CN111073196B - 一种多功能智能复合凝胶材料、制备方法及其应用 - Google Patents

一种多功能智能复合凝胶材料、制备方法及其应用 Download PDF

Info

Publication number
CN111073196B
CN111073196B CN202010049764.5A CN202010049764A CN111073196B CN 111073196 B CN111073196 B CN 111073196B CN 202010049764 A CN202010049764 A CN 202010049764A CN 111073196 B CN111073196 B CN 111073196B
Authority
CN
China
Prior art keywords
gel material
composite gel
multifunctional intelligent
wound
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010049764.5A
Other languages
English (en)
Other versions
CN111073196A (zh
Inventor
杨磊
林潇
毛雨轩
白艳洁
陈涛
李鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010049764.5A priority Critical patent/CN111073196B/zh
Publication of CN111073196A publication Critical patent/CN111073196A/zh
Application granted granted Critical
Publication of CN111073196B publication Critical patent/CN111073196B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0014Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0009Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form containing macromolecular materials
    • A61L26/0023Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/0066Medicaments; Biocides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L26/00Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
    • A61L26/0061Use of materials characterised by their function or physical properties
    • A61L26/008Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/602Type of release, e.g. controlled, sustained, slow
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2429/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2429/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2429/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/24Homopolymers or copolymers of amides or imides
    • C08J2433/26Homopolymers or copolymers of acrylamide or methacrylamide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种多功能智能复合凝胶材料、制备方法及其应用。将淀粉在无机盐水溶液中加热形成淀粉基弹性导电胶体,再与PAM或PVA水凝胶前驱体形成多功能智能复合凝胶材料,它在动物组织或表皮粘附强度为0.5~15 kPa,对金黄色葡萄球菌、大肠杆菌、绿脓杆菌、白念珠菌的生长具有抑制作用,电导率为0.0005~100 ms/cm,它具有快速和稳定的对应力/应变、温度的响应性,以及环境响应性药物缓释功能和触感响应功能,在伤口敷料、智能药物缓释、伤口监测、电子皮肤、可穿戴柔性电子皮肤等领域具有应用潜力。本发明提供的凝胶材料备方法简便、绿色,原料来源广泛,对设备要求低,生产成本低廉。

Description

一种多功能智能复合凝胶材料、制备方法及其应用
技术领域
本发明涉及一种多功能水凝胶、制备方法及应用,特别涉及一种兼具抗感染、促进伤口愈合及多模态响应性的智能凝胶材料、制备方法及应用。
技术背景
水凝胶在生物医药,污水处理,智能传感,机电行业等许多领域扮演着重要的角色。水凝胶敷料作为一种新兴敷料在市场上广受欢迎。但目前市面上的水凝胶敷料功能单一且缺乏抗菌性能。如:藻酸盐敷料弹性低、抗菌性能差,壳聚糖敷料价格昂贵并且存在免疫原性问题(参见文献:Elbadawy A. Kamoun, El-Refaie S.Kenawy, Xin Chen. Areview on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research, 2017, 8(3):217-233.;Alaa J Hassiba , Mohamed E El Zowalaty , Gheyath K Nasrallah ,Thomas JWebster,Adriaan S Luyt,Aboubakr M Abdullah,Ahmed A Elzatahry. Review ofrecent research on biomedical applications of electrospun polymer nanofibersfor improved wound healing.[J]. Nanomedicine, 2016, 11(6):715-737.; EnricaCaló, Vitaliy V Khutoryanskiy.Biomedical applications of hydrogels: A reviewof patents and commercial products[J]. European Polymer Journal, 2015, 65:252-267.)。除了伤口的治疗外,伤口的监测对伤口愈合也尤为重要,而目前市场上的敷料均不具备监测伤口的功能,而且大部分水凝胶缺乏环境响应性,不具备构建智能化敷料的潜力。因此,开发一种兼具抗菌、促进伤口愈合、伤口监测功能的水凝胶用于构建智能化敷料,对未来临床中难愈性伤口的治疗具有重要意义。触觉功能的临时恢复对伤口治疗也具有重要的现实意义,目前还没有此功能的智能敷料。而具有传感性能的水凝胶在柔性触觉传感器方面具有巨大的应用潜能(参见文献:Guo J, Liu X, Jiang N, et al. HighlyStretchable, Strain Sensing Hydrogel Optical Fibers[J]. Advanced Materials,2016, 28(46):10244-10249. ;Gang Ge, Yizhou Zhang, Jinjun Shao, et al.Stretchable, Transparent, and Self‐Patterned Hydrogel‐Based Pressure Sensorfor Human Motions Detection[J]. Advanced Functional Materials, 2018, 28(32):1802576.)。
中国发明专利CN 104558699 A 公开了一种弹性导电胶体、制备方法及其应用。在高浓度金属盐溶液中加入淀粉后加温、糊化、保温、冷却后即得到弹性导电胶体。但该弹性导电胶体作为智能敷料使用具有强度不足、拉伸回复性能不佳、溶胀性能不佳、无环境响应性等局限。PAM和PVA等传统水凝胶具有良好力学性能、生物相容性、溶胀性能。但这些水凝胶也存在拉伸回复不佳和无环境响应性的问题,同时缺乏抗菌性和组织粘性,且力学与组织失配,因此无法有效用于伤口敷料领域。
发明内容
本发明针对现有技术存在的不足,提供一种兼具组织粘性、柔性、抗菌、可吸收大量渗液、促进伤口愈合、伤口监测,可控制药物释放等功能,并具有监测伤口愈合以及触感性能的低成本凝胶材料、制备方法及其应用。
实现本发明目的的技术方案是提供一种多功能智能复合凝胶材料,它包括聚丙烯酰胺水凝胶或聚乙烯醇水凝胶中的一种和淀粉基弹性导电胶体;按质量比,聚丙烯酰胺水凝胶或聚乙烯醇水凝胶与淀粉基弹性导电胶体为1:4~4:1。
本发明提供的多功能智能复合凝胶材料在动物组织或表皮上的粘附强度为0.5~15 kPa;杨氏模量为1~50 kPa;500~2000次拉伸循环后,塑性变形小于15 %;溶胀度为100~2500 %;溶胀平衡后在动物组织或表皮上的粘附强度小于0.1 kPa;水蒸气透过率为600~2500 g/day.m2
本发明提供的多功能智能复合凝胶材料,对金黄色葡萄球菌抑制率为55~99.99%,对大肠杆菌抑制率为60~99.999 %,对绿脓杆菌抑制率为63~99.999 %,对白色念珠菌抑制率为46~99.99 %。
本发明提供的多功能智能复合凝胶材料,电导率为0.0005~100 ms/cm;应力分辨率小于5 N;温度分辨率小于8 ℃;位置感知分辨率小于2 cm,响应时间小于 0.1 s。
本发明技术方案还包括两种制备多功能智能复合凝胶材料的方法,其一包括如下步骤:
(1)按质量百分比5~60% ,将丙烯酰胺单体溶解于去离子水中,加入质量百分比0.001~1%的引发剂和质量百分比0.001~2%的交联剂,搅拌均匀,形成预凝胶;所述的引发剂为过硫酸盐,交联剂为胺类交联剂;
(2)在预凝胶中加入质量百分比为20~80%的淀粉基弹性导电胶体,混合均匀,在温度为50℃~100℃的条件下放置15~60min,得到一种多功能智能复合凝胶材料。
所述的过硫酸盐包括过硫酸钠,过硫酸铵,过硫酸钾中的一种,或它们的任意组合;所述的胺类交联剂包括N,N'-亚甲基双丙烯酰胺,二亚乙基三胺,N,N,N',N'-四甲基乙二胺中的一种,或它们的任意组合。
制备本发明所述的多功能智能复合凝胶材料的方法,其二包括如下步骤:
(1)按质量百分比5~50%,将聚乙烯醇溶解于去离子水中,搅拌均匀,形成预凝胶;
(2)在预凝胶中加入质量百分比为20~80%的淀粉基弹性导电胶体,混合均匀,在温度为 -80℃~-20℃的条件下冷冻处理1~24h,取出后放置在温度为5℃~40℃的环境中解冻处理1~24h,循环冷冻、解冻处理1~6次,得到一种多功能智能复合凝胶材料。
本发明提供的一种多功能智能复合凝胶材料的应用,将其用于柔性导线、柔性电极、伤口敷料、电生理治疗、智能药物缓释、伤口监测、电子皮肤、可穿戴柔性电子织物领域。
具体的,将其与柔性触觉传感器构建兼具伤口治疗功能和触觉感知功能的智能敷料。
在本发明技术方案中,淀粉基弹性导电胶体参照中国发明专利CN 104558699 A公开的技术方案制备。
本发明提供的兼具抗感染、促进伤口愈合及多模态响应性的智能凝胶材料,可通过pH或拉伸循环控制药物释放。在pH=11时,药物的释放量不高于40%,pH=3时,药物释放量不低于85%;当拉伸循环100次时,药物释放量不高于25%,拉伸循环1000次后,药物释放量增加且不低于80%;其中PAM或PVA可与药物分子形成氢键,从而介导和诱导药物释放。而凝胶材料的另一组分淀粉基弹性导电胶体,在不同的pH下会发生不同程度的矿化,进一步控制药物的释放。
本发明提供的一种兼具抗感染、促进伤口愈合及多模态响应性的智能凝胶材料,电导率为0.0005~100ms/cm。将伤口愈合探测器与感测电路相连时,可组合为伤口愈合监测仪器。所述的伤口愈合探测器为该凝胶材料,感测电路用于提供电源并输出信号。该探测器对温度,pH,形变和压力均具有感应性,可通过输出信号包括但不限于:响应电压,响应电流,电阻,电阻率,阻抗中的一种或多种直接与间接参数,反应伤口的愈合情况。
本发明提供的一种兼具抗感染、促进伤口愈合及多模态响应性的智能凝胶材料对HUVEC和NIH3T3细胞的毒性为0~1级。
本发明基于复合网络水凝胶的理论,利用多种水凝胶网络协同作用机制,通过材料学方法构建一类具有合适力学性能、良好组织粘性、维持伤口湿润环境、抗菌、促进组织愈合、可监测伤口状态的多功能凝胶材料,还提供了基于多功能凝胶材料构建柔性触觉传感功能的智能敷料。
本发明利用多功能淀粉基弹性导电胶体和PAM或PVA凝胶网络的协同作用,实现了多个上述单一水凝胶均不具有的新功能,如兼具抗菌和生物相容性,对应力、应变和温度的稳定电响应性,药物可控释放性能。各功能形成机制简述如下。该水凝胶中的离子使其具备导电性和抗菌性能,同时由于离子和淀粉的配位作用,使得离子缓慢释放,同时保证了材料生物相容性。PAM或PVA化学交联网络和淀粉水凝胶离子网络协同作用使得本发明凝胶不仅具有足够力学强度,而且具有高导电性和高弹性回复性能,实现对应力应变的稳定电响应性。PAM(PVA)/淀粉双网络和离子的配位作用使得凝胶材料电性能对温度变化极为敏感,材料随温度变化可输出及时、稳定的电信号变化,实现温度传感的功能。PAM和PVA的溶胀性使得本凝胶可作为药物缓释载体,并且由于凝胶双网络结构具有pH或应力/应变环境响应性,从而该发明凝胶可作为一类环境响应性药物智能释放载体。此外,凝胶中氢键作用和合适流变性能使得本发明凝胶与皮肤形成良好贴合,而且吸收渗液后粘性下降,可防止伤口粘连,便于更换敷料;凝胶材料的平衡的保水性和透气性可以使伤口处于一个相对湿润的环境中,这将有利于伤口的愈合。因此,通过PAM(PVA)和淀粉基弹性导体胶体的复合,制备出兼具成本低廉、柔性、粘性可调、可吸收大量渗液、兼具生物相容性和抗菌性、促进伤口愈合、环境响应性等特点和功能的凝胶材料。
与现有技术相比,本发明具有如下有益效果:
1.本发明制备的一种兼具促进伤口愈合及电响应性的多功能智能凝胶材料原料来源广泛,成本低廉。其制备过程简单,绿色无污染,对设备要求低,易大规模生产。
2.本发明制备的一种兼具促进伤口愈合及电响应性的多功能智能凝胶材料兼具粘性、柔性、抗菌、促进伤口愈合、可吸收大量伤口渗液等性能,有望代替现有敷料。
3.本发明制备的一种兼具促进伤口愈合及电响应性的多功能智能凝胶材料具有导电性能和pH、温度、应力以及应变的响应性,并且反映为电信号变化,因此本发明可用于柔性智能器件领域。
4.本发明提供的复合凝胶材料可以缓释药物,并且其缓释行为具有环境响应性,从而有望作为一类药物智能释放载体,应用于医疗领域。
附图说明
图1为按本发明技术方案制备的复合凝胶材料的形貌与关节处皮肤的贴合性能的结果显示照片;
图2为本发明实施例提供的复合凝胶材料的浸提液对NIH3T3细胞的相对增殖率柱状图;
图3为本发明实施例提供的复合凝胶材料的浸提液对HUVEC细胞的相对增殖率柱状图;
图4为本发明实施例提供的复合凝胶材料响应性实验的电路连接示意图;
图5为本发明实施例提供的复合凝胶材料的拉伸形变与响应电流的关系曲线图;
图6为温度与本发明实施例提供的复合凝胶材料的响应电流的关系曲线图;
图7为采用本发明实施例提供的复合凝胶材料制备的触感体系组合示意图;
图8为用于检测本发明实施例提供的触感体系电压变化的实验时,触感体系与示波器连接的示意图;
图9为本发明实施例提供的触感体系电压变化的示波器数值变化曲线图。
具体实施方式:
下面结合附图和实施例对本发明技术方案作进一步的阐述。
实施例1:
将氯化钙和玉米淀粉溶解在水中,溶液质量分数分别为20%和13.3%,60℃水浴加热30min,形成淀粉基弹性导电胶体。
将质量分数为13%的丙烯酰胺溶解在水中,加入质量分数为0.008%、0.006%和0.02%的N,N'-亚甲基双丙烯酰胺、N,N,N',N'-四甲基乙二胺和过硫酸铵,搅拌均匀,形成PAM水凝胶前驱体。
将淀粉基弹性导电胶体和PAM水凝胶前驱体按质量比1:1混合均匀,60℃水浴加热30min,形成凝胶材料。
将制备得到的凝胶材料放置在手指的关节处,手指同时进行弯伸活动,参见附图1,为本实施例制备的凝胶材料的形貌与关节处皮肤的贴合性结果显示照片,由图1可见,凝胶材料与关节处的皮肤具有良好的贴合性。
用万能力学试验机对凝胶材料进行单轴拉伸试验,其断裂伸长率为800 %,强度为140 kPa。用蒸馏水测试凝胶材料的溶胀性能,其溶胀度为900 %,结果表明,本实施例制备的凝胶材料具备吸收大量伤口渗液的能力。
将制备得到的凝胶材料按国家标准采用浸提法进行细胞毒性测试。制备浓度为0.1 g/mL的浸提液。在96孔板中分别种植NIH3T3和HUVEC细胞,种植密度为3500个/孔,培养24h,换上浸提液培养1,3天,采用CCK8试剂测试细胞的活性,其结果分别参见附图2和3,附图2为凝胶材料的浸提液对NIH3T3细胞的相对增殖率,附图3为凝胶材料的浸提液对HUVEC细胞的相对增殖率;图2和图3结果显示,培养1天时对NIH3T3和HUVEC细胞的相对增殖率分别为120 %和128 %,培养3天时其相对增殖率分别为250 %和262 %。细胞毒性为0级,表明凝胶材料可以促进细胞的增殖,有利于伤口愈合。
按本发明技术方案制备的复合凝胶材料,具有可控调节凝胶材料的相关性能。凝胶材料在动物组织或表皮上的粘附强度为0.5~15 kPa;杨氏模量为1~50 kPa;500~2000次拉伸循环后,塑性变形不高于15 %;溶胀度为300~2500 %。 溶胀平衡后对皮肤粘附强度不大于0.1 kPa。水蒸气透过率为600~2000 g//day.m2。凝胶材料具有一定的形状和力学强度并且可以吸收大量的伤口渗液,吸收渗液后粘性下降,可防止伤口粘连,便于更换敷料。对HUVEC和NIH3T3细胞的毒性为0~1级。
实施例2:
将硝酸铜和红薯淀粉溶解在水中,溶液质量分数分别为10 %和18 %,80 ℃水浴加热,形成淀粉基弹性导电胶体。
将质量分数为15 %的丙烯酰胺溶解在水中,并加入质量分数为0.008 %和0.02 %的N,N'-亚甲基双丙烯酰胺和过硫酸钠,搅拌均匀,形成PAM水凝胶前驱体。
将制备的淀粉基弹性导电胶体和PAM水凝胶前驱体按质量比1:2混合均匀,60 ℃水浴加热30 min,形成凝胶材料。
采用直接接触法测试凝胶材料的抗菌性能。抗菌率计算公式如下:
Figure 372250DEST_PATH_IMAGE002
式中:R为抗菌率(%);A为种植在受试菌表面的平均菌数(CFU/mL);B为试验样品与受试菌接触一定时间后平均菌数(CFU/mL)。
实验结果显示,凝胶材料对金黄色葡萄球菌的抗菌率大于99 %,大肠杆菌的抗菌率不低于99.99 %,绿脓杆菌的抗菌率不低于99.99 %以及对白色念珠菌的抗菌率大于99.9%。实验证实可以通过改变凝胶材料中的无机盐的种类和含量调控凝胶材料的抗菌性能。其中对金黄色葡萄球菌抑制率范围为55~99.99 %,对大肠杆菌的生长抑制率范围为60~99.999 %,对绿脓杆菌抑制率范围为63~99.999 %,对白色念珠菌的生长抑制率范围为46~99.99 %。
实施例3:
将氯化钙和硝酸锶按溶液质量比5 %和10 %溶解在水中,然后加入质量分数为20%的玉米淀粉,60 ℃水浴加热,形成淀粉基弹性导电胶体,加入5 mL质量分数为0.1 %的溴酚蓝溶液,搅拌均匀,用于模拟药物释放。
将质量分数为15 %的丙烯酰胺溶解在水中,并加入质量分数为0.006 %和0.01%的N,N- N,N'-亚甲基双丙烯酰胺和过硫酸铵,搅拌均匀,形成PAM水凝胶前驱体。
将制备的淀粉基弹性导电胶体和PAM水凝胶前驱体按质量比2:1混合均匀,80 ℃水浴加热60 min,形成凝胶材料。
将凝胶材料制成面积为1 cm*1 cm厚度为1 mm的正方体,将其放在去离子水中,每隔一段时间用酶标仪测试敷料中溴酚蓝的释放量。实验结果发现,凝胶材料在前12个小时溴酚蓝的释放量线性增长,12小时后,释放量变得平缓。
为了探究凝胶材料的药物释放对pH的响应性,将上述敷料分别放在pH=3、5、7、9和11的溶液中,检测凝胶材料在不同pH环境下溴酚蓝的释放量。实验结果显示,当pH=11时,溴酚蓝的释放量小于35 %;pH=9时,溴酚蓝的释放量不低于51 %;pH=7时,溴酚蓝的释放量大于68 %但不高于70 %,pH=5时,溴酚蓝的释放量不低于74 %;pH=3时,溴酚蓝的释放量大于85 %。溴酚蓝的释放量随pH的增大而减小。表明可以通过改变外在环境的pH控制凝胶材料的药物释放。在pH=11时,药物的释放量不高于40 %,pH=3时,药物释放量不低于85 %。当拉伸循环100次时,药物释放量不高于25 %,拉伸循环1000次后,药物释放量增加且不低于80%。
实施例4:
采用实施例1中制备得到的凝胶材料,将凝胶材料制成面积为3 cm*1 cm厚度为2mm的长条状。采用铂丝和导线将凝胶材料与电流表和恒压电源按图4示意图串联。拉伸凝胶材料至伸长率分别为100,200,300,400,500 %,分别记录电流表中的响应电流值。实验结果见图5,拉伸形变越大,响应电流越小。因此可以通过电流的变化,判断凝胶材料发生的形变。
将伤口愈合探测器与感测电路相连时,可组合为伤口愈合监测仪器。所述的伤口愈合探测器为该凝胶材料,感测电路用于提供电源并输出信号。该探测器对温度,pH,压力以及形变均具有感应性,可通过输出信号包括但不限于:响应电压,响应电流,电阻,电阻率,阻抗中的一种或多种直接与间接参数,反应伤口的愈合情况。
实施例5:
将氯化钙和马铃薯淀粉溶解在水中,溶液质量分数分别为15%和10%,80℃水浴加热20min,形成淀粉基弹性导电胶体。
将质量分数为20%的聚乙烯醇溶解在水中,搅拌均匀形成预凝胶。在预凝胶中加入质量百分比为50%的淀粉基弹性导电胶体,混合均匀,-80℃冷冻12h后,取出放置25℃环境中解冻12h,循环冷冻-解冻步骤3次,形成复合凝胶材料。
将凝胶材料制成面积为4 cm*2 cm厚度为2 mm的长条状。采用铂丝和导线将凝胶材料与电流表和恒压电源按图4示意图串联。凝胶材料置于恒温恒湿箱中,将湿度调节至60%,调节温度至30,35,40,45,50,55,60,65,70,75,或80℃。分别记录不同温度下电流表中的响应电流值。实验结果见图6,温度越高,响应电流越大。因此凝胶材料可以通过电流变化感应外界环境温度的变化。
实施例6:
采用实施例1中制备得到的凝胶材料,将凝胶材料制成直径为10 mm厚度为2 mm的圆柱体。同时制备面积为6 cm*1 cm厚度为2 mm的凝胶材料两份,将这两份凝胶材料作为柔性电极,传输触觉感应过程中的电信号。将凝胶材料,聚氨酯泡沫以及硅橡胶组合成触觉感应体系如图7。将触觉感应体系与示波器连接如图8,用手指从左到右依次触碰硅橡胶,将左边的电极电压记为电压1,右边的电极电压记为电压2,观察示波器上波形的变化。
参见附图9,为本实施例提供的触觉感应体系电压变化的示波器波形图;从图9示波器的波形中可以看到,在手指由左至右运动过程中,电压1由大变小而电压2由小变大。电压的数值与手指触碰的位置存在对应关系,触碰位置越靠近的电极,其电压值更大。可以通过电压大小判断触碰位置,从而实现具有触感的功能。

Claims (4)

1.一种多功能智能复 合凝胶材料,其特征在于:由如下制备方法制备得到:
将氯化钙和玉米淀粉溶解在水中,溶液质量分数分别为20%和13.3%,60℃水浴加热30min,形成淀粉基弹性导电胶体;
将质量分数为13%的丙烯酰胺溶解在水中,加入质量分数为0.008%、0.006%和0.02%的N,N'-亚甲基双丙烯酰胺、N,N,N',N'-四甲基乙二胺和过硫酸铵,搅拌均匀,形成PAM水凝胶前驱体;
将淀粉基弹性导电胶体和PAM水凝胶前驱体按质量比1:1混合均匀,60℃水浴加热30min,形成凝胶材料。
2.一种多功能智能复合凝胶材料的制备方法,其特征在于包括如下步骤:
将氯化钙和玉米淀粉溶解在水中,溶液质量分数分别为20%和13.3%,60℃水浴加热30min,形成淀粉基弹性导电胶体;
将质量分数为13%的丙烯酰胺溶解在水中,加入质量分数为0.008%、0.006%和0.02%的N,N'-亚甲基双丙烯酰胺、N,N,N',N'-四甲基乙二胺和过硫酸铵,搅拌均匀,形成PAM水凝胶前驱体;
将淀粉基弹性导电胶体和PAM水凝胶前驱体按质量比1:1混合均匀,60℃水浴加热30min,形成凝胶材料。
3.权利要求1所述多功能智能复合凝胶材料的应用,其特征在于:将其用于伤口敷料、伤口监测领域,其兼具粘性、柔性、促进伤口愈合、可吸收大量伤口渗液的性能,具有导电性能和 pH、温度、应力以及应变的响应性,并且反映为电信号变化。
4.根据权利要求3所述的多功能智能复合凝胶材料的应用,其特征在于:将其与柔性触觉传感器构建兼具伤口治疗功能和触觉感知功能的智能敷料。
CN202010049764.5A 2020-01-16 2020-01-16 一种多功能智能复合凝胶材料、制备方法及其应用 Active CN111073196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010049764.5A CN111073196B (zh) 2020-01-16 2020-01-16 一种多功能智能复合凝胶材料、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010049764.5A CN111073196B (zh) 2020-01-16 2020-01-16 一种多功能智能复合凝胶材料、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN111073196A CN111073196A (zh) 2020-04-28
CN111073196B true CN111073196B (zh) 2023-03-24

Family

ID=70323561

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010049764.5A Active CN111073196B (zh) 2020-01-16 2020-01-16 一种多功能智能复合凝胶材料、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN111073196B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112972758B (zh) * 2021-03-29 2022-07-01 西北工业大学 一种电致发光诱导光动力抗菌治疗的柔性水凝胶伤口敷料
CN113304324B (zh) * 2021-03-31 2022-11-04 西南交通大学 压电水凝胶的制备方法及产品
CN113244443B (zh) * 2021-04-28 2022-07-26 广州大学 一种水凝胶敷料及其制备方法和应用
CN114752079B (zh) * 2022-05-11 2024-02-20 齐鲁工业大学 淀粉基物理交联水凝胶及其制备方法和应用
CN115028900A (zh) * 2022-06-13 2022-09-09 南京林业大学 一种快速制备高导电率淀粉凝胶的方法
CN116043548B (zh) * 2023-01-30 2024-05-24 青岛大学 一种柔性织物/凝胶复合材料及其制备方法与应用
CN117860948B (zh) * 2024-03-12 2024-06-04 江西永通科技股份有限公司 一种医用复合功能型抗菌敷料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
CN103739861A (zh) * 2014-01-02 2014-04-23 河南理工大学 一种高强度水凝胶的制备方法
CN106634903A (zh) * 2016-10-12 2017-05-10 中国石油大学(华东) 一种互穿型聚合物网络体冻胶及其制备方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104558699B (zh) * 2015-01-06 2017-09-22 苏州大学 一种弹性导电胶体、制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6271278B1 (en) * 1997-05-13 2001-08-07 Purdue Research Foundation Hydrogel composites and superporous hydrogel composites having fast swelling, high mechanical strength, and superabsorbent properties
CN103739861A (zh) * 2014-01-02 2014-04-23 河南理工大学 一种高强度水凝胶的制备方法
CN106634903A (zh) * 2016-10-12 2017-05-10 中国石油大学(华东) 一种互穿型聚合物网络体冻胶及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Biogenic synthesis of silver nanoparticles and evaluation of physical and antimicrobial properties of Ag/PVA/starch nanocomposites hydrogel membranes for wound dressing application;Sadaf Batool et al;《Journal of Drug Delivery Science and Technology》;20190510;第403-414页 *
淀粉丙烯酰胺共聚物的研究及应用;王萍;《化工新型材料》;19960825(第8期);第26-29页 *

Also Published As

Publication number Publication date
CN111073196A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
CN111073196B (zh) 一种多功能智能复合凝胶材料、制备方法及其应用
Fan et al. Mussel-induced nano-silver antibacterial, self-healing, self-adhesive, anti-freezing, and moisturizing dual-network organohydrogel based on SA-PBA/PVA/CNTs as flexible wearable strain sensors
Qu et al. Skin-inspired highly stretchable, tough and adhesive hydrogels for tissue-attached sensor
Tan et al. Dual cross-linked ion-based temperature-responsive conductive hydrogels with multiple sensors and steady electrocardiogram monitoring
Wang et al. High-strength, highly conductive and woven organic hydrogel fibers for flexible electronics
Chen et al. Skin-inspired gels with toughness, antifreezing, conductivity, and remoldability
Zhang et al. Dual-network polyacrylamide/carboxymethyl chitosan-grafted-polyaniline conductive hydrogels for wearable strain sensors
Pang et al. Skin-inspired cellulose conductive hydrogels with integrated self-healing, strain, and thermal sensitive performance
Pan et al. An adaptive ionic skin with multiple stimulus responses and moist-electric generation ability
Zong et al. Mussel inspired Cu-tannic autocatalytic strategy for rapid self-polymerization of conductive and adhesive hydrogel sensors with extreme environmental tolerance
Zhao et al. Ultra-Tough, highly stable and Self-Adhesive Goatskin-Based intelligent Multi-Functional organogel e-skin as Temperature, Humidity, Strain, and bioelectric four-mode sensors for health monitoring
Bai et al. Temperature-triggered smart milk-derived hydrogel with programmable adhesion for versatile skin-attached iontronics
Zhang et al. Synthesis of strong and highly stretchable, electrically conductive hydrogel with multiple stimuli responsive shape memory behavior
Guo et al. Multifunctional bacterial cellulose-based organohydrogels with long-term environmental stability
You et al. Flexible porous Gelatin/Polypyrrole/Reduction graphene oxide organohydrogel for wearable electronics
Liu et al. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
Li et al. Magnet-oriented hydrogels with mechanical–electrical anisotropy and photothermal antibacterial properties for wound repair and monitoring
Lu et al. Simple preparation of carboxymethyl cellulose-based ionic conductive hydrogels for highly sensitive, stable and durable sensors
Xiao et al. Transparent, high stretchable, environmental tolerance, and excellent sensitivity hydrogel for flexible sensors and capacitive pens
Chen et al. Highly stretchable, adhesive and antibacterial double-network hydrogels toward flexible strain sensor
Mu et al. High strength, anti-freezing and conductive silkworm excrement cellulose-based ionic hydrogel with physical-chemical double cross-linked for pressure sensing
Wu et al. Degradable supramolecular eutectogel-based ionic skin with antibacterial, adhesive, and self-healable capabilities
Li et al. Multifunctional ionic conductive hydrogels based on gelatin and 2-acrylamido-2-methylpropane sulfonic acid as strain sensors
Li et al. Chitosan-based double cross-linked ionic hydrogels as a strain and pressure sensor with broad strain-range and high sensitivity
Si et al. A multifunctional conductive organohydrogel as a flexible sensor for synchronous real-time monitoring of traumatic wounds and pro-healing process

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant