WO2016111048A1 - Multi-cylinder hermetic compressor - Google Patents

Multi-cylinder hermetic compressor Download PDF

Info

Publication number
WO2016111048A1
WO2016111048A1 PCT/JP2015/076138 JP2015076138W WO2016111048A1 WO 2016111048 A1 WO2016111048 A1 WO 2016111048A1 JP 2015076138 W JP2015076138 W JP 2015076138W WO 2016111048 A1 WO2016111048 A1 WO 2016111048A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
refrigerant
cylinder
muffler chamber
crankshaft
Prior art date
Application number
PCT/JP2015/076138
Other languages
French (fr)
Japanese (ja)
Inventor
篤義 深谷
幹一朗 杉浦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201580061211.9A priority Critical patent/CN107110160B/en
Priority to JP2016568276A priority patent/JP6257806B2/en
Publication of WO2016111048A1 publication Critical patent/WO2016111048A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member

Definitions

  • the present invention relates to a multi-cylinder hermetic compressor having a plurality of compression mechanisms.
  • the hermetic compressor has a hermetic container (hereinafter referred to as “shell”), an electric motor portion (hereinafter referred to as “motor”) disposed in the shell, and a compression portion driven by the motor. Yes.
  • a hermetic compressor the refrigerant supplied through the suction pipe is compressed in the compression unit, discharged into the shell through the muffler chamber, and discharged from the discharge pipe to the outside of the shell. Since such a hermetic compressor is used in, for example, a refrigerator, a freezer, an air conditioner, a water heater, etc., high efficiency and low cost are required.
  • the compression section is composed of a single compression mechanism.
  • the compression mechanism is arranged in an annular cylinder, an annular rotary piston that is arranged on the inner periphery of the cylinder and rotates eccentrically, and a vane groove formed in the cylinder, and advances and retreats along the radial direction of the cylinder.
  • a free vane and urging means for example, a coil spring for pressing the vane in a direction toward the central axis of the cylinder are provided.
  • the compression mechanism further includes a crankshaft formed with an eccentric shaft portion for eccentrically rotating the rotary piston, and a pair of end plates that rotatably support the crankshaft and close both end faces of the cylinder. ing.
  • a space surrounded by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotary piston, and the pair of end plates is a pair of chambers whose volumes are increased or decreased by vanes that can move forward and backward toward the rotary piston that rotates eccentrically ( Hereinafter, it is divided into two (referred to as “compression chambers”). That is, the refrigerant sucked in the phase in which the volume gradually increases is compressed in the phase in which the volume gradually decreases.
  • the compression unit in a multi-cylinder hermetic compressor having two cylinders, is basically arranged in two layers (two stages) with a partition plate between the compression mechanisms similar to those of the single-cylinder hermetic compressor. It has a configuration.
  • the refrigerant passes from the muffler chamber of one compression mechanism (hereinafter referred to as “first muffler chamber”) to the muffler chamber of the other compression mechanism (hereinafter referred to as “second muffler chamber”).
  • first muffler chamber the muffler chamber of one compression mechanism
  • second muffler chamber A refrigerant flow path is provided.
  • the refrigerant gas discharged from one compression mechanism is once released into the annular first muffler chamber. Thereafter, the refrigerant gas discharged into the first muffler chamber passes through the refrigerant flow path, merges with the refrigerant gas discharged from the other compression mechanism in the annular second muffler chamber, and is discharged into the shell.
  • the refrigerant gas compressed by one compression mechanism and discharged to the first muffler chamber is sent to the second muffler chamber of the other compression mechanism through the refrigerant flow path. Therefore, pressure loss occurs when the refrigerant gas passes through the refrigerant flow path.
  • the pressure loss when this refrigerant gas passes through the refrigerant flow path is reduced by two methods: (1) increasing the diameter of the refrigerant flow path and (2) increasing the number of refrigerant flow paths. Can be made.
  • a communication hole that is a partition plate passage portion of the refrigerant flow path that communicates the muffler chambers of the compression mechanisms is expanded, and the pressure pulsation of the refrigerant gas is reduced in the middle of the refrigerant flow path by the expanded communication hole.
  • JP 2013-019370 A (Claim 1, FIG. 1, FIG. 2) JP 2013-204465 A (FIGS. 2 and 3)
  • Patent Documents 1 and 2 have the following problems (a) and (b).
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a multi-cylinder hermetic compressor that can prevent an increase in refrigerant pressure loss and improve the compressor efficiency.
  • a multi-cylinder hermetic compressor includes a hermetic container, a compression part that is accommodated in the hermetic container and includes a first compression mechanism and a second compression mechanism, and a crankshaft that transmits driving force to the compression part.
  • annular first muffler chamber that is disposed on one end side of the compression portion in the axial direction of the crankshaft and in which the refrigerant compressed by the first compression mechanism is discharged through a first discharge port;
  • An annular second muffler chamber that is disposed on the other end side of the compression unit in the axial direction and that is compressed by the second compression mechanism is discharged through a second discharge port; and the first muffler chamber;
  • a plurality of refrigerant flow paths that communicate with the second muffler chamber, guide the refrigerant in the second muffler chamber to the first muffler chamber, and discharge that discharges the refrigerant in the first muffler chamber to the space in the sealed container.
  • Each of the structure and the second compression mechanism includes a cylinder, a rotary piston that rotates eccentrically along the inner peripheral surface of the cylinder, and a space between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotary piston.
  • a partition vane, and a vane groove that is provided in the cylinder and accommodates the vane so as to freely move back and forth, and the plurality of refrigerant flow paths include the cylinder of the first compression mechanism and the second compression mechanism.
  • a check valve having a reed valve structure and having a fixed end at one end is provided on the first muffler chamber side of the first discharge port.
  • the one discharge port is arranged so as to be shifted in one rotation direction in the circumferential direction around the crankshaft with respect to the fixed end, and among the plurality of refrigerant flow paths, in the rotation direction Serial refrigerant flow path is disposed in a position farthest from the first discharge port, and has a smaller cross-sectional area than the other of the at least one coolant channel.
  • an increase in refrigerant pressure loss in a multi-cylinder hermetic compressor can be prevented, and the compressor efficiency can be improved.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 5 is a sectional view taken along the line CC in FIG. 4.
  • FIG. 8 is a cross-sectional view taken along line DD in FIG. 7.
  • FIG. 1 is a side sectional view showing the overall configuration of a multi-cylinder hermetic compressor according to Embodiment 1 of the present invention.
  • FIG. 2 is a partial sectional view in a side view showing a compression portion of the multi-cylinder hermetic compressor of FIG. 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along the line BB in FIG.
  • this invention is not limited to the form shown in figure.
  • the multi-cylinder hermetic compressor 100 includes a shell 101 that is a hermetic container, and an electric motor unit (hereinafter referred to as a drive source) installed inside the shell 101. 102) (referred to as “motor”) and a compression unit 103 that is also installed inside the shell 101.
  • a drive source an electric motor unit (hereinafter referred to as a drive source) installed inside the shell 101. 102) (referred to as “motor”)
  • motor an electric motor unit
  • compression unit 103 that is also installed inside the shell 101.
  • the shell 101 has an upper shell 101a and a central shell 101b. There may also be a lower shell that is substantially the same shape as the upper shell 101a.
  • the upper shell 101a is provided with a glass terminal 104 for supplying power to the motor 102 from the outside, and a discharge pipe 105 for discharging the compressed refrigerant to the outside of the shell 101, that is, the multi-cylinder hermetic compressor 100. It has been.
  • the central shell 101b includes a motor 102, a first compression mechanism 10a and a second compression mechanism 10b constituting the compression unit 103, a first suction port 16a (see FIG. 4) and a second compression of the first compression mechanism 10a.
  • a first suction pipe 106a and a second suction pipe 106b that guide one refrigerant are fixed to the second suction port 16b (see FIG. 3) of the mechanism 10b.
  • the other ends of the first suction pipe 106 a and the second suction pipe 106 b are connected to the suction muffler 107. In the suction muffler 107, gas-liquid separation of the refrigerant and removal of dust in the refrigerant are performed.
  • the motor 102 has a stator 102a and a rotor 102b.
  • the rotor 102b is attached to the crankshaft 50 (which will be described in detail separately).
  • the rotational torque generated by the motor 102 is transmitted to the first compression mechanism 10a and the second compression mechanism 10b by the crankshaft 50.
  • the compression unit 103 includes a first end plate 20a and a second end that support the crankshaft 50 at both ends of the first compression mechanism 10a and the second compression mechanism 10b that are stacked with the partition plate 30 interposed therebetween.
  • the board 20b is arranged.
  • the first compression mechanism 10a, the second compression mechanism 10b, the partition plate 30, the first end plate 20a and the second end plate 20b are integrated by two types of bolts 71a and 71b having different lengths as shown in FIG. To be concluded.
  • the first compression mechanism 10a is an annular first cylinder 11a and an annular first rotary piston that is disposed on the inner peripheral portion of the first cylinder 11a and rotates eccentrically along the inner peripheral surface of the first cylinder 11a. (Hereinafter referred to as “first piston”) 12a.
  • the first compression mechanism 10a includes a first vane groove 13a formed in the first cylinder 11a, and a first vane disposed in the first vane groove 13a so as to advance and retract along the radial direction of the first cylinder 11a. 14a and a first spring 15a that presses the first vane 14a against the outer periphery of the first piston 12a.
  • the outer peripheral surface of the first piston 12a contacts the inner peripheral surface of the first cylinder 11a at a linear contact position. With the eccentric rotation of the first piston 12a, the linear contact position moves in the circumferential direction. The open end of the first cylinder 11a is closed by the first end plate 20a.
  • the second compression mechanism 10b is an annular second cylinder 11b and an annular second cylinder 11b disposed on the inner peripheral portion of the second cylinder 11b and rotating eccentrically along the inner peripheral surface of the second cylinder 11b.
  • the second compression mechanism 10b includes a second vane groove 13b formed in the second cylinder 11b, and a second vane disposed in the second vane groove 13b so as to advance and retract along the radial direction of the second cylinder 11b. 14b and a second spring 15b that presses the second vane 14b against the outer periphery of the second piston 12b.
  • the outer peripheral surface of the second piston 12b contacts the inner peripheral surface of the second cylinder 11b at a linear contact position. With the eccentric rotation of the second piston 12b, the linear contact position moves in the circumferential direction.
  • the open end of the second cylinder 11b is closed by the second end plate 20b.
  • the inner diameter of the first cylinder 11a and the inner diameter of the second cylinder 11b are designed to be equal.
  • the crankshaft 50 has a configuration in which a first bearing insertion portion 52a, a partition plate insertion portion 53, and a second bearing insertion portion 52b are arranged coaxially.
  • a first eccentric shaft portion 51a that is eccentric toward one side is formed between the first bearing insertion portion 52a and the partition plate insertion portion 53.
  • the 2nd eccentric shaft part 51b eccentric toward the other is formed.
  • the first eccentric shaft portion 51a and the second eccentric shaft portion 51b are eccentric in directions in which the phases are different from each other by 180 °.
  • Each central axis of the first eccentric shaft portion 51 a and the second eccentric shaft portion 51 b is parallel to the axis of the crankshaft 50.
  • first bearing insertion portion 52a is rotatably supported by the first bearing 25a provided on the inner peripheral surface of the first end plate 20a.
  • the 2nd bearing insertion part 52b is rotatably supported by the 2nd bearing 25b provided in the internal peripheral surface of the 2nd end plate 20b.
  • the partition plate insertion portion 53 passes through a central through hole 30 a formed at the center of the partition plate 30.
  • the first end plate 20a of the first compression mechanism 10a has a first discharge port 17a communicating with the first compression chamber 40a and a first discharge port 17a at a set pressure from the downstream side of the refrigerant flow. And a first check valve 18a composed of a leaf spring that is closed at the same time.
  • a first cover 19a is fitted to the first end plate 20a so as to cover the first discharge port 17a.
  • the first muffler chamber 60a is formed by the first cover 19a and the first end plate 20a.
  • the first muffler chamber 60 a is formed in an annular shape around the crankshaft 50, and is disposed on the upper end side of the compression portion 103 in the axial direction of the crankshaft 50. Therefore, the refrigerant compressed by the first compression mechanism 10a and reaching the set pressure is discharged to the first muffler chamber 60a through the first discharge port 17a.
  • the first cover 19a is provided with two discharge ports 21a and 21b.
  • the refrigerant in the first muffler chamber 60a is discharged to the space in the shell 101 through the discharge ports 21a and 21b.
  • the position of the vane groove 13a is set to 0 °
  • the counterclockwise direction in FIG. (Flow direction) is the positive direction.
  • the discharge port 21a is provided at a position at an angle ⁇ 1 (0 ° ⁇ ⁇ 1 ⁇ 360 °)
  • the discharge port 21b is provided at a position at an angle ⁇ 2 ( ⁇ 1 ⁇ 2 ⁇ 360 °).
  • the circumferential positions of the discharge ports 21a and 21b are specified by the center positions of the discharge ports 21a and 21b.
  • the discharge ports 21a and 21b are provided at positions facing each other with the crankshaft 50 interposed therebetween.
  • the angle ⁇ 1 is about 90 ° and the angle ⁇ 2 is about 270 °.
  • the second end plate 20 b of the second compression mechanism 10 b has a second discharge port 17 b communicating with the second compression chamber 40 b and a second discharge port 17 b at a set pressure from the downstream side of the refrigerant flow. And a second check valve 18b constituted by a leaf spring that is closed at the same time.
  • a second cover 19b is fitted to the second end plate 20b so as to cover the second discharge port 17b.
  • a second muffler chamber 60b is formed by the second cover 19b and the second end plate 20b.
  • the second muffler chamber 60 b is formed in an annular shape around the crankshaft 50, and is disposed on the lower end side of the compression portion 103 in the axial direction of the crankshaft 50.
  • FIG. 5 is a cross-sectional view taken along the line CC of FIG. 4 and shows the configuration of the first check valve 18a.
  • the first check valve 18a has a reed valve structure that opens and closes the opening end 17a2 on the first muffler chamber 60a side of the first discharge port 17a according to the discharge pressure of the refrigerant.
  • the first check valve 18 a includes a leaf spring-like valve body 81 and a valve presser 82 that restricts the deflection of the valve body 81.
  • a fixed end 81 a located at one end of the valve body 81 is fixed to the first end plate 20 a by a rivet 83 together with one end of the valve presser 82.
  • the first check valve 18a is opened, and the refrigerant in the first compression chamber 40a is discharged into the first muffler chamber 60a through the first discharge port 17a.
  • the valve body 81 at this time is inclined with respect to the first discharge port 17a so as to be away from the opening end 17a2 as it is away from the fixed end 81a. Therefore, the refrigerant flowing into the first muffler chamber 60a from the first discharge port 17a is guided in a direction away from the fixed end 81a by the valve body 81 as shown by a thick arrow in FIG.
  • the fixed end 81 a of the first check valve 18 a and the first discharge port 17 a are arranged at positions shifted in the circumferential direction in the annular first muffler chamber 60 a centering on the crankshaft 50.
  • the refrigerant in the first muffler chamber 60a generates a circumferential flow in one rotational direction as a whole.
  • the first discharge port 17a is provided at a position shifted in the counterclockwise direction with respect to the fixed end 81a.
  • the overall flow direction of the refrigerant in the first muffler chamber 60a is the counterclockwise direction.
  • the second check valve 18b has a valve body 81, a valve presser 82, and a rivet 83, and is arranged vertically symmetrically with the first check valve 18a. Therefore, for the same reason as described above, the refrigerant in the second muffler chamber 60b generates a circumferential flow in one rotational direction as a whole.
  • the second discharge port 17b is provided at a position shifted in the clockwise direction with respect to the fixed end 81a of the second check valve 18b. For this reason, in FIG. 3, the overall flow direction of the refrigerant in the second muffler chamber 60b is the clockwise direction.
  • the refrigerant flow paths 33a, 33b, and 33c have, for example, a circular cross-sectional shape.
  • the refrigerant discharged to the second muffler chamber 60b is guided to the first muffler chamber 60a via the refrigerant flow paths 33a, 33b, and 33c.
  • the refrigerant flow paths 33a, 33b, and 33c are disposed adjacent to the first compression chamber 40a and the second compression chamber 40b.
  • the refrigerant flow paths 33a, 33b, and 33c extend in a direction parallel to the crankshaft 50.
  • the refrigerant flow paths 33a, 33b, and 33c penetrate the first end plate 20a, the first cylinder 11a of the first compression mechanism 10a, the partition plate 30, the second cylinder 11b of the second compression mechanism 10b, and the second end plate 20b. Is formed.
  • the refrigerant flow paths 33a, 33b, 33c surround the first compression chamber 40a and the second compression chamber 40b, and are arranged in the circumferential direction around the crankshaft 50.
  • the refrigerant flow paths 33a, 33b, and 33c are clockwise when viewed from the axial direction (lower surface side) of the compression unit 103. It is formed only in the range of 90 ° to 270 ° (or counterclockwise).
  • the refrigerant flow paths 33a, 33b, and 33c have the vane grooves 13a and 13b positioned at 0 ° in the circumferential direction centered on the crankshaft 50, and the counterclockwise direction in FIG. When the (direction) is the positive direction, it is formed only in the angle range of ⁇ 1 to ⁇ 2. Note that the circumferential positions of the refrigerant flow paths 33a, 33b, and 33c are specified by the respective center positions of the refrigerant flow paths 33a, 33b, and 33c.
  • the overall flow direction of the refrigerant based on the structure of the check valves 18a and 18b is the clockwise direction in the second muffler chamber 60b shown in FIG. 3, and the first muffler chamber 60a shown in FIG. In the counterclockwise direction.
  • the refrigerant flow path 33c is disposed at a position farthest from the discharge ports 17a, 17b in the overall flow direction of the refrigerant based on the structure of the check valves 18a, 18b.
  • the refrigerant flow path 33c is disposed at a position closest to the discharge ports 17a and 17b in the direction opposite to the flow direction.
  • the refrigerant flow path 33c has a smaller cross-sectional area than the other refrigerant flow paths 33a and 33b.
  • the refrigerant channel 33c is formed with a smaller diameter than the refrigerant channels 33a and 33b.
  • the refrigerant flow paths 33a and 33b have the same cross-sectional area, but the refrigerant flow path 33a closest to the discharge ports 17a and 17b in the overall flow direction of the refrigerant is more than the refrigerant flow path 33b. It may have a large cross-sectional area. In other words, the refrigerant flow path closer to the discharge ports 17a and 17b may have a larger cross-sectional area in the overall refrigerant flow direction.
  • the cross-sectional area of the refrigerant flow path is an area of the refrigerant flow path in a plane perpendicular to the axial direction assuming that the refrigerant flow path penetrates in the axial direction of the crankshaft 50.
  • the refrigerant discharged from the refrigerant flow path 33a and the discharge port 17a into the first muffler chamber 60a Is mainly discharged from the discharge port 21a into the space in the shell 101.
  • the refrigerant discharged from the refrigerant flow paths 33b and 33c into the first muffler chamber 60a is mainly discharged from the discharge port 21b into the space in the shell 101.
  • a part of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a flows in the direction opposite to the overall flow direction and is discharged from the discharge port 21a.
  • the first eccentric shaft portion 51a penetrates the inner peripheral portion of the first piston 12a
  • the second eccentric shaft portion 51b penetrates the inner peripheral portion of the second piston 12b. Therefore, the rotation of the crankshaft 50 causes the first piston 12a and the second piston 12b to rotate eccentrically in a state where one is 180 ° out of phase with the other.
  • the volume of one chamber of the first compression chamber 40a divided into two is gradually increased by the first piston 12a that rotates eccentrically with the rotation of the crankshaft 50 and the first vane 14a that can advance and retreat. Accordingly, the volume of the other chamber of the first compression chamber 40a that is divided into two is gradually reduced.
  • the first suction port 16a is formed at a position corresponding to one chamber of the first compression chamber 40a
  • the first discharge port 17a is formed at a position corresponding to the other chamber of the first compression chamber 40a ( (See FIG. 4). That is, the first suction port 16a and the first discharge port 17a are arranged so as to sandwich the first vane 14a in the rotation direction of the crankshaft 50 when viewed from the axial direction of the crankshaft 50. That is, the refrigerant is sucked from the first suction port 16a, then compressed, and discharged from the first discharge port 17a into the first muffler chamber 60a.
  • the volume of one chamber of the second compression chamber 40b that is divided into two is gradually increased by the second piston 12b that rotates eccentrically with the rotation of the crankshaft 50 and the second vane 14b that can advance and retreat. . Accordingly, the volume of the other chamber of the second compression chamber 40b that is divided into two is gradually reduced.
  • the second suction port 16b is formed at a position corresponding to one chamber of the second compression chamber 40b
  • the second discharge port 17b is formed at a position corresponding to the other chamber of the second compression chamber 40b (See FIG. 3).
  • the second suction port 16b and the second discharge port 17b are arranged so as to sandwich the second vane 14b in the rotational direction of the crankshaft 50 when viewed from the axial direction of the crankshaft 50. That is, the refrigerant is sucked from the second suction port 16b, then compressed and discharged from the second discharge port 17b into the second muffler chamber 60b. And the refrigerant
  • the refrigerant discharged into the first muffler chamber 60a via the refrigerant flow paths 33a, 33b, 33c and the refrigerant discharged into the first muffler chamber 60a from the discharge port 17a are discharged into the discharge ports 21a, 21b is discharged into the shell 101.
  • the refrigerant discharged from the refrigerant flow path 33a into the first muffler chamber 60a and a part of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a reach the discharge port 17a. Without being discharged from the discharge port 21a.
  • the remainder of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a and the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a do not reach the discharge port 17a and are discharged from the discharge port. Released from 21b.
  • the refrigerant discharged from the discharge port 17a is discharged from the discharge port 21a without passing through the refrigerant flow paths 33a, 33b, 33c.
  • the refrigerant flow paths 33a, 33b, 33c, the discharge port 17a, and the discharge ports 21a, 21b reach the discharge port 17a or are discharged from the discharge port 17a.
  • the refrigerant is arranged so as not to reach the refrigerant flow paths 33a, 33b, 33c.
  • the refrigerant discharged into the first muffler chamber 60a is sucked into the refrigerant flow paths 33a, 33b, 33c or the discharge port 17a and does not flow backward.
  • FIG. 6 is a graph showing the annual operating efficiency (APF) when the multi-cylinder hermetic compressor 100 of the first embodiment is applied to an air conditioner.
  • FIG. 6 shows the relationship between the ratio S / Vst between the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b, and the annual operating efficiency.
  • the horizontal axis represents S / Vst [mm 2 / cc], and the vertical axis represents annual operation efficiency.
  • a multi-cylinder hermetic compressor 100 shown in FIG. 1 is an internal high-pressure multi-cylinder hermetic compressor. Further, in FIG. 6, the multi-cylinder closed compression according to the first embodiment is based on the annual operation efficiency of the conventional multi-cylinder closed compressor having S / Vst of 8.9 mm 2 / cc as a reference (100%). The annual operating efficiency of the machine 100 is shown.
  • the annual operating efficiency of the multi-cylinder hermetic compressor 100 is over 100.5% at the maximum when S / Vst is 11.2 mm 2 / cc, and S / Vst is 8.9 mm 2.
  • S / Vst is 11.2 mm 2 / cc
  • S / Vst is 8.9 mm 2.
  • the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b are 8.9 [mm 2 / cc] ⁇ S / Vst ⁇ 24 [mm 2 / cc].
  • the total cross-sectional area S and the displacement amount Vst were set so as to satisfy the relationship of 11 [mm 2 / cc] ⁇ S / Vst ⁇ 20 [mm 2 / cc] in consideration of manufacturing variations and the like.
  • the muffler chamber into which the refrigerant is merged is optimized by optimizing the ratio (S / Vst) of the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b. It turns out that the pressure loss at the time of being introduce
  • the first muffler chamber 60a is compressed by the second compression mechanism 10b and passes through the refrigerant flow paths 33a, 33b, and 33c from the second muffler chamber 60b.
  • the pulsation accompanying the pressure fluctuation of the refrigerant discharged into the second muffler chamber 60b and the refrigerant flow paths 33a, 33b, and 33c can be effectively reduced.
  • the flow of a refrigerant can be led to the 1st muffler room 60a of the 1st compression mechanism 10a in the state where the increase in pressure loss was controlled. Therefore, the compressor efficiency (COP) can be improved.
  • the pressure loss can be reduced by optimizing the total sectional area S of the refrigerant flow paths 33a, 33b, and 33c with respect to the displacement amount Vst of the second compression mechanism 10b.
  • the discharge port 21a of the first cover 19a is The discharge port 21b is disposed at a position near 270 °.
  • the refrigerant flow paths 33a, 33b, 33c are formed only in the range of 90 ° to 270 ° clockwise (or counterclockwise) with respect to the vane grooves 13a, 13b.
  • the refrigerant flow path 33c arranged at the farthest position when viewed from the discharge ports 17a and 17b is the other refrigerant flow paths 33a and 33b. Has a smaller cross-sectional area.
  • the distance from the discharge port 17a in the overall flow direction of the refrigerant is shorter than the refrigerant flow paths 33a and 33b, and thus the refrigerant is discharged from the refrigerant flow path 33c into the first muffler chamber 60a. If the refrigerant is not discharged from the discharge port 21b, the refrigerant may be sucked into the discharge port 17a. When the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a is sucked into the discharge port 17a, the pressure loss increases.
  • the refrigerant flow path 33c since the refrigerant flow path 33c has a smaller cross-sectional area than the other refrigerant flow paths 33a and 33b, the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a. Can be reduced. Therefore, it is possible to suppress the refrigerant released from the refrigerant flow path 33c into the first muffler chamber 60a from being sucked into the discharge port 17a.
  • the refrigerant flow paths 33a and 33b have a larger cross-sectional area than the refrigerant flow path 33c, the pressure loss from the second muffler chamber 60b to the first muffler chamber 60a can be reduced. For this reason, the flow of the refrigerant can be guided to the first muffler chamber 60a of the first compression mechanism 10a while suppressing an increase in pressure loss, and the compressor efficiency can be improved.
  • the refrigerant flow paths 33a, 33b, and 33c are formed in the range of 0 ° to 90 °, 270 ° to 360 ° clockwise (or counterclockwise) with respect to the vane grooves 13a and 13b, Since the discharge ports 17a and 17b, the suction ports 16a and 16b, the vane grooves 13a and 13b, and the like are arranged, the refrigerant flow paths 33a, 33b, and 33c cannot be freely arranged.
  • the cylinders 11a and 11b This reduces the strength of the film and tends to cause distortion of the shape.
  • the refrigerant flow paths 33a, 33b, 33c are formed in the range of 90 ° to 270 ° clockwise (or counterclockwise) with respect to the vane grooves 13a, 13b. Moreover, the fall of the intensity
  • the refrigerant discharged from the refrigerant flow paths 33a, 33b, and 33c can be discharged into the shell 101 from the discharge ports 21a and 21b. Thereby, it can suppress that the refrigerant
  • FIG. FIG. 7 is a cross-sectional view corresponding to FIG. 3 showing the shape of the inlet and outlet of the refrigerant flow path of the multi-cylinder hermetic compressor according to Embodiment 2 of the present invention.
  • FIG. 8 is a cross-sectional view taken along the line DD in FIG. 7 and shows the configuration of the second end plate 20b.
  • the same reference numerals are given to the same functional parts as those of the first embodiment. In the description, reference is made to FIG. 1 and FIG.
  • the refrigerant flow paths 33a, 33b, Openings (which may be tapered or chamfered) 33d, 33e, and 33f having a cross-sectional area larger than that of 33c are provided.
  • the cross-sectional areas larger than the cross-sectional areas of the refrigerant flow paths 33a, 33b, and 33c are provided at the inlet and the outlet of the refrigerant flow paths 33a, 33b, and 33c. Since the openings 33d, 33e, and 33f having the above are provided, the flow of the refrigerant in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and the effect of further reducing the pressure loss can be obtained.
  • the multi-cylinder hermetic compressor 100 is provided with the shell 101 and the compression unit that is housed in the shell 101 and includes the first compression mechanism 10a and the second compression mechanism 10b.
  • the crankshaft 50 that transmits the driving force to the compression portion 103
  • the refrigerant that is disposed on one end side of the compression portion 103 in the axial direction of the crankshaft 50 and compressed by the first compression mechanism 10a is the first discharge port.
  • An annular first muffler chamber 60a that is discharged through 17a, and the refrigerant that is disposed on the other end side of the compression unit 103 in the axial direction and compressed by the second compression mechanism 10b passes through the second discharge port 17b.
  • the first compression mechanism 10a includes a first cylinder 11a, a first rotary piston 12a that rotates eccentrically along the inner peripheral surface of the first cylinder 11a, and a first space that partitions the space between the inner peripheral surface of the first cylinder 11a and the outer peripheral surface of the first rotary piston 12a.
  • a first vane 14a, and a first vane groove 13a that is provided in the first cylinder 11a and accommodates the first vane 14a so as to be capable of moving forward and backward.
  • the second compression mechanism 10b includes a second cylinder 11b, A second rotary piston 12b that rotates eccentrically along the inner peripheral surface of the two cylinders 11b, an inner peripheral surface of the second cylinder 11b, and an outer peripheral surface of the second rotary piston 12b; A second vane 14b that partitions the space between the second vane 14b and a second vane groove 13b that is provided in the second cylinder 11b and accommodates the second vane 14b so that the second vane 14b can be moved forward and backward.
  • 33c are provided through the first cylinder 11a and the second cylinder 11b, and have a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a, and a fixed end 81a at one end.
  • the first check port 18a is provided in one rotational direction (counterclockwise in FIG. 4) in the circumferential direction around the crankshaft 50 with respect to the fixed end 81a.
  • the refrigerant flow path 33c that is disposed farthest from the first discharge port 17a in the rotational direction is the other small number of refrigerant flow paths 33a, 33b, and 33c.
  • the cross-sectional area is smaller than that of at least one refrigerant flow path 33a, 33b.
  • the plurality of refrigerant flow paths 33a, 33b, and 33c may be provided in an angular range (for example, only the angular range) that is 90 ° or more and 270 ° or less in the circumferential direction around the crankshaft 50.
  • the refrigerant flow paths 33a, 33b, and 33c can be provided while suppressing a decrease in strength of the first cylinder 11a and the second cylinder 11b.
  • the discharge port includes the first discharge port 21a and the second discharge port 21b, and in the circumferential direction around the crankshaft 50,
  • the first discharge port 21a When the position of the first vane groove 13a is 0 °, the rotational direction is the positive direction, and the angles ⁇ 1 and ⁇ 2 are 0 ° ⁇ ⁇ 1 ⁇ 2 ⁇ 360 °, the first discharge port 21a
  • the second discharge port 21b is provided at a position at an angle ⁇ 2 in the circumferential direction around the crankshaft 50, and is provided with a plurality of refrigerant flow paths.
  • 33a, 33b, and 33c may be provided in an angle range (for example, only the angle range) that is ⁇ 1 or more and ⁇ 2 or less in the circumferential direction around the crankshaft 50.
  • the refrigerant released from the refrigerant flow paths 33a, 33b, 33c into the first muffler chamber 60a can be discharged from the discharge ports 21a, 21b without passing through the first discharge port 17a. For this reason, it can suppress that the refrigerant
  • the plurality of refrigerant channels 33a, 33b, and 33c are provided at the inlet and the outlet of the plurality of refrigerant channels 33a, 33b, and 33c, respectively. Openings 33d, 33e, 33f having a cross-sectional area larger than the respective cross-sectional areas may be provided.
  • the refrigerant flow in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and an effect of further reducing pressure loss can be obtained.
  • the multi-cylinder hermetic compressor 100 includes a shell 101, a compression unit 103 that is accommodated in the shell 101, and includes a first compression mechanism 10a and a second compression mechanism 10b, and a compression
  • the crankshaft 50 that transmits the driving force to the portion 103, and the refrigerant that is disposed on one end side of the compression portion 103 in the axial direction of the crankshaft 50 and is compressed by the first compression mechanism 10a passes through the first discharge port 17a.
  • the annular first muffler chamber 60a to be discharged and the refrigerant which is disposed on the other end side of the compression unit 103 in the axial direction and is compressed by the second compression mechanism 10b is discharged through the second discharge port 17b.
  • the annular second muffler chamber 60b, the first muffler chamber 60a, and the second muffler chamber 60b communicate with each other, and the refrigerant in the second muffler chamber 60b is guided to the first muffler chamber 60a.
  • Refrigerant passages 33a, 33b, and 33c, and discharge ports 21a and 21b that discharge the refrigerant in the first muffler chamber 60a to the space in the shell 101.
  • the first compression mechanism 10a includes the first cylinder 11a and The first vane partitioning the space between the first rotary piston 12a rotating eccentrically along the inner peripheral surface of the first cylinder 11a and the outer peripheral surface of the first rotary piston 12a and the inner peripheral surface of the first cylinder 11a 14a and a first vane groove 13a that is provided in the first cylinder 11a and accommodates the first vane 14a so as to be able to advance and retreat.
  • the second compression mechanism 10b includes a second cylinder 11b and a second cylinder. Between the second rotary piston 12b rotating eccentrically along the inner peripheral surface of 11b and the inner peripheral surface of the second cylinder 11b and the outer peripheral surface of the second rotary piston 12b.
  • the displacement amount Vst [cc] per rotation satisfies the relationship of 8.9 [mm 2 / cc] ⁇ S / Vst ⁇ 24 [mm 2 / cc].
  • the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c is optimized according to the displacement amount Vst of the second compression mechanism 10b, so that the refrigerant pressure loss in the multi-cylinder hermetic compressor 100 increases. And the compressor efficiency can be improved.
  • the first reverse port having a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a and having a fixed end 81a at one end.
  • a stop valve 18a is provided, and the first discharge port 17a is shifted from the fixed end 81a in one circumferential direction around the crankshaft 50 (counterclockwise in FIG. 4).
  • At least one refrigerant flow path 33a, 33b, 33c You may provide in the angle range (for example, only the said angle range) used as 90 degrees or more and 270 degrees or less in the circumferential direction centering on the crankshaft 50.
  • FIG. 1 In the circumferential direction around the crankshaft 50, when the position of the first vane groove 13a is 0 ° and the rotational direction is the positive direction, at least one refrigerant flow path 33a, 33b, 33c You may provide in the angle range (for example, only the said angle range) used as 90 degrees or more and 270 degrees or less in the circumferential direction centering on the crankshaft 50.
  • the refrigerant flow paths 33a, 33b, and 33c can be provided while suppressing a decrease in strength of the first cylinder 11a and the second cylinder 11b.
  • the first reverse port having a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a and having a fixed end 81a at one end.
  • a stop valve 18a is provided, and the first discharge port 17a is shifted from the fixed end 81a in one circumferential direction around the crankshaft 50 (counterclockwise in FIG. 4).
  • the discharge port includes a first discharge port 21a and a second discharge port 21b.
  • the first discharge port 21a is provided at a position where the angle ⁇ 1 is in the circumferential direction around the crankshaft 50.
  • the two discharge ports 21b are provided at a position having an angle ⁇ 2 in the circumferential direction centered on the crankshaft, and at least one refrigerant flow path 33a, 33b, 33c is ⁇ 1 in the circumferential direction centered on the crankshaft 50. It may be provided in an angle range that is ⁇ 2 or less (for example, only the angle range).
  • the refrigerant released from the refrigerant flow paths 33a, 33b, 33c into the first muffler chamber 60a can be discharged from the discharge ports 21a, 21b without passing through the first discharge port 17a. For this reason, it can suppress that the refrigerant
  • At least one refrigerant flow path 33a, 33b, 33c is provided at the inlet and the outlet of at least one refrigerant flow path 33a, 33b, 33c. Openings 33d, 33e, and 33f having a cross-sectional area larger than the cross-sectional area may be provided.
  • the refrigerant flow in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and an effect of further reducing pressure loss can be obtained.
  • the present invention is not limited to the above embodiment, and various modifications can be made.
  • the configuration in which the three refrigerant flow paths 33a, 33b, and 33c are provided is illustrated, but the number of refrigerant flow paths may be one, two, or four or more.
  • the refrigerant flow paths 33a, 33b, and 33c having a circular cross-sectional shape are illustrated, but the refrigerant flow path may have other cross-sectional shapes such as a rectangular shape.
  • the refrigerant channel may be a long hole extending in an arc shape along the circumferential direction of the cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A multi-cylinder hermetic compressor which comprises a first muffler chamber, a second muffler chamber, and a plurality of coolant channels which connect the first muffler chamber and the second muffler chamber. A check valve having a reed valve structure and comprising a fixed end at one end is provided at the first muffler chamber side in a first discharge port. The first discharge port is disposed so as to be shifted, relative to the fixed end, in one direction of rotation in the circumferential direction centred on a crank shaft. A coolant channel, from among the plurality of coolant channels, that is disposed in the position furthest from the first discharge port in the abovementioned direction of rotation has a smaller cross-sectional area than at least one of the other coolant channels.

Description

多気筒密閉型圧縮機Multi-cylinder hermetic compressor
 本発明は、複数の圧縮機構を有する多気筒密閉型圧縮機に関する。 The present invention relates to a multi-cylinder hermetic compressor having a plurality of compression mechanisms.
 密閉型圧縮機は、密閉容器(以下、「シェル」と称す)と、シェル内に配置された電動機部(以下、「モーター」と称す)と、モーターによって駆動される圧縮部とを有している。
 このような密閉型圧縮機において、吸込配管を経由して供給された冷媒は、圧縮部において圧縮され、マフラー室を経由してシェル内に吐出され、吐出パイプからシェルの外に吐出される。かかる密閉型圧縮機は、例えば冷蔵庫や冷凍庫、空気調和機、給湯器等に利用されるため、高効率化と低コスト化とが求められる。
The hermetic compressor has a hermetic container (hereinafter referred to as “shell”), an electric motor portion (hereinafter referred to as “motor”) disposed in the shell, and a compression portion driven by the motor. Yes.
In such a hermetic compressor, the refrigerant supplied through the suction pipe is compressed in the compression unit, discharged into the shell through the muffler chamber, and discharged from the discharge pipe to the outside of the shell. Since such a hermetic compressor is used in, for example, a refrigerator, a freezer, an air conditioner, a water heater, etc., high efficiency and low cost are required.
 ところで、単一シリンダーを有する単気筒密閉型圧縮機の場合、圧縮部は、単一の圧縮機構で構成される。圧縮機構は、円環状のシリンダーと、シリンダーの内周部に配置されて偏芯回転をする円環状のロータリーピストンと、シリンダーに形成されたベーン溝に配置されてシリンダーの径方向に沿って進退自在なベーンと、ベーンをシリンダーの中心軸に向かう方向に押し付ける付勢手段(例えばコイルばね)とを備えている。更に、圧縮機構は、ロータリーピストンを偏芯回転させるための偏芯軸部が形成されたクランク軸と、クランク軸を回転自在に支持しかつシリンダーの両端面を閉塞する一対の端板とを備えている。そして、シリンダーの内周面とロータリーピストンの外周面と一対の端板とによって囲まれた空間が、偏芯回転するロータリーピストンに向かって進退自在なベーンによって、それぞれ体積が増減する一対の室(以下、「圧縮室」と称す)に二分割されている。すなわち、体積が徐々に増加する位相において吸引された冷媒は、体積が徐々に減少する位相において圧縮される機構になっている。 By the way, in the case of a single cylinder hermetic compressor having a single cylinder, the compression section is composed of a single compression mechanism. The compression mechanism is arranged in an annular cylinder, an annular rotary piston that is arranged on the inner periphery of the cylinder and rotates eccentrically, and a vane groove formed in the cylinder, and advances and retreats along the radial direction of the cylinder. A free vane and urging means (for example, a coil spring) for pressing the vane in a direction toward the central axis of the cylinder are provided. The compression mechanism further includes a crankshaft formed with an eccentric shaft portion for eccentrically rotating the rotary piston, and a pair of end plates that rotatably support the crankshaft and close both end faces of the cylinder. ing. A space surrounded by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotary piston, and the pair of end plates is a pair of chambers whose volumes are increased or decreased by vanes that can move forward and backward toward the rotary piston that rotates eccentrically ( Hereinafter, it is divided into two (referred to as “compression chambers”). That is, the refrigerant sucked in the phase in which the volume gradually increases is compressed in the phase in which the volume gradually decreases.
 一方、2シリンダーを有する多気筒密閉型圧縮機においては、圧縮部は、基本的に前記単気筒密閉型圧縮機と同様の圧縮機構が仕切板を挟んで2層(2段)に配置された構成を有している。これらの圧縮機構を貫通して、冷媒を一方の圧縮機構のマフラー室(以下、「第1マフラー室」と称す)から他方の圧縮機構のマフラー室(以下、「第2マフラー室」と称す)に流す冷媒流路が設けられている。 On the other hand, in a multi-cylinder hermetic compressor having two cylinders, the compression unit is basically arranged in two layers (two stages) with a partition plate between the compression mechanisms similar to those of the single-cylinder hermetic compressor. It has a configuration. Through these compression mechanisms, the refrigerant passes from the muffler chamber of one compression mechanism (hereinafter referred to as “first muffler chamber”) to the muffler chamber of the other compression mechanism (hereinafter referred to as “second muffler chamber”). A refrigerant flow path is provided.
 この多気筒密閉型圧縮機において、一方の圧縮機構から吐出された冷媒ガスは、一旦、環状の第1マフラー室へ放出される。その後、第1マフラー室へ放出された冷媒ガスは、冷媒流路を通り、環状の第2マフラー室で他方の圧縮機構から吐出された冷媒ガスと合流し、シェル内に吐出される。 In this multi-cylinder hermetic compressor, the refrigerant gas discharged from one compression mechanism is once released into the annular first muffler chamber. Thereafter, the refrigerant gas discharged into the first muffler chamber passes through the refrigerant flow path, merges with the refrigerant gas discharged from the other compression mechanism in the annular second muffler chamber, and is discharged into the shell.
 多気筒密閉型圧縮機では、一方の圧縮機構で圧縮されて第1マフラー室へ放出された冷媒ガスは、冷媒流路を通じて他の圧縮機構の第2マフラー室へ送られる。そのため、冷媒ガスが冷媒流路を通過する際、圧力損失が発生する。この冷媒ガスが冷媒流路を通過する際の圧力損失は、(1)冷媒流路の流路径を大きくする、(2)冷媒流路の流路数を多くする、の2通りの手法によって低減させることができる。 In the multi-cylinder hermetic compressor, the refrigerant gas compressed by one compression mechanism and discharged to the first muffler chamber is sent to the second muffler chamber of the other compression mechanism through the refrigerant flow path. Therefore, pressure loss occurs when the refrigerant gas passes through the refrigerant flow path. The pressure loss when this refrigerant gas passes through the refrigerant flow path is reduced by two methods: (1) increasing the diameter of the refrigerant flow path and (2) increasing the number of refrigerant flow paths. Can be made.
 しかし、前記手法(1)、又は前記手法(2)のいずれにおいても、圧縮部の限られたスペースに冷媒流路を設置する必要がある。このため、流路面積を拡大するには限度があり、効果的に流路を設置することができないという問題があった。 However, in both the method (1) and the method (2), it is necessary to install a refrigerant flow path in a limited space of the compression unit. For this reason, there is a limit in enlarging the channel area, and there is a problem that the channel cannot be effectively installed.
 例えば、圧縮機構相互のマフラー室を連通させる冷媒流路の仕切板通過部である連通穴を拡張し、この拡張した連通穴によって、冷媒ガスの圧力脈動を冷媒流路の途中で低減させるようにしたものが提案されている(例えば、特許文献1参照)。 For example, a communication hole that is a partition plate passage portion of the refrigerant flow path that communicates the muffler chambers of the compression mechanisms is expanded, and the pressure pulsation of the refrigerant gas is reduced in the middle of the refrigerant flow path by the expanded communication hole. Have been proposed (see, for example, Patent Document 1).
 また、冷媒流路を複数分割して設け、冷媒流路の設置スペースの確保と流路面積の拡大を図れるようにしたものが提案されている(例えば、特許文献2参照)。 In addition, there has been proposed one in which the refrigerant flow path is divided into a plurality of parts so that the space for installing the refrigerant flow path can be secured and the flow area can be increased (for example, see Patent Document 2).
特開2013-019370号公報(請求項1、図1、図2)JP 2013-019370 A (Claim 1, FIG. 1, FIG. 2) 特開2013-204465号公報(図2、図3)JP 2013-204465 A (FIGS. 2 and 3)
 しかしながら、特許文献1および2に記載の技術においては、以下の(a)および(b)のような問題があった。
 (a)圧縮機構には、吸入口、吐出ポート、部品を締結するボルト穴などが配置されているため、冷媒流路を効果的に設けることができない。また、吸入口、吐出ポート、ボルト穴が設けられることにより、構成部品の強度にも制限があるため、冷媒流路を自由に配置することができない。
 (b)流路数を増加させるということも、(a)の理由同様、困難である。
However, the techniques described in Patent Documents 1 and 2 have the following problems (a) and (b).
(A) Since the compression mechanism is provided with a suction port, a discharge port, a bolt hole for fastening components, and the like, a refrigerant flow path cannot be effectively provided. Further, since the suction port, the discharge port, and the bolt hole are provided, the strength of the component parts is also limited, so that the refrigerant flow path cannot be freely arranged.
(B) It is difficult to increase the number of flow paths as well as the reason (a).
 本発明は、前記のような課題を解決するためになされたもので、冷媒圧損の増加を防ぎ、圧縮機効率を向上させることができる多気筒密閉型圧縮機を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a multi-cylinder hermetic compressor that can prevent an increase in refrigerant pressure loss and improve the compressor efficiency.
 本発明に係る多気筒密閉型圧縮機は、密閉容器と、前記密閉容器内に収容され、第1圧縮機構および第2圧縮機構を有する圧縮部と、前記圧縮部に駆動力を伝達するクランク軸と、前記クランク軸の軸芯方向において前記圧縮部の一端側に配置され、前記第1圧縮機構で圧縮された冷媒が第1吐出ポートを介して吐出される環状の第1マフラー室と、前記軸芯方向において前記圧縮部の他端側に配置され、前記第2圧縮機構で圧縮された冷媒が第2吐出ポートを介して吐出される環状の第2マフラー室と、前記第1マフラー室と前記第2マフラー室とを連通させ、前記第2マフラー室内の冷媒を前記第1マフラー室に導く複数の冷媒流路と、前記第1マフラー室内の冷媒を前記密閉容器内の空間に吐出する吐出口と、を備え、前記第1圧縮機構および前記第2圧縮機構のそれぞれは、シリンダーと、前記シリンダーの内周面に沿って偏芯回転するロータリーピストンと、前記シリンダーの内周面と前記ロータリーピストンの外周面との間の空間を仕切るベーンと、前記シリンダーに設けられ、前記ベーンを進退自在に収容するベーン溝と、を有しており、前記複数の冷媒流路は、前記第1圧縮機構のシリンダーと前記第2圧縮機構のシリンダーとを貫通して設けられており、前記第1吐出ポートにおける前記第1マフラー室側には、リード弁構造を有し一端に固定端を備えた逆止弁が設けられており、前記第1吐出ポートは、前記固定端に対し、前記クランク軸を中心とした周方向において一回転方向にずれて配置されており、前記複数の冷媒流路のうち、前記回転方向において前記第1吐出ポートから最も遠い位置に配置された冷媒流路は、他の少なくとも1つの冷媒流路よりも小さい断面積を有するものである。 A multi-cylinder hermetic compressor according to the present invention includes a hermetic container, a compression part that is accommodated in the hermetic container and includes a first compression mechanism and a second compression mechanism, and a crankshaft that transmits driving force to the compression part. And an annular first muffler chamber that is disposed on one end side of the compression portion in the axial direction of the crankshaft and in which the refrigerant compressed by the first compression mechanism is discharged through a first discharge port; An annular second muffler chamber that is disposed on the other end side of the compression unit in the axial direction and that is compressed by the second compression mechanism is discharged through a second discharge port; and the first muffler chamber; A plurality of refrigerant flow paths that communicate with the second muffler chamber, guide the refrigerant in the second muffler chamber to the first muffler chamber, and discharge that discharges the refrigerant in the first muffler chamber to the space in the sealed container. An outlet, and the first compression Each of the structure and the second compression mechanism includes a cylinder, a rotary piston that rotates eccentrically along the inner peripheral surface of the cylinder, and a space between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotary piston. A partition vane, and a vane groove that is provided in the cylinder and accommodates the vane so as to freely move back and forth, and the plurality of refrigerant flow paths include the cylinder of the first compression mechanism and the second compression mechanism. A check valve having a reed valve structure and having a fixed end at one end is provided on the first muffler chamber side of the first discharge port. The one discharge port is arranged so as to be shifted in one rotation direction in the circumferential direction around the crankshaft with respect to the fixed end, and among the plurality of refrigerant flow paths, in the rotation direction Serial refrigerant flow path is disposed in a position farthest from the first discharge port, and has a smaller cross-sectional area than the other of the at least one coolant channel.
 本発明によれば、多気筒密閉型圧縮機における冷媒圧損の増加を防ぎ、圧縮機効率を向上させることができる。 According to the present invention, an increase in refrigerant pressure loss in a multi-cylinder hermetic compressor can be prevented, and the compressor efficiency can be improved.
本発明の実施の形態1に係る多気筒密閉型圧縮機の全体構成を示す側面視の断面図である。It is sectional drawing of the side view which shows the whole structure of the multicylinder hermetic compressor which concerns on Embodiment 1 of this invention. 図1の多気筒密閉型圧縮機の圧縮部を示す側面視の部分断面図である。It is a fragmentary sectional view of the side view which shows the compression part of the multi-cylinder hermetic compressor of FIG. 図1のA-A矢視断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. 図1のB-B矢視断面図である。FIG. 3 is a cross-sectional view taken along the line BB in FIG. 図4のC-C矢視断面図である。FIG. 5 is a sectional view taken along the line CC in FIG. 4. 本発明の実施の形態1に係る多気筒密閉型圧縮機を空気調和機に適用した場合の年間運転効率を示すグラフである。It is a graph which shows the annual operation efficiency at the time of applying the multi-cylinder closed type compressor which concerns on Embodiment 1 of this invention to an air conditioner. 本発明の実施の形態2に係る多気筒密閉型圧縮機の冷媒流路の出入口形状を示す図3相当の断面図である。It is sectional drawing equivalent to FIG. 3 which shows the inlet / outlet shape of the refrigerant | coolant flow path of the multicylinder closed compressor which concerns on Embodiment 2 of this invention. 図7のD-D矢視断面図である。FIG. 8 is a cross-sectional view taken along line DD in FIG. 7.
実施の形態1.
 以下、本発明の実施の形態について説明する。
 図1は本発明の実施の形態1に係る多気筒密閉型圧縮機の全体構成を示す側面視の断面図である。図2は図1の多気筒密閉型圧縮機の圧縮部を示す側面視の部分断面図である。図3は図1のA-A矢視断面図である。図4は図1のB-B矢視断面図である。なお、以上の各図は模式的に描かれたものであるから、本発明は図示された形態に限定されるものではない。
Embodiment 1 FIG.
Embodiments of the present invention will be described below.
FIG. 1 is a side sectional view showing the overall configuration of a multi-cylinder hermetic compressor according to Embodiment 1 of the present invention. FIG. 2 is a partial sectional view in a side view showing a compression portion of the multi-cylinder hermetic compressor of FIG. 3 is a cross-sectional view taken along line AA in FIG. 4 is a cross-sectional view taken along the line BB in FIG. In addition, since each said figure is drawn typically, this invention is not limited to the form shown in figure.
 図1~図4に示すように、本実施の形態1の多気筒密閉型圧縮機100は、密閉容器であるシェル101と、シェル101の内部に設置された駆動源である電動機部(以下、「モーター」と称す)102と、同じくシェル101の内部に設置された圧縮部103とを備えている。以下、各部の構成をさらに詳しく説明する。 As shown in FIGS. 1 to 4, the multi-cylinder hermetic compressor 100 according to the first embodiment includes a shell 101 that is a hermetic container, and an electric motor unit (hereinafter referred to as a drive source) installed inside the shell 101. 102) (referred to as “motor”) and a compression unit 103 that is also installed inside the shell 101. Hereinafter, the configuration of each unit will be described in more detail.
(シェル)
 シェル101は、上部シェル101aと中央部シェル101bとを有する。また、上部シェル101aと略同形の下部シェルがあってもよい。上部シェル101aには、外部からモーター102に電力を供給するためのガラス端子104と、圧縮された冷媒をシェル101すなわち多気筒密閉型圧縮機100の外部に吐出するための吐出パイプ105とが設けられている。
(shell)
The shell 101 has an upper shell 101a and a central shell 101b. There may also be a lower shell that is substantially the same shape as the upper shell 101a. The upper shell 101a is provided with a glass terminal 104 for supplying power to the motor 102 from the outside, and a discharge pipe 105 for discharging the compressed refrigerant to the outside of the shell 101, that is, the multi-cylinder hermetic compressor 100. It has been.
 中央部シェル101bには、モーター102と、圧縮部103を構成する第1圧縮機構10aおよび第2圧縮機構10bと、第1圧縮機構10aの第1吸込口16a(図4参照)および第2圧縮機構10bの第2吸込口16b(図3参照)にそれぞれ一端が接続されて冷媒を導く第1吸入パイプ106aおよび第2吸入パイプ106bとが固定されている。第1吸入パイプ106aおよび第2吸入パイプ106bのそれぞれの他端は、吸入マフラー107に接続されている。吸入マフラー107内では、冷媒の気液分離、及び冷媒中のゴミの除去が行われる。 The central shell 101b includes a motor 102, a first compression mechanism 10a and a second compression mechanism 10b constituting the compression unit 103, a first suction port 16a (see FIG. 4) and a second compression of the first compression mechanism 10a. A first suction pipe 106a and a second suction pipe 106b that guide one refrigerant are fixed to the second suction port 16b (see FIG. 3) of the mechanism 10b. The other ends of the first suction pipe 106 a and the second suction pipe 106 b are connected to the suction muffler 107. In the suction muffler 107, gas-liquid separation of the refrigerant and removal of dust in the refrigerant are performed.
(モーター)
 モーター102は、固定子102aと回転子102bとを有している。回転子102bは、クランク軸50(これについては別途詳細に説明する)に取り付けられている。モーター102で発生した回転トルクは、クランク軸50によって第1圧縮機構10aおよび第2圧縮機構10bに伝達される。
(motor)
The motor 102 has a stator 102a and a rotor 102b. The rotor 102b is attached to the crankshaft 50 (which will be described in detail separately). The rotational torque generated by the motor 102 is transmitted to the first compression mechanism 10a and the second compression mechanism 10b by the crankshaft 50.
(圧縮部)
 圧縮部103は、第1圧縮機構10aおよび第2圧縮機構10bが、仕切板30を挟んで積層され、これらを積み重ねたものの両端に、クランク軸50を支持する第1端板20aと第2端板20bが配置された構成を有している。そして、これら第1圧縮機構10a、第2圧縮機構10b、仕切板30、第1端板20aおよび第2端板20bは、図2のように長さの異なる二種類のボルト71a,71bによって一体に締結されるようになっている。
(Compression part)
The compression unit 103 includes a first end plate 20a and a second end that support the crankshaft 50 at both ends of the first compression mechanism 10a and the second compression mechanism 10b that are stacked with the partition plate 30 interposed therebetween. The board 20b is arranged. The first compression mechanism 10a, the second compression mechanism 10b, the partition plate 30, the first end plate 20a and the second end plate 20b are integrated by two types of bolts 71a and 71b having different lengths as shown in FIG. To be concluded.
 第1圧縮機構10aは、円環状の第1シリンダー11aと、第1シリンダー11aの内周部に配置され、第1シリンダー11aの内周面に沿って偏芯回転する円環状の第1ロータリーピストン(以下、「第1ピストン」と称す)12aとを具備している。また、第1圧縮機構10aは、第1シリンダー11aに形成された第1ベーン溝13aと、第1ベーン溝13a内に第1シリンダー11aの径方向に沿って進退自在に配置された第1ベーン14aと、第1ベーン14aを第1ピストン12aの外周に押し付ける第1ばね15aと、を具備している。第1ピストン12aの外周面は、第1シリンダー11aの内周面に線状の当接位置で当接する。第1ピストン12aの偏芯回転に伴って、線状の当接位置は円周方向に移動する。第1シリンダー11aの開口端は、第1端板20aにて閉塞されている。 The first compression mechanism 10a is an annular first cylinder 11a and an annular first rotary piston that is disposed on the inner peripheral portion of the first cylinder 11a and rotates eccentrically along the inner peripheral surface of the first cylinder 11a. (Hereinafter referred to as “first piston”) 12a. The first compression mechanism 10a includes a first vane groove 13a formed in the first cylinder 11a, and a first vane disposed in the first vane groove 13a so as to advance and retract along the radial direction of the first cylinder 11a. 14a and a first spring 15a that presses the first vane 14a against the outer periphery of the first piston 12a. The outer peripheral surface of the first piston 12a contacts the inner peripheral surface of the first cylinder 11a at a linear contact position. With the eccentric rotation of the first piston 12a, the linear contact position moves in the circumferential direction. The open end of the first cylinder 11a is closed by the first end plate 20a.
 同様に、第2圧縮機構10bは、円環状の第2シリンダー11bと、第2シリンダー11bの内周部に配置され、第2シリンダー11bの内周面に沿って偏芯回転する円環状の第2ロータリーピストン(以下、「第2ピストン」と称す)12bとを具備している。また、第2圧縮機構10bは、第2シリンダー11bに形成された第2ベーン溝13bと、第2ベーン溝13b内に第2シリンダー11bの径方向に沿って進退自在に配置された第2ベーン14bと、第2ベーン14bを第2ピストン12bの外周に押し付ける第2ばね15bと、を具備している。第2ピストン12bの外周面は、第2シリンダー11bの内周面に線状の当接位置で当接する。第2ピストン12bの偏芯回転に伴って、線状の当接位置は円周方向に移動する。第2シリンダー11bの開口端は、第2端板20bにて閉塞されている。
 なお、第1シリンダー11aの内径と第2シリンダー11bの内径とは等しくなるように設計されている。
Similarly, the second compression mechanism 10b is an annular second cylinder 11b and an annular second cylinder 11b disposed on the inner peripheral portion of the second cylinder 11b and rotating eccentrically along the inner peripheral surface of the second cylinder 11b. 2 rotary pistons (hereinafter referred to as “second pistons”) 12b. The second compression mechanism 10b includes a second vane groove 13b formed in the second cylinder 11b, and a second vane disposed in the second vane groove 13b so as to advance and retract along the radial direction of the second cylinder 11b. 14b and a second spring 15b that presses the second vane 14b against the outer periphery of the second piston 12b. The outer peripheral surface of the second piston 12b contacts the inner peripheral surface of the second cylinder 11b at a linear contact position. With the eccentric rotation of the second piston 12b, the linear contact position moves in the circumferential direction. The open end of the second cylinder 11b is closed by the second end plate 20b.
The inner diameter of the first cylinder 11a and the inner diameter of the second cylinder 11b are designed to be equal.
(クランク軸)
 クランク軸50は、第1軸受挿入部52a、仕切板挿入部53、および第2軸受挿入部52bが同軸に配置された構成を有している。第1軸受挿入部52aと仕切板挿入部53との間には、一方に向かって偏芯した第1偏芯軸部51aが形成されている。第2軸受挿入部52bと仕切板挿入部53との間には、他方に向かって偏芯した第2偏芯軸部51bが形成されている。第1偏芯軸部51aと第2偏芯軸部51bとは、互いの位相が180°異なる方向に偏芯している。第1偏芯軸部51aと第2偏芯軸部51bの各中心軸はクランク軸50の軸芯に平行である。
(Crankshaft)
The crankshaft 50 has a configuration in which a first bearing insertion portion 52a, a partition plate insertion portion 53, and a second bearing insertion portion 52b are arranged coaxially. A first eccentric shaft portion 51a that is eccentric toward one side is formed between the first bearing insertion portion 52a and the partition plate insertion portion 53. Between the 2nd bearing insertion part 52b and the partition plate insertion part 53, the 2nd eccentric shaft part 51b eccentric toward the other is formed. The first eccentric shaft portion 51a and the second eccentric shaft portion 51b are eccentric in directions in which the phases are different from each other by 180 °. Each central axis of the first eccentric shaft portion 51 a and the second eccentric shaft portion 51 b is parallel to the axis of the crankshaft 50.
 また、第1軸受挿入部52aは、第1端板20aの内周面に設けられた第1軸受25aに回転自在に支持されている。第2軸受挿入部52bは、第2端板20bの内周面に設けられた第2軸受25bに回転自在に支持されている。仕切板挿入部53は、仕切板30の中央に形成された中央貫通孔30aを貫通している。 Further, the first bearing insertion portion 52a is rotatably supported by the first bearing 25a provided on the inner peripheral surface of the first end plate 20a. The 2nd bearing insertion part 52b is rotatably supported by the 2nd bearing 25b provided in the internal peripheral surface of the 2nd end plate 20b. The partition plate insertion portion 53 passes through a central through hole 30 a formed at the center of the partition plate 30.
(第1マフラー室および第2マフラー室)
 第1圧縮機構10aの第1端板20aには、図4に示すように、第1圧縮室40aに連通する第1吐出ポート17aと、第1吐出ポート17aを冷媒流れの下流側から設定圧で閉塞する板ばねで構成された第1逆止弁18aとが設けられている。また、第1端板20aには、第1吐出ポート17aを覆うように第1カバー19aが嵌合されている。そして、第1カバー19aと第1端板20aとによって、第1マフラー室60aが形成されている。第1マフラー室60aは、クランク軸50を中心として環状に形成されており、クランク軸50の軸芯方向において圧縮部103の上端側に配置される。
 したがって、第1圧縮機構10aで圧縮され、設定圧に達した冷媒は、第1吐出ポート17aを通って第1マフラー室60aへ放出される。
(First muffler chamber and second muffler chamber)
As shown in FIG. 4, the first end plate 20a of the first compression mechanism 10a has a first discharge port 17a communicating with the first compression chamber 40a and a first discharge port 17a at a set pressure from the downstream side of the refrigerant flow. And a first check valve 18a composed of a leaf spring that is closed at the same time. A first cover 19a is fitted to the first end plate 20a so as to cover the first discharge port 17a. The first muffler chamber 60a is formed by the first cover 19a and the first end plate 20a. The first muffler chamber 60 a is formed in an annular shape around the crankshaft 50, and is disposed on the upper end side of the compression portion 103 in the axial direction of the crankshaft 50.
Therefore, the refrigerant compressed by the first compression mechanism 10a and reaching the set pressure is discharged to the first muffler chamber 60a through the first discharge port 17a.
 第1カバー19aには、2つの吐出口21a,21bが設けられている。第1マフラー室60a内の冷媒は、吐出口21a,21bを通ってシェル101内の空間に放出される。ここで、クランク軸50(例えば、クランク軸50の軸芯)を中心とした周方向において、ベーン溝13aの位置を0°とし、図4中の反時計回り方向(後述する冷媒の全体的な流れ方向)を正方向とする。このとき、吐出口21aは角度θ1(0°≦θ1<360°)となる位置に設けられており、吐出口21bは角度θ2(θ1<θ2<360°)となる位置に設けられている。なお、吐出口21a,21bの周方向の位置は、吐出口21a,21bのそれぞれの中心位置によって特定される。本例では、吐出口21a,21bは、クランク軸50を挟んで互いに対向する位置に設けられている。例えば、角度θ1は約90°であり、角度θ2は約270°である。 The first cover 19a is provided with two discharge ports 21a and 21b. The refrigerant in the first muffler chamber 60a is discharged to the space in the shell 101 through the discharge ports 21a and 21b. Here, in the circumferential direction around the crankshaft 50 (for example, the axis of the crankshaft 50), the position of the vane groove 13a is set to 0 °, and the counterclockwise direction in FIG. (Flow direction) is the positive direction. At this time, the discharge port 21a is provided at a position at an angle θ1 (0 ° ≦ θ1 <360 °), and the discharge port 21b is provided at a position at an angle θ2 (θ1 <θ2 <360 °). The circumferential positions of the discharge ports 21a and 21b are specified by the center positions of the discharge ports 21a and 21b. In this example, the discharge ports 21a and 21b are provided at positions facing each other with the crankshaft 50 interposed therebetween. For example, the angle θ1 is about 90 ° and the angle θ2 is about 270 °.
 第2圧縮機構10bの第2端板20bには、図3に示すように、第2圧縮室40bに連通する第2吐出ポート17bと、第2吐出ポート17bを冷媒流れの下流側から設定圧で閉塞する板ばねで構成された第2逆止弁18bとが設けられている。また、第2端板20bには、第2吐出ポート17bを覆うように第2カバー19bが嵌合されている。そして、第2カバー19bと第2端板20bとによって、第2マフラー室60bが形成されている。第2マフラー室60bは、クランク軸50を中心として環状に形成されており、クランク軸50の軸芯方向において圧縮部103の下端側に配置される。 As shown in FIG. 3, the second end plate 20 b of the second compression mechanism 10 b has a second discharge port 17 b communicating with the second compression chamber 40 b and a second discharge port 17 b at a set pressure from the downstream side of the refrigerant flow. And a second check valve 18b constituted by a leaf spring that is closed at the same time. A second cover 19b is fitted to the second end plate 20b so as to cover the second discharge port 17b. A second muffler chamber 60b is formed by the second cover 19b and the second end plate 20b. The second muffler chamber 60 b is formed in an annular shape around the crankshaft 50, and is disposed on the lower end side of the compression portion 103 in the axial direction of the crankshaft 50.
 図5は、図4のC-C矢視断面図であり、第1逆止弁18aの構成を示している。図5に示すように、第1逆止弁18aは、第1吐出ポート17aの第1マフラー室60a側の開口端17a2を冷媒の吐出圧力に応じて開閉するリード弁構造を有している。第1逆止弁18aは、板ばね状の弁体81と、弁体81の撓みを規制する弁押さえ82と、を有している。弁体81の一端部に位置する固定端81aは、弁押さえ82の一端部と共に、リベット83によって第1端板20aに固定されている。第1圧縮室40a内の冷媒圧力と第1マフラー室60a内の冷媒圧力との圧力差が小さいときには、弁体81の他端部側が第1吐出ポート17aの開口端17a2に当接している。これにより、第1逆止弁18aは閉状態になっている。一方、第1圧縮室40a内の冷媒圧力と第1マフラー室60a内の冷媒圧力との圧力差が大きくなると、図5中の二点鎖線で示すように、弁体81の撓みによって弁体81の他端部側(自由端側)が第1吐出ポート17aの開口端17a2から離れる。これにより、第1逆止弁18aが開状態となり、第1圧縮室40a内の冷媒が第1吐出ポート17aを介して第1マフラー室60a内に吐出される。このときの弁体81は、固定端81aから離れるほど開口端17a2から離れるように、第1吐出ポート17aに対して傾斜する。したがって、第1吐出ポート17aから第1マフラー室60a内に流入する冷媒は、図5中の太矢印で示すように、弁体81によって、固定端81aから離れる方向に導かれる。 FIG. 5 is a cross-sectional view taken along the line CC of FIG. 4 and shows the configuration of the first check valve 18a. As shown in FIG. 5, the first check valve 18a has a reed valve structure that opens and closes the opening end 17a2 on the first muffler chamber 60a side of the first discharge port 17a according to the discharge pressure of the refrigerant. The first check valve 18 a includes a leaf spring-like valve body 81 and a valve presser 82 that restricts the deflection of the valve body 81. A fixed end 81 a located at one end of the valve body 81 is fixed to the first end plate 20 a by a rivet 83 together with one end of the valve presser 82. When the pressure difference between the refrigerant pressure in the first compression chamber 40a and the refrigerant pressure in the first muffler chamber 60a is small, the other end side of the valve body 81 is in contact with the opening end 17a2 of the first discharge port 17a. As a result, the first check valve 18a is closed. On the other hand, when the pressure difference between the refrigerant pressure in the first compression chamber 40a and the refrigerant pressure in the first muffler chamber 60a increases, the valve body 81 is bent due to the deflection of the valve body 81 as shown by a two-dot chain line in FIG. The other end side (the free end side) is separated from the opening end 17a2 of the first discharge port 17a. As a result, the first check valve 18a is opened, and the refrigerant in the first compression chamber 40a is discharged into the first muffler chamber 60a through the first discharge port 17a. The valve body 81 at this time is inclined with respect to the first discharge port 17a so as to be away from the opening end 17a2 as it is away from the fixed end 81a. Therefore, the refrigerant flowing into the first muffler chamber 60a from the first discharge port 17a is guided in a direction away from the fixed end 81a by the valve body 81 as shown by a thick arrow in FIG.
 図4に示すように、第1逆止弁18aの固定端81aと第1吐出ポート17aとは、クランク軸50を中心とする環状の第1マフラー室60aにおいて、周方向にずれた位置に配置されている。これにより、第1マフラー室60a内の冷媒には、全体として、一方の回転方向に向かう周方向の流れが生じる。図4において、第1吐出ポート17aは、固定端81aに対して反時計回り方向にずれた位置に設けられている。このため、図4において、第1マフラー室60a内の冷媒の全体的な流れ方向は反時計回り方向となる。 As shown in FIG. 4, the fixed end 81 a of the first check valve 18 a and the first discharge port 17 a are arranged at positions shifted in the circumferential direction in the annular first muffler chamber 60 a centering on the crankshaft 50. Has been. As a result, the refrigerant in the first muffler chamber 60a generates a circumferential flow in one rotational direction as a whole. In FIG. 4, the first discharge port 17a is provided at a position shifted in the counterclockwise direction with respect to the fixed end 81a. For this reason, in FIG. 4, the overall flow direction of the refrigerant in the first muffler chamber 60a is the counterclockwise direction.
 第2逆止弁18bは、第1逆止弁18aと同様に弁体81、弁押さえ82およびリベット83を有しており、第1逆止弁18aと上下対称に配置されている。したがって、上記と同様の理由により、第2マフラー室60b内の冷媒には、全体として、一方の回転方向に向かう周方向の流れが生じる。図3において、第2吐出ポート17bは、第2逆止弁18bの固定端81aに対して時計回り方向にずれた位置に設けられている。このため、図3において、第2マフラー室60b内の冷媒の全体的な流れ方向は時計回り方向となる。 Like the first check valve 18a, the second check valve 18b has a valve body 81, a valve presser 82, and a rivet 83, and is arranged vertically symmetrically with the first check valve 18a. Therefore, for the same reason as described above, the refrigerant in the second muffler chamber 60b generates a circumferential flow in one rotational direction as a whole. In FIG. 3, the second discharge port 17b is provided at a position shifted in the clockwise direction with respect to the fixed end 81a of the second check valve 18b. For this reason, in FIG. 3, the overall flow direction of the refrigerant in the second muffler chamber 60b is the clockwise direction.
(冷媒流路)
 第1マフラー室60aと第2マフラー室60bとの間は、少なくとも1つ(本例では3つ)の冷媒流路33a,33b,33cを介して連通している。図1では、1つの冷媒流路のみを冷媒流路33として示している。冷媒流路33a,33b,33cは、例えば円形状の断面形状を有している。第2マフラー室60bに放出された冷媒は、冷媒流路33a,33b,33cを介して第1マフラー室60aに導かれる。冷媒流路33a,33b,33cは、第1圧縮室40aおよび第2圧縮室40bに隣接して配置されている。冷媒流路33a,33b,33cは、クランク軸50に平行な方向に延伸している。冷媒流路33a,33b,33cは、第1端板20a、第1圧縮機構10aの第1シリンダー11a、仕切板30、第2圧縮機構10bの第2シリンダー11b、および第2端板20bを貫通して形成されている。
(Refrigerant flow path)
The first muffler chamber 60a and the second muffler chamber 60b communicate with each other via at least one (three in this example) refrigerant flow paths 33a, 33b, and 33c. In FIG. 1, only one refrigerant channel is shown as the refrigerant channel 33. The refrigerant flow paths 33a, 33b, and 33c have, for example, a circular cross-sectional shape. The refrigerant discharged to the second muffler chamber 60b is guided to the first muffler chamber 60a via the refrigerant flow paths 33a, 33b, and 33c. The refrigerant flow paths 33a, 33b, and 33c are disposed adjacent to the first compression chamber 40a and the second compression chamber 40b. The refrigerant flow paths 33a, 33b, and 33c extend in a direction parallel to the crankshaft 50. The refrigerant flow paths 33a, 33b, and 33c penetrate the first end plate 20a, the first cylinder 11a of the first compression mechanism 10a, the partition plate 30, the second cylinder 11b of the second compression mechanism 10b, and the second end plate 20b. Is formed.
 冷媒流路33a,33b,33cは、第1圧縮室40aおよび第2圧縮室40bを囲み、クランク軸50を中心とした周方向に配列している。クランク軸50を中心とした周方向において、ベーン溝13a,13bの位置を0°としたとき、冷媒流路33a,33b,33cは、圧縮部103の軸線方向(下面側)から見て時計回り(又は反時計回り)に90°以上270°以下の範囲のみに形成されている。また、冷媒流路33a,33b,33cは、クランク軸50を中心とした周方向において、ベーン溝13a、13bの位置を0°とし、図4中の反時計回り方向(冷媒の全体的な流れ方向)を正方向としたとき、θ1以上θ2以下の角度範囲のみに形成されている。なお、冷媒流路33a,33b,33cの周方向の位置は、冷媒流路33a,33b,33cのそれぞれの中心位置によって特定される。 The refrigerant flow paths 33a, 33b, 33c surround the first compression chamber 40a and the second compression chamber 40b, and are arranged in the circumferential direction around the crankshaft 50. When the positions of the vane grooves 13a and 13b are set to 0 ° in the circumferential direction around the crankshaft 50, the refrigerant flow paths 33a, 33b, and 33c are clockwise when viewed from the axial direction (lower surface side) of the compression unit 103. It is formed only in the range of 90 ° to 270 ° (or counterclockwise). Further, the refrigerant flow paths 33a, 33b, and 33c have the vane grooves 13a and 13b positioned at 0 ° in the circumferential direction centered on the crankshaft 50, and the counterclockwise direction in FIG. When the (direction) is the positive direction, it is formed only in the angle range of θ1 to θ2. Note that the circumferential positions of the refrigerant flow paths 33a, 33b, and 33c are specified by the respective center positions of the refrigerant flow paths 33a, 33b, and 33c.
 上述のように、逆止弁18a,18bの構造に基づく冷媒の全体的な流れ方向は、図3に示す第2マフラー室60b内では時計回り方向であり、図4に示す第1マフラー室60a内では反時計回り方向である。冷媒流路33a,33b,33cのうち冷媒流路33cは、逆止弁18a,18bの構造に基づく冷媒の全体的な流れ方向において、吐出ポート17a,17bから最も遠い位置に配置されている。言い換えれば、冷媒流路33a,33b,33cのうち冷媒流路33cは、上記流れ方向とは逆の方向において、吐出ポート17a,17bから最も近い位置に配置されている。冷媒流路33cは、他の冷媒流路33a,33bよりも小さい断面積を有している。本例では、冷媒流路33a,33b,33cがいずれも円形状の断面形状を有しているため、冷媒流路33cは冷媒流路33a,33bよりも小径に形成されている。本例では、冷媒流路33a,33bは同一の断面積を有しているが、冷媒の全体的な流れ方向において吐出ポート17a,17bから最も近い冷媒流路33aは、冷媒流路33bよりも大きい断面積を有していてもよい。すなわち、冷媒の全体的な流れ方向において、吐出ポート17a,17bから近い冷媒流路ほど大きい断面積を有していてもよい。なお、冷媒流路の断面積とは、冷媒流路がクランク軸50の軸方向に貫通しているとして、その軸方向と垂直な面での冷媒流路の面積である。 As described above, the overall flow direction of the refrigerant based on the structure of the check valves 18a and 18b is the clockwise direction in the second muffler chamber 60b shown in FIG. 3, and the first muffler chamber 60a shown in FIG. In the counterclockwise direction. Of the refrigerant flow paths 33a, 33b, 33c, the refrigerant flow path 33c is disposed at a position farthest from the discharge ports 17a, 17b in the overall flow direction of the refrigerant based on the structure of the check valves 18a, 18b. In other words, among the refrigerant flow paths 33a, 33b, and 33c, the refrigerant flow path 33c is disposed at a position closest to the discharge ports 17a and 17b in the direction opposite to the flow direction. The refrigerant flow path 33c has a smaller cross-sectional area than the other refrigerant flow paths 33a and 33b. In this example, since the refrigerant channels 33a, 33b, and 33c all have a circular cross-sectional shape, the refrigerant channel 33c is formed with a smaller diameter than the refrigerant channels 33a and 33b. In this example, the refrigerant flow paths 33a and 33b have the same cross-sectional area, but the refrigerant flow path 33a closest to the discharge ports 17a and 17b in the overall flow direction of the refrigerant is more than the refrigerant flow path 33b. It may have a large cross-sectional area. In other words, the refrigerant flow path closer to the discharge ports 17a and 17b may have a larger cross-sectional area in the overall refrigerant flow direction. The cross-sectional area of the refrigerant flow path is an area of the refrigerant flow path in a plane perpendicular to the axial direction assuming that the refrigerant flow path penetrates in the axial direction of the crankshaft 50.
 図4において、逆止弁18a,18bの構造に基づく冷媒の全体的な流れ方向は反時計回り方向となるため、冷媒流路33aおよび吐出ポート17aから第1マフラー室60a内に放出された冷媒は、主に吐出口21aからシェル101内の空間に吐出される。冷媒流路33b,33cから第1マフラー室60a内に放出された冷媒は、主に吐出口21bからシェル101内の空間に吐出される。ただし、冷媒流路33bから第1マフラー室60a内に放出された冷媒の一部は、全体的な流れ方向とは逆方向に流れ、吐出口21aから吐出される。 In FIG. 4, since the overall flow direction of the refrigerant based on the structure of the check valves 18a and 18b is counterclockwise, the refrigerant discharged from the refrigerant flow path 33a and the discharge port 17a into the first muffler chamber 60a. Is mainly discharged from the discharge port 21a into the space in the shell 101. The refrigerant discharged from the refrigerant flow paths 33b and 33c into the first muffler chamber 60a is mainly discharged from the discharge port 21b into the space in the shell 101. However, a part of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a flows in the direction opposite to the overall flow direction and is discharged from the discharge port 21a.
(押しのけ量)
 冷媒流路33a,33b,33cの断面積の合計をS[mm]とし、第2圧縮機構10bの1回転当たりの押しのけ量をVst[cc]とした場合、合計断面積Sおよび押しのけ量Vstは、例えば、11[mm/cc]≦S/Vst≦20[mm/cc]の関係を満たすように設定されている。この理由は、後述する。
(Push amount)
When the sum of the cross-sectional areas of the refrigerant flow paths 33a, 33b, and 33c is S [mm 2 ] and the displacement per rotation of the second compression mechanism 10b is Vst [cc], the total cross-sectional area S and the displacement Vst Is set to satisfy the relationship of 11 [mm 2 / cc] ≦ S / Vst ≦ 20 [mm 2 / cc], for example. The reason for this will be described later.
(冷媒の圧縮)
 図1および図2のように第1偏芯軸部51aは第1ピストン12aの内周部を貫通し、第2偏芯軸部51bは第2ピストン12bの内周部を貫通している。そのため、クランク軸50の回転によって第1ピストン12aおよび第2ピストン12bは、一方が他方に対して180°位相が相違した状態で偏芯回転する。
(Compression of refrigerant)
As shown in FIGS. 1 and 2, the first eccentric shaft portion 51a penetrates the inner peripheral portion of the first piston 12a, and the second eccentric shaft portion 51b penetrates the inner peripheral portion of the second piston 12b. Therefore, the rotation of the crankshaft 50 causes the first piston 12a and the second piston 12b to rotate eccentrically in a state where one is 180 ° out of phase with the other.
 クランク軸50の回転によって偏芯回転する第1ピストン12aと、進退自在な第1ベーン14aとによって、二分割されている第1圧縮室40aの一方の室は、徐々に体積が増大する。また、これに伴い、二分割されている第1圧縮室40aの他方の室は、徐々に体積が減少する。そして、第1圧縮室40aの一方の室に相当する位置に第1吸込口16aが形成され、第1圧縮室40aの他方の室に相当する位置に第1吐出ポート17aが形成されている(図4参照)。すなわち、第1吸込口16aと第1吐出ポート17aとは、クランク軸50の軸線方向から見てクランク軸50の回転方向で第1ベーン14aを挟むように配置されている。つまり、冷媒は、第1吸込口16aから吸い込まれた後、圧縮されて第1吐出ポート17aから第1マフラー室60a内に排出される。 The volume of one chamber of the first compression chamber 40a divided into two is gradually increased by the first piston 12a that rotates eccentrically with the rotation of the crankshaft 50 and the first vane 14a that can advance and retreat. Accordingly, the volume of the other chamber of the first compression chamber 40a that is divided into two is gradually reduced. The first suction port 16a is formed at a position corresponding to one chamber of the first compression chamber 40a, and the first discharge port 17a is formed at a position corresponding to the other chamber of the first compression chamber 40a ( (See FIG. 4). That is, the first suction port 16a and the first discharge port 17a are arranged so as to sandwich the first vane 14a in the rotation direction of the crankshaft 50 when viewed from the axial direction of the crankshaft 50. That is, the refrigerant is sucked from the first suction port 16a, then compressed, and discharged from the first discharge port 17a into the first muffler chamber 60a.
 また、クランク軸50の回転によって偏芯回転する第2ピストン12bと、進退自在な第2ベーン14bとによって、二分割されている第2圧縮室40bの一方の室は、徐々に体積が増大する。また、これに伴い、二分割されている第2圧縮室40bの他方の室は、徐々に体積が減少する。そして、第2圧縮室40bの一方の室に相当する位置に第2吸込口16bが形成され、第2圧縮室40bの他方の室に相当する位置に第2吐出ポート17bが形成されている(図3参照)。すなわち、第2吸込口16bと第2吐出ポート17bとは、クランク軸50の軸線方向から見てクランク軸50の回転方向で第2ベーン14bを挟むように配置されている。つまり、冷媒は、第2吸込口16bから吸い込まれた後、圧縮されて第2吐出ポート17bから第2マフラー室60b内に排出される。そして、第2マフラー室60b内に排出された冷媒は、複数の冷媒流路33a,33b,33cを経由して第1マフラー室60a内に吐出される。 Further, the volume of one chamber of the second compression chamber 40b that is divided into two is gradually increased by the second piston 12b that rotates eccentrically with the rotation of the crankshaft 50 and the second vane 14b that can advance and retreat. . Accordingly, the volume of the other chamber of the second compression chamber 40b that is divided into two is gradually reduced. The second suction port 16b is formed at a position corresponding to one chamber of the second compression chamber 40b, and the second discharge port 17b is formed at a position corresponding to the other chamber of the second compression chamber 40b ( (See FIG. 3). That is, the second suction port 16b and the second discharge port 17b are arranged so as to sandwich the second vane 14b in the rotational direction of the crankshaft 50 when viewed from the axial direction of the crankshaft 50. That is, the refrigerant is sucked from the second suction port 16b, then compressed and discharged from the second discharge port 17b into the second muffler chamber 60b. And the refrigerant | coolant discharged | emitted in the 2nd muffler chamber 60b is discharged in the 1st muffler chamber 60a via several refrigerant | coolant flow path 33a, 33b, 33c.
 冷媒流路33a,33b,33cを経由して第1マフラー室60a内に吐出された冷媒および吐出ポート17aから第1マフラー室60a内に吐出された冷媒は、第1カバー19aの吐出口21a,21bからシェル101内に放出される。具体的には、冷媒流路33aから第1マフラー室60a内に放出された冷媒と、冷媒流路33bから第1マフラー室60a内に放出された冷媒の一部とは、吐出ポート17aに到達せずに、吐出口21aから放出される。冷媒流路33bから第1マフラー室60a内に放出された冷媒の残りと、冷媒流路33cから第1マフラー室60a内に放出された冷媒とは、吐出ポート17aに到達せずに、吐出口21bから放出される。また、吐出ポート17aから放出された冷媒は、冷媒流路33a,33b,33cを経由せずに、吐出口21aから放出される。 The refrigerant discharged into the first muffler chamber 60a via the refrigerant flow paths 33a, 33b, 33c and the refrigerant discharged into the first muffler chamber 60a from the discharge port 17a are discharged into the discharge ports 21a, 21b is discharged into the shell 101. Specifically, the refrigerant discharged from the refrigerant flow path 33a into the first muffler chamber 60a and a part of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a reach the discharge port 17a. Without being discharged from the discharge port 21a. The remainder of the refrigerant discharged from the refrigerant flow path 33b into the first muffler chamber 60a and the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a do not reach the discharge port 17a and are discharged from the discharge port. Released from 21b. The refrigerant discharged from the discharge port 17a is discharged from the discharge port 21a without passing through the refrigerant flow paths 33a, 33b, 33c.
 すなわち、冷媒流路33a,33b,33c、吐出ポート17aおよび吐出口21a,21bは、冷媒流路33a,33b,33cから放出された冷媒が吐出ポート17aまで到達したり、吐出ポート17aから放出された冷媒が冷媒流路33a,33b,33cまで到達したりしないように配置されている。これにより、第1マフラー室60a内に放出された冷媒は、冷媒流路33a,33b,33c又は吐出ポート17aに吸い込まれて逆流しないようになっている。 That is, the refrigerant flow paths 33a, 33b, 33c, the discharge port 17a, and the discharge ports 21a, 21b reach the discharge port 17a or are discharged from the discharge port 17a. The refrigerant is arranged so as not to reach the refrigerant flow paths 33a, 33b, 33c. As a result, the refrigerant discharged into the first muffler chamber 60a is sucked into the refrigerant flow paths 33a, 33b, 33c or the discharge port 17a and does not flow backward.
 図6は、本実施の形態1の多気筒密閉型圧縮機100を空気調和機に適用した場合の年間運転効率(APF)を示すグラフである。図6では、冷媒流路33a,33b,33cの合計断面積Sと第2圧縮機構10bの押しのけ量Vstとの比S/Vstと、年間運転効率と、の関係を示している。横軸はS/Vst[mm/cc]を表しており、縦軸は年間運転効率を表している。 FIG. 6 is a graph showing the annual operating efficiency (APF) when the multi-cylinder hermetic compressor 100 of the first embodiment is applied to an air conditioner. FIG. 6 shows the relationship between the ratio S / Vst between the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b, and the annual operating efficiency. The horizontal axis represents S / Vst [mm 2 / cc], and the vertical axis represents annual operation efficiency.
 なお、図1に示す多気筒密閉型圧縮機100は、内部高圧型の多気筒密閉型圧縮機である。また、図6では、S/Vstが8.9mm/ccである従来の多気筒密閉型圧縮機の年間運転効率を基準(100%)として、本実施の形態1に係る多気筒密閉型圧縮機100の年間運転効率を示している。 A multi-cylinder hermetic compressor 100 shown in FIG. 1 is an internal high-pressure multi-cylinder hermetic compressor. Further, in FIG. 6, the multi-cylinder closed compression according to the first embodiment is based on the annual operation efficiency of the conventional multi-cylinder closed compressor having S / Vst of 8.9 mm 2 / cc as a reference (100%). The annual operating efficiency of the machine 100 is shown.
 図6に示すように、多気筒密閉型圧縮機100の年間運転効率は、S/Vstが11.2mm/ccのとき、最大の100.5%超となり、S/Vstが8.9mm/ccよりも大きく24mm/ccよりも小さいとき、100%超となる。すなわち、冷媒流路33a,33b,33cの合計断面積Sと第2圧縮機構10bの押しのけ量Vstとを、8.9[mm/cc]<S/Vst<24[mm/cc]の関係を満たすように設定することによって、従来の多気筒密閉型圧縮機よりも年間運転効率を向上させることができる。なお、製品では、製造ばらつき等を見込んで、11[mm/cc]≦S/Vst≦20[mm/cc]の関係を満たすように合計断面積Sおよび押しのけ量Vstを設定した。 As shown in FIG. 6, the annual operating efficiency of the multi-cylinder hermetic compressor 100 is over 100.5% at the maximum when S / Vst is 11.2 mm 2 / cc, and S / Vst is 8.9 mm 2. When it is larger than / cc and smaller than 24 mm 2 / cc, it exceeds 100%. That is, the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b are 8.9 [mm 2 / cc] <S / Vst <24 [mm 2 / cc]. By setting so as to satisfy the relationship, the annual operating efficiency can be improved as compared with the conventional multi-cylinder hermetic compressor. In the product, the total cross-sectional area S and the displacement amount Vst were set so as to satisfy the relationship of 11 [mm 2 / cc] ≦ S / Vst ≦ 20 [mm 2 / cc] in consideration of manufacturing variations and the like.
 以上の結果から、冷媒流路33a,33b,33cの合計断面積Sと第2圧縮機構10bの押しのけ量Vstとの比(S/Vst)を最適化することにより、冷媒が合流されるマフラー室(ここでは第1マフラー室60a)に導入される際の圧力損失を抑制でき、年間運転効率を向上できることがわかる。 From the above results, the muffler chamber into which the refrigerant is merged is optimized by optimizing the ratio (S / Vst) of the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement Vst of the second compression mechanism 10b. It turns out that the pressure loss at the time of being introduce | transduced into (here the 1st muffler chamber 60a) can be suppressed, and an annual operating efficiency can be improved.
 したがって、本実施の形態1の多気筒密閉型圧縮機100においては、第2圧縮機構10bで圧縮されて第2マフラー室60bから冷媒流路33a,33b,33cを経由して第1マフラー室60aへ放出された冷媒の圧力変動に伴う脈動を、第2マフラー室60bおよび冷媒流路33a,33b,33cで効果的に減少させることができる。そして、冷媒の流れを、圧力損失の増加を抑えた状態で第1圧縮機構10aの第1マフラー室60aへ導くことができる。そのため、圧縮機効率(COP)を向上させることができる。 Therefore, in the multi-cylinder hermetic compressor 100 of the first embodiment, the first muffler chamber 60a is compressed by the second compression mechanism 10b and passes through the refrigerant flow paths 33a, 33b, and 33c from the second muffler chamber 60b. The pulsation accompanying the pressure fluctuation of the refrigerant discharged into the second muffler chamber 60b and the refrigerant flow paths 33a, 33b, and 33c can be effectively reduced. And the flow of a refrigerant can be led to the 1st muffler room 60a of the 1st compression mechanism 10a in the state where the increase in pressure loss was controlled. Therefore, the compressor efficiency (COP) can be improved.
 また、前記のように第2圧縮機構10bの押しのけ量Vstに対して冷媒流路33a,33b,33cの合計断面積Sを最適化することにより、圧力損失を低下できる。さらに、図4に示すように、クランク軸50を中心とした周方向において、ベーン溝13aの位置を0°とし、反時計回り方向を正方向としたとき、第1カバー19aの吐出口21aは90°近傍の位置に配置されており、吐出口21bは270°近傍の位置に配置されている。このように配置することにより、第1吐出ポート17aから第1マフラー室60a内に吐出された冷媒と、冷媒流路33a,33b,33cを介して第2マフラー室60bから第1マフラー室60a内に流入した冷媒とを効率的に分離することができる。したがって、第1マフラー室60aから第2マフラー室60bへの逆流、および第1マフラー室60aから第1圧縮機構10aの第1圧縮室40aへの逆流を最小限に抑えることができる。これにより、冷媒流路33a,33b,33cの合計断面積Sと第2圧縮機構10bの押しのけ量Vstとの比(S/Vst)を最適化した効果を十分に発揮できる。 Further, as described above, the pressure loss can be reduced by optimizing the total sectional area S of the refrigerant flow paths 33a, 33b, and 33c with respect to the displacement amount Vst of the second compression mechanism 10b. Further, as shown in FIG. 4, in the circumferential direction around the crankshaft 50, when the position of the vane groove 13a is 0 ° and the counterclockwise direction is the positive direction, the discharge port 21a of the first cover 19a is The discharge port 21b is disposed at a position near 270 °. With this arrangement, the refrigerant discharged from the first discharge port 17a into the first muffler chamber 60a and the second muffler chamber 60b to the first muffler chamber 60a via the refrigerant flow paths 33a, 33b, and 33c. It is possible to efficiently separate the refrigerant that has flowed into the tank. Therefore, the backflow from the first muffler chamber 60a to the second muffler chamber 60b and the backflow from the first muffler chamber 60a to the first compression chamber 40a of the first compression mechanism 10a can be minimized. Thereby, the effect of optimizing the ratio (S / Vst) between the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c and the displacement amount Vst of the second compression mechanism 10b can be sufficiently exhibited.
 また、冷媒流路33a,33b,33cは、既述したように、ベーン溝13a,13bに対し時計回り(又は反時計回り)に90°~270°の範囲のみに形成されている。また、逆止弁18a,18bの構造に基づく冷媒の全体的な流れ方向において、吐出ポート17a,17bから見て最も遠い位置に配置された冷媒流路33cは、他の冷媒流路33a,33bよりも小さい断面積を有している。冷媒流路33cから見ると、冷媒の全体的な流れ方向における吐出ポート17aとの距離が冷媒流路33a,33bよりも近くなるため、冷媒流路33cから第1マフラー室60a内に放出された冷媒が吐出口21bから吐出されなかった場合、吐出ポート17aに吸い込まれてしまうおそれがある。冷媒流路33cから第1マフラー室60a内に放出された冷媒が吐出ポート17aに吸い込まれると、圧力損失が増加してしまう。しかしながら、本実施の形態1では、冷媒流路33cが他の冷媒流路33a,33bよりも小さい断面積を有しているため、冷媒流路33cから第1マフラー室60a内に放出される冷媒の流量を少なくすることができる。したがって、冷媒流路33cから第1マフラー室60a内に放出された冷媒が吐出ポート17aに吸い込まれることを抑制できる。一方で、冷媒流路33a,33bは冷媒流路33cよりも大きい断面積を有しているため、第2マフラー室60bから第1マフラー室60aまでの圧力損失を低減することもできる。このため、冷媒の流れを、圧力損失の増加を抑えた状態で第1圧縮機構10aの第1マフラー室60aへ導くことができ、圧縮機効率を向上させることができる。 Further, as described above, the refrigerant flow paths 33a, 33b, 33c are formed only in the range of 90 ° to 270 ° clockwise (or counterclockwise) with respect to the vane grooves 13a, 13b. In addition, in the overall refrigerant flow direction based on the structure of the check valves 18a and 18b, the refrigerant flow path 33c arranged at the farthest position when viewed from the discharge ports 17a and 17b is the other refrigerant flow paths 33a and 33b. Has a smaller cross-sectional area. When viewed from the refrigerant flow path 33c, the distance from the discharge port 17a in the overall flow direction of the refrigerant is shorter than the refrigerant flow paths 33a and 33b, and thus the refrigerant is discharged from the refrigerant flow path 33c into the first muffler chamber 60a. If the refrigerant is not discharged from the discharge port 21b, the refrigerant may be sucked into the discharge port 17a. When the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a is sucked into the discharge port 17a, the pressure loss increases. However, in the first embodiment, since the refrigerant flow path 33c has a smaller cross-sectional area than the other refrigerant flow paths 33a and 33b, the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a. Can be reduced. Therefore, it is possible to suppress the refrigerant released from the refrigerant flow path 33c into the first muffler chamber 60a from being sucked into the discharge port 17a. On the other hand, since the refrigerant flow paths 33a and 33b have a larger cross-sectional area than the refrigerant flow path 33c, the pressure loss from the second muffler chamber 60b to the first muffler chamber 60a can be reduced. For this reason, the flow of the refrigerant can be guided to the first muffler chamber 60a of the first compression mechanism 10a while suppressing an increase in pressure loss, and the compressor efficiency can be improved.
 また、ベーン溝13a,13bに対し時計回り(又は反時計回り)に0°~90°、270°~360°の範囲に冷媒流路33a,33b,33cを形成すると仮定した場合、この範囲には、吐出ポート17a,17b、吸込口16a,16b、ベーン溝13a,13bなどが配置されるため、冷媒流路33a,33b,33cを自由に配置することができない。さらに、吐出ポート17a,17b、吸込口16a,16b、ベーン溝13a,13bなどの中空の構造に加えて、中空の冷媒流路33a,33b,33cが集中的に設けられると、シリンダー11a,11bの強度が低下し、形状の歪みが生じやすくなる。 When it is assumed that the refrigerant flow paths 33a, 33b, and 33c are formed in the range of 0 ° to 90 °, 270 ° to 360 ° clockwise (or counterclockwise) with respect to the vane grooves 13a and 13b, Since the discharge ports 17a and 17b, the suction ports 16a and 16b, the vane grooves 13a and 13b, and the like are arranged, the refrigerant flow paths 33a, 33b, and 33c cannot be freely arranged. Furthermore, in addition to the hollow structures such as the discharge ports 17a and 17b, the suction ports 16a and 16b, and the vane grooves 13a and 13b, if the hollow refrigerant channels 33a, 33b, and 33c are intensively provided, the cylinders 11a and 11b This reduces the strength of the film and tends to cause distortion of the shape.
 これに対して、本実施の形態1では、ベーン溝13a,13bに対し時計回り(又は反時計回り)に90°~270°の範囲に冷媒流路33a,33b,33cが形成されているので、シリンダー11a,11bの強度の低下を抑えることができる。冷媒流路33a,33b,33cが、ベーン溝13a,13bに対し90°~270°の範囲に配置されていても、ベーン溝13a,13bに対し90°および270°の近傍に吐出口21a,21bがそれぞれ設けられることによって、冷媒流路33a,33b,33cから放出された冷媒を吐出口21a,21bからシェル101内に吐出させることができる。これにより、第1マフラー室60aに放出された冷媒が、冷媒流路33a,33b,33cに再び吸い込まれたり、吐出ポート17aに吸い込まれたりすることを抑制できる。 On the other hand, in the first embodiment, the refrigerant flow paths 33a, 33b, 33c are formed in the range of 90 ° to 270 ° clockwise (or counterclockwise) with respect to the vane grooves 13a, 13b. Moreover, the fall of the intensity | strength of cylinder 11a, 11b can be suppressed. Even if the refrigerant flow paths 33a, 33b, and 33c are arranged in the range of 90 ° to 270 ° with respect to the vane grooves 13a and 13b, the discharge ports 21a and 21b are located in the vicinity of 90 ° and 270 ° with respect to the vane grooves 13a and 13b. By providing 21b, the refrigerant discharged from the refrigerant flow paths 33a, 33b, and 33c can be discharged into the shell 101 from the discharge ports 21a and 21b. Thereby, it can suppress that the refrigerant | coolant discharged | emitted by the 1st muffler chamber 60a is sucked into refrigerant flow path 33a, 33b, 33c again, or is sucked into discharge port 17a.
実施の形態2.
 図7は本発明の実施の形態2に係る多気筒密閉型圧縮機の冷媒流路の出入口形状を示す図3相当の断面図である。図8は、図7のD-D矢視断面図であり、第2端板20bの構成を示している。なお、図中、前述の実施の形態1と同じ機能部分には同じ符号を付してある。また、説明にあたっては前述の図1および図2を参照するものとする。
Embodiment 2. FIG.
FIG. 7 is a cross-sectional view corresponding to FIG. 3 showing the shape of the inlet and outlet of the refrigerant flow path of the multi-cylinder hermetic compressor according to Embodiment 2 of the present invention. FIG. 8 is a cross-sectional view taken along the line DD in FIG. 7 and shows the configuration of the second end plate 20b. In the figure, the same reference numerals are given to the same functional parts as those of the first embodiment. In the description, reference is made to FIG. 1 and FIG.
 本実施の形態2の多気筒密閉型圧縮機100では、図7および図8に示すように、各冷媒流路33a,33b,33cの流入口および流出口に、これら冷媒流路33a,33b,33cの断面積よりも大きい断面積を有する開口部(テーパや面取りでもよい)33d,33e,33fが設けられている。 In the multi-cylinder hermetic compressor 100 of the second embodiment, as shown in FIGS. 7 and 8, the refrigerant flow paths 33a, 33b, Openings (which may be tapered or chamfered) 33d, 33e, and 33f having a cross-sectional area larger than that of 33c are provided.
 本実施の形態2の多気筒密閉型圧縮機100においては、各冷媒流路33a,33b,33cの流入口および流出口に、これら冷媒流路33a,33b,33cの断面積よりも大きい断面積を有する開口部33d,33e,33fが設けられているので、冷媒流路33a,33b,33cでの冷媒の流れがスムーズになり、更なる圧力損失低減の効果が得られる。 In the multi-cylinder hermetic compressor 100 of the second embodiment, the cross-sectional areas larger than the cross-sectional areas of the refrigerant flow paths 33a, 33b, and 33c are provided at the inlet and the outlet of the refrigerant flow paths 33a, 33b, and 33c. Since the openings 33d, 33e, and 33f having the above are provided, the flow of the refrigerant in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and the effect of further reducing the pressure loss can be obtained.
 以上説明したように、上記実施の形態1及び2に係る多気筒密閉型圧縮機100は、シェル101と、シェル101内に収容され、第1圧縮機構10aおよび第2圧縮機構10bを有する圧縮部103と、圧縮部103に駆動力を伝達するクランク軸50と、クランク軸50の軸芯方向において圧縮部103の一端側に配置され、第1圧縮機構10aで圧縮された冷媒が第1吐出ポート17aを介して吐出される環状の第1マフラー室60aと、上記軸芯方向において圧縮部103の他端側に配置され、第2圧縮機構10bで圧縮された冷媒が第2吐出ポート17bを介して吐出される環状の第2マフラー室60bと、第1マフラー室60aと第2マフラー室60bとを連通させ、第2マフラー室60b内の冷媒を第1マフラー室60aに導く複数の冷媒流路33a,33b,33cと、第1マフラー室60a内の冷媒をシェル101内の空間に吐出する吐出口21a,21bと、を備え、第1圧縮機構10aは、第1シリンダー11aと、第1シリンダー11aの内周面に沿って偏芯回転する第1ロータリーピストン12aと、第1シリンダー11aの内周面と第1ロータリーピストン12aの外周面との間の空間を仕切る第1ベーン14aと、第1シリンダー11aに設けられ、第1ベーン14aを進退自在に収容する第1ベーン溝13aと、を有しており、第2圧縮機構10bは、第2シリンダー11bと、第2シリンダー11bの内周面に沿って偏芯回転する第2ロータリーピストン12bと、第2シリンダー11bの内周面と第2ロータリーピストン12bの外周面との間の空間を仕切る第2ベーン14bと、第2シリンダー11bに設けられ、第2ベーン14bを進退自在に収容する第2ベーン溝13bと、を有しており、複数の冷媒流路33a,33b,33cは、第1シリンダー11aと第2シリンダー11bとを貫通して設けられており、第1吐出ポート17aにおける第1マフラー室60a側には、リード弁構造を有し一端に固定端81aを備えた逆止弁18aが設けられており、第1吐出ポート17aは、固定端81aに対し、クランク軸50を中心とした周方向において一方の回転方向(図4中では反時計回り方向)にずれて配置されており、複数の冷媒流路33a,33b,33cのうち、上記回転方向において第1吐出ポート17aから最も遠い位置に配置された冷媒流路33cは、他の少なくとも1つの冷媒流路33a,33bよりも小さい断面積を有するものである。 As described above, the multi-cylinder hermetic compressor 100 according to the first and second embodiments is provided with the shell 101 and the compression unit that is housed in the shell 101 and includes the first compression mechanism 10a and the second compression mechanism 10b. 103, the crankshaft 50 that transmits the driving force to the compression portion 103, and the refrigerant that is disposed on one end side of the compression portion 103 in the axial direction of the crankshaft 50 and compressed by the first compression mechanism 10a is the first discharge port. An annular first muffler chamber 60a that is discharged through 17a, and the refrigerant that is disposed on the other end side of the compression unit 103 in the axial direction and compressed by the second compression mechanism 10b passes through the second discharge port 17b. The annular second muffler chamber 60b to be discharged, the first muffler chamber 60a, and the second muffler chamber 60b communicate with each other, and the refrigerant in the second muffler chamber 60b is transferred to the first muffler chamber 60a. And a plurality of refrigerant flow paths 33a, 33b, 33c, and discharge ports 21a, 21b for discharging the refrigerant in the first muffler chamber 60a to the space in the shell 101. The first compression mechanism 10a includes a first cylinder 11a, a first rotary piston 12a that rotates eccentrically along the inner peripheral surface of the first cylinder 11a, and a first space that partitions the space between the inner peripheral surface of the first cylinder 11a and the outer peripheral surface of the first rotary piston 12a. A first vane 14a, and a first vane groove 13a that is provided in the first cylinder 11a and accommodates the first vane 14a so as to be capable of moving forward and backward. The second compression mechanism 10b includes a second cylinder 11b, A second rotary piston 12b that rotates eccentrically along the inner peripheral surface of the two cylinders 11b, an inner peripheral surface of the second cylinder 11b, and an outer peripheral surface of the second rotary piston 12b; A second vane 14b that partitions the space between the second vane 14b and a second vane groove 13b that is provided in the second cylinder 11b and accommodates the second vane 14b so that the second vane 14b can be moved forward and backward. , 33c are provided through the first cylinder 11a and the second cylinder 11b, and have a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a, and a fixed end 81a at one end. The first check port 18a is provided in one rotational direction (counterclockwise in FIG. 4) in the circumferential direction around the crankshaft 50 with respect to the fixed end 81a. Among the plurality of refrigerant flow paths 33a, 33b, and 33c, the refrigerant flow path 33c that is disposed farthest from the first discharge port 17a in the rotational direction is the other small number of refrigerant flow paths 33a, 33b, and 33c. The cross-sectional area is smaller than that of at least one refrigerant flow path 33a, 33b.
 この構成によれば、冷媒流路33cから第1マフラー室60a内に放出された冷媒が吐出ポート17aに吸い込まれることを抑制できるため、多気筒密閉型圧縮機100における冷媒圧損の増加を防ぎ、圧縮機効率を向上させることができる。 According to this configuration, since it is possible to suppress the refrigerant discharged from the refrigerant flow path 33c into the first muffler chamber 60a from being sucked into the discharge port 17a, an increase in refrigerant pressure loss in the multi-cylinder hermetic compressor 100 is prevented, Compressor efficiency can be improved.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100では、クランク軸50を中心とした周方向において、第1ベーン溝13aの位置を0°とし、上記回転方向を正方向としたとき、複数の冷媒流路33a,33b,33cは、クランク軸50を中心とした周方向において90°以上270°以下となる角度範囲(例えば、当該角度範囲のみ)に設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, when the position of the first vane groove 13a is 0 ° and the rotational direction is the positive direction in the circumferential direction around the crankshaft 50 The plurality of refrigerant flow paths 33a, 33b, and 33c may be provided in an angular range (for example, only the angular range) that is 90 ° or more and 270 ° or less in the circumferential direction around the crankshaft 50.
 この構成によれば、第1シリンダー11aおよび第2シリンダー11bの強度の低下を抑えつつ、冷媒流路33a,33b,33cを設けることができる。 According to this configuration, the refrigerant flow paths 33a, 33b, and 33c can be provided while suppressing a decrease in strength of the first cylinder 11a and the second cylinder 11b.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100において、吐出口は、第1吐出口21aと第2吐出口21bとを含んでおり、クランク軸50を中心とした周方向において、第1ベーン溝13aの位置を0°とし、上記回転方向を正方向とし、角度θ1および角度θ2を0°≦θ1<θ2<360°としたとき、第1吐出口21aは、クランク軸50を中心とした周方向において角度θ1となる位置に設けられており、第2吐出口21bは、クランク軸50を中心とした周方向において角度θ2となる位置に設けられており、複数の冷媒流路33a,33b,33cは、クランク軸50を中心とした周方向においてθ1以上θ2以下となる角度範囲(例えば、当該角度範囲のみ)に設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, the discharge port includes the first discharge port 21a and the second discharge port 21b, and in the circumferential direction around the crankshaft 50, When the position of the first vane groove 13a is 0 °, the rotational direction is the positive direction, and the angles θ1 and θ2 are 0 ° ≦ θ1 <θ2 <360 °, the first discharge port 21a The second discharge port 21b is provided at a position at an angle θ2 in the circumferential direction around the crankshaft 50, and is provided with a plurality of refrigerant flow paths. 33a, 33b, and 33c may be provided in an angle range (for example, only the angle range) that is θ1 or more and θ2 or less in the circumferential direction around the crankshaft 50.
 この構成によれば、冷媒流路33a,33b,33cから第1マフラー室60a内に放出された冷媒を、第1吐出ポート17aを経由させずに吐出口21a,21bから吐出させることができる。このため、冷媒流路33a,33b,33cから第1マフラー室60a内に放出された冷媒が第1吐出ポート17aに吸い込まれてしまうことを抑制できる。 According to this configuration, the refrigerant released from the refrigerant flow paths 33a, 33b, 33c into the first muffler chamber 60a can be discharged from the discharge ports 21a, 21b without passing through the first discharge port 17a. For this reason, it can suppress that the refrigerant | coolant discharged | emitted in the 1st muffler chamber 60a from the refrigerant | coolant flow paths 33a, 33b, and 33c is inhaled by the 1st discharge port 17a.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100において、複数の冷媒流路33a,33b,33cのそれぞれの流入口および流出口には、複数の冷媒流路33a,33b,33cのそれぞれの断面積よりも大きい断面積を有する開口部33d,33e,33fが設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, the plurality of refrigerant channels 33a, 33b, and 33c are provided at the inlet and the outlet of the plurality of refrigerant channels 33a, 33b, and 33c, respectively. Openings 33d, 33e, 33f having a cross-sectional area larger than the respective cross-sectional areas may be provided.
 この構成によれば、冷媒流路33a,33b,33cでの冷媒の流れがスムーズになり、更なる圧力損失低減の効果が得られる。 According to this configuration, the refrigerant flow in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and an effect of further reducing pressure loss can be obtained.
 また、上記実施の形態1及び2に係る多気筒密閉型圧縮機100は、シェル101と、シェル101内に収容され、第1圧縮機構10aおよび第2圧縮機構10bを有する圧縮部103と、圧縮部103に駆動力を伝達するクランク軸50と、クランク軸50の軸芯方向において圧縮部103の一端側に配置され、第1圧縮機構10aで圧縮された冷媒が第1吐出ポート17aを介して吐出される環状の第1マフラー室60aと、上記軸芯方向において圧縮部103の他端側に配置され、第2圧縮機構10bで圧縮された冷媒が第2吐出ポート17bを介して吐出される環状の第2マフラー室60bと、第1マフラー室60aと第2マフラー室60bとを連通させ、第2マフラー室60b内の冷媒を第1マフラー室60aに導く少なくとも1つの冷媒流路33a,33b,33cと、第1マフラー室60a内の冷媒をシェル101内の空間に吐出する吐出口21a,21bと、を備え、第1圧縮機構10aは、第1シリンダー11aと、第1シリンダー11aの内周面に沿って偏芯回転する第1ロータリーピストン12aと、第1シリンダー11aの内周面と第1ロータリーピストン12aの外周面との間の空間を仕切る第1ベーン14aと、第1シリンダー11aに設けられ、第1ベーン14aを進退自在に収容する第1ベーン溝13aと、を有しており、第2圧縮機構10bは、第2シリンダー11bと、第2シリンダー11bの内周面に沿って偏芯回転する第2ロータリーピストン12bと、第2シリンダー11bの内周面と第2ロータリーピストン12bの外周面との間の空間を仕切る第2ベーン14bと、第2シリンダー11bに設けられ、第2ベーン14bを進退自在に収容する第2ベーン溝13bと、を有しており、少なくとも1つの冷媒流路33a,33b,33cは、第1シリンダー11aと第2シリンダー11bとを貫通して設けられており、少なくとも1つの冷媒流路33a,33b,33cの合計断面積S[mm]と、第2圧縮機構10bの1回転当たりの押しのけ量Vst[cc]とが、8.9[mm/cc]<S/Vst<24[mm/cc]の関係を満たすものである。 Further, the multi-cylinder hermetic compressor 100 according to the first and second embodiments includes a shell 101, a compression unit 103 that is accommodated in the shell 101, and includes a first compression mechanism 10a and a second compression mechanism 10b, and a compression The crankshaft 50 that transmits the driving force to the portion 103, and the refrigerant that is disposed on one end side of the compression portion 103 in the axial direction of the crankshaft 50 and is compressed by the first compression mechanism 10a passes through the first discharge port 17a. The annular first muffler chamber 60a to be discharged and the refrigerant which is disposed on the other end side of the compression unit 103 in the axial direction and is compressed by the second compression mechanism 10b is discharged through the second discharge port 17b. The annular second muffler chamber 60b, the first muffler chamber 60a, and the second muffler chamber 60b communicate with each other, and the refrigerant in the second muffler chamber 60b is guided to the first muffler chamber 60a. Refrigerant passages 33a, 33b, and 33c, and discharge ports 21a and 21b that discharge the refrigerant in the first muffler chamber 60a to the space in the shell 101. The first compression mechanism 10a includes the first cylinder 11a and The first vane partitioning the space between the first rotary piston 12a rotating eccentrically along the inner peripheral surface of the first cylinder 11a and the outer peripheral surface of the first rotary piston 12a and the inner peripheral surface of the first cylinder 11a 14a and a first vane groove 13a that is provided in the first cylinder 11a and accommodates the first vane 14a so as to be able to advance and retreat. The second compression mechanism 10b includes a second cylinder 11b and a second cylinder. Between the second rotary piston 12b rotating eccentrically along the inner peripheral surface of 11b and the inner peripheral surface of the second cylinder 11b and the outer peripheral surface of the second rotary piston 12b. A second vane 14b for partitioning, and a second vane groove 13b that is provided in the second cylinder 11b and accommodates the second vane 14b so as to be able to advance and retreat, and has at least one refrigerant flow path 33a, 33b, 33c is provided through the first cylinder 11a and the second cylinder 11b, and the total cross-sectional area S [mm 2 ] of at least one refrigerant flow path 33a, 33b, 33c and the second compression mechanism 10b. The displacement amount Vst [cc] per rotation satisfies the relationship of 8.9 [mm 2 / cc] <S / Vst <24 [mm 2 / cc].
 この構成によれば、冷媒流路33a,33b,33cの合計断面積Sが第2圧縮機構10bの押しのけ量Vstに応じて最適化されるため、多気筒密閉型圧縮機100における冷媒圧損の増加を防ぎ、圧縮機効率を向上させることができる。 According to this configuration, the total cross-sectional area S of the refrigerant flow paths 33a, 33b, and 33c is optimized according to the displacement amount Vst of the second compression mechanism 10b, so that the refrigerant pressure loss in the multi-cylinder hermetic compressor 100 increases. And the compressor efficiency can be improved.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100において、第1吐出ポート17aにおける第1マフラー室60a側には、リード弁構造を有し一端に固定端81aを備えた第1逆止弁18aが設けられており、第1吐出ポート17aは、固定端81aに対し、クランク軸50を中心とした周方向において一方の回転方向(図4中では反時計回り方向)にずれて配置されており、クランク軸50を中心とした周方向において、第1ベーン溝13aの位置を0°とし、上記回転方向を正方向としたとき、少なくとも1つの冷媒流路33a,33b,33cは、クランク軸50を中心とした周方向において90°以上270°以下となる角度範囲(例えば、当該角度範囲のみ)に設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, the first reverse port having a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a and having a fixed end 81a at one end. A stop valve 18a is provided, and the first discharge port 17a is shifted from the fixed end 81a in one circumferential direction around the crankshaft 50 (counterclockwise in FIG. 4). In the circumferential direction around the crankshaft 50, when the position of the first vane groove 13a is 0 ° and the rotational direction is the positive direction, at least one refrigerant flow path 33a, 33b, 33c You may provide in the angle range (for example, only the said angle range) used as 90 degrees or more and 270 degrees or less in the circumferential direction centering on the crankshaft 50. FIG.
 この構成によれば、第1シリンダー11aおよび第2シリンダー11bの強度の低下を抑えつつ、冷媒流路33a,33b,33cを設けることができる。 According to this configuration, the refrigerant flow paths 33a, 33b, and 33c can be provided while suppressing a decrease in strength of the first cylinder 11a and the second cylinder 11b.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100において、第1吐出ポート17aにおける第1マフラー室60a側には、リード弁構造を有し一端に固定端81aを備えた第1逆止弁18aが設けられており、第1吐出ポート17aは、固定端81aに対し、クランク軸50を中心とした周方向において一方の回転方向(図4中では反時計回り方向)にずれて配置されており、吐出口は、第1吐出口21aと第2吐出口21bとを含んでおり、クランク軸50を中心とした周方向において、第1ベーン溝13aの位置を0°とし、上記回転方向を正方向とし、角度θ1および角度θ2を0°≦θ1<θ2<360°としたとき、第1吐出口21aは、クランク軸50を中心とした周方向において角度θ1となる位置に設けられており、第2吐出口21bは、クランク軸を中心とした周方向において角度θ2となる位置に設けられており、少なくとも1つの冷媒流路33a,33b,33cは、クランク軸50を中心とした周方向においてθ1以上θ2以下となる角度範囲(例えば、当該角度範囲のみ)に設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, the first reverse port having a reed valve structure on the first muffler chamber 60a side in the first discharge port 17a and having a fixed end 81a at one end. A stop valve 18a is provided, and the first discharge port 17a is shifted from the fixed end 81a in one circumferential direction around the crankshaft 50 (counterclockwise in FIG. 4). The discharge port includes a first discharge port 21a and a second discharge port 21b. In the circumferential direction around the crankshaft 50, the position of the first vane groove 13a is 0 °, and the rotation When the direction is the positive direction and the angle θ1 and the angle θ2 are 0 ° ≦ θ1 <θ2 <360 °, the first discharge port 21a is provided at a position where the angle θ1 is in the circumferential direction around the crankshaft 50. And second The two discharge ports 21b are provided at a position having an angle θ2 in the circumferential direction centered on the crankshaft, and at least one refrigerant flow path 33a, 33b, 33c is θ1 in the circumferential direction centered on the crankshaft 50. It may be provided in an angle range that is θ2 or less (for example, only the angle range).
 この構成によれば、冷媒流路33a,33b,33cから第1マフラー室60a内に放出された冷媒を、第1吐出ポート17aを経由させずに吐出口21a,21bから吐出させることができる。このため、冷媒流路33a,33b,33cから第1マフラー室60a内に放出された冷媒が第1吐出ポート17aに吸い込まれてしまうことを抑制できる。 According to this configuration, the refrigerant released from the refrigerant flow paths 33a, 33b, 33c into the first muffler chamber 60a can be discharged from the discharge ports 21a, 21b without passing through the first discharge port 17a. For this reason, it can suppress that the refrigerant | coolant discharged | emitted in the 1st muffler chamber 60a from the refrigerant | coolant flow paths 33a, 33b, and 33c is inhaled by the 1st discharge port 17a.
 上記実施の形態1及び2に係る多気筒密閉型圧縮機100において、少なくとも1つの冷媒流路33a,33b,33cの流入口および流出口には、少なくとも1つの冷媒流路33a,33b,33cの断面積よりも大きい断面積を有する開口部33d,33e,33fが設けられていてもよい。 In the multi-cylinder hermetic compressor 100 according to the first and second embodiments, at least one refrigerant flow path 33a, 33b, 33c is provided at the inlet and the outlet of at least one refrigerant flow path 33a, 33b, 33c. Openings 33d, 33e, and 33f having a cross-sectional area larger than the cross-sectional area may be provided.
 この構成によれば、冷媒流路33a,33b,33cでの冷媒の流れがスムーズになり、更なる圧力損失低減の効果が得られる。 According to this configuration, the refrigerant flow in the refrigerant flow paths 33a, 33b, and 33c becomes smooth, and an effect of further reducing pressure loss can be obtained.
その他の実施の形態.
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、3つの冷媒流路33a,33b,33cが設けられた構成を例示したが、冷媒流路の個数は、1つ、2つ又は4つ以上であってもよい。
Other embodiments.
The present invention is not limited to the above embodiment, and various modifications can be made.
For example, in the above embodiment, the configuration in which the three refrigerant flow paths 33a, 33b, and 33c are provided is illustrated, but the number of refrigerant flow paths may be one, two, or four or more.
 また、上記実施の形態では、円形状の断面形状を有する冷媒流路33a,33b,33cを例示したが、冷媒流路は、長方形状等の他の断面形状を有していてもよい。また、冷媒流路は、シリンダーの周方向に沿って円弧状に延伸した長孔であってもよい。 In the above embodiment, the refrigerant flow paths 33a, 33b, and 33c having a circular cross-sectional shape are illustrated, but the refrigerant flow path may have other cross-sectional shapes such as a rectangular shape. Further, the refrigerant channel may be a long hole extending in an arc shape along the circumferential direction of the cylinder.
 10a 第1圧縮機構、10b 第2圧縮機構、11a 第1シリンダー、11b 第2シリンダー、12a 第1ピストン(第1ロータリーピストン)、12b 第2ピストン(第2ロータリーピストン)、13a 第1ベーン溝、13b 第2ベーン溝、14a 第1ベーン、14b 第2ベーン、15a 第1ばね、15b 第2ばね、16a 第1吸込口、16b 第2吸込口、17a 第1吐出ポート、17a2 開口端、17b 第2吐出ポート、18a 第1逆止弁、18b 第2逆止弁、19a 第1カバー、19b 第2カバー、20a 第1端板、20b 第2端板、21a、21b 吐出口、25a 第1軸受、25b 第2軸受、30 仕切板、30a 中央貫通孔、33、33a、33b、33c 冷媒流路、33d、33e、33f 開口部、40a 第1圧縮室、40b 第2圧縮室、50 クランク軸、51a 第1偏芯軸部、51b 第2偏芯軸部、52a 第1軸受挿入部、52b 第2軸受挿入部、53 仕切板挿入部、60a 第1マフラー室、60b 第2マフラー室、71a,71b ボルト、81 弁体、81a 固定端、82 弁押さえ、83 リベット、100 多気筒密閉型圧縮機、101 シェル(密閉容器)、101a 上部シェル、101b 中央部シェル、102 モーター(電動機部)、102a 固定子、102b 回転子、103 圧縮部、104 ガラス端子、105 吐出パイプ、106a 第1吸入パイプ、106b 第2吸入パイプ、107 吸入マフラー。 10a first compression mechanism, 10b second compression mechanism, 11a first cylinder, 11b second cylinder, 12a first piston (first rotary piston), 12b second piston (second rotary piston), 13a first vane groove, 13b 2nd vane groove, 14a 1st vane, 14b 2nd vane, 15a 1st spring, 15b 2nd spring, 16a 1st inlet, 16b 2nd inlet, 17a 1st discharge port, 17a2 open end, 17b 2nd 2 discharge port, 18a first check valve, 18b second check valve, 19a first cover, 19b second cover, 20a first end plate, 20b second end plate, 21a, 21b discharge port, 25a first bearing 25b second bearing, 30 partition plate, 30a central through hole, 33, 33a, 33b, 33c refrigerant flow path, 3d, 33e, 33f opening, 40a first compression chamber, 40b second compression chamber, 50 crankshaft, 51a first eccentric shaft portion, 51b second eccentric shaft portion, 52a first bearing insertion portion, 52b second Bearing insertion portion, 53 partition plate insertion portion, 60a first muffler chamber, 60b second muffler chamber, 71a, 71b bolt, 81 valve body, 81a fixed end, 82 valve presser, 83 rivet, 100 multi-cylinder hermetic compressor, 101 shell (sealed container), 101a upper shell, 101b center shell, 102 motor (motor part), 102a stator, 102b rotor, 103 compression part, 104 glass terminal, 105 discharge pipe, 106a first suction pipe, 106b Second suction pipe, 107 Suction muffler.

Claims (8)

  1.  密閉容器と、
     前記密閉容器内に収容され、第1圧縮機構および第2圧縮機構を有する圧縮部と、
     前記圧縮部に駆動力を伝達するクランク軸と、
     前記クランク軸の軸芯方向において前記圧縮部の一端側に配置され、前記第1圧縮機構で圧縮された冷媒が第1吐出ポートを介して吐出される環状の第1マフラー室と、
     前記軸芯方向において前記圧縮部の他端側に配置され、前記第2圧縮機構で圧縮された冷媒が第2吐出ポートを介して吐出される環状の第2マフラー室と、
     前記第1マフラー室と前記第2マフラー室とを連通させ、前記第2マフラー室内の冷媒を前記第1マフラー室に導く複数の冷媒流路と、
     前記第1マフラー室内の冷媒を前記密閉容器内の空間に吐出する吐出口と、
     を備え、
     前記第1圧縮機構および前記第2圧縮機構のそれぞれは、
     シリンダーと、
     前記シリンダーの内周面に沿って偏芯回転するロータリーピストンと、
     前記シリンダーの内周面と前記ロータリーピストンの外周面との間の空間を仕切るベーンと、
     前記シリンダーに設けられ、前記ベーンを進退自在に収容するベーン溝と、を有しており、
     前記複数の冷媒流路は、前記第1圧縮機構のシリンダーと前記第2圧縮機構のシリンダーとを貫通して設けられており、
     前記第1吐出ポートにおける前記第1マフラー室側には、リード弁構造を有し一端に固定端を備えた逆止弁が設けられており、
     前記第1吐出ポートは、前記固定端に対し、前記クランク軸を中心とした周方向において一回転方向にずれて配置されており、
     前記複数の冷媒流路のうち、前記回転方向において前記第1吐出ポートから最も遠い位置に配置された冷媒流路は、他の少なくとも1つの冷媒流路よりも小さい断面積を有する多気筒密閉型圧縮機。
    A sealed container;
    A compression unit housed in the sealed container and having a first compression mechanism and a second compression mechanism;
    A crankshaft for transmitting a driving force to the compression section;
    An annular first muffler chamber that is disposed on one end side of the compression portion in the axial direction of the crankshaft and in which the refrigerant compressed by the first compression mechanism is discharged through a first discharge port;
    An annular second muffler chamber that is disposed on the other end side of the compression portion in the axial direction and in which the refrigerant compressed by the second compression mechanism is discharged through a second discharge port;
    A plurality of refrigerant flow paths that connect the first muffler chamber and the second muffler chamber and guide the refrigerant in the second muffler chamber to the first muffler chamber;
    A discharge port for discharging the refrigerant in the first muffler chamber into the space in the sealed container;
    With
    Each of the first compression mechanism and the second compression mechanism is:
    A cylinder,
    A rotary piston that rotates eccentrically along the inner circumferential surface of the cylinder;
    A vane that partitions a space between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotary piston;
    A vane groove that is provided in the cylinder and accommodates the vane so as to freely advance and retract,
    The plurality of refrigerant flow paths are provided through the cylinder of the first compression mechanism and the cylinder of the second compression mechanism,
    On the first muffler chamber side of the first discharge port, a check valve having a reed valve structure and having a fixed end at one end is provided.
    The first discharge port is arranged so as to be shifted in one rotation direction in the circumferential direction around the crankshaft with respect to the fixed end,
    Of the plurality of refrigerant channels, the refrigerant channel disposed at a position farthest from the first discharge port in the rotation direction has a smaller cross-sectional area than at least one other refrigerant channel. Compressor.
  2.  前記クランク軸を中心とした周方向において、前記第1圧縮機構のベーン溝の位置を0°とし、前記回転方向を正方向としたとき、
     前記複数の冷媒流路は、前記クランク軸を中心とした周方向において90°以上270°以下となる角度範囲に設けられている請求項1に記載の多気筒密閉型圧縮機。
    In the circumferential direction around the crankshaft, when the position of the vane groove of the first compression mechanism is 0 ° and the rotational direction is the positive direction,
    2. The multi-cylinder hermetic compressor according to claim 1, wherein the plurality of refrigerant flow paths are provided in an angle range of 90 ° or more and 270 ° or less in a circumferential direction centering on the crankshaft.
  3.  前記吐出口は、第1吐出口と第2吐出口とを含んでおり、
     前記クランク軸を中心とした周方向において、前記第1圧縮機構のベーン溝の位置を0°とし、前記回転方向を正方向としたとき、
     前記第1吐出口は、前記クランク軸を中心とした周方向において角度θ1となる位置に設けられており、
     前記第2吐出口は、前記クランク軸を中心とした周方向において角度θ2となる位置に設けられており、
     前記複数の冷媒流路は、前記クランク軸を中心とした周方向においてθ1以上θ2以下となる角度範囲に設けられている請求項1又は請求項2に記載の多気筒密閉型圧縮機。
    The discharge port includes a first discharge port and a second discharge port,
    In the circumferential direction around the crankshaft, when the position of the vane groove of the first compression mechanism is 0 ° and the rotational direction is the positive direction,
    The first discharge port is provided at a position at an angle θ1 in the circumferential direction around the crankshaft,
    The second discharge port is provided at a position at an angle θ2 in the circumferential direction around the crankshaft,
    3. The multi-cylinder hermetic compressor according to claim 1, wherein the plurality of refrigerant flow paths are provided in an angle range of θ1 or more and θ2 or less in a circumferential direction around the crankshaft.
  4.  前記複数の冷媒流路のそれぞれの流入口および流出口には、前記複数の冷媒流路のそれぞれの断面積よりも大きい断面積を有する開口部が設けられている請求項1~請求項3のいずれか一項に記載の多気筒密閉型圧縮機。 The inlet and the outlet of each of the plurality of refrigerant flow paths are provided with openings having a cross-sectional area larger than the cross-sectional area of each of the plurality of refrigerant flow paths. The multi-cylinder hermetic compressor according to any one of the above.
  5.  密閉容器と、
     前記密閉容器内に収容され、第1圧縮機構および第2圧縮機構を有する圧縮部と、
     前記圧縮部に駆動力を伝達するクランク軸と、
     前記クランク軸の軸芯方向において前記圧縮部の一端側に配置され、前記第1圧縮機構で圧縮された冷媒が第1吐出ポートを介して吐出される環状の第1マフラー室と、
     前記軸芯方向において前記圧縮部の他端側に配置され、前記第2圧縮機構で圧縮された冷媒が第2吐出ポートを介して吐出される環状の第2マフラー室と、
     前記第1マフラー室と前記第2マフラー室とを連通させ、前記第2マフラー室内の冷媒を前記第1マフラー室に導く少なくとも1つの冷媒流路と、
     前記第1マフラー室内の冷媒を前記密閉容器内の空間に吐出する吐出口と、
     を備え、
     前記第1圧縮機構および前記第2圧縮機構のそれぞれは、
     シリンダーと、
     前記シリンダーの内周面に沿って偏芯回転するロータリーピストンと、
     前記シリンダーの内周面と前記ロータリーピストンの外周面との間の空間を仕切るベーンと、
     前記シリンダーに設けられ、前記ベーンを進退自在に収容するベーン溝と、を有しており、
     前記少なくとも1つの冷媒流路は、前記第1圧縮機構のシリンダーと前記第2圧縮機構のシリンダーとを貫通して設けられており、
     前記少なくとも1つの冷媒流路の合計断面積S[mm]と、前記第2圧縮機構の1回転当たりの押しのけ量Vst[cc]とが、8.9[mm/cc]<S/Vst<24[mm/cc]の関係を満たす多気筒密閉型圧縮機。
    A sealed container;
    A compression unit housed in the sealed container and having a first compression mechanism and a second compression mechanism;
    A crankshaft for transmitting a driving force to the compression section;
    An annular first muffler chamber that is disposed on one end side of the compression portion in the axial direction of the crankshaft and in which the refrigerant compressed by the first compression mechanism is discharged through a first discharge port;
    An annular second muffler chamber that is disposed on the other end side of the compression portion in the axial direction and in which the refrigerant compressed by the second compression mechanism is discharged through a second discharge port;
    At least one refrigerant flow path communicating the first muffler chamber and the second muffler chamber and guiding the refrigerant in the second muffler chamber to the first muffler chamber;
    A discharge port for discharging the refrigerant in the first muffler chamber into the space in the sealed container;
    With
    Each of the first compression mechanism and the second compression mechanism is:
    A cylinder,
    A rotary piston that rotates eccentrically along the inner circumferential surface of the cylinder;
    A vane that partitions a space between the inner peripheral surface of the cylinder and the outer peripheral surface of the rotary piston;
    A vane groove that is provided in the cylinder and accommodates the vane so as to freely advance and retract,
    The at least one refrigerant flow path is provided through the cylinder of the first compression mechanism and the cylinder of the second compression mechanism;
    The total sectional area S [mm 2 ] of the at least one refrigerant flow path and the displacement amount Vst [cc] per rotation of the second compression mechanism are 8.9 [mm 2 / cc] <S / Vst. A multi-cylinder hermetic compressor satisfying a relationship of <24 [mm 2 / cc].
  6.  前記第1吐出ポートにおける前記第1マフラー室側には、リード弁構造を有し一端に固定端を備えた逆止弁が設けられており、
     前記第1吐出ポートは、前記固定端に対し、前記クランク軸を中心とした周方向において一回転方向にずれて配置されており、
     前記クランク軸を中心とした周方向において、前記第1圧縮機構のベーン溝の位置を0°とし、前記回転方向を正方向としたとき、
     前記少なくとも1つの冷媒流路は、前記クランク軸を中心とした周方向において90°以上270°以下となる角度範囲に設けられている請求項5に記載の多気筒密閉型圧縮機。
    On the first muffler chamber side of the first discharge port, a check valve having a reed valve structure and having a fixed end at one end is provided.
    The first discharge port is arranged so as to be shifted in one rotation direction in the circumferential direction around the crankshaft with respect to the fixed end,
    In the circumferential direction around the crankshaft, when the position of the vane groove of the first compression mechanism is 0 ° and the rotational direction is the positive direction,
    6. The multi-cylinder hermetic compressor according to claim 5, wherein the at least one refrigerant flow path is provided in an angular range of 90 ° or more and 270 ° or less in a circumferential direction around the crankshaft.
  7.  前記第1吐出ポートにおける前記第1マフラー室側には、リード弁構造を有し一端に固定端を備えた逆止弁が設けられており、
     前記第1吐出ポートは、前記固定端に対し、前記クランク軸を中心とした周方向において一回転方向にずれて配置されており、
     前記吐出口は、第1吐出口と第2吐出口とを含んでおり、
     前記クランク軸を中心とした周方向において、前記第1圧縮機構のベーン溝の位置を0°とし、前記回転方向を正方向としたとき、
     前記第1吐出口は、前記クランク軸を中心とした周方向において角度θ1となる位置に設けられており、
     前記第2吐出口は、前記クランク軸を中心とした周方向において角度θ2となる位置に設けられており、
     前記少なくとも1つの冷媒流路は、前記クランク軸を中心とした周方向においてθ1以上θ2以下となる角度範囲に設けられている請求項5又は請求項6に記載の多気筒密閉型圧縮機。
    On the first muffler chamber side of the first discharge port, a check valve having a reed valve structure and having a fixed end at one end is provided.
    The first discharge port is arranged so as to be shifted in one rotation direction in the circumferential direction around the crankshaft with respect to the fixed end,
    The discharge port includes a first discharge port and a second discharge port,
    In the circumferential direction around the crankshaft, when the position of the vane groove of the first compression mechanism is 0 ° and the rotational direction is the positive direction,
    The first discharge port is provided at a position at an angle θ1 in the circumferential direction around the crankshaft,
    The second discharge port is provided at a position at an angle θ2 in the circumferential direction around the crankshaft,
    7. The multi-cylinder hermetic compressor according to claim 5, wherein the at least one refrigerant flow path is provided in an angle range of θ1 or more and θ2 or less in a circumferential direction around the crankshaft.
  8.  前記少なくとも1つの冷媒流路の流入口および流出口には、前記少なくとも1つの冷媒流路の断面積よりも大きい断面積を有する開口部が設けられている請求項5~請求項7のいずれか一項に記載の多気筒密閉型圧縮機。 The inlet or outlet of the at least one refrigerant channel is provided with an opening having a cross-sectional area larger than that of the at least one refrigerant channel. The multi-cylinder hermetic compressor according to one item.
PCT/JP2015/076138 2015-01-08 2015-09-15 Multi-cylinder hermetic compressor WO2016111048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580061211.9A CN107110160B (en) 2015-01-08 2015-09-15 Multi-cylinder hermetic type compressor
JP2016568276A JP6257806B2 (en) 2015-01-08 2015-09-15 Multi-cylinder hermetic compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/050397 WO2016110982A1 (en) 2015-01-08 2015-01-08 Multi-cylinder hermetic compressor
JPPCT/JP2015/050397 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016111048A1 true WO2016111048A1 (en) 2016-07-14

Family

ID=56355703

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/050397 WO2016110982A1 (en) 2015-01-08 2015-01-08 Multi-cylinder hermetic compressor
PCT/JP2015/076138 WO2016111048A1 (en) 2015-01-08 2015-09-15 Multi-cylinder hermetic compressor

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050397 WO2016110982A1 (en) 2015-01-08 2015-01-08 Multi-cylinder hermetic compressor

Country Status (3)

Country Link
JP (1) JP6257806B2 (en)
CN (1) CN107110160B (en)
WO (2) WO2016110982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080589A (en) * 2016-11-14 2018-05-24 株式会社富士通ゼネラル Rotary Compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107339239A (en) * 2017-07-28 2017-11-10 广东美芝制冷设备有限公司 Compressor and humidity control system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188518A (en) * 2005-02-24 2005-07-14 Sanyo Electric Co Ltd Motor driven compressor
JP2007120354A (en) * 2005-10-26 2007-05-17 Hitachi Appliances Inc Rotary compressor
JP2010077878A (en) * 2008-09-25 2010-04-08 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2014167283A (en) * 2013-02-28 2014-09-11 Fujitsu General Ltd Rotary compressor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170775A (en) * 1987-12-25 1989-07-05 Hitachi Ltd Compressor
IT1243006B (en) * 1989-09-08 1994-05-23 Mitsubishi Electric Corp HORIZONTAL ROTATING COMPRESSOR
JP2000320479A (en) * 1999-05-12 2000-11-21 Mitsubishi Electric Corp Multi-cylinder enclosed type compressor
JP2001342954A (en) * 2000-05-31 2001-12-14 Sanyo Electric Co Ltd Electric compressor and cooling system using the same
JP2003269356A (en) * 2002-03-18 2003-09-25 Sanyo Electric Co Ltd Horizontal type rotary compressor
JP4864589B2 (en) * 2006-08-03 2012-02-01 三菱電機株式会社 Multistage rotary compressor
JP2011127513A (en) * 2009-12-18 2011-06-30 Panasonic Corp Hermetically sealed compressor
WO2013140912A1 (en) * 2012-03-23 2013-09-26 東芝キヤリア株式会社 Rotating compressor and freeze-cycle apparatus
CN203717345U (en) * 2014-02-10 2014-07-16 广东美芝制冷设备有限公司 Capacity control type rotary compressor and refrigeration cycle device provided with same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005188518A (en) * 2005-02-24 2005-07-14 Sanyo Electric Co Ltd Motor driven compressor
JP2007120354A (en) * 2005-10-26 2007-05-17 Hitachi Appliances Inc Rotary compressor
JP2010077878A (en) * 2008-09-25 2010-04-08 Mitsubishi Heavy Ind Ltd Rotary compressor
JP2014167283A (en) * 2013-02-28 2014-09-11 Fujitsu General Ltd Rotary compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018080589A (en) * 2016-11-14 2018-05-24 株式会社富士通ゼネラル Rotary Compressor
JP7044463B2 (en) 2016-11-14 2022-03-30 株式会社富士通ゼネラル Rotary compressor
AU2017251728B2 (en) * 2016-11-14 2022-11-24 Fujitsu General Limited Rotary compressor

Also Published As

Publication number Publication date
JP6257806B2 (en) 2018-01-10
CN107110160B (en) 2019-04-23
WO2016110982A1 (en) 2016-07-14
CN107110160A (en) 2017-08-29
JPWO2016111048A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP2007113542A (en) Hermetic two-stage rotary compressor
US7431571B2 (en) Noise reduction muffler for hermetic rotary compressor
KR101375979B1 (en) Rotary compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
JP5781019B2 (en) Rotary compressor
WO2013172144A1 (en) Gas compressor
US20100322796A1 (en) Hermetic compressor
US11326605B2 (en) Dual cylinder rotary compressor with intermediate plate that flows both cylinders to the muffler
JP6257806B2 (en) Multi-cylinder hermetic compressor
JP6428200B2 (en) Electric compressor
KR101447039B1 (en) Scroll compressor
JP2008128069A (en) Hermetic two stage rotary compressor
JP2014005825A (en) Rotary compressor
KR200382914Y1 (en) Accumulator structure for twin rotary compressor
KR101868193B1 (en) A rotary compressor
US11788531B2 (en) Scroll compressor
WO2023181362A1 (en) Rotary compressor and refrigeration cycle device
WO2023181364A1 (en) Rotary compressor and refrigeration cycle device
KR101376606B1 (en) Hermetic Compressor
JP6123488B2 (en) Rotary compressor
KR20130081107A (en) Hemetic compressor
KR20210021876A (en) A compressor
KR20060087260A (en) Assembling structure for compressing part of twin rotary compressor
KR101161441B1 (en) Structure for reducing noise of twin rotary compressor
JP2020193567A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876921

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876921

Country of ref document: EP

Kind code of ref document: A1