受光面側低濃度ドーパント拡散層3bへ拡散することを阻止する役割を果たしている。この場合も、酸化膜である積層膜の膜厚が200nmまでであれば、積層膜を貫通してリン含有ドーパントペースト14からp型シリコン基板2へのドーパントの拡散が可能である。そして、リン含有酸化膜31は保護用酸化膜32で保護されるため、熱処理中にリン含有酸化膜31内のリンが大気中に揮発することを防止でき、リン含有酸化膜31からp型シリコン基板2へのリンの拡散が効率良く行える。 Here, in the fourth embodiment, the laminated film of the phosphorus-containing oxide film 31 and the protective oxide film 32 which are oxide films is formed on the p-type silicon substrate 2 because the phosphorus-containing oxide film 31 contains phosphorus. Is a second diffusion source serving as a diffusion source. In addition, this laminated film plays a role of preventing the dopant component volatilized from the phosphorus-containing dopant paste 14 from diffusing into the light receiving surface side low-concentration dopant diffusion layer 3b. Also in this case, if the thickness of the laminated film as an oxide film is up to 200 nm, the dopant can be diffused from the phosphorus-containing dopant paste 14 to the p-type silicon substrate 2 through the laminated film. Since the phosphorus-containing oxide film 31 is protected by the protective oxide film 32, it is possible to prevent phosphorus in the phosphorus-containing oxide film 31 from volatilizing in the atmosphere during the heat treatment. It is possible to efficiently diffuse phosphorus into the substrate 2.
 一方、リン含有ドーパントペースト14から揮散したドーパント成分は、膜厚が50nmより大の酸化膜を貫通できないため、保護用酸化膜32が保護膜としての機能を果たす。したがって、リン含有ドーパントペースト14からの揮散成分の影響を受けない、リンが均一な濃度で拡散した受光面側低濃度ドーパント拡散層3bが得られる。 On the other hand, since the dopant component volatilized from the phosphorus-containing dopant paste 14 cannot penetrate the oxide film having a film thickness larger than 50 nm, the protective oxide film 32 functions as a protective film. Therefore, the light-receiving surface side low-concentration dopant diffusion layer 3b in which phosphorus is diffused at a uniform concentration that is not affected by the volatilization component from the phosphorus-containing dopant paste 14 is obtained.
 なお、ここでは後の熱処理工程でリン含有酸化膜31からリンが雰囲気中に揮散しないようにキャッピング膜として120nmの保護用酸化膜32をリン含有酸化膜31に重ねて成膜したが、リン含有酸化膜31を150nmとして保護用酸化膜32を形成しない形態としてもよい。保護用酸化膜32を形成せずにリン含有酸化膜31のみを50nmより大、200nm以下の膜厚で設けた場合も、リン含有酸化膜31はリン含有ドーパントペースト14から揮散したドーパント成分が受光面側低濃度ドーパント拡散層3bへ拡散することを阻止する役割を果たす。 Here, in order to prevent phosphorus from being volatilized from the phosphorus-containing oxide film 31 in the subsequent heat treatment process, a protective oxide film 32 having a thickness of 120 nm is deposited on the phosphorus-containing oxide film 31 as a capping film. The oxide film 31 may be 150 nm and the protective oxide film 32 may not be formed. Even when only the phosphorus-containing oxide film 31 is provided with a film thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 32, the dopant component volatilized from the phosphorus-containing dopant paste 14 is received by the phosphorus-containing oxide film 31. It plays a role of preventing diffusion to the surface-side low-concentration dopant diffusion layer 3b.
 図32は、図27のステップS306の説明図である。ステップS306は、酸化膜である保護用酸化膜32およびリン含有酸化膜31と、リン含有ドーパントペースト14とを除去する工程である。酸化膜およびリン含有ドーパントペースト14の除去は、p型シリコン基板2を10%フッ酸水溶液に360秒程度浸漬することにより行うことができる。 FIG. 32 is an explanatory diagram of step S306 in FIG. Step S306 is a step of removing the protective oxide film 32 and the phosphorus-containing oxide film 31, which are oxide films, and the phosphorus-containing dopant paste 14. The removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
 図33は、図27のステップS307の説明図である。ステップS307は、反射防止膜4を形成する工程である。反射防止膜4の形成は、実施の形態1のステップS109と同様に行う。 FIG. 33 is an explanatory diagram of step S307 in FIG. Step S307 is a step of forming the antireflection film 4. The formation of the antireflection film 4 is performed in the same manner as in step S109 of the first embodiment.
 図34は、図27のステップS308の説明図である。ステップS308は、電極を印刷する工程である。電極の印刷は、実施の形態1のステップS110と同様にして、Al含有ペースト15およびAg含有ペースト16の印刷を行う。この場合、Al含有ペースト15は、p型シリコン基板2の裏面のシリコン表面に印刷される。 FIG. 34 is an explanatory diagram of step S308 in FIG. Step S308 is a step of printing an electrode. The electrodes are printed in the same manner as in step S110 of the first embodiment by printing the Al-containing paste 15 and the Ag-containing paste 16. In this case, the Al-containing paste 15 is printed on the silicon surface on the back surface of the p-type silicon substrate 2.
 図35は、図27のステップS309の説明図である。ステップS309は、電極形成用のペーストを焼成して電極を形成する熱処理を行う工程である。電極の熱処理は、実施の形態1のステップS111と同様に行う。 FIG. 35 is an explanatory diagram of step S309 in FIG. Step S309 is a step of performing a heat treatment to form an electrode by firing an electrode forming paste. The electrode heat treatment is performed in the same manner as in step S111 of the first embodiment.
 以上の工程を実施することにより、図1および図2に示す、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を得ることができる。 By performing the above steps, it is possible to obtain the solar battery cell 1 in which the light-receiving surface side low-concentration dopant diffusion layer 3b has a uniform dopant concentration in the surface direction of the p-type silicon substrate 2 shown in FIGS. it can.
 なお、半導体基板2としてn型の単結晶のシリコン基板またはn型の多結晶シリコン基板を用いてもよい。この場合は、本実施の形態4における各部材の導電型を逆にすればよい。この場合も上述した工程を実施することにより、図1および図2に示す構成を有し、n型シリコン基板の面方向において均一なドーパント濃度を有するp型の受光面側低濃度ドーパント拡散層を備える太陽電池セルを得ることができる。 The semiconductor substrate 2 may be an n-type single crystal silicon substrate or an n-type polycrystalline silicon substrate. In this case, the conductivity type of each member in the fourth embodiment may be reversed. Also in this case, a p-type light-receiving surface side low-concentration dopant diffusion layer having the structure shown in FIGS. 1 and 2 and having a uniform dopant concentration in the surface direction of the n-type silicon substrate is obtained by performing the above-described steps. A solar battery cell provided can be obtained.
 上述した実施の形態4によれば、酸化膜であるリン含有酸化膜31と保護用酸化膜32との積層膜により熱処理時におけるドーパントペーストの揮散成分の低濃度ドーパント拡散層への拡散を防止するとともに、この積層膜をドーパントの拡散源として用いる。これにより、受光面側高濃度ドーパント拡散層3aと、p型シリコン基板2の面方向においてドーパント濃度が均一な受光面側低濃度ドーパント拡散層3bとを備える選択エミッタ構造を有する太陽電池セル1を、実施の形態1の場合よりも少ない工程数で効率的に得ることができる。 According to the fourth embodiment described above, the laminated film of the phosphorus-containing oxide film 31 that is an oxide film and the protective oxide film 32 prevents diffusion of the volatile component of the dopant paste into the low-concentration dopant diffusion layer during heat treatment. In addition, this laminated film is used as a dopant diffusion source. Thereby, the solar cell 1 having a selective emitter structure including the light receiving surface side high concentration dopant diffusion layer 3a and the light receiving surface side low concentration dopant diffusion layer 3b having a uniform dopant concentration in the surface direction of the p-type silicon substrate 2 is obtained. Thus, it can be efficiently obtained with a smaller number of steps than in the first embodiment.
実施の形態5.
 図36は、本発明の実施の形態5にかかる太陽電池セル41を示す上面模式図である。図37は、本発明の実施の形態5にかかる太陽電池セル41を示す下面模式図である。図38は、本発明の実施の形態5にかかる太陽電池セル41を示す要部断面模式図であり、図36および図37の線分B-Bにおける要部断面図である。
Embodiment 5 FIG.
FIG. 36 is a schematic top view showing the solar battery cell 41 according to the fifth embodiment of the present invention. FIG. 37 is a schematic bottom view showing the solar battery cell 41 according to the fifth embodiment of the present invention. FIG. 38 is a schematic cross-sectional view of the relevant part showing a solar battery cell 41 according to the fifth embodiment of the present invention, and is a relevant part cross-sectional view taken along line BB in FIGS. 36 and 37.
 本実施の形態5にかかる太陽電池セル41においては、ボロン(B)が拡散されたp型の受光面側ドーパント拡散層43がn型の半導体基板42の受光面全体に形成されて、pn接合を有する半導体基板51が形成されている。また、受光面側ドーパント拡散層43上には、絶縁膜からなる反射防止膜4が形成されている。 In the solar cell 41 according to the fifth embodiment, a p-type light-receiving surface side dopant diffusion layer 43 in which boron (B) is diffused is formed on the entire light-receiving surface of the n-type semiconductor substrate 42, and a pn junction is formed. A semiconductor substrate 51 is formed. An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 43.
 半導体基板42としては、n型の単結晶シリコン基板を用いている。以下では、n型の単結晶シリコン基板からなる半導体基板42をn型シリコン基板42と呼ぶ場合がある。なお、半導体基板42はn型の単結晶シリコン基板に限定されるものではなく、n型の多結晶シリコン基板を用いてもよい。 As the semiconductor substrate 42, an n-type single crystal silicon substrate is used. Hereinafter, the semiconductor substrate 42 made of an n-type single crystal silicon substrate may be referred to as an n-type silicon substrate 42. The semiconductor substrate 42 is not limited to an n-type single crystal silicon substrate, and an n-type polycrystalline silicon substrate may be used.
 n型シリコン基板42における受光面側、すなわちp型の受光面側ドーパント拡散層43における受光面側には、テクスチャ構造が形成されている。テクスチャ構造の微小凹凸は、非常に微細であるため、図38および以下の図面では凹凸形状として図示していない。 A texture structure is formed on the light receiving surface side of the n-type silicon substrate 42, that is, on the light receiving surface side of the p-type light receiving surface side dopant diffusion layer 43. Since the fine unevenness of the texture structure is very fine, it is not shown as an uneven shape in FIG. 38 and the following drawings.
 半導体基板42における受光面側には、長尺細長の受光面側グリッド電極45aが複数並べて設けられ、この受光面側グリッド電極45aと導通する受光面側バス電極45bが受光面側グリッド電極45aと直交するように設けられており、それぞれ底面部においてp型の受光面側ドーパント拡散層43に電気的に接続している。受光面側グリッド電極45aおよび受光面側バス電極45bは銀材料により構成されている。受光面側グリッド電極45aおよび受光面側バス電極45bは、p型の受光面側ドーパント拡散層43に電気的に接続すること以外は、上述した受光面側グリッド電極5aおよび受光面側バス電極5bと同じ構成で形成されている。そして、受光面側グリッド電極45aと受光面側バス電極45bとにより、櫛形状を呈する第1電極である受光面側電極45が構成される。 A plurality of elongated light receiving surface side grid electrodes 45a are arranged side by side on the light receiving surface side of the semiconductor substrate 42, and a light receiving surface side bus electrode 45b that is electrically connected to the light receiving surface side grid electrode 45a is connected to the light receiving surface side grid electrode 45a. They are provided so as to be orthogonal to each other, and are electrically connected to the p-type light-receiving surface side dopant diffusion layer 43 at the bottom surface portion. The light receiving surface side grid electrode 45a and the light receiving surface side bus electrode 45b are made of a silver material. The light-receiving surface-side grid electrode 45a and the light-receiving-surface-side bus electrode 45b are electrically connected to the p-type light-receiving-surface-side dopant diffusion layer 43, except that the light-receiving-surface-side grid electrode 5a and the light-receiving-surface-side bus electrode 5b described above. It is formed with the same composition. The light-receiving surface side grid electrode 45a and the light-receiving surface-side bus electrode 45b constitute a light-receiving surface-side electrode 45 that is a first electrode having a comb shape.
 一方、半導体基板42において受光面と対向する面である裏面側には、長尺細長の裏面側グリッド電極46aが複数並べて設けられ、この裏面側グリッド電極46aと導通する裏面側バス電極46bが裏面側グリッド電極46aと直交するように設けられており、それぞれ底面部においてn型の裏面側ドーパント拡散層47の裏面側高濃度ドーパント拡散層47aに電気的に接続している。裏面側グリッド電極46aおよび裏面側バス電極46bは銀材料により構成されている。そして、裏面側グリッド電極46aと裏面側バス電極46bとにより、櫛形状を呈する第2電極である裏面側電極46が構成される。また、裏面側ドーパント拡散層47上には、絶縁膜からなる裏面側パッシベーション膜48が形成されている。 On the other hand, a plurality of elongated backside grid electrodes 46a are arranged side by side on the backside that is the surface facing the light receiving surface in the semiconductor substrate 42, and the backside bus electrode 46b that is electrically connected to the backside grid electrode 46a is provided on the backside. It is provided so as to be orthogonal to the side grid electrode 46a, and is electrically connected to the back-side high-concentration dopant diffusion layer 47a of the n-type back-side dopant diffusion layer 47 at the bottom part. The back side grid electrode 46a and the back side bus electrode 46b are made of a silver material. The back-side grid electrode 46a and the back-side bus electrode 46b constitute a back-side electrode 46 that is a second electrode having a comb shape. Further, on the backside dopant diffusion layer 47, a backside passivation film 48 made of an insulating film is formed.
 n型の裏面側ドーパント拡散層47は、半導体基板42における裏面の表層にn型のドーパントとしてリンが拡散されたn型のドーパント拡散層である。太陽電池セル41においては、n型の裏面側ドーパント拡散層47として2種類の層が形成されて選択拡散構造が形成されている。すなわち、n型シリコン基板42の裏面側の表層部において、裏面側電極46の下部領域およびその周辺領域には、n型のドーパントが相対的に高濃度に拡散された裏面側高濃度ドーパント拡散層47aが形成されている。また、n型シリコン基板42の裏面側の表層部において、裏面側高濃度ドーパント拡散層47aが形成されていない領域には、n型のドーパントが相対的に低濃度に均一に拡散された裏面側低濃度ドーパント拡散層47bが形成されている。裏面側高濃度ドーパント拡散層47aは、裏面側低濃度ドーパント拡散層47bに比べて低い電気抵抗を有する低抵抗拡散層である。裏面側低濃度ドーパント拡散層47bは、裏面側高濃度ドーパント拡散層47aに比べて高い電気抵抗を有する高抵抗拡散層である。そして、裏面側高濃度ドーパント拡散層47aと裏面側低濃度ドーパント拡散層47bとにより裏面側ドーパント拡散層47が構成される。 The n-type backside dopant diffusion layer 47 is an n-type dopant diffusion layer in which phosphorus is diffused as an n-type dopant in the surface layer on the backside of the semiconductor substrate 42. In the solar battery cell 41, two types of layers are formed as the n-type backside dopant diffusion layer 47 to form a selective diffusion structure. That is, in the surface layer portion on the back surface side of the n-type silicon substrate 42, the back-side high-concentration dopant diffusion layer in which the n-type dopant is relatively diffused in the lower region of the back-side electrode 46 and its peripheral region. 47a is formed. Further, in the surface layer portion on the back surface side of the n-type silicon substrate 42, the back surface side in which the n-type dopant is uniformly diffused at a relatively low concentration in a region where the back surface high-concentration dopant diffusion layer 47a is not formed. A low-concentration dopant diffusion layer 47b is formed. The back side high concentration dopant diffusion layer 47a is a low resistance diffusion layer having a lower electrical resistance than the back side low concentration dopant diffusion layer 47b. The back side low concentration dopant diffusion layer 47b is a high resistance diffusion layer having a higher electrical resistance than the back side high concentration dopant diffusion layer 47a. The back side dopant diffusion layer 47 is configured by the back side high concentration dopant diffusion layer 47a and the back side low concentration dopant diffusion layer 47b.
 したがって、裏面側高濃度ドーパント拡散層47aのドーパント拡散濃度を第3拡散濃度とし、裏面側低濃度ドーパント拡散層47bのドーパント拡散濃度を第4拡散濃度とすると、第4拡散濃度は、第3拡散濃度よりも低くなる。また、裏面側高濃度ドーパント拡散層47aの電気抵抗値を第3電気抵抗値とし、裏面側低濃度ドーパント拡散層47bの電気抵抗値を第4電気抵抗値とすると、第4電気抵抗値は、第3電気抵抗値よりも大きくなる。 Therefore, if the dopant diffusion concentration of the back-side high-concentration dopant diffusion layer 47a is the third diffusion concentration and the dopant diffusion concentration of the back-side low-concentration dopant diffusion layer 47b is the fourth diffusion concentration, the fourth diffusion concentration is the third diffusion concentration. It becomes lower than the concentration. Further, when the electrical resistance value of the back-side high-concentration dopant diffusion layer 47a is the third electrical resistance value and the electrical resistance value of the back-side low-concentration dopant diffusion layer 47b is the fourth electrical resistance value, the fourth electrical resistance value is It becomes larger than the third electric resistance value.
 以上のように構成された本実施の形態5にかかる太陽電池セル41においては、裏面側低濃度ドーパント拡散層47bが、BSF層としてn型シリコン基板42の裏面におけるキャリアの再結合を抑制することができるため、良好な開放電圧を得ることができる。また、裏面側高濃度ドーパント拡散層47aが、裏面側ドーパント拡散層47と裏面側電極46との接触抵抗を低減するため、良好な曲線因子を得ることができる。 In the solar cell 41 according to the fifth embodiment configured as described above, the back side low-concentration dopant diffusion layer 47b suppresses carrier recombination on the back side of the n-type silicon substrate 42 as a BSF layer. Therefore, a good open circuit voltage can be obtained. Moreover, since the back surface side high concentration dopant diffusion layer 47a reduces the contact resistance of the back surface side dopant diffusion layer 47 and the back surface side electrode 46, a favorable curve factor can be obtained.
 つぎに、本実施の形態5にかかる太陽電池セル41の製造方法について図39~図49を参照しながら説明する。図39は、本発明の実施の形態5にかかる太陽電池セル41の製造方法のプロセスフローを示したフローチャートである。図40~図49は、本発明の実施の形態5にかかる太陽電池セル41の製造工程を説明する要部断面図である。 Next, a method for manufacturing the solar battery cell 41 according to the fifth embodiment will be described with reference to FIGS. FIG. 39 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 41 according to the fifth embodiment of the present invention. 40 to 49 are cross-sectional views of relevant parts for explaining manufacturing steps of the solar battery cell 41 according to the fifth embodiment of the present invention.
 図40は、図39のステップS401およびステップS402の説明図である。ステップS401およびステップS402では、半導体基板42としてn型シリコン基板2を用いること以外は、実施の形態1のステップS101およびステップS102と同じ処理を実施する。 FIG. 40 is an explanatory diagram of step S401 and step S402 of FIG. In steps S401 and S402, the same processes as those in steps S101 and S102 of the first embodiment are performed except that the n-type silicon substrate 2 is used as the semiconductor substrate 42.
 図41は、図39のステップS403の説明図である。ステップS403は、n型シリコン基板42の表面にp型のドーパント拡散層43aを形成する熱拡散を行う工程である。ドーパント拡散層43aの形成は、テクスチャ構造が形成されたn型シリコン基板42を熱拡散炉に装入し、三臭化ホウ素(BBr)蒸気存在下で熱処理することで実現される。具体的には、たとえば300枚のn型シリコン基板42が3.5mm間隔で載置された石英ガラス製のボートが、750℃に加熱された横型炉の石英チューブ内へ装入される。10SLMの窒素を導入しながら石英チューブ内を940℃まで昇温し、石英チューブ内へ材料ガスを10分間流す。材料ガスは、ガラス容器に封入されたBBrに窒素ガスをバブリングさせ、BBr蒸気としたものである。 FIG. 41 is an explanatory diagram of step S403 in FIG. Step S403 is a process of performing thermal diffusion for forming a p-type dopant diffusion layer 43a on the surface of the n-type silicon substrate. Formation of the dopant diffusion layer 43a is realized by placing the n-type silicon substrate 42 on which the texture structure is formed in a thermal diffusion furnace and heat-treating it in the presence of boron tribromide (BBr 3 ) vapor. Specifically, for example, a quartz glass boat on which 300 n-type silicon substrates 42 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C. While introducing 10 SLM of nitrogen, the temperature in the quartz tube is raised to 940 ° C., and the material gas is allowed to flow into the quartz tube for 10 minutes. The material gas is BBr 3 vapor obtained by bubbling nitrogen gas through BBr 3 sealed in a glass container.
 10分後に材料ガスの導入を停止し、さらに10分間、石英チューブ内を940℃で維持し、石英チューブ内を再び750℃まで降温し、ボートを石英チューブから取り出す。このときn型シリコン基板42の表裏面には、n型シリコン基板42の面方向においてボロンが均一な濃度で拡散したp型のドーパント拡散層43aと、酸化膜でありボロンを含有した不純物含有ガラス層であるボロン含有ガラス層52とがこの順で形成されている。また、このようにして得られるp型のドーパント拡散層43aは、4端子法で測定するシート抵抗が90Ω/□程度となる。横型炉の代わりに縦型炉を使用してもよい。また、p型ドーパントであればBBr以外の材料を使用することも可能である。なお、材料ガスには、BBr以外の材料を使用することも可能である。また、p型のドーパント拡散層43aを形成するためのドーパントは、太陽電池セルの形成に使用可能なp型ドーパントであればよい。 After 10 minutes, the introduction of the material gas is stopped, the inside of the quartz tube is maintained at 940 ° C. for another 10 minutes, the temperature inside the quartz tube is lowered to 750 ° C., and the boat is taken out from the quartz tube. At this time, on the front and back surfaces of the n-type silicon substrate 42, a p-type dopant diffusion layer 43a in which boron is diffused at a uniform concentration in the surface direction of the n-type silicon substrate 42, and an impurity-containing glass containing an oxide film containing boron. A boron-containing glass layer 52 as a layer is formed in this order. In addition, the p-type dopant diffusion layer 43a thus obtained has a sheet resistance of about 90Ω / □ measured by the four-terminal method. A vertical furnace may be used instead of the horizontal furnace. In addition, a material other than BBr 3 can be used as long as it is a p-type dopant. Note that the material gas, it is also possible to use materials other than BBr 3. Moreover, the dopant for forming the p-type dopant diffusion layer 43a may be any p-type dopant that can be used for forming the solar battery cell.
 図42は、図39のステップS404の説明図である。ステップS404は、n型シリコン基板42において受光面と反対の裏面となる面に形成されたドーパント含有層であるp型のドーパント拡散層43aとボロン含有ガラス層52とを除去する工程である。市販のエッジアイソレーション装置を使用し、薬液槽に貯留されてフッ酸:硝酸:純水=1:7:3の体積比率で混合された薬液の液面をn型シリコン基板42の裏面のみに接液させてローラー搬送する。これにより、n型シリコン基板42の裏面のシリコンのみを2μmの深さで削ることが可能である。 FIG. 42 is an explanatory diagram of step S404 of FIG. Step S404 is a step of removing the p-type dopant diffusion layer 43a and the boron-containing glass layer 52, which are dopant-containing layers formed on the back surface opposite to the light receiving surface in the n-type silicon substrate 42. Using a commercially available edge isolation device, the liquid level of the chemical solution stored in the chemical solution tank and mixed at a volume ratio of hydrofluoric acid: nitric acid: pure water = 1: 7: 3 is applied only to the back surface of the n-type silicon substrate 42. Wet the liquid and transport it with a roller. As a result, only the silicon on the back surface of the n-type silicon substrate 42 can be shaved to a depth of 2 μm.
 薬液の液温を15℃に保ち、n型シリコン基板42の上方に排気口を設けて、発生するガスを排気することで、n型シリコン基板42の表面に薬液が回り込むことなく、裏面のドーパント含有層のみを除去することが可能である。薬液槽を通過したn型シリコン基板42は、シャワーリンスで洗浄され、室温の10%KOH水溶液で表面変質層を除去され、さらにシャワーリンスで洗浄され、エアナイフで乾燥される。これにより、n型シリコン基板42の裏面におけるドーパント拡散層であるp型のドーパント拡散層43aが除去され、n型シリコン基板42の表面に残存したp型のドーパント拡散層43aがp型の受光面側ドーパント拡散層43となる。 By keeping the temperature of the chemical solution at 15 ° C. and providing an exhaust port above the n-type silicon substrate 42 to exhaust the generated gas, the chemical solution does not enter the surface of the n-type silicon substrate 42 and the dopant on the back surface. Only the containing layer can be removed. The n-type silicon substrate 42 that has passed through the chemical bath is washed with shower rinse, the surface alteration layer is removed with a 10% aqueous KOH solution at room temperature, further washed with shower rinse, and dried with an air knife. As a result, the p-type dopant diffusion layer 43a which is the dopant diffusion layer on the back surface of the n-type silicon substrate 42 is removed, and the p-type dopant diffusion layer 43a remaining on the surface of the n-type silicon substrate 42 becomes the p-type light-receiving surface. The side dopant diffusion layer 43 is formed.
 図43は、図39のステップS405の説明図である。ステップS405は、n型シリコン基板42の裏面側に第2酸化膜として裏面酸化膜であるリン含有酸化膜53と保護用酸化膜54とを形成する工程である。ここでは、実施の形態4におけるステップS303と同様の方法で、30nmの膜厚の第2下層酸化膜であるリン含有酸化膜53と120nmの膜厚の第2上層酸化膜である保護用酸化膜54とをこの順でn型シリコン基板42の裏面側に形成する。リン含有酸化膜53におけるリンの含有濃度は、リン含有ドーパントペースト14よりも低い。 FIG. 43 is an explanatory diagram of step S405 of FIG. Step S405 is a step of forming a phosphorus-containing oxide film 53 and a protective oxide film 54, which are back-surface oxide films, as second oxide films on the back-surface side of the n-type silicon substrate 42. Here, in the same manner as in step S303 in the fourth embodiment, a phosphorus-containing oxide film 53 that is a second lower oxide film having a thickness of 30 nm and a protective oxide film that is a second upper oxide film having a thickness of 120 nm are used. 54 are formed on the back surface side of the n-type silicon substrate 42 in this order. The phosphorus concentration in the phosphorus-containing oxide film 53 is lower than that of the phosphorus-containing dopant paste 14.
 図44は、図39のステップS406の説明図である。ステップS406は、n型シリコン基板42の裏面の保護用酸化膜54上に第3拡散源である裏面側ドーパントペーストとしてリン含有ドーパントペースト14を選択的に印刷する工程である。リン含有ドーパントペースト14の印刷は、実施の形態1のステップS106と同様に行う。リン含有ドーパントペースト14の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。印刷後、リン含有ドーパントペースト14を250℃で5分間乾燥させる。 FIG. 44 is an explanatory diagram of step S406 of FIG. Step S406 is a step of selectively printing the phosphorus-containing dopant paste 14 as the backside dopant paste as the third diffusion source on the protective oxide film 54 on the backside of the n-type silicon substrate 42. Printing of the phosphorus-containing dopant paste 14 is performed in the same manner as in step S106 of the first embodiment. The printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern. After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
 図45は、図39のステップS407の説明図である。ステップS407は、リン含有ドーパントペースト14を印刷したn型シリコン基板42を熱処理する工程である。具体的には、横型炉にn型シリコン基板42を載置したボートを装入し、960℃で15分間、n型シリコン基板42を熱処理する。この熱処理により、リン含有ドーパントペースト14内のドーパント成分であるリンが保護用酸化膜54およびリン含有酸化膜53を貫通してリン含有ドーパントペースト14の直下のn型シリコン基板42内に熱拡散する。また、リン含有ドーパントペースト14の直下のリン含有酸化膜53内のリンがリン含有ドーパントペースト14の直下のn型シリコン基板42内に熱拡散する。これにより、リン含有ドーパントペースト14の直下のn型シリコン基板42の表層に、第4のドーパント拡散層でありシート抵抗が20Ω/□程度の裏面側高濃度ドーパント拡散層47aが形成される。裏面側高濃度ドーパント拡散層47aは、リン含有ドーパントペースト14の印刷パターンと同じ櫛形状のパターンで形成される。 FIG. 45 is an explanatory diagram of step S407 of FIG. Step S407 is a process of heat-treating the n-type silicon substrate 42 on which the phosphorus-containing dopant paste 14 is printed. Specifically, a boat on which an n-type silicon substrate 42 is placed is placed in a horizontal furnace, and the n-type silicon substrate 42 is heat-treated at 960 ° C. for 15 minutes. By this heat treatment, phosphorus as a dopant component in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 54 and the phosphorus-containing oxide film 53 and is thermally diffused into the n-type silicon substrate 42 immediately below the phosphorus-containing dopant paste 14. . Further, phosphorus in the phosphorus-containing oxide film 53 immediately below the phosphorus-containing dopant paste 14 is thermally diffused into the n-type silicon substrate 42 immediately below the phosphorus-containing dopant paste 14. As a result, on the surface layer of the n-type silicon substrate 42 immediately below the phosphorus-containing dopant paste 14, a back-side high-concentration dopant diffusion layer 47a that is a fourth dopant diffusion layer and has a sheet resistance of about 20Ω / □ is formed. The back-side high-concentration dopant diffusion layer 47 a is formed in the same comb-shaped pattern as the printing pattern of the phosphorus-containing dopant paste 14.
 一方、n型シリコン基板42の裏面側の表層において、リン含有ドーパントペースト14の直下領域以外の領域は、リン含有ドーパントペースト14のドーパント成分が拡散することがない。しかし、リン含有酸化膜53内のリンが、リン含有ドーパントペースト14の直下領域以外の領域のn型シリコン基板42の裏面側の表層に熱拡散する。そして、n型シリコン基板42の面方向においてリンが均一な濃度で拡散した第5のドーパント拡散層であり、シート抵抗が100Ω/□程度の裏面側低濃度ドーパント拡散層47bが形成される。これにより、裏面側高濃度ドーパント拡散層47aと裏面側低濃度ドーパント拡散層47bとを有する裏面側ドーパント拡散層47が形成される。 On the other hand, in the surface layer on the back surface side of the n-type silicon substrate 42, the dopant component of the phosphorus-containing dopant paste 14 does not diffuse in the region other than the region immediately below the phosphorus-containing dopant paste 14. However, phosphorus in the phosphorus-containing oxide film 53 is thermally diffused to the surface layer on the back surface side of the n-type silicon substrate 42 in a region other than the region immediately below the phosphorus-containing dopant paste 14. Then, a back side low-concentration dopant diffusion layer 47b having a sheet resistance of about 100Ω / □ is formed as a fifth dopant diffusion layer in which phosphorus is diffused at a uniform concentration in the surface direction of the n-type silicon substrate. Thereby, the back surface side dopant diffusion layer 47 which has the back surface side high concentration dopant diffusion layer 47a and the back surface side low concentration dopant diffusion layer 47b is formed.
 本実施の形態5では、酸化膜であるリン含有酸化膜53と保護用酸化膜54との積層膜は、リン含有酸化膜53がリンを含有するためn型シリコン基板42へのリンの拡散源となる第4拡散源である。また、この積層膜は、リン含有ドーパントペースト14から揮散したドーパント成分が裏面側低濃度ドーパント拡散層47bへ拡散することを阻止する役割を果たしている。この場合も、積層膜の膜厚が200nmまでであれば、積層膜を貫通してリン含有ドーパントペースト14からn型シリコン基板42へのドーパントの拡散が可能である。そして、リン含有酸化膜53は保護用酸化膜54で保護されるため、熱処理中にリン含有酸化膜53内のリンが大気中に揮発することを防止でき、リン含有酸化膜53からn型シリコン基板42へのリンの拡散が効率良く行える。 In the fifth embodiment, the laminated film of the phosphorus-containing oxide film 53 that is an oxide film and the protective oxide film 54 is a diffusion source of phosphorus to the n-type silicon substrate 42 because the phosphorus-containing oxide film 53 contains phosphorus. Is the fourth diffusion source. In addition, this laminated film plays a role of preventing the dopant component volatilized from the phosphorus-containing dopant paste 14 from diffusing into the backside low-concentration dopant diffusion layer 47b. Also in this case, if the thickness of the laminated film is up to 200 nm, it is possible to diffuse the dopant from the phosphorus-containing dopant paste 14 to the n-type silicon substrate 42 through the laminated film. Since the phosphorus-containing oxide film 53 is protected by the protective oxide film 54, the phosphorus in the phosphorus-containing oxide film 53 can be prevented from volatilizing in the atmosphere during the heat treatment. It is possible to efficiently diffuse phosphorus into the substrate 42.
 一方、リン含有ドーパントペースト14から揮散したドーパント成分は、膜厚が50nmより大の酸化膜を貫通できないため、保護用酸化膜54が保護膜としての機能を果たす。したがって、リン含有ドーパントペースト14からの揮散成分の影響を受けない、リンが均一な濃度で拡散した裏面側低濃度ドーパント拡散層47bが得られる。 On the other hand, since the dopant component volatilized from the phosphorus-containing dopant paste 14 cannot penetrate the oxide film having a thickness of more than 50 nm, the protective oxide film 54 functions as a protective film. Therefore, the back-side low-concentration dopant diffusion layer 47b in which phosphorus is diffused at a uniform concentration that is not affected by the volatilization component from the phosphorus-containing dopant paste 14 is obtained.
 ここでは熱処理工程でリン含有酸化膜53からリンが雰囲気中に揮散しないようにキャッピング膜として120nmの保護用酸化膜54をリン含有酸化膜53に重ねて成膜したが、リン含有酸化膜53を150nmとして保護用酸化膜54を形成しない形態としてもよい。保護用酸化膜54を形成せずにリン含有酸化膜53のみを50nmより大、200nm以下の膜厚で設けた場合も、リン含有酸化膜53はリン含有ドーパントペースト14から揮散したドーパント成分が裏面側低濃度ドーパント拡散層47bへ拡散することを阻止する役割を果たす。 Here, a protective oxide film 54 having a thickness of 120 nm is formed on the phosphorus-containing oxide film 53 as a capping film so that phosphorus is not volatilized from the phosphorus-containing oxide film 53 in the heat treatment process. The protective oxide film 54 may be formed to have a thickness of 150 nm. Even when only the phosphorus-containing oxide film 53 is provided with a thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 54, the phosphorus-containing oxide film 53 has a dopant component volatilized from the phosphorus-containing dopant paste 14 on the back surface. It plays a role of preventing diffusion to the side low-concentration dopant diffusion layer 47b.
 図46は、図39のステップS408の説明図である。ステップS408は、酸化膜であるボロン含有ガラス層52と保護用酸化膜54とリン含有酸化膜53と、リン含有ドーパントペースト14とを除去する工程である。酸化膜およびリン含有ドーパントペースト14の除去は、n型シリコン基板42を10%フッ酸水溶液に360秒程度浸漬することにより行うことができる。 FIG. 46 is an explanatory diagram of step S408 of FIG. Step S408 is a step of removing the boron-containing glass layer 52, the protective oxide film 54, the phosphorus-containing oxide film 53, and the phosphorus-containing dopant paste 14 that are oxide films. The removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the n-type silicon substrate 42 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
 図47は、図39のステップS409およびステップS410の説明図である。ステップS409は、反射防止膜4を形成する工程である。反射防止膜4の形成は、実施の形態1のステップS109と同様の方法で、屈折率2.1、膜厚80nmの窒化シリコン膜を受光面側ドーパント拡散層43上に成膜する。なお、本実施の形態5ではp型の受光面側ドーパント拡散層43はボロンが拡散されたp型層であるため、良好なパッシベーション性能を得るために負の固定電荷をもつアルミナ膜を使用することもできる。また、n型シリコン基板42側にアルミナ膜、上層に窒化シリコン膜を積層させた2層膜で反射防止膜4を構成することで、電界効果と水素終端効果との両方の効果を得ることもできる。ステップS410は、裏面側パッシベーション膜48を形成する工程である。裏面側パッシベーション膜48は、反射防止膜4と同様にして窒化シリコン膜を裏面側ドーパント拡散層47上に形成する。 FIG. 47 is an explanatory diagram of steps S409 and S410 of FIG. Step S409 is a process of forming the antireflection film 4. The antireflection film 4 is formed by forming a silicon nitride film having a refractive index of 2.1 and a film thickness of 80 nm on the light receiving surface side dopant diffusion layer 43 by the same method as in step S109 of the first embodiment. In the fifth embodiment, since the p-type light-receiving surface side dopant diffusion layer 43 is a p-type layer in which boron is diffused, an alumina film having a negative fixed charge is used to obtain good passivation performance. You can also Further, by forming the antireflection film 4 with a two-layer film in which an alumina film is laminated on the n-type silicon substrate 42 side and a silicon nitride film is laminated on the upper layer, both the field effect and the hydrogen termination effect can be obtained. it can. Step S <b> 410 is a step of forming the back surface side passivation film 48. As the back surface side passivation film 48, a silicon nitride film is formed on the back surface side dopant diffusion layer 47 in the same manner as the antireflection film 4.
 図48は、図39のステップS411の説明図である。ステップS411は、電極を印刷する工程である。電極の印刷は、実施の形態1のステップS110と同様の方法で、銀含有ペースト55およびAgとAlとを含有する銀アルミニウム含有ペースト56の印刷を行う。本実施の形態5では、n型シリコン基板42の受光面側はボロンが拡散されたp型の受光面側ドーパント拡散層43となっているため、受光面側電極45と受光面側ドーパント拡散層43との十分な電気的導通を保つため、3重量%程度のAlが含有されたAgペーストを使用する。銀含有ペースト55は、n型シリコン基板42の裏面の裏面側パッシベーション膜48上に印刷される。銀アルミニウム含有ペースト56は、実施の形態1の場合と同様の櫛形状のパターンで反射防止膜4上に印刷される。 FIG. 48 is an explanatory diagram of step S411 in FIG. Step S411 is a process of printing an electrode. The electrodes are printed by the same method as in step S110 of the first embodiment, and the silver-containing paste 55 and the silver-aluminum-containing paste 56 containing Ag and Al are printed. In the fifth embodiment, the light-receiving surface side of the n-type silicon substrate 42 is a p-type light-receiving surface-side dopant diffusion layer 43 in which boron is diffused. Therefore, the light-receiving surface-side electrode 45 and the light-receiving surface-side dopant diffusion layer In order to maintain sufficient electrical continuity with 43, an Ag paste containing about 3% by weight of Al is used. The silver-containing paste 55 is printed on the back surface side passivation film 48 on the back surface of the n-type silicon substrate 42. The silver-aluminum-containing paste 56 is printed on the antireflection film 4 in the same comb-shaped pattern as in the first embodiment.
 銀含有ペースト55の印刷パターンは、裏面側高濃度ドーパント拡散層47aと同じ櫛形状であり、線幅50μmの線状パターンを2mm間隔で平行配列したパターンと、線幅1mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。また、銀含有ペースト55は、ステップS406で形成したリン含有ドーパントペースト14のパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。すなわち、銀含有ペースト55は、裏面側高濃度ドーパント拡散層47aのパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。 The printed pattern of the silver-containing paste 55 has the same comb shape as the back-side high-concentration dopant diffusion layer 47a, a pattern in which linear patterns with a line width of 50 μm are arranged in parallel at intervals of 2 mm, and four linear shapes with a line width of 1 mm. It is a comb-shaped pattern composed of patterns in which patterns are arranged in parallel. Further, the silver-containing paste 55 is printed at a position included in a region having a width of 150 μm and a region having a width of 1.2 mm of the pattern of the phosphorus-containing dopant paste 14 formed in step S406. That is, the silver-containing paste 55 is printed at a position included in a 150 μm wide region and a 1.2 mm wide region of the pattern of the back side high-concentration dopant diffusion layer 47a.
 銀含有ペースト55の印刷位置は、裏面側高濃度ドーパント拡散層47aのパターンに位置合わせする必要がある。銀含有ペースト55の印刷位置の位置合わせは、実施の形態1においてステップS110で述べた方法で行うことができる。仮に銀含有ペースト55の印刷位置にずれが生じた場合には、裏面側電極46が裏面側低濃度ドーパント拡散層47b上に形成され、裏面側ドーパント拡散層47と裏面側電極46との接触抵抗の増大による曲線因子の悪化、キャリアの表面再結合増大による開放電圧の悪化が生じる。このため、銀含有ペースト55の印刷位置の裏面側高濃度ドーパント拡散層47aのパターンへの位置合わせは重要である。 The printing position of the silver-containing paste 55 needs to be aligned with the pattern of the back side high-concentration dopant diffusion layer 47a. The printing position of the silver-containing paste 55 can be aligned by the method described in step S110 in the first embodiment. If the printing position of the silver-containing paste 55 is shifted, the back-side electrode 46 is formed on the back-side low-concentration dopant diffusion layer 47b, and the contact resistance between the back-side dopant diffusion layer 47 and the back-side electrode 46. As a result, the fill factor deteriorates, and the open circuit voltage deteriorates due to increased surface recombination of carriers. For this reason, it is important to align the printing position of the silver-containing paste 55 with the pattern of the back-side high-concentration dopant diffusion layer 47a.
 図49は、図39のステップS412の説明図である。ステップS412は、電極形成用のペーストを焼成して電極を形成する熱処理を行う工程である。電極の熱処理は、実施の形態1のステップS111と同様に行う。これにより、ペースト中の樹脂成分が消失する。そして、受光面側では銀アルミニウム含有ペースト56に含有されるガラス粒子が窒化シリコン膜を貫通し、Ag粒子が受光面側ドーパント拡散層43に接触し、電気的導通を得る。これにより、受光面側電極45が得られる。また、裏面側では、銀含有ペースト55に含まれるAg粒子が裏面側高濃度ドーパント拡散層47aに接触し、電気的導通を得る。これにより、裏面側電極46が得られる。 FIG. 49 is an explanatory diagram of step S412 of FIG. Step S412 is a step of performing a heat treatment to form an electrode by baking a paste for forming an electrode. The electrode heat treatment is performed in the same manner as in step S111 of the first embodiment. Thereby, the resin component in a paste lose | disappears. Then, on the light receiving surface side, the glass particles contained in the silver-aluminum-containing paste 56 penetrate the silicon nitride film, and the Ag particles come into contact with the light receiving surface side dopant diffusion layer 43 to obtain electrical conduction. Thereby, the light-receiving surface side electrode 45 is obtained. On the back side, Ag particles contained in the silver-containing paste 55 come into contact with the back side high-concentration dopant diffusion layer 47a to obtain electrical conduction. Thereby, the back surface side electrode 46 is obtained.
 以上の工程を実施することにより、図36~図38に示す、n型シリコン基板42の面方向において裏面側低濃度ドーパント拡散層47bが均一なドーパント濃度を有する太陽電池セル41を得ることができる。 By performing the above steps, a solar battery cell 41 having a uniform dopant concentration in the back-side low-concentration dopant diffusion layer 47b in the surface direction of the n-type silicon substrate 42 shown in FIGS. 36 to 38 can be obtained. .
 なお、半導体基板42としてp型の単結晶のシリコン基板またはp型の多結晶シリコン基板を用いてもよい。この場合は、本実施の形態5における各部材の導電型を逆にすればよい。この場合も上述した工程を実施することにより、図36~図38に示す構成を有し、p型シリコン基板の面方向において均一なドーパント濃度を有するp型の裏面側低濃度ドーパント拡散層を備える太陽電池セルを得ることができる。 The semiconductor substrate 42 may be a p-type single crystal silicon substrate or a p-type polycrystalline silicon substrate. In this case, the conductivity type of each member in the fifth embodiment may be reversed. Also in this case, by performing the above-described steps, a p-type backside low-concentration dopant diffusion layer having the configuration shown in FIGS. 36 to 38 and having a uniform dopant concentration in the plane direction of the p-type silicon substrate is provided. A solar battery cell can be obtained.
 上述したように、本実施の形態5にかかる太陽電池の製造方法においては、n型シリコン基板42の裏面上に、酸化膜としてリン含有酸化膜53と保護用酸化膜54との積層膜を50nmより大、200nm以下の膜厚で形成する。そして、保護用酸化膜54上にリン含有ドーパントペースト14を既定のパターンで印刷して熱処理を行う。このため、保護用酸化膜54に覆われたn型シリコン基板42の裏面にはリン含有ドーパントペースト14から揮発したドーパント成分による拡散がなされず、裏面側低濃度ドーパント拡散層47bにおけるドーパント成分の拡散濃度の不均一性を排除することができる。 As described above, in the method for manufacturing a solar cell according to the fifth embodiment, a laminated film of the phosphorus-containing oxide film 53 and the protective oxide film 54 as an oxide film is formed on the back surface of the n-type silicon substrate 42 by 50 nm. A film thickness of 200 nm or less is formed. Then, the phosphorus-containing dopant paste 14 is printed in a predetermined pattern on the protective oxide film 54 and heat treatment is performed. Therefore, the back surface of the n-type silicon substrate 42 covered with the protective oxide film 54 is not diffused by the dopant component volatilized from the phosphorus-containing dopant paste 14, and the diffusion of the dopant component in the back-side low-concentration dopant diffusion layer 47 b. Concentration non-uniformity can be eliminated.
 これにより、本実施の形態5によれば、リン含有ドーパントペースト14からの揮散成分のn型シリコン基板42への拡散を防止して、裏面側高濃度ドーパント拡散層47aと、n型シリコン基板42の面方向においてドーパント濃度が均一な裏面側低濃度ドーパント拡散層47bとを備える選択拡散構造を有する太陽電池セル41を、少ない工程数で効率的に得ることができる。すなわち、n型シリコン基板42の面方向における裏面側低濃度ドーパント拡散層47bのドーパント濃度の不均一に起因した、BSF層としてのn型シリコン基板42の裏面におけるキャリアの再結合抑制のばらつきが防止された、面方向において均一な発電特性を有する太陽電池セル41を容易に得ることができる。 Thereby, according to the fifth embodiment, diffusion of the volatile component from the phosphorus-containing dopant paste 14 to the n-type silicon substrate 42 is prevented, and the back-side high-concentration dopant diffusion layer 47a and the n-type silicon substrate 42 are prevented. The solar battery cell 41 having a selective diffusion structure including the back-side low-concentration dopant diffusion layer 47b having a uniform dopant concentration in the surface direction can be efficiently obtained with a small number of steps. That is, variation in suppression of carrier recombination on the back surface of the n-type silicon substrate 42 as the BSF layer due to non-uniformity of the dopant concentration of the back-side low-concentration dopant diffusion layer 47b in the surface direction of the n-type silicon substrate 42 is prevented. Thus, the solar battery cell 41 having uniform power generation characteristics in the plane direction can be easily obtained.
実施の形態6.
 図50は、本発明の実施の形態6にかかる太陽電池セル61を示す要部断面模式図であり、図38に対応する要部断面図である。なお、実施の形態に5にかかる太陽電池セル41と同じ部材については、同じ符号を付している。また、太陽電池セル61の上面および下面から見た構成は、実施の形態5にかかる太陽電池セル41と同じであるので、図36および図37を参照することで説明を省略する。太陽電池セル61が実施の形態5にかかる太陽電池セル41と異なる点は、受光面側ドーパント拡散層の構成である。したがって、以下では太陽電池セル41と異なる受光面側ドーパント拡散層について説明する。
Embodiment 6 FIG.
FIG. 50 is a schematic cross-sectional view of the relevant part showing a solar battery cell 61 according to the sixth embodiment of the present invention, and is a relevant part cross-sectional view corresponding to FIG. In addition, the same code | symbol is attached | subjected about the same member as the photovoltaic cell 41 concerning 5 embodiment. Moreover, since the structure seen from the upper surface and lower surface of the photovoltaic cell 61 is the same as the photovoltaic cell 41 concerning Embodiment 5, description is abbreviate | omitted with reference to FIG. 36 and FIG. The difference between the solar battery cell 61 and the solar battery cell 41 according to the fifth embodiment is the configuration of the light-receiving surface side dopant diffusion layer. Therefore, below, the light-receiving surface side dopant diffusion layer different from the photovoltaic cell 41 is demonstrated.
 本実施の形態6にかかる太陽電池セル61においては、n型の半導体基板42の受光面全体にボロン(B)が拡散されたp型の受光面側ドーパント拡散層63が形成されて、pn接合を有する半導体基板71が形成されている。また、受光面側ドーパント拡散層63上には、絶縁膜からなる反射防止膜4が形成されている。 In the solar cell 61 according to the sixth embodiment, a p-type light-receiving surface side dopant diffusion layer 63 in which boron (B) is diffused is formed on the entire light-receiving surface of the n-type semiconductor substrate 42, and a pn junction is formed. A semiconductor substrate 71 is formed. An antireflection film 4 made of an insulating film is formed on the light receiving surface side dopant diffusion layer 63.
 そして、太陽電池セル61においては、p型の受光面側ドーパント拡散層63として2種類の層が形成されて選択エミッタ構造が形成されている。すなわち、n型シリコン基板42における受光面側の表層部において、受光面側電極45の下部領域およびその周辺領域には、p型のドーパントが相対的に高濃度に拡散された受光面側高濃度ドーパント拡散層63aが形成されている。また、n型シリコン基板42における受光面側の表層部において、受光面側高濃度ドーパント拡散層63aが形成されていない領域には、p型のドーパントが相対的に低濃度に拡散された受光面側低濃度ドーパント拡散層63bが形成されている。受光面側高濃度ドーパント拡散層63aは、受光面側低濃度ドーパント拡散層63bに比べて低い電気抵抗を有する低抵抗拡散層である。受光面側低濃度ドーパント拡散層63bは、受光面側高濃度ドーパント拡散層63aに比べて高い電気抵抗を有する高抵抗拡散層である。 In the solar battery cell 61, two types of layers are formed as the p-type light-receiving surface side dopant diffusion layer 63 to form a selective emitter structure. That is, in the surface layer portion on the light receiving surface side of the n-type silicon substrate 42, the light receiving surface side high concentration in which the p-type dopant is relatively diffused in the lower region of the light receiving surface side electrode 45 and its peripheral region. A dopant diffusion layer 63a is formed. In the surface layer portion of the n-type silicon substrate 42 on the light-receiving surface side, a light-receiving surface in which the p-type dopant is diffused at a relatively low concentration in a region where the light-receiving surface-side high-concentration dopant diffusion layer 63a is not formed. A side low-concentration dopant diffusion layer 63b is formed. The light receiving surface side high concentration dopant diffusion layer 63a is a low resistance diffusion layer having a lower electrical resistance than the light receiving surface side low concentration dopant diffusion layer 63b. The light receiving surface side low concentration dopant diffusion layer 63b is a high resistance diffusion layer having a higher electrical resistance than the light receiving surface side high concentration dopant diffusion layer 63a.
 したがって、受光面側高濃度ドーパント拡散層63aのドーパント拡散濃度を第5拡散濃度とし、受光面側低濃度ドーパント拡散層63bのドーパント拡散濃度を第6拡散濃度とすると、第6拡散濃度は、第5拡散濃度よりも低くなる。また、受光面側高濃度ドーパント拡散層63aの電気抵抗値を第5電気抵抗値とし、受光面側低濃度ドーパント拡散層63bの電気抵抗値を第6電気抵抗値とすると、第6電気抵抗値は、第5電気抵抗値よりも大きくなる。 Therefore, if the dopant diffusion concentration of the light receiving surface side high concentration dopant diffusion layer 63a is the fifth diffusion concentration and the dopant diffusion concentration of the light receiving surface side low concentration dopant diffusion layer 63b is the sixth diffusion concentration, the sixth diffusion concentration is It becomes lower than 5 diffusion density. Further, if the electric resistance value of the light receiving surface side high concentration dopant diffusion layer 63a is the fifth electric resistance value and the electric resistance value of the light receiving surface side low concentration dopant diffusion layer 63b is the sixth electric resistance value, the sixth electric resistance value is obtained. Becomes larger than the fifth electric resistance value.
 以上のように構成された本実施の形態6にかかる太陽電池セル61においては、受光面側高濃度ドーパント拡散層63aが、受光面側ドーパント拡散層63と受光面側電極45との接触抵抗を低減するため、良好な曲線因子を得ることができる。また、受光面側低濃度ドーパント拡散層63bは、n型シリコン基板42の受光面側のキャリアの再結合速度を小さくする。 In the solar battery cell 61 according to the sixth embodiment configured as described above, the light receiving surface side high-concentration dopant diffusion layer 63a has a contact resistance between the light receiving surface side dopant diffusion layer 63 and the light receiving surface side electrode 45. Since it reduces, a favorable fill factor can be obtained. In addition, the light receiving surface side low-concentration dopant diffusion layer 63b reduces the recombination rate of carriers on the light receiving surface side of the n-type silicon substrate.
 つぎに、本実施の形態6にかかる太陽電池セル61の製造方法について図51~図61を参照しながら説明する。図51は、本発明の実施の形態6にかかる太陽電池セル61の製造方法のプロセスフローを示したフローチャートである。図52~図61は、本発明の実施の形態6にかかる太陽電池セル61の製造工程を説明する要部断面図である。 Next, a method for manufacturing the solar battery cell 61 according to the sixth embodiment will be described with reference to FIGS. FIG. 51 is a flowchart showing a process flow of the method for manufacturing the solar battery cell 61 according to the sixth embodiment of the present invention. 52 to 61 are cross-sectional views of relevant parts for explaining the manufacturing steps of the solar battery cell 61 according to the sixth embodiment of the present invention.
 図52は、図51のステップS501およびステップS502の説明図である。ステップS501およびステップS502では、半導体基板としてn型シリコン基板42を用意すること以外は、実施の形態1のステップS101およびステップS102と同じ処理を実施する。 FIG. 52 is an explanatory diagram of steps S501 and S502 of FIG. In steps S501 and S502, the same processes as those in steps S101 and S102 of the first embodiment are performed except that the n-type silicon substrate 42 is prepared as a semiconductor substrate.
 図53は、図51のステップS503の説明図である。ステップS503では、n型シリコン基板42の受光面側に受光面側酸化膜としてボロン含有酸化膜64および保護用酸化膜65を形成する工程である。ここではシランと酸素とジボラン(B)とを材料ガスとした常圧CVD法によりシリコン酸化膜を形成する。具体的には、450℃~550℃程度に加熱したn型シリコン基板42を大気圧のシランと酸素とジボランとの混合雰囲気中に曝露することで、まずn型シリコン基板42の受光面側に、ボロンを含有する30nmの膜厚のボロン含有酸化膜64を形成する。この後、ジボランの混合を停止し、シランと酸素との混合雰囲気中にn型シリコン基板42を曝露することで、ボロンを含有しない120nmの膜厚の保護用酸化膜65をボロン含有酸化膜64上に形成する。ボロン含有酸化膜64におけるボロンの含有濃度は、ボロン含有ドーパントペースト66よりも低い。 FIG. 53 is an explanatory diagram of step S503 in FIG. In step S503, a boron-containing oxide film 64 and a protective oxide film 65 are formed on the light receiving surface side of the n-type silicon substrate 42 as the light receiving surface side oxide film. Here, a silicon oxide film is formed by an atmospheric pressure CVD method using silane, oxygen, and diborane (B 2 H 6 ) as material gases. Specifically, the n-type silicon substrate 42 heated to about 450 ° C. to 550 ° C. is exposed to a mixed atmosphere of silane, oxygen, and diborane at atmospheric pressure, so that the n-type silicon substrate 42 first has a light-receiving surface side. Then, a boron-containing oxide film 64 having a thickness of 30 nm containing boron is formed. Thereafter, the mixing of diborane is stopped, and the n-type silicon substrate 42 is exposed in a mixed atmosphere of silane and oxygen, so that the protective oxide film 65 having a thickness of 120 nm not containing boron is changed to a boron-containing oxide film 64. Form on top. The boron-containing concentration in the boron-containing oxide film 64 is lower than that of the boron-containing dopant paste 66.
 ここでは熱処理工程でボロン含有酸化膜64からボロンが雰囲気中に揮散しないようにキャッピング膜として120nmの保護用酸化膜65をボロン含有酸化膜64に重ねて成膜したが、ボロン含有酸化膜64を150nmとして保護用酸化膜65を形成しない形態としてもよい。保護用酸化膜65を形成せずにボロン含有酸化膜64のみを50nmより大、200nm以下の膜厚で設けた場合も、ボロン含有酸化膜64は後述するボロン含有ドーパントペースト66から揮散したドーパント成分が受光面側低濃度ドーパント拡散層63bへ拡散することを阻止する役割を果たす。 Here, a protective oxide film 65 having a thickness of 120 nm is formed on the boron-containing oxide film 64 as a capping film so that boron is not volatilized from the boron-containing oxide film 64 in the atmosphere in the heat treatment process. The protective oxide film 65 may not be formed with a thickness of 150 nm. Even when only the boron-containing oxide film 64 is provided with a film thickness of 50 nm or more and 200 nm or less without forming the protective oxide film 65, the boron-containing oxide film 64 is a dopant component volatilized from a boron-containing dopant paste 66 described later. Plays a role of preventing diffusion to the light receiving surface side low concentration dopant diffusion layer 63b.
 図54は、図51のステップS504の説明図である。ステップS504は、n型シリコン基板42の裏面側に裏面酸化膜であるリン含有酸化膜53と保護用酸化膜54とを形成する工程である。ここでは、実施の形態4における図27のステップS303と同様の方法で、30nmの膜厚のリン含有酸化膜53と120nmの膜厚の保護用酸化膜54とをこの順でn型シリコン基板42の裏面側に形成する。ここでは後の熱処理工程でリン含有酸化膜53からボロンが雰囲気中に揮散しないようにキャッピング膜として120nmの保護用酸化膜54をリン含有酸化膜53に重ねて成膜したが、リン含有酸化膜53を150nmとして保護用酸化膜54を形成しない形態としてもよい。 FIG. 54 is an explanatory diagram of step S504 in FIG. Step S504 is a step of forming a phosphorus-containing oxide film 53 and a protective oxide film 54, which are back-surface oxide films, on the back surface side of the n-type silicon substrate 42. Here, the phosphorous-containing oxide film 53 having a thickness of 30 nm and the protective oxide film 54 having a thickness of 120 nm are formed in this order in the same manner as in step S303 in FIG. 27 in the fourth embodiment. It is formed on the back side. Here, in order to prevent boron from being volatilized in the atmosphere in the subsequent heat treatment process, a protective oxide film 54 having a thickness of 120 nm is deposited on the phosphorus-containing oxide film 53 as a capping film. The protective oxide film 54 may not be formed by setting 53 to 150 nm.
 図55は、図51のステップS505の説明図である。ステップS505は、n型シリコン基板42の受光面側の保護用酸化膜65上に受光面側ドーパントペーストとしてボロン含有ドーパントペースト66を選択的に印刷する工程である。ここでは、ボロン含有ドーパントペースト66として、ボロン酸化物を含んだ樹脂ペーストを、スクリーン印刷法を用いて保護用酸化膜65上に印刷する。ボロン含有ドーパントペースト66の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。印刷後、ボロン含有ドーパントペースト66を250℃で5分間乾燥させる。ボロン含有ドーパントペースト66の印刷方法はスクリーン印刷法に限らず、インクジェット法またはノズルから直接吐出する方法を用いることができる。 FIG. 55 is an explanatory diagram of step S505 of FIG. Step S505 is a step of selectively printing a boron-containing dopant paste 66 as a light-receiving surface side dopant paste on the protective oxide film 65 on the light-receiving surface side of the n-type silicon substrate 42. Here, as the boron-containing dopant paste 66, a resin paste containing boron oxide is printed on the protective oxide film 65 using a screen printing method. The printed pattern of the boron-containing dopant paste 66 is a comb-shaped pattern composed of a pattern in which linear patterns with a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns with a line width of 1.2 mm are arranged in parallel. Pattern. After printing, the boron-containing dopant paste 66 is dried at 250 ° C. for 5 minutes. The printing method of the boron-containing dopant paste 66 is not limited to the screen printing method, and an ink jet method or a method of directly discharging from a nozzle can be used.
 図56は、図51のステップS506の説明図である。ステップS506は、n型シリコン基板42の裏面の保護用酸化膜54上に裏面側ドーパントペーストとしてリン含有ドーパントペースト14を選択的に印刷する工程である。リン含有ドーパントペースト14の印刷は、実施の形態1の場合と同様の方法で行う。リン含有ドーパントペースト14の印刷パターンは、線幅150μm幅の線状パターンを2mm間隔で平行配列したパターンと、線幅1.2mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。印刷後、リン含有ドーパントペースト14を250℃で5分間乾燥させる。 FIG. 56 is an explanatory diagram of step S506 in FIG. Step S506 is a step of selectively printing the phosphorus-containing dopant paste 14 as the backside dopant paste on the protective oxide film 54 on the backside of the n-type silicon substrate 42. The phosphorus-containing dopant paste 14 is printed by the same method as in the first embodiment. The printing pattern of the phosphorus-containing dopant paste 14 is a comb shape composed of a pattern in which linear patterns having a line width of 150 μm are arranged in parallel at intervals of 2 mm and a pattern in which four linear patterns having a line width of 1.2 mm are arranged in parallel. Pattern. After printing, the phosphorus-containing dopant paste 14 is dried at 250 ° C. for 5 minutes.
 図57は図51のステップS507の説明図である。ステップS507は、ボロン含有ドーパントペースト66およびリン含有ドーパントペースト14が印刷されたn型シリコン基板42を熱処理する工程である。具体的には、横型炉にn型シリコン基板42を載置したボートを装入し、960℃で15分間、n型シリコン基板42を熱処理する。 FIG. 57 is an explanatory diagram of step S507 in FIG. Step S507 is a process of heat-treating the n-type silicon substrate 42 on which the boron-containing dopant paste 66 and the phosphorus-containing dopant paste 14 are printed. Specifically, a boat on which an n-type silicon substrate 42 is placed is placed in a horizontal furnace, and the n-type silicon substrate 42 is heat-treated at 960 ° C. for 15 minutes.
 この熱処理により、n型シリコン基板42の受光面側では、ボロン含有ドーパントペースト66内のドーパント成分であるボロンが保護用酸化膜65およびボロン含有酸化膜64を貫通してボロン含有ドーパントペースト66の直下のn型シリコン基板42内に熱拡散する。また、ボロン含有ドーパントペースト66の直下のボロン含有酸化膜64内のボロンがボロン含有ドーパントペースト66の直下のn型シリコン基板42内に熱拡散する。これにより、ボロン含有ドーパントペースト66の直下のn型シリコン基板42の表層に、シート抵抗が30Ω/□程度の受光面側高濃度ドーパント拡散層63aが形成される。受光面側高濃度ドーパント拡散層63aは、ボロン含有ドーパントペースト66の印刷パターンと同じ櫛形状のパターンで形成される。 By this heat treatment, boron, which is a dopant component in the boron-containing dopant paste 66, penetrates the protective oxide film 65 and the boron-containing oxide film 64 directly below the boron-containing dopant paste 66 on the light-receiving surface side of the n-type silicon substrate 42. The n-type silicon substrate 42 is thermally diffused. Further, boron in the boron-containing oxide film 64 immediately below the boron-containing dopant paste 66 is thermally diffused into the n-type silicon substrate 42 immediately below the boron-containing dopant paste 66. As a result, a light-receiving surface side high-concentration dopant diffusion layer 63 a having a sheet resistance of about 30 Ω / □ is formed on the surface layer of the n-type silicon substrate 42 immediately below the boron-containing dopant paste 66. The light-receiving surface side high-concentration dopant diffusion layer 63 a is formed in the same comb-shaped pattern as the printing pattern of the boron-containing dopant paste 66.
 一方、n型シリコン基板42の受光面側の表層において、ボロン含有ドーパントペースト66の直下領域以外の領域は、ボロン含有ドーパントペースト66のドーパント成分が拡散することがない。しかし、ボロン含有酸化膜64内のボロンが、ボロン含有ドーパントペースト66の直下領域以外の領域のn型シリコン基板42の裏面側の表層に熱拡散する。そして、n型シリコン基板42の面方向においてボロンが均一な濃度で拡散した、シート抵抗が90Ω/□程度の受光面側低濃度ドーパント拡散層63bが形成される。これにより、受光面側高濃度ドーパント拡散層63aと受光面側低濃度ドーパント拡散層63bとを有する選択エミッタ構造の受光面側ドーパント拡散層63が形成される。 On the other hand, in the surface layer on the light-receiving surface side of the n-type silicon substrate 42, the dopant component of the boron-containing dopant paste 66 does not diffuse in the region other than the region immediately below the boron-containing dopant paste 66. However, the boron in the boron-containing oxide film 64 is thermally diffused into the surface layer on the back surface side of the n-type silicon substrate 42 in the region other than the region immediately below the boron-containing dopant paste 66. Then, a light-receiving surface side low-concentration dopant diffusion layer 63b having a sheet resistance of about 90Ω / □ is formed in which boron is diffused at a uniform concentration in the surface direction of the n-type silicon substrate. As a result, the light receiving surface side dopant diffusion layer 63 of the selective emitter structure having the light receiving surface side high concentration dopant diffusion layer 63a and the light receiving surface side low concentration dopant diffusion layer 63b is formed.
 本実施の形態6では、酸化膜であるボロン含有酸化膜64と保護用酸化膜65との積層膜は、ボロン含有酸化膜64がボロンを含有するためn型シリコン基板42へのボロンの拡散源となる。また、この積層膜は、ボロン含有ドーパントペースト66から揮散したドーパント成分が受光面側低濃度ドーパント拡散層63bへ拡散することを阻止する役割を果たしている。この場合も、積層膜の膜厚が200nmまでであれば、積層膜を貫通してボロン含有ドーパントペースト66からn型シリコン基板42へのドーパントの拡散が可能である。そして、ボロン含有酸化膜64は保護用酸化膜65で保護されるため、熱処理中にボロン含有酸化膜64内のボロンが大気中に揮発することを防止でき、ボロン含有酸化膜64からn型シリコン基板42へのボロンの拡散が効率良く行える。 In the sixth embodiment, the boron-containing oxide film 64 that is an oxide film and the protective oxide film 65 are formed of a boron diffusion source to the n-type silicon substrate 42 because the boron-containing oxide film 64 contains boron. It becomes. In addition, this laminated film plays a role of preventing the dopant component volatilized from the boron-containing dopant paste 66 from diffusing into the light receiving surface side low-concentration dopant diffusion layer 63b. Also in this case, if the thickness of the laminated film is up to 200 nm, the dopant can be diffused from the boron-containing dopant paste 66 to the n-type silicon substrate 42 through the laminated film. Since the boron-containing oxide film 64 is protected by the protective oxide film 65, the boron in the boron-containing oxide film 64 can be prevented from volatilizing in the atmosphere during the heat treatment. Boron can be efficiently diffused into the substrate 42.
 また、n型シリコン基板42の裏面側では、実施の形態5のステップS407と同様に、シート抵抗が20Ω/□程度の裏面側高濃度ドーパント拡散層47aと、n型シリコン基板42の面方向においてリンが均一な濃度で拡散したシート抵抗が100Ω/□程度の、裏面側低濃度ドーパント拡散層47bとが形成される。これにより、裏面側高濃度ドーパント拡散層47aと裏面側低濃度ドーパント拡散層47bとを有する裏面側ドーパント拡散層47からなる裏面選択拡散BSF層が形成される。したがって、受光面側の選択エミッタ構造と裏面選択拡散BSF層とを1回の熱処理により同時に形成することができる。 Further, on the back surface side of the n-type silicon substrate 42, in the surface direction of the n-type silicon substrate 42 and the back-side high-concentration dopant diffusion layer 47a having a sheet resistance of about 20Ω / □, as in step S407 of the fifth embodiment. A back-side low-concentration dopant diffusion layer 47b having a sheet resistance of about 100Ω / □ in which phosphorus is diffused at a uniform concentration is formed. Thereby, the back surface selective diffusion BSF layer which consists of the back surface side dopant diffusion layer 47 which has the back surface side high concentration dopant diffusion layer 47a and the back surface side low concentration dopant diffusion layer 47b is formed. Accordingly, the selective emitter structure on the light receiving surface side and the back surface selective diffusion BSF layer can be formed simultaneously by one heat treatment.
 図58は、図51のステップS508の説明図である。ステップS508は、ドーパントペーストおよび酸化膜を除去する工程である。この工程で、リン含有ドーパントペースト14とボロン含有ドーパントペースト66とが除去される。また、酸化膜である、保護用酸化膜65とボロン含有酸化膜64と保護用酸化膜54とリン含有酸化膜53とが除去される。酸化膜およびリン含有ドーパントペースト14の除去は、n型シリコン基板42を10%フッ酸水溶液に360秒程度浸漬することにより行うことができる。 FIG. 58 is an explanatory diagram of step S508 of FIG. Step S508 is a process of removing the dopant paste and the oxide film. In this step, the phosphorus-containing dopant paste 14 and the boron-containing dopant paste 66 are removed. Further, the protective oxide film 65, the boron-containing oxide film 64, the protective oxide film 54, and the phosphorus-containing oxide film 53, which are oxide films, are removed. The removal of the oxide film and the phosphorus-containing dopant paste 14 can be performed by immersing the n-type silicon substrate 42 in a 10% hydrofluoric acid aqueous solution for about 360 seconds.
 図59は、図51のステップS509およびステップS510の説明図である。ステップS509は、受光面側ドーパント拡散層63上に反射防止膜4を形成する工程である。反射防止膜4の形成は、実施の形態5のステップS409と同様に行う。ステップS510は、裏面側パッシベーション膜48を形成する工程である。裏面側パッシベーション膜48は、反射防止膜4と同様にして窒化シリコン膜を裏面側ドーパント拡散層47上に形成する。 FIG. 59 is an explanatory diagram of steps S509 and S510 of FIG. Step S509 is a step of forming the antireflection film 4 on the light receiving surface side dopant diffusion layer 63. The formation of the antireflection film 4 is performed in the same manner as in step S409 of the fifth embodiment. Step S <b> 510 is a step of forming the back surface side passivation film 48. As the back surface side passivation film 48, a silicon nitride film is formed on the back surface side dopant diffusion layer 47 in the same manner as the antireflection film 4.
 図60は、図51のステップS511の説明図である。ステップS511は、電極を印刷する工程である。電極の印刷は、実施の形態5のステップS411と同様に行う。なお、銀アルミニウム含有ペースト56の印刷パターンは、受光面側高濃度ドーパント拡散層63aと同じ櫛形状であり、線幅50μmの線状パターンを2mm間隔で平行配列したパターンと、線幅1mmの4本の線状パターンを平行配列したパターンとからなる櫛形状のパターンである。また、銀アルミニウム含有ペースト56は、ステップS505で形成したボロン含有ドーパントペースト66のパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。すなわち、銀アルミニウム含有ペースト56は、受光面側高濃度ドーパント拡散層63aのパターンの幅150μmの領域内および幅1.2mmの領域内に内包される位置に印刷される。 FIG. 60 is an explanatory diagram of step S511 of FIG. Step S511 is a process of printing an electrode. The electrode printing is performed in the same manner as step S411 in the fifth embodiment. The printed pattern of the silver-aluminum-containing paste 56 has the same comb shape as the light-receiving surface side high-concentration dopant diffusion layer 63a, and a pattern in which linear patterns with a line width of 50 μm are arranged in parallel at intervals of 2 mm and 4 with a line width of 1 mm. This is a comb-shaped pattern composed of a pattern in which linear patterns of books are arranged in parallel. Further, the silver-aluminum-containing paste 56 is printed at a position included in a region having a width of 150 μm and a region having a width of 1.2 mm of the pattern of the boron-containing dopant paste 66 formed in step S505. That is, the silver-aluminum-containing paste 56 is printed at a position included in a 150 μm wide region and a 1.2 mm wide region of the pattern of the light receiving surface side high concentration dopant diffusion layer 63a.
 銀アルミニウム含有ペースト56の印刷位置は、受光面側高濃度ドーパント拡散層63aのパターンに位置合わせする必要がある。銀アルミニウム含有ペースト56の印刷位置の位置合わせは、実施の形態1においてステップS110の説明で述べた方法で行うことができる。 The printing position of the silver-aluminum-containing paste 56 needs to be aligned with the pattern of the light receiving surface side high-concentration dopant diffusion layer 63a. The alignment of the printing position of the silver-aluminum-containing paste 56 can be performed by the method described in the description of step S110 in the first embodiment.
 図61は、図51のステップS512の説明図である。ステップS512は、電極形成用のペーストを焼成して電極を形成する熱処理を行う工程である。電極の熱処理は、実施の形態1のステップS111と同様に行う。これにより、ペースト中の樹脂成分が消失する。そして、受光面側では銀アルミニウム含有ペースト56に含有されるガラス粒子が窒化シリコン膜を貫通し、Ag粒子が受光面側高濃度ドーパント拡散層63aに接触し、電気的導通を得る。これにより、受光面側電極45が得られる。また、裏面側では、銀含有ペースト55に含まれるAg粒子が裏面側高濃度ドーパント拡散層47aに接触し、電気的導通を得る。これにより、裏面側電極46が得られる。 FIG. 61 is an explanatory diagram of step S512 of FIG. Step S512 is a step of performing a heat treatment to form an electrode by firing an electrode forming paste. The electrode heat treatment is performed in the same manner as in step S111 of the first embodiment. Thereby, the resin component in a paste lose | disappears. On the light receiving surface side, the glass particles contained in the silver-aluminum-containing paste 56 penetrate the silicon nitride film, and the Ag particles come into contact with the light receiving surface side high-concentration dopant diffusion layer 63a to obtain electrical conduction. Thereby, the light-receiving surface side electrode 45 is obtained. On the back side, Ag particles contained in the silver-containing paste 55 come into contact with the back side high-concentration dopant diffusion layer 47a to obtain electrical conduction. Thereby, the back surface side electrode 46 is obtained.
 以上の工程を実施することにより、図50に示す、n型シリコン基板42の面方向において均一なドーパント濃度を有するp型の受光面側低濃度ドーパント拡散層63bと、n型シリコン基板42の面方向において均一なドーパント濃度を有するp型の裏面側低濃度ドーパント拡散層47bと、を有する太陽電池セル61を得ることができる。 By performing the above steps, the p-type light-receiving surface side low-concentration dopant diffusion layer 63b having a uniform dopant concentration in the surface direction of the n-type silicon substrate 42 and the surface of the n-type silicon substrate 42 shown in FIG. A solar cell 61 having a p-type back-side low-concentration dopant diffusion layer 47b having a uniform dopant concentration in the direction can be obtained.
 なお、半導体基板42としてp型の単結晶のシリコン基板またはp型の多結晶シリコン基板を用いてもよい。この場合は、本実施の形態6における各部材の導電型を逆にすればよい。この場合も上述した工程を実施することにより、図50に示す構成を有し、p型シリコン基板の面方向において均一なドーパント濃度を有するn型の受光面側低濃度ドーパント拡散層と、p型シリコン基板の面方向において均一なドーパント濃度を有するp型の裏面側低濃度ドーパント拡散層とを得ることができる。すなわち、p型シリコン基板の面方向においてドーパント濃度が均一な低濃度ドーパント拡散層を備える受光面側の選択エミッタ層と、p型シリコン基板の面方向においてドーパント濃度が均一な低濃度ドーパント拡散層を備える裏面側の選択拡散BSF構造とを1回の熱処理により同時に形成することができる。 The semiconductor substrate 42 may be a p-type single crystal silicon substrate or a p-type polycrystalline silicon substrate. In this case, the conductivity type of each member in the sixth embodiment may be reversed. Also in this case, an n-type light-receiving surface side low-concentration dopant diffusion layer having a configuration shown in FIG. 50 and having a uniform dopant concentration in the surface direction of the p-type silicon substrate by performing the above-described steps, and p-type A p-type back-side low-concentration dopant diffusion layer having a uniform dopant concentration in the surface direction of the silicon substrate can be obtained. That is, a light-receiving surface side selective emitter layer including a low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the p-type silicon substrate, and a low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the p-type silicon substrate. The selective diffusion BSF structure on the back side can be formed simultaneously by one heat treatment.
 上述した本実施の形態6においては、熱処理時におけるドーパントペーストの揮散成分の低濃度ドーパント拡散層への拡散を防止して、n型シリコン基板42の面方向においてドーパント濃度が均一な低濃度ドーパント拡散層を備える選択エミッタ構造と、n型シリコン基板42の面方向においてドーパント濃度が均一な低濃度ドーパント拡散層を備える選択拡散BSF層とを1回の熱処理により同時に形成することができる。したがって、本実施の形態6によれば、少ない工程数で受光面側の選択エミッタ構造と裏面側選択拡散BSF層とを有する太陽電池セル61を効率的に形成できる。 In the above-described sixth embodiment, diffusion of the volatile component of the dopant paste during the heat treatment to the low-concentration dopant diffusion layer is prevented, and low-concentration dopant diffusion with a uniform dopant concentration in the plane direction of the n-type silicon substrate 42 is performed. The selective emitter structure including the layers and the selective diffusion BSF layer including the low-concentration dopant diffusion layer having a uniform dopant concentration in the plane direction of the n-type silicon substrate 42 can be simultaneously formed by one heat treatment. Therefore, according to the sixth embodiment, the solar battery cell 61 having the light receiving surface side selective emitter structure and the back surface side selective diffusion BSF layer can be efficiently formed with a small number of steps.
実施の形態7.
 実施の形態7では、実施の形態3にかかる太陽電池の製造方法の変形例について図62~図67を参照しながら説明する。図62は、本発明の実施の形態7にかかる太陽電池セルの製造方法のプロセスフローを示したフローチャートである。図63~図67は、本発明の実施の形態7にかかる太陽電池セルの製造工程を説明する要部断面図である。なお、図62において、図3および図22と同じ工程については同じ番号を付している。また、図63~図67においては、上述した実施の形態と同じ部材については同じ番号を付している。
Embodiment 7 FIG.
In the seventh embodiment, a modification of the solar cell manufacturing method according to the third embodiment will be described with reference to FIGS. FIG. 62 is a flowchart showing a process flow of a method for manufacturing a solar battery cell according to the seventh embodiment of the present invention. 63 to 67 are cross-sectional views of relevant parts for explaining the manufacturing process of the solar cell according to the seventh embodiment of the present invention. 62, the same steps as those in FIGS. 3 and 22 are denoted by the same reference numerals. In FIGS. 63 to 67, the same members as those in the above-described embodiment are denoted by the same reference numerals.
 本実施の形態7にかかる太陽電池セルの製造方法では、実施の形態3における図22のフローチャートのうち、ステップS201の熱拡散および保護用酸化膜形成を実施する代わりに、ステップS701におけるイオン打ち込みと、ステップS702における熱拡散および保護用酸化膜形成を実施する。 In the solar cell manufacturing method according to the seventh embodiment, in the flowchart of FIG. 22 in the third embodiment, instead of performing the thermal diffusion and the protective oxide film formation in step S201, the ion implantation in step S701 is performed. In step S702, thermal diffusion and protective oxide film formation are performed.
 本発明の実施の形態7では、まず、実施の形態1の場合と同様にステップS101およびステップS102を行う。 In Embodiment 7 of the present invention, first, Step S101 and Step S102 are performed in the same manner as in Embodiment 1.
 図63は、図62のステップS701の説明図である。ステップS701は、p型シリコン基板2における受光面側となる一面に対して、イオン打ち込み法により第1のドーパントであるリンのイオンを打ち込んで、イオン打ち込み層81を形成する工程である。イオン打ち込み法によるリンの打ち込みにおいて、材料ガスはPHガスであり、打ち込みエネルギーは6.5keV、イオンドーズ量は5×1015(atoms/cm)である。 FIG. 63 is an explanatory diagram of step S701 in FIG. Step S701 is a step of forming an ion implantation layer 81 by implanting phosphorus ions, which are the first dopant, by ion implantation on one surface of the p-type silicon substrate 2 on the light receiving surface side. In phosphorus implantation by the ion implantation method, the material gas is PH 3 gas, the implantation energy is 6.5 keV, and the ion dose is 5 × 10 15 (atoms / cm 2 ).
 図64は、図62のステップS702の説明図である。ステップS702は、イオン打ち込み法により一面にリンが打ち込まれたp型シリコン基板2を熱処理することで、受光面側低濃度ドーパント拡散層3bよりも高濃度にイオン打ち込み層81に注入されたリンを、p型シリコン基板2の表層からp型シリコン基板2の深さ方向に、すなわちp型シリコン基板2の内部方向に拡散させる工程である。具体的には、たとえば300枚のp型シリコン基板2が3.5mm間隔で載置された石英ガラス製のボートが、750℃に加熱された横型炉の石英チューブ内へ装入される。窒素を導入しながら石英チューブ内を900℃まで昇温し、石英チューブ内の温度が900℃に到達した時点で石英チューブ内へ酸素を30分間流し30分保持する。その後、酸素を導入したまま石英チューブ内を1050℃に昇温し、さらに70分保持する。その後、酸素の導入を停止し、石英チューブ内に導入するガスを窒素に切り替える。そして、石英チューブ内を750℃に降温した後、ボートを石英チューブから取り出す。 FIG. 64 is an explanatory diagram of step S702 of FIG. Step S702 heat-treats the p-type silicon substrate 2 in which phosphorus has been implanted into one surface by an ion implantation method, so that phosphorus implanted into the ion implanted layer 81 at a higher concentration than the light receiving surface side low-concentration dopant diffusion layer 3b. This is a step of diffusing from the surface layer of the p-type silicon substrate 2 in the depth direction of the p-type silicon substrate 2, that is, in the inner direction of the p-type silicon substrate 2. Specifically, for example, a quartz glass boat on which 300 p-type silicon substrates 2 are placed at intervals of 3.5 mm is loaded into a quartz tube of a horizontal furnace heated to 750 ° C. The temperature inside the quartz tube is raised to 900 ° C. while introducing nitrogen, and when the temperature in the quartz tube reaches 900 ° C., oxygen is allowed to flow into the quartz tube for 30 minutes and held for 30 minutes. Thereafter, the inside of the quartz tube is heated to 1050 ° C. while introducing oxygen, and is further maintained for 70 minutes. Thereafter, the introduction of oxygen is stopped, and the gas introduced into the quartz tube is switched to nitrogen. Then, after the temperature in the quartz tube is lowered to 750 ° C., the boat is taken out from the quartz tube.
 このとき、p型シリコン基板2の表面の表層、すなわちp型シリコン基板2の受光面側の表層には、リンが均一な濃度で拡散されて、たとえばシート抵抗が90Ω/□の低濃度ドーパント拡散層82が形成されている。さらに、保護用酸化膜83が低濃度ドーパント拡散層82の上に形成されている。また、p型シリコン基板2の裏面には、保護用酸化膜83が形成されている。これにより、たとえば膜厚が65nmの保護用酸化膜83を得ることが可能である。 At this time, phosphorus is diffused at a uniform concentration in the surface layer on the surface of the p-type silicon substrate 2, that is, on the light-receiving surface side of the p-type silicon substrate 2, for example, low-concentration dopant diffusion with a sheet resistance of 90Ω / □. Layer 82 is formed. Further, a protective oxide film 83 is formed on the low concentration dopant diffusion layer 82. A protective oxide film 83 is formed on the back surface of the p-type silicon substrate 2. Thereby, for example, a protective oxide film 83 having a film thickness of 65 nm can be obtained.
 図65は、図62のステップS202の説明図である。ステップS202は、受光面側の保護用酸化膜83上にリン含有ドーパントペースト14を選択的に印刷する工程である。リン含有ドーパントペースト14の印刷は、実施の形態3の場合と同様に行う。 FIG. 65 is an explanatory diagram of step S202 of FIG. Step S202 is a step of selectively printing the phosphorus-containing dopant paste 14 on the protective oxide film 83 on the light receiving surface side. The phosphorus-containing dopant paste 14 is printed in the same manner as in the third embodiment.
 図66は、図62のステップS203の説明図である。ステップS203は、リン含有ドーパントペースト14を印刷したp型シリコン基板2を熱処理する工程である。p型シリコン基板2の熱処理は、実施の形態3のステップS203と同様にして、960℃程度で10分間、p型シリコン基板2を熱処理する。この熱処理により、リン含有ドーパントペースト14内のリンが、保護用酸化膜83を貫通してリン含有ドーパントペースト14の直下のp型シリコン基板2内に熱拡散し、受光面側高濃度ドーパント拡散層3aが形成される。すなわち、リン含有ドーパントペースト14内のリンが保護用酸化膜83を貫通してリン含有ドーパントペースト14の直下の領域における低濃度ドーパント拡散層82とp型シリコン基板2とに拡散して受光面側高濃度ドーパント拡散層3aが形成される。 FIG. 66 is an explanatory diagram of step S203 of FIG. Step S203 is a process of heat-treating the p-type silicon substrate 2 on which the phosphorus-containing dopant paste 14 is printed. The p-type silicon substrate 2 is heat-treated at about 960 ° C. for 10 minutes as in step S203 of the third embodiment. By this heat treatment, phosphorus in the phosphorus-containing dopant paste 14 is thermally diffused into the p-type silicon substrate 2 directly below the phosphorus-containing dopant paste 14 through the protective oxide film 83, and the light-receiving surface side high-concentration dopant diffusion layer 3a is formed. That is, phosphorus in the phosphorus-containing dopant paste 14 penetrates the protective oxide film 83 and diffuses into the low-concentration dopant diffusion layer 82 and the p-type silicon substrate 2 in the region immediately below the phosphorus-containing dopant paste 14 to receive the light receiving surface. A high concentration dopant diffusion layer 3a is formed.
 一方、保護用酸化膜83は、熱処理時におけるリン含有ドーパントペースト14から揮散したドーパント成分の低濃度ドーパント拡散層82への拡散を防止する。すなわち、受光面側の低濃度ドーパント拡散層82においてリン含有ドーパントペースト14の直下の領域以外の領域は、リン含有ドーパントペースト14からドーパント成分であるリンが拡散することがなく、シート抵抗は90Ω/□程度のままである。したがって、p型シリコン基板2の受光面側の低濃度ドーパント拡散層82のうち、リン含有ドーパントペースト14の直下領域に受光面側高濃度ドーパント拡散層3aが形成され、受光面側高濃度ドーパント拡散層3aが形成されない領域が受光面側低濃度ドーパント拡散層3bとなる。 On the other hand, the protective oxide film 83 prevents the diffusion of the dopant component volatilized from the phosphorus-containing dopant paste 14 during the heat treatment into the low-concentration dopant diffusion layer 82. That is, in the low-concentration dopant diffusion layer 82 on the light-receiving surface side, the region other than the region immediately below the phosphorus-containing dopant paste 14 does not diffuse phosphorus as a dopant component from the phosphorus-containing dopant paste 14, and the sheet resistance is 90Ω / □ It remains about the same level. Therefore, in the low concentration dopant diffusion layer 82 on the light receiving surface side of the p-type silicon substrate 2, the light receiving surface side high concentration dopant diffusion layer 3 a is formed immediately below the phosphorus-containing dopant paste 14, and the light receiving surface side high concentration dopant diffusion is formed. The region where the layer 3a is not formed becomes the light receiving surface side low-concentration dopant diffusion layer 3b.
 図67は、図62のステップS703の説明図である。ステップS204は、保護用酸化膜83およびリン含有ドーパントペースト14を除去する工程である。保護用酸化膜83およびリン含有ドーパントペースト14の除去は、実施の形態3の場合と同様にp型シリコン基板2を10%フッ酸水溶液に浸漬することにより行うことができる。ステップS204の実施後のp型シリコン基板2の状態は、実施の形態3のステップS204の実施後において、p型シリコン基板2の裏面側の低濃度ドーパント拡散層3cが無い状態となる。すなわち、p型シリコン基板2の表面の表層、すなわちp型シリコン基板2の受光面側の表層には、受光面側高濃度ドーパント拡散層3aと、受光面側高濃度ドーパント拡散層3aの形成されていない領域に形成された第2のドーパント拡散層でありリンが第1のドーパント拡散層よりも低い均一な濃度で拡散した受光面側低濃度ドーパント拡散層3bとが、形成されている。 FIG. 67 is an explanatory diagram of step S703 in FIG. Step S204 is a process of removing the protective oxide film 83 and the phosphorus-containing dopant paste 14. The protective oxide film 83 and the phosphorus-containing dopant paste 14 can be removed by immersing the p-type silicon substrate 2 in a 10% hydrofluoric acid aqueous solution, as in the third embodiment. The state of the p-type silicon substrate 2 after step S204 is such that there is no low-concentration dopant diffusion layer 3c on the back side of the p-type silicon substrate 2 after step S204 of the third embodiment. That is, the light-receiving surface side high-concentration dopant diffusion layer 3a and the light-receiving surface-side high concentration dopant diffusion layer 3a are formed on the surface layer of the surface of the p-type silicon substrate 2, that is, the surface layer on the light-receiving surface side of the p-type silicon substrate 2. A light-receiving surface side low-concentration dopant diffusion layer 3b, which is a second dopant diffusion layer formed in a region not formed and phosphorous is diffused at a uniform concentration lower than that of the first dopant diffusion layer, is formed.
 これ以降は、実施の形態3の場合と同様に、ステップS109~ステップS111を行うことにより、図1および図2に示す、p型シリコン基板2の面方向において受光面側低濃度ドーパント拡散層3bが均一なドーパント濃度を有する太陽電池セル1を得ることができる。 Thereafter, as in the case of the third embodiment, by performing steps S109 to S111, the light receiving surface side low-concentration dopant diffusion layer 3b in the surface direction of the p-type silicon substrate 2 shown in FIGS. Can obtain a solar battery cell 1 having a uniform dopant concentration.
 上述した実施の形態7によれば、低濃度ドーパント拡散層82の形成にイオン打ち込みと熱処理とを組み合わせることで、p型シリコン基板2の面方向におけるドーパント濃度の面内均一性がより高い受光面側低濃度ドーパント拡散層3bを得ることができる。したがって、低濃度拡散領域におけるドーパント濃度の面内均一性が半導体基板の面内においてより均一な太陽電池を製造できる。 According to the above-described seventh embodiment, the light-receiving surface with higher in-plane dopant concentration uniformity in the plane direction of the p-type silicon substrate 2 by combining ion implantation and heat treatment for forming the low-concentration dopant diffusion layer 82. The side low concentration dopant diffusion layer 3b can be obtained. Therefore, it is possible to manufacture a solar cell in which the in-plane uniformity of the dopant concentration in the low concentration diffusion region is more uniform in the plane of the semiconductor substrate.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、以上の実施の形態の技術を組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, or can be combined with the technique of the above embodiment. In addition, a part of the configuration can be omitted or changed without departing from the gist of the present invention.
 1 太陽電池セル、2 半導体基板、3 受光面側ドーパント拡散層、3a 受光面側高濃度ドーパント拡散層、3b 受光面側低濃度ドーパント拡散層、3c,82 低濃度ドーパント拡散層、4 反射防止膜、5 受光面側電極、5a 受光面側グリッド電極、5b 受光面側バス電極、6 裏面側電極、7 裏面側BSF層、11 半導体基板、12 リン含有ガラス層、13,83 保護用酸化膜、14 リン含有ドーパントペースト、15 アルミニウム含有ペースト、16 銀含有ペースト、31 リン含有酸化膜、32 保護用酸化膜、41 太陽電池セル、42 半導体基板、43 受光面側ドーパント拡散層、43a ドーパント拡散層、45 受光面側電極、45a 受光面側グリッド電極、45b 受光面側バス電極、46 裏面側電極、46a 裏面側グリッド電極、46b 裏面側バス電極、47 裏面側ドーパント拡散層、47a 裏面側高濃度ドーパント拡散層、47b 裏面側低濃度ドーパント拡散層、48 裏面側パッシベーション膜、51 半導体基板、52 ボロン含有ガラス層、53 リン含有酸化膜、54 保護用酸化膜、55 Ag含有ペースト、56 銀アルミニウム含有ペースト、61 太陽電池セル、63 受光面側ドーパント拡散層、63a 受光面側高濃度ドーパント拡散層、63b 受光面側低濃度ドーパント拡散層、64 ボロン含有酸化膜、65 保護用酸化膜、66 ボロン含有ドーパントペースト、71 半導体基板、81 イオン打ち込み層。 1 solar cell, 2 semiconductor substrate, 3 light receiving surface side dopant diffusion layer, 3a light receiving surface side high concentration dopant diffusion layer, 3b light receiving surface side low concentration dopant diffusion layer, 3c, 82 low concentration dopant diffusion layer, 4 antireflection film 5, 5 light receiving surface side electrode, 5a light receiving surface side grid electrode, 5b light receiving surface side bus electrode, 6 back surface side electrode, 7 back surface side BSF layer, 11 semiconductor substrate, 12 phosphorus-containing glass layer, 13, 83 protective oxide film, 14 phosphorus-containing dopant paste, 15 aluminum-containing paste, 16 silver-containing paste, 31 phosphorus-containing oxide film, 32 protective oxide film, 41 solar cell, 42 semiconductor substrate, 43 light-receiving surface side dopant diffusion layer, 43a dopant diffusion layer, 45 Light receiving surface side electrode, 45a Light receiving surface side grid electrode, 45b Light receiving surface side bus power , 46 Back side electrode, 46a Back side grid electrode, 46b Back side bus electrode, 47 Back side dopant diffusion layer, 47a Back side high concentration dopant diffusion layer, 47b Back side low concentration dopant diffusion layer, 48 Back side passivation film, 51 Semiconductor substrate, 52 boron-containing glass layer, 53 phosphorus-containing oxide film, 54 protective oxide film, 55 Ag-containing paste, 56 silver-aluminum-containing paste, 61 solar cell, 63 light-receiving surface side dopant diffusion layer, 63a light-receiving surface side high Concentration dopant diffusion layer, 63b light-receiving surface side low concentration dopant diffusion layer, 64 boron-containing oxide film, 65 protective oxide film, 66 boron-containing dopant paste, 71 semiconductor substrate, 81 ion implantation layer.

Claims (15)

  1.  第1導電型の半導体基板の第1面に、膜厚が50nmより大、且つ200nm以下の第1酸化膜を形成する第1工程と、
     第1ドーパントを含んだ第1拡散源を前記第1酸化膜上に選択的に形成する第2工程と、
     前記第1拡散源が形成された前記半導体基板を熱処理して、前記第1面の表層における前記第1拡散源の直下領域に前記第1ドーパントが拡散した第1のドーパント拡散層を形成する第3工程と、
     前記第1のドーパント拡散層上に電極を形成する第4工程と、
     を含むことを特徴とする太陽電池の製造方法。
    A first step of forming a first oxide film having a thickness of more than 50 nm and not more than 200 nm on a first surface of a first conductivity type semiconductor substrate;
    A second step of selectively forming a first diffusion source containing a first dopant on the first oxide film;
    Heat-treating the semiconductor substrate on which the first diffusion source is formed to form a first dopant diffusion layer in which the first dopant is diffused in a region immediately below the first diffusion source in the surface layer of the first surface; 3 steps,
    A fourth step of forming an electrode on the first dopant diffusion layer;
    The manufacturing method of the solar cell characterized by including.
  2.  前記第3工程の後に、前記第1面の表層における前記第1のドーパント拡散層以外の領域に前記第1のドーパント拡散層よりも低い濃度で前記第1ドーパントが拡散した第2のドーパント拡散層を形成する第5工程を含むこと、
     を特徴とする請求項1に記載の太陽電池の製造方法。
    After the third step, a second dopant diffusion layer in which the first dopant is diffused in a region other than the first dopant diffusion layer in the surface layer of the first surface at a concentration lower than that of the first dopant diffusion layer. Including a fifth step of forming
    The manufacturing method of the solar cell of Claim 1 characterized by these.
  3.  前記第1工程の前に、前記第1のドーパント拡散層よりも低い濃度で前記第1ドーパントが拡散した第2のドーパント拡散層を前記第1面の表層に形成する第6工程を含み、
     前記第1工程では、前記第2のドーパント拡散層上に前記第1酸化膜を形成し、
     前記第3工程では、前記第2のドーパント拡散層における前記第1拡散源の直下領域に前記第1のドーパント拡散層を形成すること、
     を特徴とする請求項1に記載の太陽電池の製造方法。
    Before the first step, including a sixth step of forming a second dopant diffusion layer in which the first dopant is diffused at a lower concentration than the first dopant diffusion layer on the surface layer of the first surface,
    In the first step, the first oxide film is formed on the second dopant diffusion layer,
    Forming the first dopant diffusion layer in a region immediately below the first diffusion source in the second dopant diffusion layer in the third step;
    The manufacturing method of the solar cell of Claim 1 characterized by these.
  4.  前記第1工程が、1回の熱処理工程において熱処理条件を変更して前記第6工程の後に連続して行われること、
     を特徴とする請求項3に記載の太陽電池の製造方法。
    The first step is performed continuously after the sixth step by changing the heat treatment conditions in one heat treatment step;
    The manufacturing method of the solar cell of Claim 3 characterized by these.
  5.  前記第6工程では、前記第1面の表層に前記第1ドーパントのイオンを打ち込んだ後に前記半導体基板を熱処理することにより、前記第2のドーパント拡散層を形成すること、
     を特徴とする請求項3に記載の太陽電池の製造方法。
    In the sixth step, the second dopant diffusion layer is formed by implanting ions of the first dopant into the surface layer of the first surface and then heat-treating the semiconductor substrate.
    The manufacturing method of the solar cell of Claim 3 characterized by these.
  6.  前記第1酸化膜は、前記第1ドーパントを前記第1拡散源よりも低い濃度で含む第2拡散源であり、
     前記第3工程では、前記第1面の表層における前記第2拡散源の直下領域であって前記第1のドーパント拡散層以外の領域に前記第1のドーパント拡散層よりも低い濃度で前記第1ドーパントが拡散した第3のドーパント拡散層を形成すること、
     を特徴とする請求項1に記載の太陽電池の製造方法。
    The first oxide film is a second diffusion source containing the first dopant at a lower concentration than the first diffusion source,
    In the third step, the first layer at a lower concentration than the first dopant diffusion layer in a region immediately below the second diffusion source in the surface layer of the first surface and in a region other than the first dopant diffusion layer. Forming a third dopant diffusion layer in which the dopant is diffused;
    The manufacturing method of the solar cell of Claim 1 characterized by these.
  7.  前記第1工程では、前記第1拡散源よりも低い濃度で前記第1ドーパントを含む第1下層酸化膜を前記第1面上に形成する工程と、前記第1酸化膜の表層となりドーパントを含まない第1上層酸化膜を前記第1下層酸化膜の上層に形成する工程と、を含むこと、
     を特徴とする請求項6に記載の太陽電池の製造方法。
    In the first step, a step of forming a first lower oxide film containing the first dopant at a concentration lower than that of the first diffusion source on the first surface, and a surface layer of the first oxide film and including the dopant Forming a non-first upper oxide film on the upper layer of the first lower oxide film,
    The method for producing a solar cell according to claim 6.
  8.  前記第1ドーパントは、第2導電型のドーパントであること、
     を特徴とする請求項6または7に記載の太陽電池の製造方法。
    The first dopant is a dopant of a second conductivity type;
    The method for producing a solar cell according to claim 6 or 7, wherein:
  9.  前記第1ドーパントは、第1導電型のドーパントであること、
     を特徴とする請求項6または7に記載の太陽電池の製造方法。
    The first dopant is a first conductivity type dopant;
    The method for producing a solar cell according to claim 6 or 7, wherein:
  10.  前記第3工程の前に、前記半導体基板において前記第1面と対向する第2面に膜厚が50nmより大、且つ200nm以下の第2酸化膜を形成する第7工程を有すること、
     を特徴とする請求項1から9のいずれか1つに記載の太陽電池の製造方法。
    Before the third step, including a seventh step of forming a second oxide film having a thickness of greater than 50 nm and less than or equal to 200 nm on the second surface of the semiconductor substrate facing the first surface;
    The method for manufacturing a solar cell according to claim 1, wherein:
  11.  前記第7工程と前記第3工程との間に、第2ドーパントを含んだ第3拡散源を前記第2酸化膜上に選択的に形成する第8工程を有し、
     前記第3工程では、前記第2面の表層における前記第3拡散源の直下領域に前記第2ドーパントが拡散した第4のドーパント拡散層を形成すること、
     を特徴とする請求項10に記載の太陽電池の製造方法。
    An eighth step of selectively forming a third diffusion source containing a second dopant on the second oxide film between the seventh step and the third step;
    Forming a fourth dopant diffusion layer in which the second dopant is diffused in a region immediately below the third diffusion source in the surface layer of the second surface in the third step;
    The method for manufacturing a solar cell according to claim 10.
  12.  前記第2酸化膜は、前記第2ドーパントを前記第3拡散源よりも低い濃度で含む第4拡散源であり、
     前記第3工程では、前記第2面の表層における前記第4拡散源の直下領域であって前記第4のドーパント拡散層以外の領域に前記第2ドーパントが前記第4のドーパント拡散層よりも低い濃度で拡散した第5のドーパント拡散層を形成すること、
     を特徴とする請求項11に記載の太陽電池の製造方法。
    The second oxide film is a fourth diffusion source containing the second dopant at a lower concentration than the third diffusion source;
    In the third step, the second dopant is lower than the fourth dopant diffusion layer in a region immediately below the fourth diffusion source in the surface layer of the second surface and other than the fourth dopant diffusion layer. Forming a fifth dopant diffusion layer diffused in concentration;
    The method for manufacturing a solar cell according to claim 11.
  13.  前記第7工程では、前記第3拡散源よりも低い濃度で前記第2ドーパントを含む第2下層酸化膜を前記第2面上に形成する工程と、前記第2酸化膜の表層となりドーパントを含まない第2上層酸化膜を前記第2下層酸化膜の上層に形成する工程と、を含むこと、
     を特徴とする請求項12に記載の太陽電池の製造方法。
    In the seventh step, a step of forming a second lower oxide film containing the second dopant at a lower concentration than the third diffusion source on the second surface, and a surface layer of the second oxide film and including the dopant Forming a non-second upper oxide film on the upper layer of the second lower oxide film,
    The method for producing a solar cell according to claim 12.
  14.  前記第1ドーパントは第2導電型のドーパントであり、前記第2ドーパントは第1導電型のドーパントであること、
     を特徴とする請求項12または13に記載の太陽電池の製造方法。
    The first dopant is a second conductivity type dopant, and the second dopant is a first conductivity type dopant;
    The method for manufacturing a solar cell according to claim 12 or 13, wherein:
  15.  前記第1ドーパントは第1導電型のドーパントであり、前記第2ドーパントは第2導電型のドーパントであること、
     を特徴とする請求項12または13に記載の太陽電池の製造方法。
    The first dopant is a first conductivity type dopant, and the second dopant is a second conductivity type dopant;
    The method for manufacturing a solar cell according to claim 12 or 13, wherein:
PCT/JP2015/085296 2015-01-07 2015-12-16 Method for manufacturing solar cell WO2016111132A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016550661A JPWO2016111132A1 (en) 2015-01-07 2015-12-16 Manufacturing method of solar cell
TW105100262A TW201637232A (en) 2015-01-07 2016-01-06 Method for producing solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-001865 2015-01-07
JP2015001865 2015-01-07

Publications (1)

Publication Number Publication Date
WO2016111132A1 true WO2016111132A1 (en) 2016-07-14

Family

ID=56355834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085296 WO2016111132A1 (en) 2015-01-07 2015-12-16 Method for manufacturing solar cell

Country Status (3)

Country Link
JP (1) JPWO2016111132A1 (en)
TW (1) TW201637232A (en)
WO (1) WO2016111132A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081442A (en) * 2017-01-06 2018-07-16 엘지전자 주식회사 Solar cell manufacturing method
CN108598267A (en) * 2018-06-08 2018-09-28 苏州宝澜环保科技有限公司 A kind of novel heterojunction solar cell and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068266A (en) * 1998-08-26 2000-03-03 Sony Corp Method for forming oxide film
JP2002329880A (en) * 2001-04-23 2002-11-15 Samsung Sdi Co Ltd Solar battery and method for manufacturing the same
JP2004281569A (en) * 2003-03-13 2004-10-07 Kyocera Corp Method for producing solar cell element
JP2014060441A (en) * 2013-11-27 2014-04-03 Shin Etsu Chem Co Ltd Solar cell manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152824A (en) * 1977-12-30 1979-05-08 Mobil Tyco Solar Energy Corporation Manufacture of solar cells
JP2006024757A (en) * 2004-07-08 2006-01-26 Shin Etsu Handotai Co Ltd Solar cell and method of manufacturing the same
JP5538103B2 (en) * 2010-07-07 2014-07-02 三菱電機株式会社 Method for manufacturing solar battery cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068266A (en) * 1998-08-26 2000-03-03 Sony Corp Method for forming oxide film
JP2002329880A (en) * 2001-04-23 2002-11-15 Samsung Sdi Co Ltd Solar battery and method for manufacturing the same
JP2004281569A (en) * 2003-03-13 2004-10-07 Kyocera Corp Method for producing solar cell element
JP2014060441A (en) * 2013-11-27 2014-04-03 Shin Etsu Chem Co Ltd Solar cell manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180081442A (en) * 2017-01-06 2018-07-16 엘지전자 주식회사 Solar cell manufacturing method
KR102042266B1 (en) * 2017-01-06 2019-11-27 엘지전자 주식회사 Solar cell manufacturing method
CN108598267A (en) * 2018-06-08 2018-09-28 苏州宝澜环保科技有限公司 A kind of novel heterojunction solar cell and preparation method thereof

Also Published As

Publication number Publication date
TW201637232A (en) 2016-10-16
JPWO2016111132A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP1876651B1 (en) Solar cell manufacturing method
JP5193058B2 (en) Back contact solar cell
KR101579854B1 (en) Ion implanted selective emitter solar cells with in situ surface passivation
US9178086B2 (en) Method for fabricating back-contact type solar cell
CN102484148B (en) Solar battery cell and method for manufacturing the solar battery cell
EP3151286B1 (en) Solar cell element, method for manufacturing same and solar cell module
JP5737204B2 (en) Solar cell and manufacturing method thereof
TWI641154B (en) Solar cell and solar cell manufacturing method
TW201924073A (en) Interdigitated back-contacted solar cell with p-type conductivity
KR102189279B1 (en) Method of providing a boron doped region in a substrate and a solar cell using such a substrate
JP6144778B2 (en) Manufacturing method of solar cell
JP5830143B1 (en) Method for manufacturing solar battery cell
JP6426486B2 (en) Method of manufacturing solar cell element
WO2016111132A1 (en) Method for manufacturing solar cell
US8338275B2 (en) Methods of forming a metal contact on a silicon substrate
JP6234633B2 (en) Solar cell and method for manufacturing solar cell
JP2014146766A (en) Method for manufacturing solar cell and solar cell
CN102683504B (en) The method of crystal silicon solar energy battery manufacture craft is improved by ion implantation arsenic
US11222991B2 (en) Solar cell and method for manufacturing the same
JP6366840B2 (en) Solar cell and method for manufacturing solar cell
JP2010027744A (en) Method for forming diffusion layer on substrate
WO2011048656A1 (en) Method for roughening substrate surface, and method for manufacturing photovoltaic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016550661

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15877005

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15877005

Country of ref document: EP

Kind code of ref document: A1