WO2016110082A1 - 一种弹性导电胶体、制备方法及其应用 - Google Patents
一种弹性导电胶体、制备方法及其应用 Download PDFInfo
- Publication number
- WO2016110082A1 WO2016110082A1 PCT/CN2015/084531 CN2015084531W WO2016110082A1 WO 2016110082 A1 WO2016110082 A1 WO 2016110082A1 CN 2015084531 W CN2015084531 W CN 2015084531W WO 2016110082 A1 WO2016110082 A1 WO 2016110082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nitrate
- colloid
- elastic conductive
- chloride
- elastic
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0042—Materials resorbable by the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/02—Surgical adhesives or cements; Adhesives for colostomy devices containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/04—Surgical adhesives or cements; Adhesives for colostomy devices containing macromolecular materials
- A61L24/08—Polysaccharides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B30/00—Preparation of starch, degraded or non-chemically modified starch, amylose, or amylopectin
- C08B30/12—Degraded, destructured or non-chemically modified starch, e.g. mechanically, enzymatically or by irradiation; Bleaching of starch
- C08B30/14—Cold water dispersible or pregelatinised starch
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/04—Starch derivatives, e.g. crosslinked derivatives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/52—Electrically conductive inks
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J103/00—Adhesives based on starch, amylose or amylopectin or on their derivatives or degradation products
- C09J103/02—Starch; Degradation products thereof, e.g. dextrin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J9/00—Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
- C09J9/02—Electrically-conducting adhesives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/162—Calcium, strontium or barium halides, e.g. calcium, strontium or barium chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/164—Aluminum halide, e.g. aluminium chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/166—Magnesium halide, e.g. magnesium chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/16—Halogen-containing compounds
- C08K2003/168—Zinc halides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/28—Nitrogen-containing compounds
- C08K2003/287—Calcium, strontium or barium nitrates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/20—Applications use in electrical or conductive gadgets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0393—Flexible materials
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/01—Dielectrics
- H05K2201/0104—Properties and characteristics in general
- H05K2201/0108—Transparent
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/03—Conductive materials
- H05K2201/0302—Properties and characteristics in general
- H05K2201/0314—Elastomeric connector or conductor, e.g. rubber with metallic filler
Definitions
- the present invention relates to a colloid, a preparation method and application thereof, and in particular to a method for preparing a conductive elastic colloid and an application thereof.
- the present invention relates to the fields of flexible circuits, conductive adhesives, conductive fabrics, medical and health technologies.
- starch As a polysaccharide natural polymer, starch has the characteristics of renewable non-exhaustion, biodegradability, high stability, safety and non-toxicity, and has long been used in medical and health fields.
- the traditional starch has a certain viscosity after gelatinization, and it will quickly lose water and dry at room temperature in the air.
- Most of the starch-based adhesives provided by the Chinese invention patents CN 101054501A, CN 102493274 A, CN 102757744 A and CN 103897629 A are based on this property of starch.
- a stable gel material can be prepared by regulating the main structural characteristics of starch or by crosslinking starch with other polymers, which has excellent swelling property and moisturizing (water) property.
- Chinese Patent No. CN 1480224A discloses a hydrogel prepared from starch, polyvinylpyrrolidone, polyvinyl alcohol, water-soluble cellulose and water.
- the mass fraction of starch preferably ranges from 5 to 15%.
- the mixture is initially prepared in a semi-gel state, and gelation is accomplished by exposure to electron beam or gamma radiation with a total absorbed dose in the range of 5 to 50 kGy.
- An amount of radiation above 20 kGy can result in gel blocking in the form of a sheet; low levels of radiation can result in the formation of a creamy or semi-liquid gel.
- the prepared hydrogel has excellent swellability and viscosity, and the gel strength is 10 -2
- the Chinese invention patent CN 101982202A discloses a type of starch-based hydrogel.
- the hydrogel comprises a starch having a mass fraction of 10 to 30% and a water-soluble polymer of 2 to 15%. Further, a cerium salt polycondensate and a crosslinking agent are added to the preparation, and the solvent is deionized water. It has a high degree of swelling (balanced swelling ratio of about 300%) and can be kept moist, in addition to its high transparency and moderate mechanical strength.
- Chinese invention patent CN 103833916 A process for preparing a medical starch acrylic composite hydrogel.
- the hydrogel consists of gelatinized starch, 15 to 20% acrylic acid neutralized with a base, 12-16% N, N '- Methylene bis acrylate, 20 to 40% distilled water.
- the prepared hydrogel is not easy to change color, has good moisturizing effect, and has a use efficiency of more than 720 hours and is anti-bacterial and anti-virus, and is suitable as a medical composite dressing. All of the above patents produce starch-based hydrogels.
- a polymer other than starch is used as a raw material, and a crosslinking agent is added.
- the preparation process is complicated and has a great impact on the environment.
- the prepared hydrogel has limited ductility and almost no conductivity, which limits its application in certain directions.
- the Chinese invention patent CN 101918495 A discloses an electronically conductive electrically conductive elastomer material.
- the material is prepared by dispersing carbon nanotubes in a matrix composed of a thermoplastic elastomer.
- the carbon nanotubes have a diameter of 30 to 300 nm and an aspect ratio of 10 to 1000; the thermoplastic elastomer is composed only of a polyester-based thermoplastic elastomer.
- the carbon nanotubes are mixed at a ratio of 0.01 to 10 parts by mass based on 100 parts by mass of the above basic component.
- the volume resistivity of the material is below 10 " ⁇ .
- Chinese invention patent CN 102702662 discloses a thermally conductive electrically conductive elastomer material and a preparation method thereof, specifically for adding metal fibers (including copper fibers and styrene elastomers).
- Aluminum fiber nano-copper powder and expanded graphite are used as conductive materials, and mineral oil, polyolefin and antioxidant are added as auxiliary materials.
- the prepared materials are heat-conductive and conductive (volume resistivity is around 10 3 C m), soft and low in hardness. .
- a metal salt may be added, and an organic polymer polyelectrolyte is prepared by complex coordination of an alkali metal ion and a polyether block, which is an ion conductive elastic material.
- a metal salt may be added, and an organic polymer polyelectrolyte is prepared by complex coordination of an alkali metal ion and a polyether block, which is an ion conductive elastic material.
- Chinese patent CN 103131165 A discloses a conductive PA12 elastomer material and a preparation method thereof. The material is prepared by adding an alkali metal salt to the PA12 elastomer and adding an antioxidant, a heat stabilizer, and a conductive agent.
- the cation in the alkali metal salt may be Li +, Na + or K + , and the anion is CI - , Br -, 1 or .
- the elastomer has the advantages of long-lasting electrical conductivity, good electrical conductivity (surface resistivity 10 2 ⁇ 10 3 ⁇ ), low cost, and good heat resistance.
- the above conductive elastomer uses a thermoplastic elastomer as a matrix, and has limited ductility, which limits its application fields and application effects.
- the object of the present invention is to provide an elastic conductive colloid having biodegradability, viscosity, high transparency, green non-toxicity, preparation method and application thereof in view of the deficiencies of the existing conductive elastic materials.
- the technical solution for achieving the object of the present invention is: a method for preparing an elastic conductive colloid, comprising the following steps
- the metal salt is dissolved in deionized water to obtain an electrolyte solution;
- the metal salt is magnesium nitrate, sodium nitrate, zinc nitrate, cerium nitrate, calcium nitrate, cerium nitrate, nitric acid
- the metal salt is magnesium nitrate, sodium nitrate, zinc nitrate, cerium nitrate, calcium nitrate, cerium nitrate, nitric acid
- the starch is added to the solution prepared in the step 1, and the temperature is fully stirred at a temperature of 33 ° C ⁇ 120 ° C, until the starch is completely gelatinized to obtain a viscous liquid ;
- the viscous liquid obtained in the step 2 is allowed to stand at a temperature of 25 ° C to 90 ° C for 10 minutes to 48 hours to obtain an elastic conductive colloid.
- the starch of the present invention is one of corn, potato, wheat, sweet potato, hawthorn, cassava, glutinous rice starch and modified starch thereof, or any combination thereof.
- the technical solution of the present invention further includes an elastic conductive colloid obtained by the above preparation method, wherein the elastic conductive colloid has a resistivity of 1 to 1 ⁇ 10 4 ⁇ , and an elastic elongation of lOOOO ⁇ SOO ⁇ ,
- the elongation at break is 1500 ⁇ 3 ⁇ 4 to 9000 ⁇ 3 ⁇ 4; it is biodegradable; it has autofluorescence and emits light at a wavelength of 400 nm to 500 nm.
- the metal salt is zinc nitrate, cerium nitrate, calcium nitrate, cerium nitrate, aluminum nitrate, potassium nitrate, potassium chloride, calcium chloride, zinc chloride, barium chloride
- the elastic conductive colloid prepared has a water solubility, one of aluminum chloride, or any combination thereof.
- the invention provides an elastic conductive colloid for use in the fields of flexible circuit preparation, conductive adhesive, conductive fabric preparation, medical dressing, tissue bonding, and drug sustained release.
- the gel of a specific gelatinized starch is used as an elastic matrix, and a solution electrolyte of a high concentration metal salt is used as a conductive agent to provide an elastic conductive colloid by incorporating a specific inorganic salt electrolyte into a gelatinization process of a specific starch.
- a solution electrolyte of a high concentration metal salt is used as a conductive agent to provide an elastic conductive colloid by incorporating a specific inorganic salt electrolyte into a gelatinization process of a specific starch.
- the colloid prepared by the invention has an elastic elongation of 1000 ⁇ 3 ⁇ 4 ⁇ 2500 ⁇ 3 ⁇ 4, an elongation at break of lSOO ⁇ QOOO ⁇ , a volume resistivity of 1 ⁇ 1 ⁇ 10 4 ⁇ , and the same fluorescing property.
- the invention overcomes the defects of easy volatilization, dehydration and embrittlement after starch gelatinization, and prepares a specific inorganic salt electrolyte into the gelatinization process of a specific starch.
- Stable bomb Conductive colloid which can be used in the fields of flexible circuit preparation, conductive adhesive, conductive fabric preparation, medical dressing, tissue bonding, drug release.
- the colloid prepared by the invention is firstly biodegradable compared with the existing conductive colloid, so it can be used for biodegradable flexible circuit design, biodegradable conductive adhesive, conductive Fabrication; Second, it has excellent ductility and certain viscosity, can be used for the preparation of large-expansion electronic devices, bonding of flexible tissues and organs of human body; Third, it is fluorescent and can be used in flexible devices. Detection and tracking of colloids in the body.
- the present invention has the following beneficial effects as compared with existing materials and preparation methods:
- the raw material for preparing the elastic conductive colloid of the invention is rich in source, low in cost, green and environmentally friendly, and harmless to human body;
- the elastic conductive colloid prepared by the invention has simple preparation process, low requirements on equipment, easy realization of large-scale production, and friendly preparation process environment.
- the elastic conductive colloid prepared by the invention has high elasticity, electrical conductivity, biodegradability, autofluorescence, viscosity, high transparency, green non-toxicity and the like, and can be used for flexible circuit preparation and conductive bonding. Additives, conductive fabric preparation, medical dressings, tissue bonding, drug release, etc.
- the volume resistivity measured by the constant voltage method was 5.7 x 10 3 ⁇ • cm. Spectroscopic measurements showed autofluorescence with an emission wavelength of 450 nm.
- the bond strength of the colloid to the polished pure copper was measured by a stretching method to be 50 kPa.
- the colloid provided by the embodiment is used for the preparation of a flexible circuit: the viscous liquid gelatinized by the starch is placed in a printer, printed on a flexible substrate, and left at room temperature for 24 hours to obtain a flexible circuit.
- the colloid provided by the embodiment is used for the preparation of the conductive fabric: the viscous liquid after gelatinization of the starch in Example 1 is vacuum-extracted for 15 minutes under lOKPa, and uniformly applied to the surface of the fabric at 40 ° C. After standing for 12 hours, the conductive fabric was obtained. The surface resistivity of the fabric was measured to be 2.4 x 10 4 ⁇ / ⁇ .
- the elastic conductive transparent colloid provided by the embodiment is used for tissue bonding of a myocardial defect site: an animal model of rat myocardial defect is manufactured, and then a colloid (sterilized by ultraviolet irradiation) is applied to the defect, and a colloid is observed. It can be attached to the surface of the myocardium and bind the defect together. After 3 weeks, it was observed that some of the defective muscles were repaired.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgery (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Medicinal Preparation (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Materials For Medical Uses (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明公开了一种弹性导电胶体、制备方法及其应用。该弹性导电胶体由淀粉凝胶弹性基质和高浓度电解质构成,该胶体弹性伸长率为1000%~2500%,断裂伸长率为1500%~9000%,体积电阻率1~1×10 4Ω·cm,而且该胶体同时具有自发荧光性、生物降解性、粘性、透明度高、绿色无毒等特点。本发明同时涉及该弹性导电胶体的制备方法,其特征是在高浓度金属盐溶液中加入淀粉后加温、糊化、保温、冷却后即得到弹性导电胶体。本发明的制备方法具有成本低廉、工艺简单、设备要求低、绿色环保等特点。本发明所述胶体可用于柔性电路制备、导电粘合剂、导电织物制备、医用敷料、药物缓释、组织粘接等。
Description
说明书 发明名称:一种弹性导电胶体、 制备方法及其应用 技术领域
[0001] 本发明涉及一种胶体、 制备方法及其应用, 特别涉及一种导电弹性胶体制备方 法及其应用。 本发明涉及柔性电路、 导电粘结剂、 导电织物, 医药卫生等技术 领域。
背景技术
[0002] 淀粉作为一种多糖类天然高分子, 具有可再生不枯竭、 可生物降解、 稳定性高 、 安全无毒等特点, 很早就被应用于医药卫生等领域。 传统的淀粉糊化后具有 一定的粘性, 在空气中室温下很快会失水变干。 如中国发明专利 CN 101054501A 、 CN 102493274 A、 CN 102757744 A和 CN 103897629 A所提供的大多淀粉基的 胶黏剂就是基于淀粉的这个特性。
[0003] 已有报道显示, 通过调控淀粉的主要结构特性, 或将淀粉与其它高分子交联, 可制备稳定的凝胶材料, 其具有较为优异的溶胀性和保湿 (水) 性。 例如, 中 国发明专利 CN 1480224A公幵了一类由淀粉、 聚乙烯吡咯烷酮、 聚乙烯醇、 水溶 性纤维素和水制备的水凝胶。 其中淀粉的质量分数优选范围为 5〜15%。 混合物 幵始制备成半凝胶状态, 通过暴露在电子束或 γ辐射下, 总吸收剂量在 5〜50kGy 的范围内来完成凝胶化。 高于 20kGy的辐射量可以导致片层形式的凝胶粘连; 低 辐射量会导致形成膏状或半液体凝胶。 制备的水凝胶具有非常优异的溶胀性和 粘性, 凝胶强度在 10 -2
MPa数量级, 断裂伸长率在 300%左右, 吸水性为 ΙΟΟΟ^ δΟΟΟ^ , 可以作为一种 敷料和药物缓释材料。 中国发明专利 CN 101982202A公幵了一类淀粉基的水凝胶 。 该水凝胶包含质量分数为 10〜30%的淀粉, 2〜15%的水溶性高分子。 此外, 制备中加入了胍盐缩聚物和交联剂, 溶剂为去离子水。 其具有较高的溶胀度 ( 平衡溶胀率为 300%左右) , 并能保持湿润, 此外其透明度高、 力学强度适中。 中国发明专利 CN 103833916 Α公幵了一种医用淀粉丙烯酸基复合水凝胶的制备 工艺。 该水凝胶由糊化的淀粉、 15〜20%用碱中和后的丙烯酸、 12-16%的 N, N
'-亚甲基双丙烯酸胺、 20〜40%的蒸馏水制成。 制备的水凝胶不易变色, 保湿效 果良好, 使用吋效超过 720小吋且防菌杀毒, 适合作为医用复合敷料。 上述专利 均制备出淀粉基的水凝胶。 所述制备过程中, 均采用了除淀粉外的高分子作为 原料, 并加入交联剂。 制备工艺较为复杂, 而且对环境影响较大。 制备的水凝 胶延展性有限, 而且几乎没有导电性, 限制了其在某些方向的应用。
[0004] 目前的导电弹性材料绝大部分是通过在普通弹性体材料中加入导电颗粒或纤维 , 制备出的电子导电型弹性材料。 中国发明专利 CN 101918495 A公幵了一种电 子导电型导电弹性体材料。 该材料是将碳纳米管分散于热塑性弹性体组成的基 体中制备而成。 碳纳米管的直径为 30〜300nm, 纵横比为 10〜1000; 热塑性弹性 体仅由聚酯系热塑性弹性体构成。 相对于 100质量份上述基本成分, 碳纳米管以 0.01〜10质量份的比例进行混合。 该材料体积电阻率在 10 "Ω^ηι以下。 中国发 明专利 CN 102702662 Α公幵了一种导热导电弹性体材料及其制备方法。 具体为 在苯乙烯弹性体中加入金属纤维 (包括铜纤维和铝纤维) 、 纳米铜粉和膨胀石 墨作为导电物质, 并加入矿物油、 聚烯烃、 抗氧剂作为辅料。 制备的材料导热 、 导电 (体积电阻率在 10 3 Cm左右) 、 柔软、 硬度低。
[0005] 除了在弹性体基体中添加导电性单质, 也可以添加金属盐, 通过碱金属离子与 聚醚嵌段的络合配位制备有机高分子聚电解质, 其为一种离子导电型弹性材料 。 如中国发明专利 CN 103131165 A公幵了一种导电 PA12弹性体材料及制备方法 。 该材料是通过将碱金属盐加入到 PA12弹性体中, 并添加抗氧剂, 热稳定剂, 助导电剂制备而成。 其中碱金属盐中阳离子可为 Li +、 Na +或 K +, 阴离子为 CI - 、 Br -、 1或。10 4。 该弹性体具有导电效果持久、 导电效果好 (表面电阻率 10 2 〜10 3Ω·ηι) 、 成本低、 耐热性好等优点。 上述导电弹性体采用热塑性弹性体作 为基体, 延展性有限, 限制了其应用领域和应用效果。
技术问题
问题的解决方案
技术解决方案
[0006] 本发明的目的是, 针对现有的导电弹性材料存在的不足, 提供一种具有生物降 解性、 粘性、 透明度高、 绿色无毒特点的弹性导电胶体、 制备方法及其应用。
[0007] 实现本发明目的的技术方案是: 一种弹性导电胶体的制备方法, 包括如下步骤
[0008] 1、 按质量百分比 20〜75 %, 将金属盐溶解于去离子水中, 得到电解质溶液; 所述金属盐为硝酸镁、 硝酸钠、 硝酸锌、 硝酸铯、 硝酸钙、 硝酸钕、 硝酸铝、 硝酸钾、 氯化钾、 氯化镁、 氯化钙、 氯化钠、 氯化锌、 氯化铯、 氯化铝中的一 种, 或它们的任意组合;
[0009] 2、 按质量百分比 10〜40 %, 将淀粉加入到步骤 1制备的溶液中, 在温度为 33°C 〜120°C的条件下充分搅拌, 至淀粉完全糊化, 得到粘稠液体;
[0010] 3、 将步骤 2得到的粘稠液体在温度为 25°C〜90°C的条件下静置 10分钟至 48小吋, 得到弹性导电胶体。
[0011] 本发明所述的淀粉为玉米、 马铃薯、 麦类、 红薯、 山芋、 木薯、 糯米原淀粉及 其改性淀粉中的一种, 或它们的任意组合。
[0012] 本发明技术方案还包括一种按上述制备方法得到的弹性导电胶体, 弹性导电胶 体的电阻率为 1〜1χ10 4Ω·αη, 弹性伸长率为 lOOO^ SOO^,
断裂延伸率为 1500<¾〜9000<¾; 它具有可生物降解性; 具有自发荧光性, 发射光 波长为 400nm〜500nm。
[0013] 在本发明技术方案中, 当所述的金属盐为硝酸锌、 硝酸铯、 硝酸钙、 硝酸钕、 硝酸铝、 硝酸钾、 氯化钾、 氯化钙、 氯化锌、 氯化铯、 氯化铝中的一种, 或它 们的任意组合吋, 制备的弹性导电胶体具有水溶性。
[0014] 本发明提供的一种弹性导电胶体的应用, 它可用于柔性电路制备、 导电粘结剂 、 导电织物制备、 医用敷料、 组织粘接、 药物缓释领域。
[0015] 将特定糊化淀粉的凝胶作为弹性基质, 高浓度金属盐的溶液电解质作为导电剂 , 提供了一种弹性导电胶体, 它是通过将特定无机盐电解质参与到特定淀粉的 糊化过程中而制备得到。 本发明所制备的胶体弹性伸长率为 1000<¾〜2500<¾,断 裂延伸率 lSOO^ QOOO^ , 体积电阻率 1〜1χ10 4Ω·αη, 而且同吋具有自发荧光 性。
[0016] 与现有技术相比, 本发明克服了单纯淀粉糊化后易挥发失水, 变干变脆的缺陷 , 通过将特定无机盐电解质参与到特定淀粉的糊化过程中制备了一种稳定的弹
性导电胶体, 该胶体可用于柔性电路制备、 导电粘合剂、 导电织物制备、 医用 敷料、 组织粘接、 药物缓释等领域。
[0017] 更为重要的是, 本发明所制备胶体与现有导电胶体相比, 第一, 其具有生物降 解性, 因此可用于可生物降解柔性电路设计, 可生物降解导电粘合剂、 导电织 物的制备; 第二, 其具有优异的延展性和一定的粘性, 可用于大延展电子器件 的制备, 人体柔性组织和器官的粘接; 第三, 其具有荧光性, 可用于柔性器件 中和体内胶体的检测和追踪。
发明的有益效果
有益效果
[0018] 综上所述, 与现有材料及制备方法相比, 本发明具有如下有益效果:
[0019] 1、 本发明制备弹性导电胶体的原料来源丰富、 成本低廉, 且绿色环保、 对人 体无害;
[0020] 2、 本发明所制备的弹性导电胶体制备工艺简单, 对设备要求较低, 易实现大 规模生产, 而且制备过程环境友好。
[0021] 3、 本发明所制备的弹性导电胶体, 兼具高弹性、 导电性、 生物降解性、 自发 荧光、 粘性、 透明度高、 绿色无毒等多种性能, 可用于柔性电路制备、 导电粘 结剂、 导电织物制备、 医用敷料、 组织粘接、 药物缓释等多个领域。
本发明的实施方式
[0022] 下面结合实施例对本发明作进一步说明。
[0023] 实施例 1 :
[0024] 将 3.5g氯化镁加入到 9ml去离子水中, 在室温下或加热搅拌至完全溶解, 得到 电解质溶液; 然后将 4g玉米淀粉加入电解质溶液并加热, 在 60°C搅拌直至淀粉完 全糊化, 得到粘稠液体。 将粘稠液体置于容器中在 25°C静置 40小吋, 得到半透明 弹性导电胶体。 用万能力学试验机对胶体做单轴拉伸试验, 结果显示其弹性伸 长率为 1100%, 断裂延伸率为 1700%。 用恒电压法测量其体积电阻率为 5.7x10 3Ω •cm。 光谱法测量显示其具有自发荧光性能, 发射光波长为 450nm。 用拉伸法测 得该胶体对抛光后纯铜的粘结强度为 50 kPa。
[0025] 将本实施例提供的胶体用于柔性电路的制备: 将淀粉糊化后的粘稠液体装于打 印机中, 印刷于柔性基板上, 室温静置 24小吋, 即得柔性电路。
[0026] 将本实施例提供的胶体用于导电织物的制备: 将实施例 1中淀粉糊化后的粘稠 液体于 lOKPa以下的真空抽气 15min后, 均匀涂于织物表面, 40°C下静置 12小吋 即得导电织物。 测得该织物的表面电阻率为 2.4x10 4Ω/口。
[0027] 将该弹性导电胶体放入 15倍于其体积的去离子水中搅拌, 可以观察到胶体最终 完全溶解。
[0028] 实施例 2:
[0029] 将表 1中各种无机盐按相应质量百分比分别加入到 10ml去离子水中, 完全溶解 , 然后将 3g红薯淀粉加入到上述溶液中, 在 50°C搅拌直至淀粉完全糊化, 得到粘 稠液体, 将粘稠液体置于容器中在 37°C静置 24小吋, 得到不同的半透明弹性导电 胶体, 测量各自的体积电阻率、 弹性伸长率和断裂延伸率, 结果列于表 1。
[0030] 表 1含不同金属盐的胶体的体积电阻率、 弹性伸长率和断裂延伸率
[0031]
濯詩画
:議讓
爐膽 JL
■
| ¾,键謹
3 誦繼 ^: fl 30 艇 1 2逢? J:
議铯' 45,2 1 IJ»I 纖 4
■i隨鋼■ 5SS,? 12:6S 2: ■2麵、 S
6 1 讓 ?維: 2
賺锡 零 IS
.a.; ?4.5 1 誦.1 25!
9 :讓脑 : 键 j 1 β:« :2 S?if,5
顏销: 1 :觀 J 纖: . it 裏嫌 55 2應 S 1 112! J 纖 -.5
12 顏铯 ?5 '?
!3 誦 5,4 1 :麵匿 ·?2 通? J
餐
:氟禱 1
14 11纖
氱纖 2,.2 1 1355,4 :2;S . 销嚇 镇圃:; 纖
鶴隱 :, 纖 ? 1 iis&i 碰 J: 誦舞
[0032] 实施例 3:
[0033] 将 4g氯化锌加入到 8ml去离子水中, 完全溶解, 然后将表 2中的各种淀粉按相应 质量百分比分别加入到上述溶液中,在表 2中给定温度下搅拌直至淀粉完全糊化 , 得到粘稠液体, 将粘稠液体置于容器中在 60°C静置 4小吋, 得到不同的弹性导 电半透明胶体, 测量各自的体积电阻率、 弹性伸长率和断裂延伸率, 结果列于 表 2
[0034] 表 2不同淀粉制备的胶体的体积电阻率、 弹性伸长率和断裂延伸率
[0036] 实施例 4:
[0037] 将实施例 1中淀粉糊化后的粘稠液体剧烈搅拌以混入大量气体, 再将粘稠液体 置于容器中在 50°C保温 2小吋, 则得到弹性导电不透明胶体。 若将实施例 1中淀粉 糊化后的粘稠液体 lOKPa以下的真空抽气 15 min, 再将粘稠液体置于容器中于 50 °C保温 20小吋, 则得到弹性导电透明胶体。
[0038] 将本实施例提供的弹性导电透明胶体用于心肌缺损部位的组织粘接: 制造大鼠 心肌缺损动物模型, 然后将胶体 (经过紫外照射灭菌) 涂敷于缺损处, 观察到 胶体可以紧密贴附于心肌表面并将缺损部位粘合在一起。 3周后, 观察到缺损心 肌有部分得到修复。
Claims
[权利要求 1] 一种弹性导电胶体的制备方法, 其特征在于包括如下步骤:
(1) 按质量百分比 20〜75 %, 将金属盐溶解于去离子水中, 得到电 解质溶液; 所述金属盐为硝酸镁、 硝酸钠、 硝酸锌、 硝酸铯、 硝酸钙 、 硝酸钕、 硝酸铝、 硝酸钾、 氯化钾、 氯化镁、 氯化钙、 氯化钠、 氯 化锌、 氯化铯、 氯化铝中的一种, 或它们的任意组合;
(2) 按质量百分比 10〜40 %, 将淀粉加入到步骤 (1) 制备的溶液中 , 在温度为 33°C〜120°C的条件下充分搅拌, 至淀粉完全糊化, 得到 粘稠液体;
(3) 将步骤 (2) 得到的粘稠液体在温度为 25°C〜90°C的条件下静置 10分钟至 48小吋,得到弹性导电胶体。
[权利要求 2] 根据权利要求 1所述的一种弹性导电胶体的制备方法, 其特征在于: 所述的金属盐为硝酸锌、 硝酸铯、 硝酸钙、 硝酸钕、 硝酸铝、 硝酸钾 、 氯化钾、 氯化钙、 氯化锌、 氯化铯、 氯化铝中的一种或它们的任意 组合。
[权利要求 3] 根据权利要求 1所述的一种弹性导电胶体的制备方法, 其特征在于: 所述的淀粉为玉米、 马铃薯、 麦类、 红薯、 山芋、 木薯、 糯米原淀粉 及其改性淀粉中的一种或它们的任意组合。
[权利要求 4] 一种按权利要求 1制备方法得到的弹性导电胶体, 其特征在于: 所述 的弹性导电胶体的电阻率为 l〜lxl0 4
Q cm, 弹性伸长率为 lOOO^ SOO^,断裂延伸率为 ΟΟ^ ΟΟΟ^; 所述的弹性导电胶体具有可生物降解性; 具有自发荧光性, 发射光波 长为 400nm〜500nm。
[权利要求 5] —种按权利要求 2制备方法得到的弹性导电胶体, 其特征在于: 所述 的弹性导电胶体具有水溶性。
[权利要求 6] —种按权利要求 1或 2制备方法得到的弹性导电胶体的应用, 其特征在 于: 用于柔性电路制备、 导电粘结剂、 导电织物制备、 医用敷料、 组 织粘接或药物缓释。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/541,699 US10273343B2 (en) | 2015-01-06 | 2015-07-20 | Conductive elastomer, preparation method and use thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510004341.0A CN104558699B (zh) | 2015-01-06 | 2015-01-06 | 一种弹性导电胶体、制备方法及其应用 |
CN201510004341.0 | 2015-01-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016110082A1 true WO2016110082A1 (zh) | 2016-07-14 |
Family
ID=53075825
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/084531 WO2016110082A1 (zh) | 2015-01-06 | 2015-07-20 | 一种弹性导电胶体、制备方法及其应用 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10273343B2 (zh) |
CN (1) | CN104558699B (zh) |
WO (1) | WO2016110082A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019093874A1 (es) * | 2017-11-13 | 2019-05-16 | Roman Dominguez Salucita | Materiales eléctricamente conductivos basados en polímeros y procesos que los producen |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104558699B (zh) * | 2015-01-06 | 2017-09-22 | 苏州大学 | 一种弹性导电胶体、制备方法及其应用 |
CN105833361A (zh) * | 2016-04-15 | 2016-08-10 | 苏州大学 | 一种柔性基质/液体电解质粘性复合材料及其制备方法 |
CN106566463B (zh) * | 2016-11-14 | 2020-07-07 | 东莞兆舜有机硅科技股份有限公司 | 一种有机硅苯基披覆胶及其制备方法 |
JP6878115B2 (ja) * | 2017-04-25 | 2021-05-26 | オリエンタル酵母工業株式会社 | 低蛍光性実験動物用飼料およびその製造方法 |
CN108519173A (zh) * | 2018-03-07 | 2018-09-11 | 南京纳铠生物医药科技有限公司 | 一种柔性应力和湿度传感器、其制备方法及应用 |
CN108670255A (zh) * | 2018-03-07 | 2018-10-19 | 南京纳铠生物医药科技有限公司 | 一种超轻便可穿戴呼吸监测仪器及其监测方法 |
CN108630351B (zh) * | 2018-03-30 | 2019-07-09 | 华南师范大学 | 一种低成本柔性绿色可降解金属网络透明导电电极的方法 |
CN110269954B (zh) * | 2019-06-26 | 2021-08-03 | 南京纳铠生物医药科技有限公司 | 一种止血成骨一体化材料及其制备方法及其应用 |
CN110669148A (zh) * | 2019-11-07 | 2020-01-10 | 广州大学 | 一种吸水性淀粉及其制备方法和应用 |
CN111073196B (zh) * | 2020-01-16 | 2023-03-24 | 苏州大学 | 一种多功能智能复合凝胶材料、制备方法及其应用 |
CN111333921B (zh) * | 2020-03-19 | 2022-03-18 | 广州大学 | 一种淀粉基柔性导电材料及其制备和应用 |
CN113471460B (zh) * | 2021-07-15 | 2022-07-29 | 广州大学 | 一种绿色环保的淀粉基压敏电池的制备和应用 |
CN114504313A (zh) * | 2022-01-24 | 2022-05-17 | 苏州大学 | 一种轻便可穿戴的呼吸监测装置及监测方法 |
CN115028900A (zh) * | 2022-06-13 | 2022-09-09 | 南京林业大学 | 一种快速制备高导电率淀粉凝胶的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1129339A (zh) * | 1994-10-20 | 1996-08-21 | 国际商业机器公司 | 导电胶体材料及其应用 |
CN1786060A (zh) * | 2004-12-10 | 2006-06-14 | 上海扬泽纳米新材料有限公司 | 一种天然淀粉基导电材料及其制备方法 |
US20060202171A1 (en) * | 2005-03-11 | 2006-09-14 | Kazuyoshi Yoshida | Conductive polymer solution, antistatic coating material, antistatic hard coat layer, optical filter, conductive coating film, antistatic tacky adhesive, antistatic tacky adhesive layer, protective material, and method for producing the same |
CN102120265A (zh) * | 2010-01-07 | 2011-07-13 | 中国科学院化学研究所 | 单分散的银纳米粒子的胶体、纳米银粉的制备方法及其导电油墨 |
CN104558699A (zh) * | 2015-01-06 | 2015-04-29 | 苏州大学 | 一种弹性导电胶体、制备方法及其应用 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080242794A1 (en) * | 2007-03-30 | 2008-10-02 | Sandford David W | Color stabilized antimicrobial polymer composites |
WO2010045223A2 (en) * | 2008-10-14 | 2010-04-22 | Laird Technologies, Inc. | Acicular metal particles having a high aspect ratio and non-catalytic methods for making same |
EP2651819A1 (en) * | 2010-12-14 | 2013-10-23 | Styron Europe GmbH | Improved elastomer formulations |
-
2015
- 2015-01-06 CN CN201510004341.0A patent/CN104558699B/zh active Active
- 2015-07-20 WO PCT/CN2015/084531 patent/WO2016110082A1/zh active Application Filing
- 2015-07-20 US US15/541,699 patent/US10273343B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1129339A (zh) * | 1994-10-20 | 1996-08-21 | 国际商业机器公司 | 导电胶体材料及其应用 |
CN1786060A (zh) * | 2004-12-10 | 2006-06-14 | 上海扬泽纳米新材料有限公司 | 一种天然淀粉基导电材料及其制备方法 |
US20060202171A1 (en) * | 2005-03-11 | 2006-09-14 | Kazuyoshi Yoshida | Conductive polymer solution, antistatic coating material, antistatic hard coat layer, optical filter, conductive coating film, antistatic tacky adhesive, antistatic tacky adhesive layer, protective material, and method for producing the same |
CN102120265A (zh) * | 2010-01-07 | 2011-07-13 | 中国科学院化学研究所 | 单分散的银纳米粒子的胶体、纳米银粉的制备方法及其导电油墨 |
CN104558699A (zh) * | 2015-01-06 | 2015-04-29 | 苏州大学 | 一种弹性导电胶体、制备方法及其应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019093874A1 (es) * | 2017-11-13 | 2019-05-16 | Roman Dominguez Salucita | Materiales eléctricamente conductivos basados en polímeros y procesos que los producen |
Also Published As
Publication number | Publication date |
---|---|
US10273343B2 (en) | 2019-04-30 |
CN104558699A (zh) | 2015-04-29 |
CN104558699B (zh) | 2017-09-22 |
US20180002509A1 (en) | 2018-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016110082A1 (zh) | 一种弹性导电胶体、制备方法及其应用 | |
Zhang et al. | Flexible and wearable sensor based on graphene nanocomposite hydrogels | |
Suneetha et al. | Tissue-adhesive, stretchable, and self-healable hydrogels based on carboxymethyl cellulose-dopamine/PEDOT: PSS via mussel-inspired chemistry for bioelectronic applications | |
Liu et al. | Dual ionic cross-linked double network hydrogel with self-healing, conductive, and force sensitive properties | |
Zhang et al. | One-step preparation of a highly stretchable, conductive, and transparent poly (vinyl alcohol)–phytic acid hydrogel for casual writing circuits | |
Ding et al. | A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor | |
Wu et al. | Hydrogels as soft ionic conductors in flexible and wearable triboelectric nanogenerators | |
Sun et al. | Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength | |
Yi et al. | Graphene oxide-incorporated hydrogels for biomedical applications | |
Hu et al. | Low chemically cross-linked PAM/C-dot hydrogel with robustness and superstretchability in both as-prepared and swelling equilibrium states | |
You et al. | Quaternized chitosan/poly (acrylic acid) polyelectrolyte complex hydrogels with tough, self-recovery, and tunable mechanical properties | |
Zhang et al. | Flexible and wearable strain sensors based on conductive hydrogels | |
Zhang et al. | Fast self-healing of graphene oxide-hectorite clay-poly (N, N-dimethylacrylamide) hybrid hydrogels realized by near-infrared irradiation | |
Can et al. | Nanostructural evolution and self-healing mechanism of micellar hydrogels | |
Di et al. | Poly (N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light-and thermo-responsive bending and adhesive properties | |
Ma et al. | All-starch-based hydrogel for flexible electronics: strain-sensitive batteries and self-powered sensors | |
You et al. | One-pot synthesis of multi-functional cellulose-based ionic conductive organohydrogel with low-temperature strain sensitivity | |
Xiong et al. | Bioinspired fabrication of self-recovery, adhesive, and flexible conductive hydrogel sensor driven by dynamic borate ester bonds and tannic acid-mediated noncovalent network | |
Heidarian et al. | Double dynamic cellulose nanocomposite hydrogels with environmentally adaptive self-healing and pH-tuning properties | |
Mandal et al. | Nanocomposite grafted stretchable and conductive ionic hydrogels for use as soft electrode in a wearable electrocardiogram monitoring device | |
Seong et al. | 3D printable self-adhesive and self-healing ionotronic hydrogels for wearable healthcare devices | |
Wang et al. | Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM | |
Li et al. | Bioinspired super-tough and multifunctional soy protein-based material via a facile approach | |
Sun et al. | Transparent, photothermal and stretchable alginate-based hydrogels for remote actuation and human motion sensing | |
Deng et al. | From carbon nanotubes to ultra-sensitive, extremely-stretchable and self-healable hydrogels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15876586 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15541699 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15876586 Country of ref document: EP Kind code of ref document: A1 |