WO2016110970A1 - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell Download PDF

Info

Publication number
WO2016110970A1
WO2016110970A1 PCT/JP2015/050285 JP2015050285W WO2016110970A1 WO 2016110970 A1 WO2016110970 A1 WO 2016110970A1 JP 2015050285 W JP2015050285 W JP 2015050285W WO 2016110970 A1 WO2016110970 A1 WO 2016110970A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
defect
semiconductor wafer
normal
pair
Prior art date
Application number
PCT/JP2015/050285
Other languages
French (fr)
Japanese (ja)
Inventor
唐木田 昇市
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/050285 priority Critical patent/WO2016110970A1/en
Priority to JP2016568216A priority patent/JPWO2016110970A1/en
Publication of WO2016110970A1 publication Critical patent/WO2016110970A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solar cell using a semiconductor substrate.
  • the module filling rate in order to improve the substantial energy conversion efficiency based on the module area. Therefore, as a method for increasing the module filling rate, a method of processing and arranging solar cells into a square shape is generally performed. In this method, the disk-shaped semiconductor wafer is cut into a quadrangular shape, which causes a problem of loss of the semiconductor wafer.
  • Patent Document 1 in order to eliminate the loss of the semiconductor wafer and increase the module filling rate to improve the energy conversion efficiency, it was produced by connecting the solar cells divided by cutting one wafer. A solar cell module is disclosed.
  • Patent Document 1 it is assumed that a semiconductor wafer that satisfies the specifications is used, and the loss of the semiconductor wafer due to the generation of a semiconductor wafer that does not satisfy the specifications is not taken into consideration.
  • the semiconductor wafer is inspected for crystal defects and appearance before being put into the production line for solar cells. Semiconductor wafers that do not satisfy the specifications are excluded as defective products and are not put into the production line for solar cells.
  • Defective semiconductor wafers that do not satisfy the specifications can be recycled as scrap wafers.
  • all of the defective semiconductor wafers are scrap wafers, there is a problem that the loss of the semiconductor wafers increases and the production yield of the semiconductor wafers decreases. Therefore, in order to further reduce the loss of the semiconductor wafer in the manufacturing process of the solar battery cell, further effective use of the semiconductor wafer is necessary.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell manufacturing method capable of manufacturing solar cells by effectively using a semiconductor wafer that does not satisfy the specifications.
  • the present invention provides a first inspection of a crystal defect defect and an appearance defect on a first conductivity type semiconductor wafer having a square outer shape in a plane direction.
  • One step and the semiconductor wafer in which at least one of a crystal defect defect and an appearance defect is detected in the inspection, and is not less than half of the length of the pair of sides in the extending direction of the pair of sides in the square shape
  • a normal region having a normal region in the wafer in which the crystal defect defect or the appearance defect is not detected, the region extending over the entire length in the extending direction of the other pair of sides in the square shape.
  • a third step of forming a layer; a fourth step of forming a light-receiving surface side electrode in the normal region in the wafer on the impurity diffusion layer; and on the other surface facing the one surface in the selected partial normal semiconductor wafer In the fifth step of forming a back-side electrode in the normal region in the wafer and at any timing after the first step and after the end of the fifth step, the partial normal semiconductor wafer to the wafer And a sixth step of cutting out the inner normal region.
  • Sectional drawing which shows the principal part which shows the photovoltaic cell concerning Embodiment 1 of this invention. The flowchart explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention.
  • Plan view of a wafer for explaining a half normal region according to the first embodiment of the present invention The top view which shows the state in which the silver paste was printed only with respect to the bisection area
  • the top view which shows the state which cut
  • Plane view of wafer for explaining half normal region according to second embodiment of the present invention Top view showing a half normal region in a wafer according to a second embodiment of the present invention.
  • FIG. 1 is a top view showing a solar battery cell 1 according to Embodiment 1 of the present invention.
  • FIG. 2 is a bottom view showing the solar battery cell 1 according to the first embodiment of the present invention.
  • FIG. 3 is a main part sectional view showing the solar battery cell 1 according to the first embodiment of the present invention, and is a main part sectional view of the solar battery cell 1 in the AA direction of FIG.
  • the n-type impurity diffusion layer 3 is formed by phosphorus diffusion on the light receiving surface side of the semiconductor substrate 2 made of p-type single crystal silicon, and the semiconductor substrate 11 has a pn junction. Is formed.
  • An antireflection film 4 made of a silicon nitride (SiN) film is formed on the n-type impurity diffusion layer 3.
  • the semiconductor substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate, an n-type polycrystalline silicon substrate, or an n-type single crystal silicon substrate may be used.
  • minute unevenness is formed as the texture structure 2 a on the light receiving surface side surface of the semiconductor substrate 11, that is, on the surface of the n-type impurity diffusion layer 3.
  • the micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
  • the antireflection film 4 is made of a silicon nitride (SiN) film that is an insulating film.
  • the antireflection film 4 is not limited to a silicon nitride film, and may be formed of an insulating film such as a silicon oxide (SiO 2 ) film or a titanium oxide (TiO 2 ) film.
  • a plurality of long and narrow surface silver grid electrodes 5 are arranged side by side on the light receiving surface side of the semiconductor substrate 11, and a surface silver bus electrode 6 electrically connected to the surface silver grid electrode 5 is orthogonal to the surface silver grid electrode 5. Each of them is electrically connected to the n-type impurity diffusion layer 3 at the bottom portion.
  • the front silver grid electrode 5 and the front silver bus electrode 6 are made of a silver material.
  • the front silver grid electrode 5 has a width of about 100 ⁇ m to 200 ⁇ m and is arranged in parallel at intervals of about 2 mm, and collects electricity generated inside the semiconductor substrate 11. Further, the front silver bus electrodes 6 have a width of about 1 mm to 3 mm and are arranged for four solar cells, and take out the electricity collected by the front silver grid electrodes 5 to the outside.
  • the front silver grid electrode 5 and the front silver bus electrode 6 constitute a light receiving surface side electrode 12 which is a first electrode having a comb shape. Since the light receiving surface side electrode 12 blocks sunlight incident on the semiconductor substrate 11, it is preferable to reduce the area as much as possible from the viewpoint of improving the power generation efficiency. Therefore, the light receiving surface side electrode 12 is generally arranged as a comb-shaped surface silver grid electrode 5 and a bar-shaped surface silver bus electrode 6 as shown in FIG.
  • a silver paste is usually used, for example, lead boron glass is added.
  • This glass has a frit shape and is composed of, for example, lead (Pb) 5-30 wt%, boron (B) 5-10 wt%, silicon (Si) 5-15 wt%, and oxygen (O) 30-60 wt%.
  • lead (Pb) 5-30 wt%
  • boron (B) 5-10 wt%
  • silicon Si 5-15 wt%
  • oxygen (O) 30-60 wt% oxygen
  • zinc (Zn) or cadmium (Cd) may be mixed by several wt%.
  • Such lead boron glass has a property of melting by heating at several hundred degrees C. (for example, 800.degree. C.) and eroding silicon at that time.
  • a method of obtaining electrical contact between a silicon substrate and a silver paste by using the characteristics of the glass frit is used.
  • a back aluminum electrode 7 made of an aluminum material is provided over the entire surface except for a part of the outer edge region on the back surface, which is the surface facing the light receiving surface in the semiconductor substrate 11, and in the same direction as the front silver bus electrode 6
  • a back silver electrode 8 made of a silver material is provided.
  • the back aluminum electrode 7 and the back silver electrode 8 constitute a back electrode 13 as a second electrode.
  • the back aluminum electrode 7 is also expected to have a BSR (Back Surface Reflection) effect in which long wavelength light passing through the semiconductor substrate 11 is reflected and reused for power generation.
  • BSR Back Surface Reflection
  • a p + layer 9 which is a BSF (Back Surface Field) containing a high concentration impurity is formed on the surface layer portion on the back surface side of the semiconductor substrate 11.
  • the p + layer 9 is provided in order to obtain the BSF effect, and the electron concentration in the semiconductor substrate 2 is increased by an electric field having a band structure so that electrons in the semiconductor substrate 2 which is a p-type layer do not disappear.
  • the thus configured solar battery cell 1 has a pseudo-rectangular outer shape in the surface direction of the light-receiving surface, more specifically, a pseudo-rectangular shape.
  • the solar battery cell 1 is a half-cut cell having a size and a shape in which a solar battery cell having a pseudo-square shape is divided into two equal parts along a direction in which a pair of opposing sides extend in the outer shape. .
  • L the length of one side of the square shape in the solar cell having the pseudo-square shape
  • the length of the long side in the rectangular shape of the solar cell 1 is L
  • the length of the short side in the rectangular shape is L / 2. It is.
  • the pseudo-rectangular shape means a state in which the four corner portions are chamfered in the rectangular shape.
  • the pseudo-square shape means a state where the four corner portions are chamfered in the square shape.
  • the pseudo long shape of the outer shape of the solar battery cell 1 means a state in which a pair of corners located at both ends of one long side of the rectangular shape is chamfered among the four corners in the rectangular shape.
  • General solar cells are chamfered at the four corners of a square outer shape.
  • the chamfering is, for example, 45 ° chamfering or round chamfering.
  • Round chamfering is not a positively formed product, but a shape that occurs in order to use a silicon wafer having a circular outer shape as effectively as possible.
  • a pair of corners located at both ends of one long side in a rectangular shape are chamfered to form a chamfer 15a and a chamfer 15b.
  • the front silver grid electrode 5 is arranged along the direction in which the long side of the rectangular shape extends.
  • the front silver bus electrode 6 is arranged along the direction in which the short side of the rectangular shape extends.
  • the solar battery cell 1 is a solar battery cell manufactured using a semiconductor wafer that does not satisfy the specifications as a result of inspection of crystal defects and appearance. That is, the solar battery cell 1 is a solar battery cell manufactured using a scrap wafer that is not normally put into a solar cell manufacturing line.
  • FIG. 4 is a flowchart for explaining an example of the manufacturing process of the solar battery cell 1 according to the first embodiment of the present invention.
  • 5 to 11 are cross-sectional views for explaining an example of the manufacturing process of the solar battery cell 1 according to the first embodiment of the present invention.
  • a silicon wafer that is a semiconductor wafer is processed.
  • the silicon wafer is referred to as a wafer.
  • the outer periphery of a p-type single crystal ingot obtained by growing a molten silicon melt is ground so that the diameter is uniform.
  • a wafer having a thickness of about 0.2 mm is sliced from the single crystal ingot using a wire saw and cut into a desired outer shape.
  • the wafer is cut into a pseudo-square shape in which the outer shape in the surface direction has a square shape and the four corner portions of the outer shape are chamfered. That is, the wafer is cut into a polygonal shape.
  • the shape of the wafer may be a perfect square shape in which the four corners of the outer shape are not chamfered.
  • the surface of the wafer is cleaned to remove deposits on the wafer surface up to the previous step.
  • a p-type single crystal silicon wafer which is an as-sliced wafer having a thickness of about 170 ⁇ m to 230 ⁇ m is obtained.
  • the p-type single crystal silicon wafer has a pseudo-square shape in which the outer shape in the plane direction has a square shape and the four corners of the outer shape are chamfered.
  • step S20 the inspection of the crystal defects and the appearance of the wafer is performed using an inspection apparatus.
  • the inspection of crystal defects for example, crystal defects due to void defects in the wafer are detected by defect inspection using X-rays.
  • defect inspection for example, surface inspection using a laser detects appearance defects such as dirt, chipping, and scratches on the wafer.
  • step S30 it is determined whether or not the wafer satisfies a predetermined specification in the inspection of the inspection target wafer.
  • the inspection apparatus detects a crystal defect defect due to a void defect based on a predetermined determination criterion for a crystal defect defect in a wafer to be inspected, that is, if the wafer does not satisfy a predetermined specification ( In step S30, No), data on the detected crystal defect is input to the partial normal wafer determination apparatus.
  • Predetermined criteria for crystal defect defects are held in advance in the inspection apparatus.
  • the crystal defect defect data input from the inspection apparatus to the partial normal wafer determination apparatus includes crystal defect defect position data that is data of the position of the detected crystal defect defect in the plane of the wafer.
  • step S30 when the inspection apparatus detects an appearance defect such as dirt, chipping, or a scratch based on a predetermined criterion for appearance defect in the wafer to be inspected, that is, the wafer does not satisfy the predetermined specification. In that case (step S30, No), data on the detected appearance defect is input to the partial normal wafer determination apparatus. Predetermined criteria for appearance defects are stored in the inspection apparatus in advance.
  • the appearance defect data input from the inspection apparatus to the partially normal wafer determination apparatus includes appearance defect position data, which is data of the position of the detected appearance defect on the wafer.
  • step S120 the partial normal wafer determination device determines whether or not a half normal region exists in the surface of the wafer.
  • a partial normal wafer having a half normal region is selected.
  • the half normal region is defined by the in-plane of the wafer along a virtual line passing through the center of the wafer in the pseudo-square surface and along a direction in which a pair of opposing sides extend in the pseudo-square outer shape of the wafer.
  • One of the regions divided into two equal parts which is a continuous region in which no crystal defect defect and no appearance defect are detected.
  • the area that does not satisfy the specified specifications as a result of the inspection of crystal defects and appearance is less than half in the wafer plane, not the entire area in the wafer plane. This is a case where it is an area.
  • the partial normal wafer determination apparatus determines whether or not a half normal area exists in the wafer surface based on the crystal defect defect position data and the appearance defect position data input from the defect inspection apparatus and the surface inspection apparatus. Further, the partial normal wafer determination apparatus has a case where data relating to defects is input from only one of the defect inspection apparatus and the surface inspection apparatus, that is, only one of the crystal defect defect and the appearance defect is detected on the wafer. In this case, it is determined whether or not a half normal region exists in the wafer surface based on the inputted data on one defect.
  • step S120 if a half normal area exists in the wafer surface (step S120, Yes), a wafer having a half normal area is selected and the process proceeds to step S40 of the next process.
  • a semiconductor substrate 2 made of p-type single crystal silicon is obtained as shown in FIG.
  • the plane of the semiconductor substrate 2 made of p-type single crystal silicon there are continuous regions including a half normal region where no crystal defect defect and appearance defect are detected.
  • half normal area position information relating to the position of the half normal area in the surface of the wafer is held.
  • half normal area position information can be used in the process which processes to the position of a half normal area. That is, in the electrode forming process in step S180 and step S90 and the cutting process in step S110, the position of the half normal region can be specified and processed.
  • the wafer is recycled as a scrap wafer in step S130.
  • the in-plane of the wafer is equal to 2 etc. along a virtual line passing through the center of the wafer in the pseudo-square shape and along a direction in which a pair of opposite sides extend in the pseudo-square outline of the wafer.
  • crystal defect defect or an appearance defect in both of the divided areas There is a crystal defect defect or an appearance defect in both of the divided areas.
  • FIG. 12 is a plan view of the wafer 21 for explaining the half normal region according to the first embodiment of the present invention.
  • the wafer 21 is a wafer that does not satisfy the predetermined specifications in step S30.
  • the outer shape of the wafer 21 in the surface direction is a pseudo-square shape, and the corners of the four corners of the outer shape are chamfered to form a chamfered portion 15a, a chamfered portion 15b, a chamfered portion 15c, and a chamfered portion 15d.
  • the length of one side is L.
  • the wafer 21 has a crystal defect defect 31 and an appearance defect 32 that do not satisfy predetermined specifications in the plane.
  • the pair of sides 22 and 23 that extend through the center 21a of the wafer 21 in the pseudo-square shape and face each other in the pseudo-square shape of the wafer 21 extend in the X direction in FIG.
  • the regions where the in-plane surface of the wafer 21 is divided into two equal parts along the imaginary line BB one of the two equally divided regions Why on the side 22 side is a half normal region.
  • the distance between the side 22 and the virtual line BB is L / 2.
  • the other pair of sides 24 and 25 extending through the center 21a of the wafer 21 in the square surface and facing each other in the square shape of the wafer 21 extend, that is, Y in FIG.
  • one bisected region Whx on the side 25 side is a half normal region.
  • the region where the length in the Y direction between the side 22 and the crystal defect defect 31 in the Y direction in FIG. 12 is the normal length Ln includes the half normal region, and the crystal defect defect and the appearance defect.
  • the extension direction of the other pair of sides 22 and 23 in the pseudo-square shape is less than the length between the other pair of sides 22 and 23 in the pseudo-square shape. This is a region extending over the entire length of The normal area in the wafer is an area where no crystal defect defect or the appearance defect is detected.
  • step S30 the inspection apparatus does not detect a crystal defect due to a void defect based on a predetermined determination criterion and an appearance defect such as dirt, chipping, and scratches based on the predetermined determination criterion on the inspection target wafer. In this case, it is determined that the wafer satisfies the predetermined specification (step S30, Yes). In step S30, if the inspection apparatus determines that the wafer satisfies a predetermined specification, the process proceeds to step S40 of the next process.
  • step S40 a solar cell manufacturing method using the semiconductor substrate 2 made of p-type single crystal silicon, which is the wafer obtained in step S120, will be described, and the wafer obtained in step S30. Description of the case of using a p-type single crystal silicon substrate is omitted.
  • step S40 the texture structure 2a is formed on the semiconductor substrate 2 made of p-type single crystal silicon, which is the wafer determined to have a half normal region in the plane of the wafer in step S120.
  • the p-type single crystal silicon substrate is anisotropically etched with a solution obtained by adding IPA (isopropyl alcohol) to a low-concentration alkali solution so that the silicon (111) surface is exposed, and the light-receiving surface side of the p-type single crystal silicon substrate is exposed.
  • the texture structure 2a is formed by forming minute irregularities (texture) on the surface of the film.
  • a pn junction is formed in the semiconductor substrate 2 as shown in FIG. That is, a group V element such as phosphorus (P) is diffused into the semiconductor substrate 2 to form the n-type impurity diffusion layer 3 on the surface of the semiconductor substrate 2.
  • a pn junction is formed by diffusing phosphorus oxychloride (POCl 3 ) by thermal diffusion on a p-type single crystal silicon substrate having the texture structure 2a formed on both sides. Thereby, n-type impurity diffusion layer 3 is formed on the entire surface of the p-type single crystal silicon substrate.
  • the p-type single crystal silicon substrate is heated at a high temperature of about 800 ° C. to 900 ° C. by a vapor phase diffusion method in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ) gas, nitrogen gas, and oxygen gas.
  • POCl 3 phosphorus oxychloride
  • the n-type impurity diffusion layer 3 in which phosphorus (P) is diffused is uniformly formed on the surface layer of the p-type single crystal silicon substrate.
  • Good electrical characteristics of the solar cell can be obtained when the sheet resistance range of the n-type impurity diffusion layer 3 formed on the surface of the semiconductor substrate 2 is about 30 ⁇ / ⁇ to 80 ⁇ / ⁇ . It is possible to form n-type impurity diffusion layer 3 using ion implantation and heat treatment.
  • step S60 pn separation is performed to electrically insulate the back-side electrode 13 that is a p-type electrode and the light-receiving surface-side electrode 12 that is an n-type electrode. Since n-type impurity diffusion layer 3 is uniformly formed on the surface of the p-type single crystal silicon substrate, the front surface and the back surface are in an electrically connected state. For this reason, when the back surface side electrode 13 that is a p-type electrode and the light receiving surface side electrode 12 that is an n type electrode are formed, the back surface side electrode 13 that is a p type electrode and the light receiving surface side electrode that is an n type electrode. 12 are electrically connected.
  • the n-type impurity diffusion layer 3 formed in the end face region of the p-type single crystal silicon substrate is etched away by dry etching to perform pn separation.
  • a method for removing the influence of the n-type impurity diffusion layer 3 there is also a method of performing end face separation with a laser. Further, when the n-type impurity diffusion layer 3 is formed only on one surface on the light-receiving surface side in the p-type single crystal silicon substrate, this pn separation process is not necessary.
  • a phosphosilicate glass (PSG) layer which is a glassy material deposited on the surface during the diffusion treatment is formed. Therefore, the phosphosilicate glass layer is removed using a hydrofluoric acid solution or the like.
  • step S70 in order to improve the photoelectric conversion efficiency, the antireflection film 4 is uniformly formed on the surface of the semiconductor substrate 11 on the light receiving surface side, that is, the surface of the n-type impurity diffusion layer 3. Form with thickness.
  • the film thickness and refractive index of the antireflection film 4 are set to values that most suppress light reflection.
  • the antireflection film 4 is formed by using a plasma CVD method, using a mixed gas of silane (SiH 4 ) gas and ammonia (NH 3 ) gas as a raw material, at a temperature of 300 ° C. or higher and under reduced pressure. A silicon nitride film is formed.
  • the refractive index is, for example, about 2.0 to 2.2, and an appropriate antireflection film thickness is, for example, 70 nm to 90 nm.
  • an appropriate antireflection film thickness is, for example, 70 nm to 90 nm.
  • two or more films having different refractive indexes may be laminated as the antireflection film 4.
  • the antireflection film 4 may be formed by vapor deposition, thermal CVD, or the like. It should be noted that the antireflection film 4 formed in this manner is an insulator, and simply forming the light receiving surface side electrode 12 on the surface does not act as a solar battery cell.
  • step S80 on the antireflection film 4 that is the light receiving surface of the semiconductor substrate 11, the shapes of the surface silver grid electrode 5 that is the light receiving surface side electrode 12 and the surface silver bus electrode 6 are formed. Further, after applying silver paste 12a, which is an electrode material paste containing glass frit, by screen printing, the silver paste 12a is dried.
  • silver paste 12a which is an electrode material paste containing glass frit
  • the formation of the front silver grid electrode 5 and the front silver bus electrode 6 before firing that is, the printing of the silver paste 12a is performed in the above-described step S120 in the region on the antireflection film 4 which is the light receiving surface of the semiconductor substrate 11. It is performed only on the determined half normal area.
  • FIG. 13 is a top view showing a state in which the silver paste 12a is printed only on the half-divided region Why which is a half normal region on the antireflection film 4 which is the light receiving surface of the semiconductor substrate 11 in the first embodiment. It is.
  • the printed pattern of the silver paste 12a in the half normal region has the same shape as that of a normal wafer that is determined to satisfy a predetermined specification in the inspection of the crystal defect defect and the appearance defect. Accordingly, the silver paste 12a is printed on the antireflection film 4 in the same shape as that of a normal wafer only in a half region.
  • step S90 on the p-type single crystal silicon substrate which is the back surface of the semiconductor substrate 11, an aluminum paste 7a which is an electrode material paste is formed in the shape of the back aluminum electrode 7 by screen printing. Then, a silver paste as an electrode material paste is applied to the shape of the back silver electrode 8 and dried. In the figure, only the aluminum paste 7a is shown, and the description of the silver paste is omitted.
  • the formation of the back aluminum electrode 7 and the back silver electrode 8 before firing that is, the printing of the aluminum paste 7a and the silver paste is half of the back surface of the semiconductor substrate 11 corresponding to the half normal region, similarly to the light receiving surface side. Only done for regions.
  • the printing pattern of the aluminum paste 7a and the silver paste in the half region corresponding to the half normal region on the back surface of the semiconductor substrate 11 is determined to satisfy the predetermined specifications in the inspection of the crystal defect defect and the appearance defect. Is the same shape. Therefore, on the back surface of the semiconductor substrate 11, the aluminum paste 7a and the silver paste are printed in the same shape as that of a normal wafer only in a half region corresponding to the half normal region.
  • the order of arrangement of the paste, which is an electrode material, on the semiconductor substrate 11 may be switched between the light receiving surface side and the back surface side.
  • the electrode paste can be printed on the light receiving surface side and the back surface side of the semiconductor substrate 11 by specifying the position of the half normal region in the semiconductor substrate 11 by using the half normal region position information. Further, by using the half normal area position information, an alignment mark for alignment of the half normal area is provided in advance on the semiconductor substrate 11, and the position of the half normal area can be specified using the alignment mark. Good.
  • step S110 the electrode paste on the light-receiving surface side and the back surface side of the semiconductor substrate 11 is simultaneously fired at about 600 ° C. to 900 ° C., so that the glass contained in the silver paste 12a on the front side of the semiconductor substrate 11 is obtained. While the antireflective film 4 is melted by the material, the silver material comes into contact with the silicon and resolidifies. As a result, as shown in FIG. 11, the surface silver grid electrode 5 and the surface silver bus electrode 6 as the light receiving surface side electrode 12 are obtained, and conduction between the light receiving surface side electrode 12 and the silicon of the semiconductor substrate 11 is ensured. The Such a process is called a fire-through method.
  • the aluminum paste 7 a also reacts with the silicon of the semiconductor substrate 11 to obtain the back aluminum electrode 7, and the p + layer 9 is formed immediately below the back aluminum electrode 7. Further, the silver material of the silver paste comes into contact with silicon and re-solidifies to obtain the back silver electrode 8. Thereby, the back surface side electrode 13 is obtained.
  • the front silver grid electrode 5 and the back aluminum electrode 7 are shown, and the description of the front silver bus electrode 6 and the silver paste 8 is omitted.
  • step S110 the region corresponding to the half normal region where the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in the semiconductor substrate 11 is cut out.
  • the cutting can be performed by specifying the position of the half normal region in the semiconductor substrate 11 by using the half normal region position information.
  • FIG. 14 is a top view showing a state in which the bisected region Why, which is a half normal region where the light receiving surface side electrode 12 and the back surface side electrode 13 are formed, is cut in the semiconductor substrate 11 of the first embodiment.
  • the region corresponding to the bisected region Whx is cut out.
  • a half region including a region where at least one of a crystal defect defect and an appearance defect is detected in the semiconductor substrate 11 is sent to recycling as a scrap wafer Ws.
  • the solar battery cell 1 according to the first embodiment shown in FIGS. 1 to 3 can be manufactured. That is, a half-cut cell can be manufactured while avoiding a region where at least one of a crystal defect defect and an appearance defect is detected in the wafer inspection. Therefore, in a wafer in which a crystal defect defect or an appearance defect is detected, the entire solar cell is not used as a scrap wafer for recycling, but an area in which no defect is detected in the wafer surface is effectively used. Can be made.
  • the inspection apparatus may be divided into a defect inspection apparatus and a surface inspection apparatus.
  • the partial normal wafer determination apparatus may be incorporated in the inspection apparatus.
  • the partial normal wafer determination device may be configured by a dedicated device, or may be configured by a computer device that realizes a function as the partial normal wafer determination device.
  • a computer device that realizes a function as a partial normal wafer determination device includes, for example, a display device such as an LCD (Liquid Crystal Display), an input device such as a keyboard, a central processing unit (CPU) that performs arithmetic operation, and a ROM (ROM). It is an interface with non-volatile memory such as Read Only Memory), volatile memory such as RAM (Random Access Memory), display memory that stores the display screen displayed on the display device, and removable external memory such as flash memory.
  • non-volatile memory such as Read Only Memory
  • volatile memory such as RAM (Random Access Memory)
  • display memory that stores the display screen displayed on the display device
  • removable external memory such as flash memory.
  • An external memory interface, a communication interface for communicating with an external device, and the like are connected via a bus. Then, a program describing a processing procedure as the partial normal wafer determination apparatus stored in the nonvolatile memory is loaded into the volatile memory and executed by the CPU.
  • the half normal area is used to perform half A cut cell can be produced. That is, in a wafer in which at least one of a crystal defect defect or an appearance defect is detected and does not satisfy a predetermined specification, an area that does not satisfy the predetermined specification is not an entire area in the wafer surface but an area less than half in the wafer surface. In this case, a half-cut cell can be produced while avoiding an area that does not satisfy the predetermined specification. Therefore, according to the first embodiment, a half-cut cell can be manufactured by effectively using a silicon wafer that does not satisfy a predetermined specification in the crystal defect defect inspection and the appearance defect inspection.
  • FIG. 15 is a plan view of the wafer 41 for explaining the half normal region according to the second embodiment of the present invention.
  • the wafer 41 is a wafer that does not satisfy the predetermined specifications in step S30 of the first embodiment.
  • the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the outer shape of the wafer 41 in the surface direction is a pseudo square shape, the four corners of the outer shape are chamfered, and the length of one side of the pseudo square shape is L.
  • the crystal defect defect 31 and the appearance defect 32 that do not satisfy the predetermined standard are close to one side in the plane of the wafer 41, that is, the side 22 side.
  • the normal length Ln in the Y direction between the side 23 and the crystal defect defect 31 in the Y direction in FIG. 15 has a length of about 3 / 4L, which is more than L / 2 required for the half normal region. Is also getting longer.
  • a region extending between the side 23 and the crystal defect defect 31 in the Y direction in FIG. 15 and extending over the entire length in the extending direction of the pair of sides 22 and 23 in the pseudo-square shape includes a crystal defect defect and an appearance defect. There is no normal area Wn in the wafer.
  • FIG. 16 is a top view showing the half normal region Wh in the wafer 41 according to the second embodiment.
  • FIG. 17 is a top view showing a state in which the solar battery cell 42 according to the second embodiment is cut out.
  • the central region in the Y direction of the normal region Wn in the wafer is set as a half normal region Wh as shown in FIG.
  • steps S80 and S90 of the first embodiment the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in the half normal region Wh. Then, in step S110 of the first embodiment, as shown in FIG.
  • the half normal region Wh in which the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed is cut and cut out, so that the second embodiment is applied.
  • the solar battery cell 42 can be produced.
  • the remaining portion of the wafer 41 from which the solar battery cells 42 are cut out is a scrap wafer Ws.
  • the solar battery cell 1 according to the first embodiment has a pseudo-rectangular shape in which a pair of corner portions located at both ends of one long side in a rectangular shape are chamfered to be chamfered portions 15a and chamfered portions 15b.
  • the solar battery cell 42 according to the second embodiment has a complete rectangular outer shape whose corners are not chamfered. And the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed to the outer-periphery edge part of a corner
  • the photovoltaic cell 42 concerning this Embodiment 2 can ensure the length of the short side in the external shape longer than the photovoltaic cell 1 concerning Embodiment 1, it can ensure wide light-receiving area.
  • the amount of power generation can be increased as compared with the solar battery cell 1. That is, the solar cell 42 can increase the amount of power generation as compared with the solar cell 1 by setting the length of the short side of the outer shape to be larger than L / 2.
  • the second embodiment it is possible to increase the power generation amount of a cut cell produced by effectively using a silicon wafer that does not satisfy a predetermined specification in a crystal defect defect inspection and an appearance defect inspection.
  • the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed in the half normal region of the in-wafer normal region Wn, and the half normal region is cut out to form a half cut. The case of manufacturing a cell is shown.
  • the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in a region wider than the half normal region in the short side direction in the rectangular normal region Wn in the short side direction, and the solar cell is manufactured by cutting out the regions. You can also. That is, in the first embodiment and the second embodiment, the light receiving surface side electrode 12 and the back surface side in the region of the normal region Wn in the wafer having a region wider than the half normal region in the extending direction of the pair of opposing sides 24 and 25. The electrode 13 is formed, and the normal area Wn in the wafer is cut out to produce a solar battery cell.
  • a solar battery cell is manufactured using a rectangular region in which the short side is longer than half the long side and less than the long side in the normal region Wn in the wafer. To do. This makes it possible to effectively use a silicon wafer that does not satisfy the predetermined specifications in the crystal defect defect inspection and the appearance defect inspection, thereby realizing a solar battery cell having a larger power generation amount than the half-cut cell.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
  • 1,42 solar cells 2 semiconductor substrate, 2a texture structure, 3 n-type impurity diffusion layer, 4 antireflection film, 5 surface silver grid electrode, 6 surface silver bus electrode, 7 back aluminum electrode, 7a aluminum paste, 8 back Silver electrode, 9 p + layer, 11 semiconductor substrate, 12 light receiving surface side electrode, 12a silver paste, 13 back surface side electrode, 15a, 15b, 15c, 15d chamfer, 21,41 wafer, 21a wafer center, 22, 23, 24, 25 sides, 31 crystal defect defect, 32 appearance defect, B, C imaginary line, Wh, Whx, Why half normal area, Wn normal area in wafer, Ws scrap wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

This method comprises: a first step for inspecting a semiconductor wafer for a crystal fault defect and an appearance defect; a second step for selecting a partially normal semiconductor wafer having a detected defect and having an intra-wafer normal area, which is an area having a length equal to or larger than half, and extending along, the lengths of a pair of sides of a square and a length equal to, and extending along, the entire lengths of another pair of sides of the square and containing no detected crystal fault defects or appearance defects; a third step for forming an impurity diffusion layer on one surface of the partially normal semiconductor wafer, the impurity diffusion layer having impurity elements of a second conductivity type diffused therein; a fourth step for forming a light-receiving-surface-side electrode in the intra-wafer normal area on the impurity diffusion layer; a fifth step for forming a back-surface-side electrode in the intra-wafer normal area on another surface opposite the one surface of the partially normal semiconductor wafer; and a sixth step for dicing the intra-wafer normal area at an arbitrary timing after the first step and before the end of the fifth step.

Description

太陽電池セルの製造方法Method for manufacturing solar battery cell
 本発明は、半導体基板を用いた太陽電池セルの製造方法に関するものである。 The present invention relates to a method for manufacturing a solar cell using a semiconductor substrate.
 太陽電池モジュールでは、モジュールの面積を基準とした実質的なエネルギー変換効率を向上させるために、モジュール充填率を向上させる必要がある。そこで、モジュール充填率を高める手法として、太陽電池セルを四角形状に加工して配列する方法が一般的に行われている。この方法では円板状の半導体ウエハを切断して四角形状にするため、半導体ウエハのロスが生じるという問題があった。 In the solar cell module, it is necessary to improve the module filling rate in order to improve the substantial energy conversion efficiency based on the module area. Therefore, as a method for increasing the module filling rate, a method of processing and arranging solar cells into a square shape is generally performed. In this method, the disk-shaped semiconductor wafer is cut into a quadrangular shape, which causes a problem of loss of the semiconductor wafer.
 そこで、特許文献1では、半導体ウエハのロスをなくすとともにモジュール充填率を高めてエネルギー変換効率を向上させるために、1枚のウエハを切断して分割した太陽電池セルを接続することにより作製された太陽電池モジュールが開示されている。 Therefore, in Patent Document 1, in order to eliminate the loss of the semiconductor wafer and increase the module filling rate to improve the energy conversion efficiency, it was produced by connecting the solar cells divided by cutting one wafer. A solar cell module is disclosed.
特許第4210220号公報Japanese Patent No. 4210220
 しかしながら、上記特許文献1においては、仕様を満足した半導体ウエハを使用することが前提とされており、仕様を満足しない半導体ウエハの発生による半導体ウエハのロスに関しては考慮されていない。半導体ウエハは、太陽電池セルの製造ラインへ投入される前に結晶欠陥と外観との検査が行われている。そして、仕様を満足していない半導体ウエハは不良品として除外され、太陽電池セルの製造ラインへは投入されない。 However, in Patent Document 1, it is assumed that a semiconductor wafer that satisfies the specifications is used, and the loss of the semiconductor wafer due to the generation of a semiconductor wafer that does not satisfy the specifications is not taken into consideration. The semiconductor wafer is inspected for crystal defects and appearance before being put into the production line for solar cells. Semiconductor wafers that do not satisfy the specifications are excluded as defective products and are not put into the production line for solar cells.
 仕様を満足しない不良品の半導体ウエハは、スクラップウエハとしてリサイクル可能である。しかし、不良品の半導体ウエハは、1枚全てがスクラップウエハとなるため、半導体ウエハのロスが大きくなり、半導体ウエハの生産歩留まりが低下する、という問題があった。したがって、太陽電池セルの製造工程における半導体ウエハのロスをより低減するためには、半導体ウエハの更なる有効利用が必要であった。 Defective semiconductor wafers that do not satisfy the specifications can be recycled as scrap wafers. However, since all of the defective semiconductor wafers are scrap wafers, there is a problem that the loss of the semiconductor wafers increases and the production yield of the semiconductor wafers decreases. Therefore, in order to further reduce the loss of the semiconductor wafer in the manufacturing process of the solar battery cell, further effective use of the semiconductor wafer is necessary.
 本発明は、上記に鑑みてなされたものであって、仕様を満足しない半導体ウエハを有効利用して太陽電池セルを製造可能な太陽電池セルの製造方法を得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain a solar cell manufacturing method capable of manufacturing solar cells by effectively using a semiconductor wafer that does not satisfy the specifications.
 上述した課題を解決し、目的を達成するために、本発明は、面方向において正方形状の外形形状を有する第1導電型の半導体ウエハに対して結晶欠陥不良と外観不良との検査を行う第1工程と、前記検査において結晶欠陥不良と外観不良とのうち少なくとも一方が検出された前記半導体ウエハであって、前記正方形状における一対の辺の伸長方向において前記一対の辺の長さの半分以上の長さを有し、且つ前記正方形状における他の一対の辺の伸長方向における全長さにわたる領域であって、前記結晶欠陥不良または前記外観不良が検出されていないウエハ内正常領域を有する部分正常半導体ウエハを選択する第2工程と、前記選択された部分正常半導体ウエハにおいて受光面側となる一面に第2導電型の不純物元素が拡散された不純物拡散層を形成する第3工程と、前記不純物拡散層上における前記ウエハ内正常領域に受光面側電極を形成する第4工程と、前記選択された部分正常半導体ウエハにおける前記一面と対向する他面上において前記ウエハ内正常領域に裏面側電極を形成する第5工程と、前記第1工程の後であって前記第5工程の終了後までのいずれかのタイミングにおいて、前記部分正常半導体ウエハから前記ウエハ内正常領域を切り出す第6工程と、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides a first inspection of a crystal defect defect and an appearance defect on a first conductivity type semiconductor wafer having a square outer shape in a plane direction. One step and the semiconductor wafer in which at least one of a crystal defect defect and an appearance defect is detected in the inspection, and is not less than half of the length of the pair of sides in the extending direction of the pair of sides in the square shape And a normal region having a normal region in the wafer in which the crystal defect defect or the appearance defect is not detected, the region extending over the entire length in the extending direction of the other pair of sides in the square shape. A second step of selecting a semiconductor wafer; and an impurity diffusion in which an impurity element of a second conductivity type is diffused on one surface on the light receiving surface side in the selected partial normal semiconductor wafer. A third step of forming a layer; a fourth step of forming a light-receiving surface side electrode in the normal region in the wafer on the impurity diffusion layer; and on the other surface facing the one surface in the selected partial normal semiconductor wafer In the fifth step of forming a back-side electrode in the normal region in the wafer and at any timing after the first step and after the end of the fifth step, the partial normal semiconductor wafer to the wafer And a sixth step of cutting out the inner normal region.
 本発明によれば、仕様を満足しない半導体ウエハを有効利用した太陽電池セルを得ることができる、という効果を奏する。 According to the present invention, it is possible to obtain a solar battery cell that effectively uses a semiconductor wafer that does not satisfy the specifications.
本発明の実施の形態1にかかる太陽電池セルを示す上面図The top view which shows the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルを示す下面図The bottom view which shows the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルを示す要部断面図Sectional drawing which shows the principal part which shows the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明するフローチャートThe flowchart explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる太陽電池セルの製造工程の一例を説明する断面図Sectional drawing explaining an example of the manufacturing process of the photovoltaic cell concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるハーフ正常領域を説明するためのウエハの平面図Plan view of a wafer for explaining a half normal region according to the first embodiment of the present invention 本発明の実施の形態1における半導体基板の受光面である反射防止膜上における2等分領域に対してのみ銀ペーストが印刷された状態を示す上面図The top view which shows the state in which the silver paste was printed only with respect to the bisection area | region on the antireflection film which is a light-receiving surface of the semiconductor substrate in Embodiment 1 of this invention 本発明の実施の形態1の半導体基板において受光面側電極と裏面側電極とが形成されたハーフ正常領域である2等分領域を切断した状態を示す上面図The top view which shows the state which cut | disconnected the bisection area | region which is a half normal area | region in which the light-receiving surface side electrode and the back surface side electrode were formed in the semiconductor substrate of Embodiment 1 of this invention 本発明の実施の形態2にかかるハーフ正常領域を説明するためのウエハの平面図Plane view of wafer for explaining half normal region according to second embodiment of the present invention 本発明の実施の形態2にかかるウエハにおけるハーフ正常領域を示す上面図Top view showing a half normal region in a wafer according to a second embodiment of the present invention. 本発明の実施の形態2にかかる太陽電池セルが切り出された状態を示す上面図The top view which shows the state by which the photovoltaic cell concerning Embodiment 2 of this invention was cut out
 以下に、本発明の実施の形態にかかる太陽電池セルの製造方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a method for manufacturing a solar battery cell according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる太陽電池セル1を示す上面図である。図2は、本発明の実施の形態1にかかる太陽電池セル1を示す下面図である。図3は、本発明の実施の形態1にかかる太陽電池セル1を示す要部断面図であり、図1のA-A方向における太陽電池セル1の要部断面図である。
Embodiment 1 FIG.
FIG. 1 is a top view showing a solar battery cell 1 according to Embodiment 1 of the present invention. FIG. 2 is a bottom view showing the solar battery cell 1 according to the first embodiment of the present invention. FIG. 3 is a main part sectional view showing the solar battery cell 1 according to the first embodiment of the present invention, and is a main part sectional view of the solar battery cell 1 in the AA direction of FIG.
 本実施の形態1にかかる太陽電池セル1においては、p型単結晶シリコンからなる半導体基板2の受光面側にリン拡散によってn型不純物拡散層3が形成されて、pn接合を有する半導体基板11が形成されている。また、n型不純物拡散層3上に窒化シリコン(SiN)膜からなる反射防止膜4が形成されている。なお、半導体基板2としてはp型単結晶のシリコン基板に限定されず、p型多結晶のシリコン基板、n型多結晶のシリコン基板またはn型単結晶のシリコン基板を用いてもよい。 In the solar cell 1 according to the first embodiment, the n-type impurity diffusion layer 3 is formed by phosphorus diffusion on the light receiving surface side of the semiconductor substrate 2 made of p-type single crystal silicon, and the semiconductor substrate 11 has a pn junction. Is formed. An antireflection film 4 made of a silicon nitride (SiN) film is formed on the n-type impurity diffusion layer 3. The semiconductor substrate 2 is not limited to a p-type single crystal silicon substrate, and a p-type polycrystalline silicon substrate, an n-type polycrystalline silicon substrate, or an n-type single crystal silicon substrate may be used.
 また、半導体基板11の受光面側の表面、すなわちn型不純物拡散層3の表面には、テクスチャー構造2aとして微小凹凸が形成されている。微小凹凸は、受光面において外部からの光を吸収する面積を増加し、受光面における反射率を抑え、光を閉じ込める構造となっている。 Further, minute unevenness is formed as the texture structure 2 a on the light receiving surface side surface of the semiconductor substrate 11, that is, on the surface of the n-type impurity diffusion layer 3. The micro unevenness increases the area for absorbing light from the outside on the light receiving surface, suppresses the reflectance on the light receiving surface, and has a structure for confining light.
 反射防止膜4は、絶縁膜である窒化シリコン(SiN)膜からなる。なお、反射防止膜4は、窒化シリコン膜に限定されず、酸化シリコン(SiO)膜または酸化チタン(TiO)膜などの絶縁膜により形成されてもよい。 The antireflection film 4 is made of a silicon nitride (SiN) film that is an insulating film. The antireflection film 4 is not limited to a silicon nitride film, and may be formed of an insulating film such as a silicon oxide (SiO 2 ) film or a titanium oxide (TiO 2 ) film.
 また、半導体基板11の受光面側には、長尺細長の表銀グリッド電極5が複数並べて設けられ、この表銀グリッド電極5と導通する表銀バス電極6が該表銀グリッド電極5と直交するように設けられており、それぞれ底面部においてn型不純物拡散層3に電気的に接続している。表銀グリッド電極5および表銀バス電極6は銀材料により構成されている。 In addition, a plurality of long and narrow surface silver grid electrodes 5 are arranged side by side on the light receiving surface side of the semiconductor substrate 11, and a surface silver bus electrode 6 electrically connected to the surface silver grid electrode 5 is orthogonal to the surface silver grid electrode 5. Each of them is electrically connected to the n-type impurity diffusion layer 3 at the bottom portion. The front silver grid electrode 5 and the front silver bus electrode 6 are made of a silver material.
 表銀グリッド電極5は、100μm~200μm程度の幅を有するとともに2mm程度の間隔で平行に配置され、半導体基板11の内部で発電した電気を集電する。また、表銀バス電極6は、1mm~3mm程度の幅を有するとともに太陽電池セル1枚当たりに4本配置され、表銀グリッド電極5で集電した電気を外部に取り出す。そして、表銀グリッド電極5と表銀バス電極6とにより、櫛形を呈する第1電極である受光面側電極12が構成される。受光面側電極12は、半導体基板11に入射する太陽光を遮ってしまうため、可能なかぎり面積を小さくすることが発電効率向上の観点では好ましい。したがって、受光面側電極12は、図1に示すような櫛型の表銀グリッド電極5とバー状の表銀バス電極6として配置してするのが一般的である。 The front silver grid electrode 5 has a width of about 100 μm to 200 μm and is arranged in parallel at intervals of about 2 mm, and collects electricity generated inside the semiconductor substrate 11. Further, the front silver bus electrodes 6 have a width of about 1 mm to 3 mm and are arranged for four solar cells, and take out the electricity collected by the front silver grid electrodes 5 to the outside. The front silver grid electrode 5 and the front silver bus electrode 6 constitute a light receiving surface side electrode 12 which is a first electrode having a comb shape. Since the light receiving surface side electrode 12 blocks sunlight incident on the semiconductor substrate 11, it is preferable to reduce the area as much as possible from the viewpoint of improving the power generation efficiency. Therefore, the light receiving surface side electrode 12 is generally arranged as a comb-shaped surface silver grid electrode 5 and a bar-shaped surface silver bus electrode 6 as shown in FIG.
 シリコン太陽電池セルの受光面側電極の電極材料には、通常、銀ペーストが用いられ、例えば、鉛ボロンガラスが添加されている。このガラスはフリット状のもので、例えば、鉛(Pb)5~30wt%、ボロン(B)5~10wt%、シリコン(Si)5~15wt%、酸素(O)30~60wt%の組成から成り、さらに、亜鉛(Zn)またはカドミウム(Cd)なども数wt%程度混合される場合もある。このような鉛ボロンガラスは、数百℃(例えば、800℃)の加熱で溶解し、その際にシリコンを侵食する性質を有している。また一般に、結晶系シリコン太陽電池セルの製造方法においては、このガラスフリットの特性を利用して、シリコン基板と銀ペーストとの電気的接触を得る方法が用いられている。 For the electrode material of the light receiving surface side electrode of the silicon solar battery cell, a silver paste is usually used, for example, lead boron glass is added. This glass has a frit shape and is composed of, for example, lead (Pb) 5-30 wt%, boron (B) 5-10 wt%, silicon (Si) 5-15 wt%, and oxygen (O) 30-60 wt%. Furthermore, zinc (Zn) or cadmium (Cd) may be mixed by several wt%. Such lead boron glass has a property of melting by heating at several hundred degrees C. (for example, 800.degree. C.) and eroding silicon at that time. In general, in a method for manufacturing a crystalline silicon solar battery cell, a method of obtaining electrical contact between a silicon substrate and a silver paste by using the characteristics of the glass frit is used.
 一方、半導体基板11において受光面と対向する面である裏面には、外縁領域の一部を除いた全体にわたってアルミニウム材料からなる裏アルミニウム電極7が設けられ、また表銀バス電極6と同一方向に延在して銀材料からなる裏銀電極8が設けられている。そして、裏アルミニウム電極7と裏銀電極8とにより第2電極である裏面側電極13が構成される。また、裏アルミニウム電極7には、半導体基板11を通過する長波長光を反射させて発電に再利用するBSR(Back Surface Reflection)効果も期待している。 On the other hand, a back aluminum electrode 7 made of an aluminum material is provided over the entire surface except for a part of the outer edge region on the back surface, which is the surface facing the light receiving surface in the semiconductor substrate 11, and in the same direction as the front silver bus electrode 6 A back silver electrode 8 made of a silver material is provided. The back aluminum electrode 7 and the back silver electrode 8 constitute a back electrode 13 as a second electrode. Further, the back aluminum electrode 7 is also expected to have a BSR (Back Surface Reflection) effect in which long wavelength light passing through the semiconductor substrate 11 is reflected and reused for power generation.
 また、半導体基板11の裏面側の表層部には、高濃度不純物を含んだBSF(Back Surface Field)であるp+層9が形成されている。p+層9は、BSF効果を得るために設けられ、p型層である半導体基板2中の電子が消滅しないようにバンド構造の電界で半導体基板2中の電子濃度を高めるようにする。 Further, a p + layer 9 which is a BSF (Back Surface Field) containing a high concentration impurity is formed on the surface layer portion on the back surface side of the semiconductor substrate 11. The p + layer 9 is provided in order to obtain the BSF effect, and the electron concentration in the semiconductor substrate 2 is increased by an electric field having a band structure so that electrons in the semiconductor substrate 2 which is a p-type layer do not disappear.
 このように構成された太陽電池セル1は、受光面の面方向における外形形状が疑似四角形状、より具体的には疑似長方形状とされている。そして、太陽電池セル1は、疑似正方形状を有する太陽電池セルが、外形形状において対向する一対の辺が伸長する方向に沿って2等分に分割されたサイズおよび形状を有するハーフカットセルである。疑似正方形状を有する太陽電池セルにおける正方形状の1辺の長さをLとすると、太陽電池セル1の長方形状における長辺の長さはL、長方形状における短辺の長さはL/2である。疑似四角形状とは、四角形状において四隅の部分が面取りされている状態を意味する。疑似正方形状とは、正方形状において四隅の部分が面取りされている状態を意味する。太陽電池セル1の外形形状の疑似長形状とは、長方形状において四隅のうち、長方形状における1つの長辺の両端に位置する一対の角部が面取りされている状態を意味する。 The thus configured solar battery cell 1 has a pseudo-rectangular outer shape in the surface direction of the light-receiving surface, more specifically, a pseudo-rectangular shape. The solar battery cell 1 is a half-cut cell having a size and a shape in which a solar battery cell having a pseudo-square shape is divided into two equal parts along a direction in which a pair of opposing sides extend in the outer shape. . When the length of one side of the square shape in the solar cell having the pseudo-square shape is L, the length of the long side in the rectangular shape of the solar cell 1 is L, and the length of the short side in the rectangular shape is L / 2. It is. The pseudo-rectangular shape means a state in which the four corner portions are chamfered in the rectangular shape. The pseudo-square shape means a state where the four corner portions are chamfered in the square shape. The pseudo long shape of the outer shape of the solar battery cell 1 means a state in which a pair of corners located at both ends of one long side of the rectangular shape is chamfered among the four corners in the rectangular shape.
 一般的な太陽電池セルは、正方形状の外形の四隅の部分が面取りされている。面取りは、たとえば45°面取りまたは丸み面取りである。丸み面取りは、積極的に形成した物ではなく、外形形状が円形のシリコンウエハをできるだけ有効に使用するために生じる形状である。太陽電池セル1は、長方形状における1つの長辺の両端に位置する一対の角部が面取りされて面取り部15a、面取り部15bとされている。表銀グリッド電極5は、長方形状における長辺が伸長する方向に沿って配置されている。表銀バス電極6は、長方形状における短辺が伸長する方向に沿って配置されている。 General solar cells are chamfered at the four corners of a square outer shape. The chamfering is, for example, 45 ° chamfering or round chamfering. Round chamfering is not a positively formed product, but a shape that occurs in order to use a silicon wafer having a circular outer shape as effectively as possible. In the solar cell 1, a pair of corners located at both ends of one long side in a rectangular shape are chamfered to form a chamfer 15a and a chamfer 15b. The front silver grid electrode 5 is arranged along the direction in which the long side of the rectangular shape extends. The front silver bus electrode 6 is arranged along the direction in which the short side of the rectangular shape extends.
 そして、太陽電池セル1は、結晶欠陥と外観との検査の結果、仕様を満足していない半導体ウエハを用いて作製された太陽電池セルである。すなわち、太陽電池セル1は、通常は太陽電池セルの製造ラインへは投入されないスクラップウエハを用いて作製された太陽電池セルである。 The solar battery cell 1 is a solar battery cell manufactured using a semiconductor wafer that does not satisfy the specifications as a result of inspection of crystal defects and appearance. That is, the solar battery cell 1 is a solar battery cell manufactured using a scrap wafer that is not normally put into a solar cell manufacturing line.
 以下、本実施の形態1にかかる太陽電池セル1の製造方法について図面に沿って説明する。図4は、本発明の実施の形態1にかかる太陽電池セル1の製造工程の一例を説明するフローチャートである。図5~図11は、本発明の実施の形態1にかかる太陽電池セル1の製造工程の一例を説明する断面図である。 Hereinafter, the manufacturing method of the photovoltaic cell 1 according to the first embodiment will be described with reference to the drawings. FIG. 4 is a flowchart for explaining an example of the manufacturing process of the solar battery cell 1 according to the first embodiment of the present invention. 5 to 11 are cross-sectional views for explaining an example of the manufacturing process of the solar battery cell 1 according to the first embodiment of the present invention.
 まず、ステップS10において、半導体ウエハであるシリコンウエハの加工が行われる。以下では、シリコンウエハをウエハと呼ぶ。ウエハの加工では、まず、溶融させたシリコン融液を成長させて得られたp型単結晶インゴットが、直径が均一になるよう外周が研削される。その後、ワイヤーソーを用いて厚さ0.2mm程度のウエハが、単結晶インゴットからスライスされ、所望の外形形状に切断される。本実施の形態1では、ウエハは、面方向における外形形状が正方形状を有し、外形の四隅の部分が面取りされている疑似正方形状に切断される。すなわち、ウエハは、多角形形状に切断される。なお、ウエハの形状は、外形の四隅の部分が面取りされていない完全な四角形状であってもよい。 First, in step S10, a silicon wafer that is a semiconductor wafer is processed. Hereinafter, the silicon wafer is referred to as a wafer. In the processing of a wafer, first, the outer periphery of a p-type single crystal ingot obtained by growing a molten silicon melt is ground so that the diameter is uniform. Thereafter, a wafer having a thickness of about 0.2 mm is sliced from the single crystal ingot using a wire saw and cut into a desired outer shape. In the first embodiment, the wafer is cut into a pseudo-square shape in which the outer shape in the surface direction has a square shape and the four corner portions of the outer shape are chamfered. That is, the wafer is cut into a polygonal shape. Note that the shape of the wafer may be a perfect square shape in which the four corners of the outer shape are not chamfered.
 つぎに、前工程までにおけるウエハ表面上の付着物を取り除くために、ウエハの表面が洗浄される。これにより、例えば170μm厚~230μm厚程度の、アズスライスウエハであるp型単結晶シリコンウエハが得られる。本実施の形態1において、p型単結晶シリコンウエハは、面方向における外形形状が正方形状を有し、外形の四隅の部分が面取りされた疑似正方形状を有する。 Next, the surface of the wafer is cleaned to remove deposits on the wafer surface up to the previous step. Thereby, for example, a p-type single crystal silicon wafer which is an as-sliced wafer having a thickness of about 170 μm to 230 μm is obtained. In the first embodiment, the p-type single crystal silicon wafer has a pseudo-square shape in which the outer shape in the plane direction has a square shape and the four corners of the outer shape are chamfered.
 つぎに、ステップS20において、ウエハの結晶欠陥と外観との検査が検査装置を用いて行われる。結晶欠陥の検査では、たとえばX線を用いた欠陥検査により、ウエハ内のボイド欠陥による結晶不良が検出される。外観の検査では、たとえばレーザを用いた表面検査により、ウエハにおける汚れ、チッピング、傷などの外観不良が検出される。 Next, in step S20, the inspection of the crystal defects and the appearance of the wafer is performed using an inspection apparatus. In the inspection of crystal defects, for example, crystal defects due to void defects in the wafer are detected by defect inspection using X-rays. In appearance inspection, for example, surface inspection using a laser detects appearance defects such as dirt, chipping, and scratches on the wafer.
 つぎに、ステップS30において、検査対象のウエハの検査においてウエハが既定の仕様を満たすか否かが判断される。ステップS30において、検査装置は、検査対象のウエハにおいて結晶欠陥不良に関する既定の判定基準に基づいたボイド欠陥による結晶欠陥不良を検出した場合には、すなわちウエハが既定の仕様を満たさない場合には(ステップS30、No)、検出された結晶欠陥不良についてのデータを部分正常ウエハ判定装置に入力する。結晶欠陥不良に関する既定の判定基準は、予め検査装置に保持される。検査装置から部分正常ウエハ判定装置に入力される結晶欠陥不良についてのデータには、検出された結晶欠陥不良のウエハの面内における位置のデータである結晶欠陥不良位置データが含まれる。 Next, in step S30, it is determined whether or not the wafer satisfies a predetermined specification in the inspection of the inspection target wafer. In step S30, the inspection apparatus detects a crystal defect defect due to a void defect based on a predetermined determination criterion for a crystal defect defect in a wafer to be inspected, that is, if the wafer does not satisfy a predetermined specification ( In step S30, No), data on the detected crystal defect is input to the partial normal wafer determination apparatus. Predetermined criteria for crystal defect defects are held in advance in the inspection apparatus. The crystal defect defect data input from the inspection apparatus to the partial normal wafer determination apparatus includes crystal defect defect position data that is data of the position of the detected crystal defect defect in the plane of the wafer.
 また、ステップS30において、検査装置は、検査対象のウエハにおいて外観不良に関する既定の判定基準に基づいた汚れ、チッピング、傷などの外観不良を検出した場合には、すなわちウエハが既定の仕様を満たさない場合には(ステップS30、No)、検出された外観不良についてのデータを部分正常ウエハ判定装置に入力する。外観不良に関する既定の判定基準は、予め検査装置に保持される。検査装置から部分正常ウエハ判定装置に入力される外観不良についてのデータには、検出された外観不良のウエハの面内における位置のデータである外観不良位置データが含まれる。 Further, in step S30, when the inspection apparatus detects an appearance defect such as dirt, chipping, or a scratch based on a predetermined criterion for appearance defect in the wafer to be inspected, that is, the wafer does not satisfy the predetermined specification. In that case (step S30, No), data on the detected appearance defect is input to the partial normal wafer determination apparatus. Predetermined criteria for appearance defects are stored in the inspection apparatus in advance. The appearance defect data input from the inspection apparatus to the partially normal wafer determination apparatus includes appearance defect position data, which is data of the position of the detected appearance defect on the wafer.
 つぎに、ステップS30において、ウエハが既定の仕様を満たさない場合は(ステップS30、No)、ステップS120において、部分正常ウエハ判定装置は、ウエハの面内においてハーフ正常領域が存在するか否かを判定し、ハーフ正常領域を有する部分正常ウエハを選択する。ハーフ正常領域は、疑似正方形状の面内におけるウエハの中心を通る仮想線に沿って、且つウエハの疑似正方形状の外形において対向する一対の辺が伸長する方向に沿って、ウエハの面内が2等分に分割された領域のうちの一方の領域であって、結晶欠陥不良および外観不良が検出されていない連続した領域である。したがって、ハーフ正常領域が存在する場合は、結晶欠陥と外観との検査の結果、既定の仕様を満足していない領域が、ウエハの面内における全領域ではなく、ウエハの面内における半分未満の領域となっている場合である。 Next, when the wafer does not satisfy the predetermined specification in step S30 (step S30, No), in step S120, the partial normal wafer determination device determines whether or not a half normal region exists in the surface of the wafer. A partial normal wafer having a half normal region is selected. The half normal region is defined by the in-plane of the wafer along a virtual line passing through the center of the wafer in the pseudo-square surface and along a direction in which a pair of opposing sides extend in the pseudo-square outer shape of the wafer. One of the regions divided into two equal parts, which is a continuous region in which no crystal defect defect and no appearance defect are detected. Therefore, if there is a half normal area, the area that does not satisfy the specified specifications as a result of the inspection of crystal defects and appearance is less than half in the wafer plane, not the entire area in the wafer plane. This is a case where it is an area.
 部分正常ウエハ判定装置は、欠陥検査装置および表面検査装置から入力された結晶欠陥不良位置データおよび外観不良位置データに基づいて、ウエハの面内においてハーフ正常領域が存在するか否かを判定する。また、部分正常ウエハ判定装置は、不良に関するデータが欠陥検査装置および表面検査装置の一方のみから入力されている場合、すなわち、結晶欠陥不良および外観不良のうち一方のみがウエハで検出されている場合には、入力された一方の不良についてのデータに基づいてウエハの面内においてハーフ正常領域が存在するか否かを判定する。 The partial normal wafer determination apparatus determines whether or not a half normal area exists in the wafer surface based on the crystal defect defect position data and the appearance defect position data input from the defect inspection apparatus and the surface inspection apparatus. Further, the partial normal wafer determination apparatus has a case where data relating to defects is input from only one of the defect inspection apparatus and the surface inspection apparatus, that is, only one of the crystal defect defect and the appearance defect is detected on the wafer. In this case, it is determined whether or not a half normal region exists in the wafer surface based on the inputted data on one defect.
 ステップS120において、ウエハの面内においてハーフ正常領域が存在する場合には(ステップS120、Yes)、ハーフ正常領域を有するウエハを選択して次工程のステップS40に進める。これにより、図5に示すようにp型単結晶シリコンからなる半導体基板2が得られる。この場合、p型単結晶シリコンからなる半導体基板2の面内においては、ハーフ正常領域を含む、結晶欠陥不良および外観不良が検出されていない連続した領域が存在する。また、ウエハの面内におけるハーフ正常領域の位置に関するハーフ正常領域位置情報を保持しておく。これにより、ステップS40以降の工程において、ハーフ正常領域の位置に処理を行う工程においてハーフ正常領域位置情報を使用することができる。すなわち、ステップS180、ステップS90の電極の形成工程、およびステップS110の切断工程において、ハーフ正常領域の位置を特定して処理を行うことができる。 In step S120, if a half normal area exists in the wafer surface (step S120, Yes), a wafer having a half normal area is selected and the process proceeds to step S40 of the next process. As a result, a semiconductor substrate 2 made of p-type single crystal silicon is obtained as shown in FIG. In this case, in the plane of the semiconductor substrate 2 made of p-type single crystal silicon, there are continuous regions including a half normal region where no crystal defect defect and appearance defect are detected. Further, half normal area position information relating to the position of the half normal area in the surface of the wafer is held. Thereby, in the process after step S40, half normal area position information can be used in the process which processes to the position of a half normal area. That is, in the electrode forming process in step S180 and step S90 and the cutting process in step S110, the position of the half normal region can be specified and processed.
 一方、ステップS120において、ウエハの面内においてハーフ正常領域が存在しない場合には(ステップS120、No)、ステップS130において、ウエハがスクラップウエハとしてリサイクルされる。この場合、疑似正方形状の面内におけるウエハの中心を通る仮想線に沿って、且つウエハの疑似正方形状の外形において対向する一対の辺が伸長する方向に沿って、ウエハの面内が2等分に分割された領域のうちの両方の領域に結晶欠陥不良または外観不良が存在する。 On the other hand, if there is no half normal area in the wafer surface in step S120 (No in step S120), the wafer is recycled as a scrap wafer in step S130. In this case, the in-plane of the wafer is equal to 2 etc. along a virtual line passing through the center of the wafer in the pseudo-square shape and along a direction in which a pair of opposite sides extend in the pseudo-square outline of the wafer. There is a crystal defect defect or an appearance defect in both of the divided areas.
 図12は、本発明の実施の形態1にかかるハーフ正常領域を説明するためのウエハ21の平面図である。ウエハ21は、ステップS30において、既定の仕様を満たさないウエハである。ウエハ21は、面方向における外形形状が疑似正方形状であり、外形の四隅の角部が面取りされて面取り部15a、面取り部15b、面取り部15c、面取り部15dとされており、疑似正方形状の1辺の長さがLとされる。ウエハ21には、面内において既定の仕様を満たさない結晶欠陥不良31および外観不良32が存在する。 FIG. 12 is a plan view of the wafer 21 for explaining the half normal region according to the first embodiment of the present invention. The wafer 21 is a wafer that does not satisfy the predetermined specifications in step S30. The outer shape of the wafer 21 in the surface direction is a pseudo-square shape, and the corners of the four corners of the outer shape are chamfered to form a chamfered portion 15a, a chamfered portion 15b, a chamfered portion 15c, and a chamfered portion 15d. The length of one side is L. The wafer 21 has a crystal defect defect 31 and an appearance defect 32 that do not satisfy predetermined specifications in the plane.
 図12において、疑似正方形状の面内におけるウエハ21の中心21aを通り、且つウエハ21の疑似正方形状の外形において対向する一対の辺22、辺23が伸長する方向、すなわち図12におけるX方向に沿った仮想線B-Bでウエハ21の面内が2等分に分割された領域のうち、辺22側の一方の2等分領域Whyがハーフ正常領域である。ここで、辺22と仮想線B-Bの距離はL/2である。 In FIG. 12, the pair of sides 22 and 23 that extend through the center 21a of the wafer 21 in the pseudo-square shape and face each other in the pseudo-square shape of the wafer 21 extend in the X direction in FIG. Of the regions where the in-plane surface of the wafer 21 is divided into two equal parts along the imaginary line BB, one of the two equally divided regions Why on the side 22 side is a half normal region. Here, the distance between the side 22 and the virtual line BB is L / 2.
 また、図12において、正方形状の面内におけるウエハ21の中心21aを通り、且つウエハ21の正方形状の外形において対向する他の一対の辺24、辺25が伸長する方向、すなわち図12におけるY方向に沿った仮想線C-Cでウエハ21の面内が2等分に分割された領域のうち、辺25側の一方の2等分領域Whxがハーフ正常領域である。 In FIG. 12, the other pair of sides 24 and 25 extending through the center 21a of the wafer 21 in the square surface and facing each other in the square shape of the wafer 21 extend, that is, Y in FIG. Of the regions in which the in-plane surface of the wafer 21 is divided into two equal parts along the imaginary line CC along the direction, one bisected region Whx on the side 25 side is a half normal region.
 図12に示す例では、2つのハーフ正常領域がX方向とY方向との2つの方向において存在する。しかし、結晶欠陥不良31および外観不良32の位置によっては、ハーフ正常領域がX方向またはY方向の一方の方向のみにおいて存在する場合、またはハーフ正常領域が存在しない場合が発生する。 In the example shown in FIG. 12, two half normal regions exist in two directions, the X direction and the Y direction. However, depending on the position of the crystal defect defect 31 and the appearance defect 32, a case where the half normal region exists only in one direction of the X direction or the Y direction or a case where the half normal region does not exist may occur.
 また、図12におけるY方向において辺22と結晶欠陥不良31との間の、Y方向における長さが正常長さLnとされた領域が、ハーフ正常領域を含んで、結晶欠陥不良および外観不良を含まないウエハ内正常領域Wnである。すなわち、ウエハ内正常領域は、検査において結晶欠陥不良と外観不良とのうち少なくとも一方が検出されたウエハ21において、疑似正方形状における一対の辺24、25の伸長方向において該一対の辺24、25の長さの半分以上であって、疑似正方形状における他の一対の辺22,23間の長さ未満の長さを有し、且つ疑似正方形状における他の一対の辺22,23の伸長方向における全長さにわたる領域である。そして、ウエハ内正常領域は、結晶欠陥不良または前記外観不良が検出されていない領域である。 In addition, the region where the length in the Y direction between the side 22 and the crystal defect defect 31 in the Y direction in FIG. 12 is the normal length Ln includes the half normal region, and the crystal defect defect and the appearance defect. This is the normal area Wn in the wafer not included. That is, the normal region in the wafer is the pair of sides 24 and 25 in the extending direction of the pair of sides 24 and 25 in the pseudo-square shape in the wafer 21 in which at least one of the crystal defect defect and the appearance defect is detected in the inspection. The extension direction of the other pair of sides 22 and 23 in the pseudo-square shape is less than the length between the other pair of sides 22 and 23 in the pseudo-square shape. This is a region extending over the entire length of The normal area in the wafer is an area where no crystal defect defect or the appearance defect is detected.
 一方、ステップS30に戻って、検査装置は、検査対象のウエハにおいて既定の判定基準に基づいたボイド欠陥による結晶不良、および既定の判定基準に基づいた汚れ、チッピング、傷などの外観不良を検出しない場合には、ウエハが既定の仕様を満たすと判定する(ステップS30、Yes)。そして、ステップS30において、検査装置において、ウエハが既定の仕様を満たすと判定された場合には、次工程のステップS40に進む。 On the other hand, returning to step S30, the inspection apparatus does not detect a crystal defect due to a void defect based on a predetermined determination criterion and an appearance defect such as dirt, chipping, and scratches based on the predetermined determination criterion on the inspection target wafer. In this case, it is determined that the wafer satisfies the predetermined specification (step S30, Yes). In step S30, if the inspection apparatus determines that the wafer satisfies a predetermined specification, the process proceeds to step S40 of the next process.
 以下のステップS40以下の工程では、ステップS120において得られたウエハであるp型単結晶シリコンからなる半導体基板2を用いた太陽電池セルの製造方法について説明し、ステップS30で得られたウエハであるp型単結晶シリコン基板を用いる場合については説明を省略する。 In the following steps S40 and subsequent steps, a solar cell manufacturing method using the semiconductor substrate 2 made of p-type single crystal silicon, which is the wafer obtained in step S120, will be described, and the wafer obtained in step S30. Description of the case of using a p-type single crystal silicon substrate is omitted.
 ステップS40では、ステップS120において、ウエハの面内においてハーフ正常領域が存在すると判定されたウエハであるp型単結晶シリコンからなる半導体基板2に対して、図6に示すようにテクスチャー構造2aを形成する。すなわち、アルカリ低濃度液にIPA(イソプロピルアルコール)を添加した溶液でp型単結晶シリコン基板の異方性エッチングを行ない、シリコン(111)面が出るようにp型単結晶シリコン基板の受光面側の表面に微小凹凸(テクスチャー)を形成してテクスチャー構造2aを形成する。 In step S40, as shown in FIG. 6, the texture structure 2a is formed on the semiconductor substrate 2 made of p-type single crystal silicon, which is the wafer determined to have a half normal region in the plane of the wafer in step S120. To do. That is, the p-type single crystal silicon substrate is anisotropically etched with a solution obtained by adding IPA (isopropyl alcohol) to a low-concentration alkali solution so that the silicon (111) surface is exposed, and the light-receiving surface side of the p-type single crystal silicon substrate is exposed. The texture structure 2a is formed by forming minute irregularities (texture) on the surface of the film.
 つぎに、ステップS50では、図7に示すように半導体基板2にpn接合を形成する。すなわち、リン(P)等のV族元素を半導体基板2に拡散等させて半導体基板2の表面にn型不純物拡散層3を形成する。ここでは、両面にテクスチャー構造2aを形成したp型単結晶シリコン基板に対して、熱拡散によりオキシ塩化リン(POCl)を拡散させてpn接合を形成する。これにより、p型単結晶シリコン基板の全面にn型不純物拡散層3が形成される。 Next, in step S50, a pn junction is formed in the semiconductor substrate 2 as shown in FIG. That is, a group V element such as phosphorus (P) is diffused into the semiconductor substrate 2 to form the n-type impurity diffusion layer 3 on the surface of the semiconductor substrate 2. Here, a pn junction is formed by diffusing phosphorus oxychloride (POCl 3 ) by thermal diffusion on a p-type single crystal silicon substrate having the texture structure 2a formed on both sides. Thereby, n-type impurity diffusion layer 3 is formed on the entire surface of the p-type single crystal silicon substrate.
 この拡散工程では、p型単結晶シリコン基板を、オキシ塩化リン(POCl)ガスと窒素ガスと酸素ガスとの混合ガス雰囲気中で、気相拡散法により800℃~900℃程度の高温で熱拡散させて、p型単結晶シリコン基板の表面層にリン(P)が拡散したn型不純物拡散層3を一様に形成する。半導体基板2の表面に形成されたn型不純物拡散層3のシート抵抗の範囲が30Ω/□~80Ω/□程度である場合に良好な太陽電池の電気特性が得られる。なお、イオン注入および熱処理を用いてn型不純物拡散層3を形成することも可能である。 In this diffusion step, the p-type single crystal silicon substrate is heated at a high temperature of about 800 ° C. to 900 ° C. by a vapor phase diffusion method in a mixed gas atmosphere of phosphorus oxychloride (POCl 3 ) gas, nitrogen gas, and oxygen gas. By diffusing, the n-type impurity diffusion layer 3 in which phosphorus (P) is diffused is uniformly formed on the surface layer of the p-type single crystal silicon substrate. Good electrical characteristics of the solar cell can be obtained when the sheet resistance range of the n-type impurity diffusion layer 3 formed on the surface of the semiconductor substrate 2 is about 30Ω / □ to 80Ω / □. It is possible to form n-type impurity diffusion layer 3 using ion implantation and heat treatment.
 つぎに、ステップS60では、図8に示すように、p型電極である裏面側電極13とn型電極である受光面側電極12とを電気的に絶縁するpn分離を行う。n型不純物拡散層3は、p型単結晶シリコン基板の表面に一様に形成されるので、おもて面と裏面とは電気的に接続された状態にある。このため、p型電極である裏面側電極13とn型電極である受光面側電極12とを形成した場合には、p型電極である裏面側電極13とn型電極である受光面側電極12とが電気的に接続される。この電気的接続を遮断するため、p型単結晶シリコン基板の端面領域に形成されたn型不純物拡散層3をドライエッチングによりエッチング除去してpn分離を行う。このn型不純物拡散層3の影響を除くために行う別の方法として、レーザにより端面分離を行う方法もある。また、p型単結晶シリコン基板において受光面側となる一面のみにn型不純物拡散層3を形成した場合には、このpn分離の処理は不要である。 Next, in step S60, as shown in FIG. 8, pn separation is performed to electrically insulate the back-side electrode 13 that is a p-type electrode and the light-receiving surface-side electrode 12 that is an n-type electrode. Since n-type impurity diffusion layer 3 is uniformly formed on the surface of the p-type single crystal silicon substrate, the front surface and the back surface are in an electrically connected state. For this reason, when the back surface side electrode 13 that is a p-type electrode and the light receiving surface side electrode 12 that is an n type electrode are formed, the back surface side electrode 13 that is a p type electrode and the light receiving surface side electrode that is an n type electrode. 12 are electrically connected. In order to cut off this electrical connection, the n-type impurity diffusion layer 3 formed in the end face region of the p-type single crystal silicon substrate is etched away by dry etching to perform pn separation. As another method for removing the influence of the n-type impurity diffusion layer 3, there is also a method of performing end face separation with a laser. Further, when the n-type impurity diffusion layer 3 is formed only on one surface on the light-receiving surface side in the p-type single crystal silicon substrate, this pn separation process is not necessary.
 ここで、n型不純物拡散層3の形成直後のp型単結晶シリコン基板の表面には拡散処理中に表面に堆積したガラス質である燐珪酸ガラス(PSG:Phospho-Silicate Glass)層が形成されているため、該燐珪酸ガラス層をフッ酸溶液等を用いて除去する。これにより、第1導電型層であるp型単結晶シリコンからなる半導体基板2と、該半導体基板2の受光面側に形成された第2導電型層であるn型不純物拡散層3と、によりpn接合が構成された半導体基板11が得られる。 Here, on the surface of the p-type single crystal silicon substrate immediately after the formation of the n-type impurity diffusion layer 3, a phosphosilicate glass (PSG) layer which is a glassy material deposited on the surface during the diffusion treatment is formed. Therefore, the phosphosilicate glass layer is removed using a hydrofluoric acid solution or the like. Thus, the semiconductor substrate 2 made of p-type single crystal silicon which is the first conductivity type layer, and the n-type impurity diffusion layer 3 which is the second conductivity type layer formed on the light receiving surface side of the semiconductor substrate 2, A semiconductor substrate 11 having a pn junction is obtained.
 つぎに、ステップS70では、図9に示すように、光電変換効率改善のために、半導体基板11における受光面側の表面、すなわちn型不純物拡散層3の表面に反射防止膜4を一様な厚みで形成する。反射防止膜4の膜厚および屈折率は、光反射を最も抑制する値に設定する。反射防止膜4の形成は、プラズマCVD法を使用し、シラン(SiH)ガスとアンモニア(NH)ガスの混合ガスを原材料に用いて、300℃以上、減圧下の条件で反射防止膜4として窒化シリコン膜を成膜形成する。屈折率は例えば2.0~2.2程度であり、適切な反射防止膜厚は例えば70nm~90nmである。なお、反射防止膜4として、屈折率の異なる2層以上の膜を積層してもよい。また、反射防止膜4の形成方法は、プラズマCVD法の他に蒸着法、熱CVD法などを用いてもよい。なお、このようにして形成される反射防止膜4は絶縁体であることに注意すべきであり、受光面側電極12をこの上に単に形成しただけでは、太陽電池セルとして作用しない。 Next, in step S70, as shown in FIG. 9, in order to improve the photoelectric conversion efficiency, the antireflection film 4 is uniformly formed on the surface of the semiconductor substrate 11 on the light receiving surface side, that is, the surface of the n-type impurity diffusion layer 3. Form with thickness. The film thickness and refractive index of the antireflection film 4 are set to values that most suppress light reflection. The antireflection film 4 is formed by using a plasma CVD method, using a mixed gas of silane (SiH 4 ) gas and ammonia (NH 3 ) gas as a raw material, at a temperature of 300 ° C. or higher and under reduced pressure. A silicon nitride film is formed. The refractive index is, for example, about 2.0 to 2.2, and an appropriate antireflection film thickness is, for example, 70 nm to 90 nm. Note that two or more films having different refractive indexes may be laminated as the antireflection film 4. In addition to the plasma CVD method, the antireflection film 4 may be formed by vapor deposition, thermal CVD, or the like. It should be noted that the antireflection film 4 formed in this manner is an insulator, and simply forming the light receiving surface side electrode 12 on the surface does not act as a solar battery cell.
 つぎに、ステップS80では、図10に示すように、半導体基板11の受光面である反射防止膜4上に、受光面側電極12である表銀グリッド電極5と表銀バス電極6との形状に、ガラスフリットを含む電極材料ペーストである銀ペースト12aをスクリーン印刷によって塗布した後、銀ペースト12aを乾燥させる。ここで、焼成前の表銀グリッド電極5および表銀バス電極6の形成、すなわち銀ペースト12aの印刷は、半導体基板11の受光面である反射防止膜4上の領域において、上述したステップS120で判定されたハーフ正常領域のみに対して行われる。すなわち、銀ペースト12aの印刷は、反射防止膜4上の領域において、図12における2等分領域Whyまたは2等分領域Whxに対してのみ行われる。図13は、本実施の形態1における半導体基板11の受光面である反射防止膜4上におけるハーフ正常領域である2等分領域Whyに対してのみ銀ペースト12aが印刷された状態を示す上面図である。 Next, in step S80, as shown in FIG. 10, on the antireflection film 4 that is the light receiving surface of the semiconductor substrate 11, the shapes of the surface silver grid electrode 5 that is the light receiving surface side electrode 12 and the surface silver bus electrode 6 are formed. Further, after applying silver paste 12a, which is an electrode material paste containing glass frit, by screen printing, the silver paste 12a is dried. Here, the formation of the front silver grid electrode 5 and the front silver bus electrode 6 before firing, that is, the printing of the silver paste 12a is performed in the above-described step S120 in the region on the antireflection film 4 which is the light receiving surface of the semiconductor substrate 11. It is performed only on the determined half normal area. That is, the silver paste 12a is printed only on the bisection area Why or the bisection area Whx in FIG. 12 in the area on the antireflection film 4. FIG. 13 is a top view showing a state in which the silver paste 12a is printed only on the half-divided region Why which is a half normal region on the antireflection film 4 which is the light receiving surface of the semiconductor substrate 11 in the first embodiment. It is.
 ハーフ正常領域における銀ペースト12aの印刷パターンは、結晶欠陥不良および外観不良の検査において既定の仕様を満たすと判定された通常のウエハの場合と同じ形状である。したがって、反射防止膜4上には、半分の領域のみに、通常のウエハの場合と同じ形状で銀ペースト12aが印刷される。 The printed pattern of the silver paste 12a in the half normal region has the same shape as that of a normal wafer that is determined to satisfy a predetermined specification in the inspection of the crystal defect defect and the appearance defect. Accordingly, the silver paste 12a is printed on the antireflection film 4 in the same shape as that of a normal wafer only in a half region.
 つぎに、ステップS90では、図10に示すように、半導体基板11における裏面であるp型単結晶シリコン基板上に、スクリーン印刷によって、裏アルミニウム電極7の形状に電極材料ペーストであるアルミニウムペースト7aを塗布し、さらに裏銀電極8の形状に電極材料ペーストである銀ペーストを塗布し、乾燥させる。なお、図中ではアルミニウムペースト7aのみを示しており、銀ペーストの記載を省略している。ここで、焼成前の裏アルミニウム電極7および裏銀電極8の形成、すなわちアルミニウムペースト7aおよび銀ペーストの印刷は、受光面側と同様に、半導体基板11の裏面においてハーフ正常領域に対応する半分の領域のみに対して行われる。 Next, in step S90, as shown in FIG. 10, on the p-type single crystal silicon substrate which is the back surface of the semiconductor substrate 11, an aluminum paste 7a which is an electrode material paste is formed in the shape of the back aluminum electrode 7 by screen printing. Then, a silver paste as an electrode material paste is applied to the shape of the back silver electrode 8 and dried. In the figure, only the aluminum paste 7a is shown, and the description of the silver paste is omitted. Here, the formation of the back aluminum electrode 7 and the back silver electrode 8 before firing, that is, the printing of the aluminum paste 7a and the silver paste is half of the back surface of the semiconductor substrate 11 corresponding to the half normal region, similarly to the light receiving surface side. Only done for regions.
 半導体基板11の裏面においてハーフ正常領域に対応する半分の領域におけるアルミニウムペースト7aおよび銀ペーストの印刷パターンは、結晶欠陥不良および外観不良の検査において既定の仕様を満たすと判定された通常のウエハの場合と同じ形状である。したがって、半導体基板11の裏面においては、ハーフ正常領域に対応する半分の領域のみに、通常のウエハの場合と同じ形状でアルミニウムペースト7aおよび銀ペーストが印刷される。なお、電極材料であるペーストの半導体基板11への配置の順番を、受光面側と裏面側とで入れ替えてもよい。また、半導体基板11の受光面側および裏面側への電極ペーストの印刷は、ハーフ正常領域位置情報を使用することにより、半導体基板11におけるハーフ正常領域の位置を特定して行うことができる。また、ハーフ正常領域位置情報を用いて、ハーフ正常領域の位置合わせ用のアライメントマークを予め半導体基板11にアライメントマークを設けておき、該アライメントマークを用いてハーフ正常領域の位置を特定してもよい。 In the case of a normal wafer in which the printing pattern of the aluminum paste 7a and the silver paste in the half region corresponding to the half normal region on the back surface of the semiconductor substrate 11 is determined to satisfy the predetermined specifications in the inspection of the crystal defect defect and the appearance defect. Is the same shape. Therefore, on the back surface of the semiconductor substrate 11, the aluminum paste 7a and the silver paste are printed in the same shape as that of a normal wafer only in a half region corresponding to the half normal region. In addition, the order of arrangement of the paste, which is an electrode material, on the semiconductor substrate 11 may be switched between the light receiving surface side and the back surface side. Moreover, the electrode paste can be printed on the light receiving surface side and the back surface side of the semiconductor substrate 11 by specifying the position of the half normal region in the semiconductor substrate 11 by using the half normal region position information. Further, by using the half normal area position information, an alignment mark for alignment of the half normal area is provided in advance on the semiconductor substrate 11, and the position of the half normal area can be specified using the alignment mark. Good.
 つぎに、ステップS110では、半導体基板11の受光面側および裏面側の電極ペーストを600℃~900℃程度で同時に焼成することで、半導体基板11の表側では銀ペースト12a中に含まれているガラス材料で反射防止膜4が溶融している間に銀材料がシリコンと接触し再凝固する。これにより、図11に示すように、受光面側電極12としての表銀グリッド電極5および表銀バス電極6とが得られ、受光面側電極12と半導体基板11のシリコンとの導通が確保される。このようなプロセスは、ファイヤースルー法と呼ばれる。 Next, in step S110, the electrode paste on the light-receiving surface side and the back surface side of the semiconductor substrate 11 is simultaneously fired at about 600 ° C. to 900 ° C., so that the glass contained in the silver paste 12a on the front side of the semiconductor substrate 11 is obtained. While the antireflective film 4 is melted by the material, the silver material comes into contact with the silicon and resolidifies. As a result, as shown in FIG. 11, the surface silver grid electrode 5 and the surface silver bus electrode 6 as the light receiving surface side electrode 12 are obtained, and conduction between the light receiving surface side electrode 12 and the silicon of the semiconductor substrate 11 is ensured. The Such a process is called a fire-through method.
 また、図11に示すように、アルミニウムペースト7aも半導体基板11のシリコンと反応して裏アルミニウム電極7が得られ、かつ裏アルミニウム電極7の直下にp+層9を形成する。また、銀ペーストの銀材料がシリコンと接触し再凝固して裏銀電極8が得られる。これにより、裏面側電極13が得られる。なお、図中では表銀グリッド電極5および裏アルミニウム電極7のみを示しており、表銀バス電極6および銀ペースト8の記載を省略している。 Further, as shown in FIG. 11, the aluminum paste 7 a also reacts with the silicon of the semiconductor substrate 11 to obtain the back aluminum electrode 7, and the p + layer 9 is formed immediately below the back aluminum electrode 7. Further, the silver material of the silver paste comes into contact with silicon and re-solidifies to obtain the back silver electrode 8. Thereby, the back surface side electrode 13 is obtained. In the figure, only the front silver grid electrode 5 and the back aluminum electrode 7 are shown, and the description of the front silver bus electrode 6 and the silver paste 8 is omitted.
 つぎに、ステップS110では、半導体基板11において受光面側電極12と裏面側電極13とが形成された、ハーフ正常領域に対応する領域を切断して切り出す。切断は、ハーフ正常領域位置情報を使用することにより、半導体基板11におけるハーフ正常領域の位置を特定して行うことができる。図14は、本実施の形態1の半導体基板11において受光面側電極12と裏面側電極13とが形成されたハーフ正常領域である2等分領域Whyを切断した状態を示す上面図である。また、図12における2等分領域Whxに受光面側電極12と裏面側電極13とを形成した場合には、2等分領域Whxに対応する領域を切断して切り出す。切断後、半導体基板11において結晶欠陥不良および外観不良の少なくとも一方が検出された領域を含む半分の領域は、スクラップウエハWsとしてリサイクルへ回される。 Next, in step S110, the region corresponding to the half normal region where the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in the semiconductor substrate 11 is cut out. The cutting can be performed by specifying the position of the half normal region in the semiconductor substrate 11 by using the half normal region position information. FIG. 14 is a top view showing a state in which the bisected region Why, which is a half normal region where the light receiving surface side electrode 12 and the back surface side electrode 13 are formed, is cut in the semiconductor substrate 11 of the first embodiment. In addition, when the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in the bisected region Whx in FIG. 12, the region corresponding to the bisected region Whx is cut out. After cutting, a half region including a region where at least one of a crystal defect defect and an appearance defect is detected in the semiconductor substrate 11 is sent to recycling as a scrap wafer Ws.
 以上のような工程を実施することにより、図1~図3に示す本実施の形態1にかかる太陽電池セル1を作製することができる。すなわち、ウエハの検査において結晶欠陥不良および外観不良の少なくとも一方が検出された領域を避けて、ハーフカットセルを作製することができる。したがって、結晶欠陥不良または外観不良が検出されたウエハにおいて、1枚全部をスクラップウエハとしてリサイクルに回すのではなく、ウエハの面内において欠陥が検出されていない領域を有効利用して太陽電池セルを作製できる。 By performing the above-described steps, the solar battery cell 1 according to the first embodiment shown in FIGS. 1 to 3 can be manufactured. That is, a half-cut cell can be manufactured while avoiding a region where at least one of a crystal defect defect and an appearance defect is detected in the wafer inspection. Therefore, in a wafer in which a crystal defect defect or an appearance defect is detected, the entire solar cell is not used as a scrap wafer for recycling, but an area in which no defect is detected in the wafer surface is effectively used. Can be made.
 なお、上記においては、受光面側電極12と裏面側電極13とを形成した後に、ハーフ正常領域を切断したが、以降の太陽電池セル1の製造ラインが対応可能な範囲で、ステップS40以降のどの工程で実施しても問題ない。 In addition, in the above, after forming the light-receiving surface side electrode 12 and the back surface side electrode 13, the half normal area | region was cut | disconnected, but in the range which can manufacture the subsequent photovoltaic cell 1 after step S40 There is no problem with any process.
 また、検査装置は、欠陥検査装置と表面検査装置とに分割されていてもよい。また、部分正常ウエハ判定装置は、検査装置に組み込まれていてもよい。なお、部分正常ウエハ判定装置は、専用の装置により構成されてもよく、また、部分正常ウエハ判定装置としての機能を実現するコンピュータ装置により構成されてもよい。 Further, the inspection apparatus may be divided into a defect inspection apparatus and a surface inspection apparatus. Moreover, the partial normal wafer determination apparatus may be incorporated in the inspection apparatus. The partial normal wafer determination device may be configured by a dedicated device, or may be configured by a computer device that realizes a function as the partial normal wafer determination device.
 部分正常ウエハ判定装置としての機能を実現するコンピュータ装置は、たとえばLCD(Liquid Crystal Display)などの表示装置、キーボードなどの入力装置、演算を行う中央演算処理装置(CPU:Central Processing Unit)、ROM(Read Only Memory)などの不揮発性メモリ、RAM(Random Access Memory)などの揮発性メモリ、表示装置に表示する表示画面を記憶する表示用メモリ、フラッシュメモリなどの着脱可能な外部メモリとのインタフェースである外部メモリインタフェース、外部機器との間で通信を行う通信インタフェースなどがバスを介して接続された構成を有する。そして、不揮発性メモリに格納された部分正常ウエハ判定装置としての処理手順が記述されたプログラムが揮発性メモリにロードされ、CPUによって実行される。 A computer device that realizes a function as a partial normal wafer determination device includes, for example, a display device such as an LCD (Liquid Crystal Display), an input device such as a keyboard, a central processing unit (CPU) that performs arithmetic operation, and a ROM (ROM). It is an interface with non-volatile memory such as Read Only Memory), volatile memory such as RAM (Random Access Memory), display memory that stores the display screen displayed on the display device, and removable external memory such as flash memory. An external memory interface, a communication interface for communicating with an external device, and the like are connected via a bus. Then, a program describing a processing procedure as the partial normal wafer determination apparatus stored in the nonvolatile memory is loaded into the volatile memory and executed by the CPU.
 上述したように、本実施の形態1においては、結晶欠陥不良または外観不良の少なくとも一方が検出されて既定の仕様を満たさないウエハがハーフ正常領域を有する場合に、ハーフ正常領域を利用してハーフカットセルを作製できる。すなわち結晶欠陥不良または外観不良の少なくとも一方が検出されて既定の仕様を満たさないウエハにおいて、既定の仕様を満たさない領域がウエハの面内における全領域ではなく、ウエハの面内における半分未満の領域となっている場合に、既定の仕様を満たさない領域を避けて、ハーフカットセルを作製できる。したがって、本実施の形態1によれば、結晶欠陥不良検査および外観不良検査において既定の仕様を満たさないシリコンウエハを有効利用してハーフカットセルを作製できる。 As described above, in the first embodiment, when a crystal defect defect or an appearance defect is detected and a wafer that does not satisfy a predetermined specification has a half normal area, the half normal area is used to perform half A cut cell can be produced. That is, in a wafer in which at least one of a crystal defect defect or an appearance defect is detected and does not satisfy a predetermined specification, an area that does not satisfy the predetermined specification is not an entire area in the wafer surface but an area less than half in the wafer surface. In this case, a half-cut cell can be produced while avoiding an area that does not satisfy the predetermined specification. Therefore, according to the first embodiment, a half-cut cell can be manufactured by effectively using a silicon wafer that does not satisfy a predetermined specification in the crystal defect defect inspection and the appearance defect inspection.
実施の形態2.
 実施の形態2では、結晶欠陥不良および外観不良がウエハの面内方向において一方向に寄っている場合について説明する。図15は、本発明の実施の形態2にかかるハーフ正常領域を説明するためのウエハ41の平面図である。ウエハ41は、実施の形態1のステップS30において、既定の仕様を満たさないウエハである。図15においては、実施の形態1と同じ部材については同じ符号を付して説明を省略する。
Embodiment 2. FIG.
In the second embodiment, the case where the crystal defect defect and the appearance defect are shifted in one direction in the in-plane direction of the wafer will be described. FIG. 15 is a plan view of the wafer 41 for explaining the half normal region according to the second embodiment of the present invention. The wafer 41 is a wafer that does not satisfy the predetermined specifications in step S30 of the first embodiment. In FIG. 15, the same members as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 ウエハ41は、面方向における外形形状が疑似正方形状とされ、外形の四隅の部分が面取りされており、疑似正方形状の1辺の長さがLとされる。ウエハ41では、既定の基準を満たさない結晶欠陥不良31および外観不良32が、ウエハ41の面内において一方向側に、すなわち辺22側に寄っている。また、図15におけるY方向において辺23と結晶欠陥不良31との間の、Y方向における正常長さLnは、3/4L程度の長さを有し、ハーフ正常領域に必要なL/2よりも長くなっている。また、図15におけるY方向において辺23と結晶欠陥不良31との間であて、且つ疑似正方形状における一対の辺22,23の伸長方向における全長さにわたる領域が、結晶欠陥不良および外観不良を含まないウエハ内正常領域Wnである。 The outer shape of the wafer 41 in the surface direction is a pseudo square shape, the four corners of the outer shape are chamfered, and the length of one side of the pseudo square shape is L. In the wafer 41, the crystal defect defect 31 and the appearance defect 32 that do not satisfy the predetermined standard are close to one side in the plane of the wafer 41, that is, the side 22 side. Further, the normal length Ln in the Y direction between the side 23 and the crystal defect defect 31 in the Y direction in FIG. 15 has a length of about 3 / 4L, which is more than L / 2 required for the half normal region. Is also getting longer. In addition, a region extending between the side 23 and the crystal defect defect 31 in the Y direction in FIG. 15 and extending over the entire length in the extending direction of the pair of sides 22 and 23 in the pseudo-square shape includes a crystal defect defect and an appearance defect. There is no normal area Wn in the wafer.
 図16は、本実施の形態2にかかるウエハ41におけるハーフ正常領域Whを示す上面図である。図17は、本実施の形態2にかかる太陽電池セル42が切り出された状態を示す上面図である。このようなウエハ41を用いる場合には、図16に示すようにウエハ内正常領域WnのうちY方向における中央領域をハーフ正常領域Whとする。そして、実施の形態1のステップS80およびステップS90において、このハーフ正常領域Whに受光面側電極12および裏面側電極13を形成する。そして、実施の形態1のステップS110において、図17に示すように受光面側電極12および裏面側電極13が形成されたハーフ正常領域Whを切断して切り出すことにより、本実施の形態2にかかる太陽電池セル42を作製することができる。ウエハ41において太陽電池セル42が切り出された残り部分は、スクラップウエハWsとされる。 FIG. 16 is a top view showing the half normal region Wh in the wafer 41 according to the second embodiment. FIG. 17 is a top view showing a state in which the solar battery cell 42 according to the second embodiment is cut out. When such a wafer 41 is used, the central region in the Y direction of the normal region Wn in the wafer is set as a half normal region Wh as shown in FIG. In steps S80 and S90 of the first embodiment, the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in the half normal region Wh. Then, in step S110 of the first embodiment, as shown in FIG. 17, the half normal region Wh in which the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed is cut and cut out, so that the second embodiment is applied. The solar battery cell 42 can be produced. The remaining portion of the wafer 41 from which the solar battery cells 42 are cut out is a scrap wafer Ws.
 実施の形態1にかかる太陽電池セル1は、長方形状における1つの長辺の両端に位置する一対の角部が面取りされて面取り部15a、面取り部15bとされた疑似長方形状を有する。 The solar battery cell 1 according to the first embodiment has a pseudo-rectangular shape in which a pair of corner portions located at both ends of one long side in a rectangular shape are chamfered to be chamfered portions 15a and chamfered portions 15b.
 一方、本実施の形態2にかかる太陽電池セル42は、角部が面取り部とされていない、完全な長方形の外形形状を有する。そして、角部の外周縁部まで受光面側電極12および裏面側電極13が形成される。このため、本実施の形態2にかかる太陽電池セル42は、実施の形態1にかかる太陽電池セル1よりも外形形状における短辺の長さを長く確保できるため受光面積を広く確保することができ、太陽電池セル1よりも発電量を増加させることができる。すなわち、太陽電池セル42は、外形形状における短辺の長さがL/2より大とされることにより、太陽電池セル1よりも発電量を増加させることができる。 On the other hand, the solar battery cell 42 according to the second embodiment has a complete rectangular outer shape whose corners are not chamfered. And the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed to the outer-periphery edge part of a corner | angular part. For this reason, since the photovoltaic cell 42 concerning this Embodiment 2 can ensure the length of the short side in the external shape longer than the photovoltaic cell 1 concerning Embodiment 1, it can ensure wide light-receiving area. The amount of power generation can be increased as compared with the solar battery cell 1. That is, the solar cell 42 can increase the amount of power generation as compared with the solar cell 1 by setting the length of the short side of the outer shape to be larger than L / 2.
 上述したように、本実施の形態2によれば、結晶欠陥不良検査および外観不良検査において既定の仕様を満たさないシリコンウエハを有効利用して作製したカットセルの発電量を増加させることができる。 As described above, according to the second embodiment, it is possible to increase the power generation amount of a cut cell produced by effectively using a silicon wafer that does not satisfy a predetermined specification in a crystal defect defect inspection and an appearance defect inspection.
 なお、上述した実施の形態1および実施の形態2においては、ウエハ内正常領域Wnのうちハーフ正常領域に受光面側電極12および裏面側電極13を形成し、ハーフ正常領域を切り出すことによりハーフカットセルを作製する場合について示した。 In the first and second embodiments described above, the light-receiving surface side electrode 12 and the back surface side electrode 13 are formed in the half normal region of the in-wafer normal region Wn, and the half normal region is cut out to form a half cut. The case of manufacturing a cell is shown.
 一方、長方形状のウエハ内正常領域Wnのうち、短辺方向におけるハーフ正常領域よりも広い領域に受光面側電極12および裏面側電極13を形成し、該領域を切り出して太陽電池セルを作製することもできる。すなわち、実施の形態1および実施の形態2において、対向する一対の辺24,25の伸長方向においてハーフ正常領域よりも広い領域を有するウエハ内正常領域Wnの領域に受光面側電極12および裏面側電極13を形成し、ウエハ内正常領域Wnを切り出して太陽電池セルを作製する。すなわち、ウエハ内正常領域Wnのうち、短辺の長さが長辺の1/2の長さよりも大であり且つ長辺の長さ未満である長方形状の領域を用いて太陽電池セルを作製する。これにより、結晶欠陥不良検査および外観不良検査において既定の仕様を満たさないシリコンウエハを有効利用して、ハーフカットセルよりも発電量の大きい太陽電池セルを実現できる。 On the other hand, the light receiving surface side electrode 12 and the back surface side electrode 13 are formed in a region wider than the half normal region in the short side direction in the rectangular normal region Wn in the short side direction, and the solar cell is manufactured by cutting out the regions. You can also. That is, in the first embodiment and the second embodiment, the light receiving surface side electrode 12 and the back surface side in the region of the normal region Wn in the wafer having a region wider than the half normal region in the extending direction of the pair of opposing sides 24 and 25. The electrode 13 is formed, and the normal area Wn in the wafer is cut out to produce a solar battery cell. That is, a solar battery cell is manufactured using a rectangular region in which the short side is longer than half the long side and less than the long side in the normal region Wn in the wafer. To do. This makes it possible to effectively use a silicon wafer that does not satisfy the predetermined specifications in the crystal defect defect inspection and the appearance defect inspection, thereby realizing a solar battery cell having a larger power generation amount than the half-cut cell.
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.
 1,42 太陽電池セル、2 半導体基板、2a テクスチャー構造、3 n型不純物拡散層、4 反射防止膜、5 表銀グリッド電極、6 表銀バス電極、7 裏アルミニウム電極、7a アルミニウムペースト、8 裏銀電極、9 p+層、11 半導体基板、12 受光面側電極、12a 銀ペースト、13 裏面側電極、15a,15b,15c,15d 面取り部、21,41 ウエハ、21a ウエハの中心、22,23,24,25 辺、31 結晶欠陥不良、32 外観不良、B,C 仮想線、Wh,Whx,Why ハーフ正常領域、Wn ウエハ内正常領域、Ws スクラップウエハ。 1,42 solar cells, 2 semiconductor substrate, 2a texture structure, 3 n-type impurity diffusion layer, 4 antireflection film, 5 surface silver grid electrode, 6 surface silver bus electrode, 7 back aluminum electrode, 7a aluminum paste, 8 back Silver electrode, 9 p + layer, 11 semiconductor substrate, 12 light receiving surface side electrode, 12a silver paste, 13 back surface side electrode, 15a, 15b, 15c, 15d chamfer, 21,41 wafer, 21a wafer center, 22, 23, 24, 25 sides, 31 crystal defect defect, 32 appearance defect, B, C imaginary line, Wh, Whx, Why half normal area, Wn normal area in wafer, Ws scrap wafer.

Claims (4)

  1.  面方向において正方形状の外形形状を有する第1導電型の半導体ウエハに対して結晶欠陥不良と外観不良との検査を行う第1工程と、
     前記検査において結晶欠陥不良と外観不良とのうち少なくとも一方が検出された前記半導体ウエハであって、前記正方形状における一対の辺の伸長方向において前記一対の辺の長さの半分以上の長さを有し、且つ前記正方形状における他の一対の辺の伸長方向における全長さにわたる領域であって、前記結晶欠陥不良または前記外観不良が検出されていないウエハ内正常領域を有する部分正常半導体ウエハを選択する第2工程と、
     前記選択された部分正常半導体ウエハにおいて受光面側となる一面に第2導電型の不純物元素が拡散された不純物拡散層を形成する第3工程と、
     前記不純物拡散層上における前記ウエハ内正常領域に受光面側電極を形成する第4工程と、
     前記選択された部分正常半導体ウエハにおける前記一面と対向する他面上において前記ウエハ内正常領域に裏面側電極を形成する第5工程と、
     前記第1工程の後であって前記第5工程の終了後までのいずれかのタイミングにおいて、前記部分正常半導体ウエハから前記ウエハ内正常領域を切り出す第6工程と、
     を含むことを特徴とする太陽電池セルの製造方法。
    A first step of inspecting a crystal defect defect and an appearance defect on a first conductivity type semiconductor wafer having a square outer shape in a surface direction;
    The semiconductor wafer in which at least one of a crystal defect defect and an appearance defect is detected in the inspection, and has a length that is at least half of the length of the pair of sides in the extending direction of the pair of sides in the square shape. And a partial normal semiconductor wafer having a normal region in the wafer that is an area extending over the entire length in the extending direction of the other pair of sides in the square shape, and in which the crystal defect defect or the appearance defect is not detected A second step of
    A third step of forming an impurity diffusion layer in which the impurity element of the second conductivity type is diffused on one surface on the light-receiving surface side in the selected partial normal semiconductor wafer;
    A fourth step of forming a light receiving surface side electrode in the normal region in the wafer on the impurity diffusion layer;
    A fifth step of forming a back-side electrode in the normal region in the wafer on the other surface facing the one surface of the selected partial normal semiconductor wafer;
    A sixth step of cutting out the normal region in the wafer from the partial normal semiconductor wafer at any timing after the first step and after the end of the fifth step;
    The manufacturing method of the photovoltaic cell characterized by including.
  2.  前記ウエハ内正常領域が、前記一対の辺の伸長方向において前記一対の辺の長さの半分の長さを有し、且つ前記他の一対の辺の伸長方向における全幅にわたる領域であるハーフ正常領域であること、
     を特徴とする請求項1に記載の太陽電池セルの製造方法。
    The half normal region in which the normal region in the wafer has a length that is half the length of the pair of sides in the extending direction of the pair of sides and covers the entire width in the extending direction of the other pair of sides. Being
    The manufacturing method of the photovoltaic cell of Claim 1 characterized by these.
  3.  前記ハーフ正常領域が、前記半導体ウエハの面内における中心を通る仮想線に沿って前記半導体ウエハの面内が2等分に分割された2つの領域のうちの一方の領域であること、
     を特徴とする請求項2に記載の太陽電池セルの製造方法。
    The half normal region is one of two regions in which the in-plane of the semiconductor wafer is divided into two equal parts along a virtual line passing through the center in the in-plane of the semiconductor wafer;
    The manufacturing method of the photovoltaic cell of Claim 2 characterized by these.
  4.  前記半導体ウエハは、前記正方形状の4つの角部が面取りされて面取り部とされた疑似正方形状の外形形状を有し、
     前記ハーフ正常領域が、前記一対の辺の伸長方向において隣り合う2つの前記面取り部間に位置すること、
     を特徴とする請求項2に記載の太陽電池セルの製造方法。
    The semiconductor wafer has a pseudo-square-shaped outer shape in which the four corners of the square shape are chamfered to be a chamfered portion,
    The half normal region is located between the two chamfered portions adjacent to each other in the extending direction of the pair of sides;
    The manufacturing method of the photovoltaic cell of Claim 2 characterized by these.
PCT/JP2015/050285 2015-01-07 2015-01-07 Method for manufacturing solar cell WO2016110970A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/050285 WO2016110970A1 (en) 2015-01-07 2015-01-07 Method for manufacturing solar cell
JP2016568216A JPWO2016110970A1 (en) 2015-01-07 2015-01-07 Method for manufacturing solar battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/050285 WO2016110970A1 (en) 2015-01-07 2015-01-07 Method for manufacturing solar cell

Publications (1)

Publication Number Publication Date
WO2016110970A1 true WO2016110970A1 (en) 2016-07-14

Family

ID=56355692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050285 WO2016110970A1 (en) 2015-01-07 2015-01-07 Method for manufacturing solar cell

Country Status (2)

Country Link
JP (1) JPWO2016110970A1 (en)
WO (1) WO2016110970A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083956A1 (en) * 2017-10-24 2019-05-02 1366 Technologies Inc. Semi-conductor wafers longer than industry standard square
CN115274916A (en) * 2022-05-19 2022-11-01 杭州利珀科技有限公司 Photovoltaic crystalline silicon primary silicon wafer subfissure positioning and splitting system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304416A (en) * 2007-06-11 2008-12-18 Mitsubishi Electric Corp Defect inspection device and defect inspection method of polycrystal silicon substrate
JP2010171046A (en) * 2009-01-20 2010-08-05 Nisshinbo Holdings Inc Apparatus and method for inspecting solar battery, program, and inspection system of solar battery
JP2013257156A (en) * 2012-06-11 2013-12-26 Sharp Corp Method for inspecting surface of semiconductor substrate, method for manufacturing solar cell wafer, method for manufacturing solar cell, device for inspecting surface of semiconductor substrate, device for manufacturing solar cell wafer, and device for manufacturing solar cell

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618865B2 (en) * 1996-01-05 2005-02-09 キヤノン株式会社 Photovoltaic element characteristic inspection apparatus and manufacturing method
JP2010135446A (en) * 2008-12-03 2010-06-17 Nisshinbo Holdings Inc Apparatus and method for inspecting solar battery cell, and recording medium having program of the method recorded thereon
US20140256068A1 (en) * 2013-03-08 2014-09-11 Jeffrey L. Franklin Adjustable laser patterning process to form through-holes in a passivation layer for solar cell fabrication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304416A (en) * 2007-06-11 2008-12-18 Mitsubishi Electric Corp Defect inspection device and defect inspection method of polycrystal silicon substrate
JP2010171046A (en) * 2009-01-20 2010-08-05 Nisshinbo Holdings Inc Apparatus and method for inspecting solar battery, program, and inspection system of solar battery
JP2013257156A (en) * 2012-06-11 2013-12-26 Sharp Corp Method for inspecting surface of semiconductor substrate, method for manufacturing solar cell wafer, method for manufacturing solar cell, device for inspecting surface of semiconductor substrate, device for manufacturing solar cell wafer, and device for manufacturing solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019083956A1 (en) * 2017-10-24 2019-05-02 1366 Technologies Inc. Semi-conductor wafers longer than industry standard square
US11562920B2 (en) 2017-10-24 2023-01-24 Cubicpv Inc. Semi-conductor wafers longer than industry standard square
CN115274916A (en) * 2022-05-19 2022-11-01 杭州利珀科技有限公司 Photovoltaic crystalline silicon primary silicon wafer subfissure positioning and splitting system and method
CN115274916B (en) * 2022-05-19 2023-11-10 杭州利珀科技有限公司 Hidden cracking positioning cracking system and method for light Fu Jinggui original silicon wafer

Also Published As

Publication number Publication date
JPWO2016110970A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US10147828B2 (en) Solar cell and method for manufacturing the same
JP5220197B2 (en) Solar cell and manufacturing method thereof
JP4980494B2 (en) Solar cell and manufacturing method thereof
KR20120111378A (en) Solar cell and fabrication method of the same
JP6410951B2 (en) Solar cell and method for manufacturing solar cell
KR101649060B1 (en) Solar battery cell manufacturing method
JP5449579B2 (en) SOLAR CELL, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
JP6207414B2 (en) Photovoltaic element and manufacturing method thereof
WO2017026016A1 (en) Solar battery cell and method for fabricating solar battery cell
WO2016110970A1 (en) Method for manufacturing solar cell
WO2013051323A1 (en) Solar cell element and method for manufacturing same
JP5538103B2 (en) Method for manufacturing solar battery cell
JP5868755B2 (en) Solar cell and solar cell module
US9330986B2 (en) Manufacturing method for solar cell and solar cell manufacturing system
JP2010177444A (en) Solar cell element and method for manufacturing solar cell element
JP6366840B2 (en) Solar cell and method for manufacturing solar cell
KR102065595B1 (en) Method for manufacturing solar cell
JP2012209316A (en) Solar cell element and solar cell module
JP5436276B2 (en) Manufacturing method of solar cell
TWI668880B (en) Solar battery unit and solar battery module
JP5622937B2 (en) Solar cell manufacturing method and solar cell manufacturing system
KR20130071801A (en) Solar cell and method for manufacturing the same
KR20120080903A (en) Solar cell and method for manufacturing the same
US20140311558A1 (en) Solar cell and method for manufacturing the same
KR20120128926A (en) Solar cell and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016568216

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876848

Country of ref document: EP

Kind code of ref document: A1