WO2016110067A1 - 一种真三轴多场多相耦合动力学试验系统及方法 - Google Patents

一种真三轴多场多相耦合动力学试验系统及方法 Download PDF

Info

Publication number
WO2016110067A1
WO2016110067A1 PCT/CN2015/082590 CN2015082590W WO2016110067A1 WO 2016110067 A1 WO2016110067 A1 WO 2016110067A1 CN 2015082590 W CN2015082590 W CN 2015082590W WO 2016110067 A1 WO2016110067 A1 WO 2016110067A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
rock sample
rock
data processing
processing system
Prior art date
Application number
PCT/CN2015/082590
Other languages
English (en)
French (fr)
Inventor
马占国
魏明
罗宁
王强
王宇
杨党委
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016110067A1 publication Critical patent/WO2016110067A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • the invention relates to a true triaxial multi-field multi-phase coupling dynamics test system and method, and belongs to the technical field of mechanical property testing.
  • SHPB split Hopkinson pressure bar
  • the existing conventional three-axis SHPB testing machine is designed with reference to the working principle of the static testing machine, that is, in the ordinary SHPB.
  • a device with a confining pressure is designed, and the impact test is carried out after applying the confining pressure.
  • This method is called a pseudo triaxial rock dynamics test device, and the applied confining pressure is in two axial pressures. They are all the same, and the confining pressure unloading is also unloaded at the same time; but this is only an ideal situation, and the difference between the actual conditions under the mine is relatively large. In most cases under the mine, the forces received by the rock in different directions are different, and each pressure is released.
  • the direction is generally not unloaded at the same time, which will lead to a large gap between the test and the actual test, making the test measurement incomplete and unable to provide data support for subsequent research.
  • the mechanical properties of the rock under the mine are closely related to the environment. For example, temperature, humidity, gas concentration, liquid pH value, etc. will affect the mechanical properties of the rock. Only when it is close to the actual situation under the mine can the actual measurement be required.
  • the rock mechanics data facilitates the study of the impact pressure of the subsequent rock. Therefore, how to carry out rock dynamics testing in a more realistic underground environment is an urgent problem in the industry.
  • the present invention provides a true triaxial multi-field multi-phase coupling dynamics test system and method, which can not only control the loading and unloading of the prestressing of each surface of the rock sample, but also separately control the pressurization and unloading.
  • the rock sample can be tested in an environment under the simulated mine, so that the test situation is similar to the actual situation, and the data obtained by the test sample is closer to the data obtained under the actual conditions of the mine.
  • the technical solution adopted by the present invention is: the true three-axis multi-field multi-phase coupled dynamics test system, including the test shaft, the hydraulic system, the bullet, the infrared speedometer, the dynamic strain gauge, the digital oscilloscope and the data processing
  • the system, the bullet and the test shaft are on the same axis
  • the test shaft comprises a three-axis loading device, an incident rod, a transmission rod, an absorption rod and an absorber, one end of the incident rod and one end of the transmission rod and the three-axis loading device respectively Fixed at both ends; the other end of the transmission rod is sequentially pressed against the absorption rod and the absorber and on the same axis as the absorption rod and the absorber;
  • the three-axis loading device is a hexahedron, including three sets of two opposite pressure devices The six pressure devices cover all or part of the rock sample, the fully covered pressure device applies the pre-stress to the rock sample, and the partially covered pressure device applies the pre-shear force to the rock sample
  • Each pressure device is provided with an electromagnetic control valve and is connected with the hydraulic system, and the electromagnetic control valve is connected with the data processing system;
  • the infrared speedometer Between the bullet and the incident rod, the incident rod and the transmission rod are provided with strain gauges, the strain gauges are connected with the dynamic strain gauge, and the digital oscilloscope is respectively connected with the infrared speedometer, the dynamic strain gauge and the data processing system;
  • a temperature effect test system is further included, the temperature effect test system includes an incubator, a temperature sensor, and a thermocouple, and the temperature sensor and the thermocouple are respectively connected to the data processing system. Increasing the temperature effect test system can ensure that the rock samples are tested at various temperatures and the corresponding data are obtained.
  • a chemical effect test system is further included, the chemical effect test system includes an anti-corrosion case and a PH value detecting device, the PH value detecting device is disposed in the anti-corrosion box, and the PH value detecting device is connected to the data processing system. . Increasing the chemical effect test system allows the rock sample to be tested under various pH solutions and then the corresponding data.
  • the anti-corrosion box body in the chemical effect test system is provided with an air inlet and an air outlet, and a gas flow detecting device is disposed at each of the air inlet and the air outlet, and a gas concentration is provided inside the corrosion-proof box
  • the detecting device, the gas flow detecting device and the gas concentration detecting device are respectively connected to the data processing system.
  • a spectrum analyzer a mass spectrometer, and a diffraction analyzer are included, and the spectrum analyzer, the mass spectrometer, and the diffraction analyzer are connected to the data processing system.
  • the rock samples that are easy to collect are subjected to component determination and classified.
  • the pressure device is one or more hydraulic cylinders.
  • the hydraulic system includes six hydraulic pumps, each of which is connected to a pressure device; six hydraulic pumps are used to ensure that each hydraulic pump is supplied with a pressure device to facilitate separate control of the pressure device.
  • a true triaxial multi-field multi-phase coupled dynamics test method the specific steps are:
  • the collected rock samples are analyzed by a spectrum analyzer, a mass spectrometer, and a diffraction analyzer to determine the composition of each substance in each rock sample, and then classified; because the composition of various substances in the rock sample is different It will affect the mechanical properties of rock samples.
  • spectrum analyzer, mass spectrometer and diffraction analyzer After analysis and measurement by spectrum analyzer, mass spectrometer and diffraction analyzer, the range of components will be divided, the rock samples will be classified, and the rock samples will be tested separately to improve the test accuracy.
  • the classified rock sample is placed in a three-axis loading device, and then the angle between the three axes is adjusted and fixed; the required impact angle can be arbitrarily adjusted, and the mechanical properties after impact on the rock sample in various directions can be easily measured. ;
  • each pressure device applies pre-stress to the rock sample for one or more unloading, and then the data collected by the infrared speedometer, the data collected by the dynamic strain gauge, and the hydraulic system.
  • the pressure values of the various pressure devices are transmitted to the data processing system for analysis and processing; by using a separate control for the pressure devices, the pressure value of each pressure device and the time for applying the prestressing force can be controlled, and the pressure can be separately performed.
  • Unloading; or multiple unloading can simulate the mechanical properties of rock samples when the ground pressure in one direction is released or the ground pressure in multiple directions is released;
  • the test device is placed in the chemical effect system, and the rock sample is subjected to the impact test of the rock sample in step I by immersing the rock sample in a solution of different pH values, and the real-time PH value is transmitted to the data processing system through the pH detecting device, and further The mechanical properties of the rock samples under various pH solutions are obtained;
  • the test device When the test device is immersed in the solution in the chemical effect system, various kinds of gases are injected into the solution tank through the air inlet, and then the rock sample impact test in step I is performed, and the gas flow rate detection at the air inlet and the air outlet is detected.
  • the device records the flow rate of the injected gas and the excluded gas, and the gas concentration detecting device detects the gas concentration value in the container box in real time, and transmits the measured data to the data processing system, thereby obtaining the various gases and their different concentrations.
  • the mechanical properties of the rock specimen under the condition of the absorption of various gases by the rock sample are obtained from the situation and the flow rate of the inlet and outlet; the injected gas can be methane, gas, nitrogen and oxygen, etc.
  • Various gases will absorb, and the mechanical properties after absorption will change, so that the mechanical properties of rock samples under various conditions can be obtained;
  • Rock specimen impact test under integrated environment The test device is placed in the temperature effect system and the chemical effect system, and the rock sample impact test in step I can be simulated under the condition of the closest mine environment. The mechanical properties of the rock sample under the above various conditions; if the measured value is abnormal, the relevant personnel may be promptly processed through the alarm device in the data processing system;
  • the invention adopts a combination of a three-axis loading device, a data processing system, a chemical effect test system and a temperature effect sample system to realize a true three-axis loading process, and the conventional Hopkinson system can only Experiments are carried out in the case of one-dimensional or confining pressure, but this does not allow true three-axis loading.
  • the system can realize not only the three axial independent loadings of the X-axis, the Y-axis and the Z-axis, but also the same axial direction.
  • the conventional device can only impact in one direction, the invention can simultaneously impact three axial directions, and the three axial angles can be adjusted as needed;
  • the reverse coaxial loading is changed to the non-coaxial reverse loading so that the combination of pressing, shearing, bending, twisting and the like can be combined with the impact, and the rock sample can be tested in the environment under the simulated mine, so that the test situation and the actual situation Similarly, the data obtained by increasing the test sample is closer to the data obtained from the actual situation under the mine.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is an electrical schematic diagram of the test shaft of the present invention
  • Figure 3 is a schematic view showing the structure of the three-axis loading device of the present invention.
  • Figure 4 is a schematic structural view showing a part of the three-axis loading device of the present invention.
  • Figure 5 is a schematic structural view of a temperature effect system in the present invention.
  • Figure 6 is a schematic structural view of a chemical effect system in the present invention.
  • Figure 7 is an overall electrical schematic of the present invention.
  • the present invention includes a test shaft, a hydraulic system, a bullet 1, an infrared speedometer, a dynamic strain gauge, a digital oscilloscope, and a data processing system.
  • the bullet 1 is on the same axis as the test shaft, and the test is performed.
  • the shaft comprises a three-axis loading device 3, an incident rod 2, a transmission rod 4, an absorption rod 5 and an absorber 6, one end of the incident rod 2 and one end of the transmission rod 4 are respectively fixed to both ends of the triaxial loading device 3; the transmission rod 4 The other end is pressed against the absorption rod 5 and the absorber 6 in sequence and on the same axis as the absorption rod 5 and the absorber 6; the triaxial loading device 3 is a hexahedron, comprising three sets of two opposite pressure devices;
  • the six pressure devices cover all or part of the rock sample, each pressure device is respectively provided with an electromagnetic control valve and is connected with the hydraulic system, and the electromagnetic control valve is connected with the data processing system; the infrared speedometer is set at the bullet 1 and the incident Between the rods 2, the incident rod 2 and the transmission rod 4 are provided with strain gauges, the strain gauges are connected with the dynamic strain gauges, and the digital oscilloscopes are respectively connected with the infrared speedometer, the dynamic strain gauge and the data processing system
  • a temperature effect test system is further included, the temperature effect test system includes an incubator 7, a temperature sensor 8, and a thermocouple 9, and the temperature sensor 8 and the thermocouple 9 are respectively connected to the data processing system. Increasing the temperature effect test system can ensure that the rock samples are tested at various temperatures and the corresponding data are obtained.
  • a chemical effect test system is further included, the chemical effect test system includes an anti-corrosion case 10 and a pH detecting device 13, and the PH value detecting device 13 is disposed in the anti-corrosion case 10, and the PH value detecting device 13 is connected to the data processing system. Increasing the chemical effect test system allows the rock sample to be tested under various pH solutions and then the corresponding data.
  • the anti-corrosion case 10 in the chemical effect test system is provided with an air inlet and an air outlet, and a gas flow detecting device 12 is disposed at each of the air inlet and the air outlet, and the anti-corrosion box 10 is internally provided.
  • a gas concentration detecting device 11 There is a gas concentration detecting device 11, and the gas flow detecting device 12 and the gas concentration detecting device 11 are respectively connected to a data processing system. By adding the air inlet and the air outlet, the rock sample can be tested under various gas conditions, and the corresponding data is obtained.
  • a spectrum analyzer a mass spectrometer, and a diffraction analyzer are included, and the spectrum analyzer, the mass spectrometer, and the diffraction analyzer are connected to the data processing system.
  • the rock samples that are easy to collect are subjected to component determination and classified.
  • the pressure device is one or more hydraulic cylinders.
  • the hydraulic system includes six hydraulic pumps, each of which is connected to a pressure device; six hydraulic pumps are used to ensure that each hydraulic pump is supplied with a pressure device to facilitate separate control of the pressure device.
  • a true triaxial multi-field multi-phase coupled dynamics test method the specific steps are:
  • the collected rock samples are analyzed by a spectrum analyzer, a mass spectrometer, and a diffraction analyzer to determine the composition of each substance in each rock sample, and then classified; because the composition of various substances in the rock sample is different It will affect the mechanical properties of rock samples.
  • spectrum analyzer, mass spectrometer and diffraction analyzer After analysis and measurement by spectrum analyzer, mass spectrometer and diffraction analyzer, the range of components will be divided, the rock samples will be classified, and the rock samples will be tested separately to improve the test accuracy.
  • the various pressure devices on the triaxial loading device 3 are controlled by the data processing system to apply prestressing to the rock sample; since the individual control is used, the pressure value of each pressure device and the time for applying the prestressing force can be controlled, and can be separately performed. Unloading of pressure;
  • each pressure device applies pre-stress to the rock sample for one or more unloading, and then the data collected by the infrared speedometer, the data collected by the dynamic strain gauge, and the hydraulic pressure.
  • the pressure values of the various pressure devices in the system are transmitted to the data processing system for analysis and processing; by unloading one or more of the pressure devices, the ground pressure of the rock sample in one direction can be simulated or the ground pressure in multiple directions can be released.
  • the test device is placed in the chemical effect system, and the rock sample is subjected to the rock sample impact test in step I by immersing the rock sample in a solution of different pH values, and the real-time PH value is transmitted to the data processing system through the pH detecting device 13. Further, the mechanical properties of the rock sample under each pH solution are obtained;
  • the test device When the test device is immersed in the solution in the chemical effect system, various kinds of gases are injected into the solution tank through the air inlet, and then the rock sample impact test in step I is performed, and the gas flow rate detection at the air inlet and the air outlet is detected.
  • the device 12 records the flow rate of the injected gas and the excluded gas, and the gas concentration detecting device 11 detects the gas concentration value in the container box in real time, and transmits the measured data to the data processing system, thereby obtaining various gases and their different
  • the mechanical properties of the rock sample under the condition of the absorption of various gases by the rock sample are obtained by the concentration and the flow rate through the inlet and outlet; the injected gas may be methane, gas, nitrogen and oxygen, etc.
  • the sample will have an absorption effect on various gases, and the mechanical properties after absorption will change, so that the mechanical properties of the rock sample under various conditions can be obtained;
  • Rock specimen impact test under integrated environment The test device is placed in the temperature effect system and the chemical effect system, and the rock sample impact test in step I can be simulated under the condition of the closest mine environment. The mechanical properties of the rock sample under the above various conditions; if the measured value is abnormal, the relevant personnel may be promptly processed through the alarm device in the data processing system;

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种真三轴多场多相耦合动力学试验系统及方法,入射杆(2)的一端与透射杆(4)的一端分别与三轴加载装置(3)的两端固定;所述的三轴加载装置(3)为六面体,包括三组两两相对设置的压力装置;能对岩石试样各个面单独控制加压和卸载,并可任意改变六个油缸预应力加载值,入射杆(2)和透射杆(4)上装有应变片,便于测量岩石试样冲击时的力学性能;另外增加了温度效应试验系统和化学效应试验系统,通过调节系统的温度及注入各种不同的化学溶剂和各种气体,改变岩样所处的温度场、化学场,同时结合岩样所受的应力场,从而得到岩样在应力场、温度场、化学场、固、液、气等多场多相耦合作用下的力学特征,为后续的研究提供数据和理论支持。

Description

一种真三轴多场多相耦合动力学试验系统及方法 Technical Field
本发明涉及一种真三轴多场多相耦合动力学试验系统及方法,属于力学性能测试技术领域。
Background Art
岩石材料的三维动力特性试验研究是岩石冲击动力学中很重要的一个领域,也是目前研究的一个热点。通过总结三轴SHPB (霍普金森压杆)岩石力学试验机的研制情况,并对各类试验机的特点进行了比较。综合分析了三轴SHPB 试验相关研究文献,总结了一些共有规律:①在围压一定的情况下,岩石的动态抗压强度会随着应变率的增加而增加,呈现出线性函数或者指数函数增加形式,并且脆性减弱,塑性显著增加;②在应变率一定的情况下,岩石抗压强度会随着围压的增大而增大,线性关系比较显著;③岩石动静组合加载时,在轴压一定时,岩石的动静组合抗压强度会随着围压的增大而增大,呈现出近似线性增加趋势;在围压固定时,抗压强度随着轴向静压的增大呈现出先增大后减小的趋势。由于SHPB 试验装置和岩石材料本身的特点,目前在一些基本问题上,如加载应力波形、试样尺寸要求等方面,还没有统一的试验规范要求,很多试验结果只能进行定性比较,无法在统一尺度上进行定量分析。
目前,分离式Hopkinson 压杆(SHPB)装置仍是研究应变率段101-103 s-1 岩石类材料动态性能的经典测试系统。该装置最初由B.Hopkinson提出,后经Davis和Kolsky完善,逐渐形成了现代常用的SHPB系统。常用的SHPB 装置主要用于材料的单轴动态抗压性能的测试。但在大多数情况下,岩石以及其他工程材料往往处于多向受力状态。因此,在SHPB 装置上研究岩石类材料的三维动力特性很有必要。
现有常规三轴SHPB 试验机为参照静态试验机的工作原理设计的,即在普通SHPB 试验机的基础上,设计一个加围压的装置,施加围压后进行冲击试验,这种方式称为假三轴岩石动力学试验装置,其所施加的围压在两个轴向上的压力都是相同的,且围压卸载也是同时卸载;但是这只是理想情况,和矿下的实际情况相差比较大,矿井下大部分情况岩石在各个方向受到的力是不同的,且压力释放时各个方向一般也不会同时卸载,这样会导致试样试验与实际差距较大,使得试验测量的不全面,无法为后续研究提供数据支持。另外矿井下的岩石其力学性能与所处的环境也有密切关系,如温度、湿度、气体的浓度,液体PH值等都会影响岩石的力学性能,只有接近矿井下实际情况才能真正的测量到所需的岩石力学数据,便于后续岩石所受到的冲击地压的防护研究。因此如何能在模拟更真实的矿井下环境进行岩石动力学试验是本行业亟需解决的问题。
Technical Solution
针对上述现有技术存在的问题,本发明提供一种真三轴多场多相耦合动力学试验系统及方法,不仅对岩石试样各个面的预应力的加载可单独控制加压和卸载,同时能使岩石试样处于模拟矿井下的环境进行试验,使试验的情况与实际情况相似,提高试验试样所得数据与矿下实际情况得到的数据更接近。
为了实现上述目的,本发明采用的技术方案是:该种真三轴多场多相耦合动力学试验系统,包括试验轴、液压系统、子弹、红外测速仪、动态应变仪、数字示波器和数据处理系统,子弹与试验轴处于同一轴线上,所述的试验轴包括三轴加载装置、入射杆、透射杆、吸收杆和吸收器,入射杆的一端与透射杆的一端分别与三轴加载装置的两端固定;透射杆的另一端依次与吸收杆和吸收器压紧并与吸收杆和吸收器处于同一轴线上;所述的三轴加载装置为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,全部覆盖的压力装置给岩石试样施加的是预应压力,而部分覆盖的压力装置给岩石试样施加的是预应剪切力;每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接;红外测速仪设置在子弹与入射杆之间,入射杆和透射杆上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;所述的试验轴共三个,分别为X轴、Y轴和Z轴。
进一步,还包括温度效应试验系统,所述的温度效应试验系统包括保温箱体、温度传感器和热电偶,温度传感器和热电偶分别与数据处理系统连接。增加温度效应试验系统能保证岩石试样处于各种温度下进行试验,得出相应的数据。
进一步,还包括化学效应试验系统,所述的化学效应试验系统包括防腐蚀箱体和PH值检测装置,所述的PH值检测装置设置在防腐蚀箱体内,PH值检测装置与数据处理系统连接。增加化学效应试验系统可使岩石试样处于各种PH不同的溶液下进行试验,然后得出相应的数据。
进一步,所述的化学效应试验系统中的防腐蚀箱体设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置,防腐蚀箱体内部设有气体浓度检测装置,所述的气体流量检测装置和气体浓度检测装置分别与数据处理系统连接。增加进气口和出气口,可使岩石试样处于各种气体情况下进行试验,然后得出相应的数据。
进一步,还包括光谱分析仪、质谱分析仪和衍射分析仪,光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接。便于采集的岩石试样进行组分测定,并进行分类处理。
进一步,所述的压力装置为一个或多个液压油缸。
进一步,所述的液压系统包括六个液压泵,每个液压泵分别与一个压力装置连接;使用六个液压泵保证每个液压泵供给一个压力装置,便于压力装置的单独控制。
一种真三轴多场多相耦合动力学试验方法,具体步骤为:
Ⅰ、岩石试样冲击试验:
A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类;由于岩石试样中各种物质的组分不同会影响岩石试样的力学性能,通过光谱分析仪、质谱分析仪和衍射分析仪分析测定后,划分组分范围,对岩石试样进行分类,分别进行岩石试样的试验,提高试验精确度;
B.将分类后的岩石试样放置在三轴加载装置中,然后调节三轴之间的角度后固定;可任意调节所需的冲击角度,便于测量各个方向上对岩石试样的冲击后的力学性能;
C.通过数据处理系统控制三轴加载装置上各个压力装置对岩石试样施加预应力;
D.设定一个或多个子弹的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;通过一个或多个子弹的冲击,模拟了岩石试样受到一个方向的冲击或多个方向冲击时,其力学性能的情况;
E.在子弹对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;通过对压力装置一个由于采用单独控制,这样就可以控制每个压力装置的压力值及施压预应力的时间,同时可单独进行压力的卸载;或多个的卸载,可模拟岩石试样在一个方向的地压被释放或多个方向的地压被释放时,其力学性能的情况;
F.重复上述步骤B~E,可调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;
Ⅱ、在化学效应系统中岩石试样冲击试验:
a. 将试验装置放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;
b. 将试验装置浸泡在化学效应系统中的溶液时,通过进气口对溶液箱体内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置记录注入气体和排除气体的流量值,气体浓度检测装置实时检测容器箱体内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量大小情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;注入的气体可以为甲烷、瓦斯、氮气和氧气等,由于岩石试样对各种气体会有吸收作用,其吸收后的力学性能会变化,这样可以得出各种情况下岩石试样的力学性能;
Ⅲ、在温度效应系统中岩石试样冲击试验:将试验装置放置在温度效应系统中,通过数据处理系统控制热电偶加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;
Ⅳ、综合环境下岩石试样冲击试验:将试验装置放置在温度效应系统和化学效应系统中,可模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,可综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,可通过数据处理系统中的报警装置,提示相关人员进行及时处理;
Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。
Advantageous Effects
与现有技术相比,本发明采用三轴加载装置、数据处理系统、化学效应试验系统和温度效应试样系统相结合,实现了真三轴的加载过程,传统的霍普金森系统只能够对一维或者围压的情况下进行实验,但这做不到真三轴加载,本系统能够不仅实现X轴、Y轴和Z轴三个轴向的独立加载,而且能够实现同一轴向不同方向的独立加载过程,从而实现了真三轴的加载;另外传统的装置只能够一个方向的冲击,本发明能够三个轴向的同时冲击,且三个轴向的角度可根据需要任意调节;通过把反向共轴加载改为非共轴反向加载从而能够进行压、剪、弯、扭等与冲击结合,能使岩石试样处于模拟矿井下的环境进行试验,使试验的情况与实际情况相似,提高试验试样所得数据与矿下实际情况得到的数据更接近。
Description of Drawings
图1是本发明的结构示意图;
图2是本发明的试验轴的电原理图;
图3是本发明中三轴加载装置全部覆盖的结构示意图;
图4是本发明中三轴加载装置部分覆盖的结构示意图;
图5是本发明中温度效应系统的结构示意图;
图6是本发明中化学效应系统的结构示意图;
图7是本发明的整体电原理图。
图中: 1、子弹,2、入射杆,3、三轴加载装置,4、透射杆,5、吸收杆,6、吸收器,7、保温箱体,8、温度传感器,9、热电偶,10、防腐蚀箱体,11、气体浓度检测装置,12、气体流量检测装置,13、PH值检测装置。
Mode for Invention
下面结合附图对本发明作进一步说明。
如图1至图7所示,本发明包括试验轴、液压系统、子弹1、红外测速仪、动态应变仪、数字示波器和数据处理系统,子弹1与试验轴处于同一轴线上,所述的试验轴包括三轴加载装置3、入射杆2、透射杆4、吸收杆5和吸收器6,入射杆2的一端与透射杆4的一端分别与三轴加载装置3的两端固定;透射杆4的另一端依次与吸收杆5和吸收器6压紧并与吸收杆5和吸收器6处于同一轴线上;所述的三轴加载装置3为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接;红外测速仪设置在子弹1与入射杆2之间,入射杆2和透射杆4上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;所述的试验轴共三个,分别为X轴、Y轴和Z轴。
进一步,还包括温度效应试验系统,所述的温度效应试验系统包括保温箱体7、温度传感器8和热电偶9,温度传感器8和热电偶9分别与数据处理系统连接。增加温度效应试验系统能保证岩石试样处于各种温度下进行试验,得出相应的数据。
进一步,还包括化学效应试验系统,所述的化学效应试验系统包括防腐蚀箱体10和PH值检测装置13,所述的PH值检测装置13设置在防腐蚀箱体10内,PH值检测装置13与数据处理系统连接。增加化学效应试验系统可使岩石试样处于各种PH不同的溶液下进行试验,然后得出相应的数据。
进一步,所述的化学效应试验系统中的防腐蚀箱体10设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置12,防腐蚀箱体10内部设有气体浓度检测装置11,所述的气体流量检测装置12和气体浓度检测装置11分别与数据处理系统连接。增加进气口和出气口,可使岩石试样处于各种气体情况下进行试验,然后得出相应的数据。
进一步,还包括光谱分析仪、质谱分析仪和衍射分析仪,光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接。便于采集的岩石试样进行组分测定,并进行分类处理。
进一步,所述的压力装置为一个或多个液压油缸。
进一步,所述的液压系统包括六个液压泵,每个液压泵分别与一个压力装置连接;使用六个液压泵保证每个液压泵供给一个压力装置,便于压力装置的单独控制。
一种真三轴多场多相耦合动力学试验方法,具体步骤为:
Ⅰ、岩石试样冲击试验:
A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类;由于岩石试样中各种物质的组分不同会影响岩石试样的力学性能,通过光谱分析仪、质谱分析仪和衍射分析仪分析测定后,划分组分范围,对岩石试样进行分类,分别进行岩石试样的试验,提高试验精确度;
B.将分类后的岩石试样放置在三轴加载装置3中,然后调节三轴之间的角度后固定;可任意调节所需的冲击角度,便于测量各个方向上对岩石试样的冲击后的力学性能;
C.通过数据处理系统控制三轴加载装置3上各个压力装置对岩石试样施加预应力;由于采用单独控制,这样就可以控制每个压力装置的压力值及施压预应力的时间,同时可单独进行压力的卸载;
D.设定一个或多个子弹1的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;通过一个或多个子弹的冲击,模拟了岩石试样受到一个方向的冲击或多个方向冲击时,其力学性能的情况;
E.在子弹1对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;通过对压力装置一个或多个的卸载,可模拟岩石试样在一个方向的地压被释放或多个方向的地压被释放时,其力学性能的情况;
F.重复上述步骤B~E,可调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹1的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;
Ⅱ、在化学效应系统中岩石试样冲击试验:
a. 将试验装置放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置13将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;
b. 将试验装置浸泡在化学效应系统中的溶液时,通过进气口对溶液箱体内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置12记录注入气体和排除气体的流量值,气体浓度检测装置11实时检测容器箱体内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量的情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;注入的气体可以为甲烷、瓦斯、氮气和氧气等,由于岩石试样对各种气体会有吸收作用,其吸收后的力学性能会变化,这样可以得出各种情况下岩石试样的力学性能;
Ⅲ、在温度效应系统中岩石试样冲击试验:将试验装置放置在温度效应系统中,通过数据处理系统控制热电偶9加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;
Ⅳ、综合环境下岩石试样冲击试验:将试验装置放置在温度效应系统和化学效应系统中,可模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,可综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,可通过数据处理系统中的报警装置,提示相关人员进行及时处理;
Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。

Claims (8)

  1. 一种真三轴多场多相耦合动力学试验系统,包括试验轴、液压系统、子弹(1)、红外测速仪、动态应变仪、数字示波器和数据处理系统,子弹(1)与试验轴处于同一轴线上,其特征在于,所述的试验轴包括三轴加载装置(3)、入射杆(2)、透射杆(4)、吸收杆(5)和吸收器(6),入射杆(2)的一端与透射杆(4)的一端分别与三轴加载装置(3)的两端固定;透射杆(4)的另一端依次与吸收杆(5)和吸收器(6)压紧并与吸收杆(5)和吸收器(6)处于同一轴线上;所述的三轴加载装置(3)为六面体,包括三组两两相对设置的压力装置;所述的六个压力装置全部或部分覆盖岩石试样,每个压力装置分别设有一个电磁控制阀并与液压系统连接,电磁控制阀与数据处理系统连接;红外测速仪设置在子弹(1)与入射杆(2)之间,入射杆(2)和透射杆(4)上装有应变片,应变片与动态应变仪连接,数字示波器分别与红外测速仪、动态应变仪和数据处理系统连接;所述的试验轴共三个,分别为X轴、Y轴和Z轴。
  2. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,还包括温度效应试验系统,所述的温度效应试验系统包括保温箱体(7)、温度传感器(8)和热电偶(9),温度传感器(8)和热电偶(9)分别与数据处理系统连接。
  3. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,还包括化学效应试验系统,所述的化学效应试验系统包括防腐蚀箱体(10)和PH值检测装置(13),所述的PH值检测装置(13)设置在防腐蚀箱体(10)内,PH值检测装置(13)与数据处理系统连接。
  4. 根据权利要求3 所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,所述的化学效应试验系统中的防腐蚀箱体(10)设有进气口和出气口,在进气口和出气口处各设有一个气体流量检测装置(12),防腐蚀箱体(10)内部设有气体浓度检测装置(11),所述的气体流量检测装置(12)和气体浓度检测装置(11)分别与数据处理系统连接。
  5. 根据权利要求1 或2所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,还包括光谱分析仪、质谱分析仪、衍射分析仪,光谱分析仪、质谱分析仪和衍射分析仪与数据处理系统连接。
  6. 根据权利要求1或2 所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,所述的压力装置为一个或多个液压油缸。
  7. 根据权利要求1 所述的一种真三轴多场多相耦合动力学试验系统,其特征在于,所述的液压系统包括六个液压泵,每个液压泵站分别与一个压力装置连接。
  8. 一种真三轴多场多相耦合动力学试验方法,其特征在于,具体步骤为:
    Ⅰ、岩石试样冲击试验:
    A.通过光谱分析仪、质谱分析仪和衍射分析仪对采集的岩石试样进行分析,确定各个岩石试样中各种物质的组分,然后进行分类;
    B.将分类后的岩石试样放置在三轴加载装置(3)中,然后调节三轴之间的角度后固定;
    C.通过数据处理系统控制三轴加载装置(3)上各个压力装置对岩石试样施加预应力;
    D.设定一个或多个子弹(1)的入射方向,对岩石试样进行冲击试验,红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理,并将结果通过显示装置进行显示;
    E.在子弹对岩石试样进行冲击试验时,将各个压力装置对岩石试样施加预应力进行一个或多个卸载,然后再通过红外测速仪采集到的数据、动态应变仪采集到的数据及液压系统中各个压力装置的压力值传送给数据处理系统进行分析处理;
    F.重复上述步骤B~E,可调整三轴之间的角度值、各个压力装置对岩石施加的预应力值、一个或两个或三个子弹(1)的入射速度及在试验时各个压力装置卸载压力的数量,最后通过数据处理系统得出各种不同情况下各种组分不同的岩石试样的力学性能参数,其包括对岩石试样的拉力、压力、扭力、剪切力及弯曲力的测定;
    Ⅱ、在化学效应系统中岩石试样冲击试验:
    a. 将试验装置放置在化学效应系统中,通过对岩石试样浸泡在不同PH值的溶液后进行步骤Ⅰ中的岩石试样冲击试验,通过PH检测装置(13)将实时的PH值传递给数据处理系统,进而得出在各个PH值溶液下岩石试样的力学性能参数;
    b. 将试验装置浸泡在化学效应系统中的溶液时,通过进气口对防腐蚀箱体(10)内注入各种气体后进行步骤Ⅰ中的岩石试样冲击试验,通过设置在进气口和出气口的气体流量检测装置(12)记录注入气体和排除气体的流量值,气体浓度检测装置(11)实时检测容器箱体内的气体浓度值,将上述测量的数据均传递给数据处理系统,进而得出在各种气体及其不同的浓度的情况和通过进出口的流量情况得出岩石试样对各种气体的吸收情况下的岩石试样的力学性能参数;
    Ⅲ、在温度效应系统中岩石试样冲击试验:
    将试验装置放置在温度效应系统中,通过数据处理系统控制热电偶(9)加热,使岩石试样处于各种不同的温度下进行步骤Ⅰ中的岩石试样冲击试验,得出在各种温度情况下岩石试样的力学性能参数;
    Ⅳ、综合环境下岩石试样冲击试验:
    将试验装置放置在温度效应系统和化学效应系统中,可模拟最接近矿井下环境的情况下进行步骤Ⅰ中的岩石试样冲击试验,可综合得出在上述各种情况下岩石试样的力学性能参数;若测量数值异常,可通过数据处理系统中的报警装置,提示相关人员进行及时处理;
    Ⅴ、综合分析处理:将上述各个步骤得出的各种数据进行综合汇总,然后分析对比岩石试样在各个环境中所得出的力学性能参数,得出各种环境下对岩石试样力学性能的影响情况。
PCT/CN2015/082590 2015-01-08 2015-06-29 一种真三轴多场多相耦合动力学试验系统及方法 WO2016110067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010360.4 2015-01-08
CN201510010360.4A CN104535409B (zh) 2015-01-08 2015-01-08 一种真三轴多场多相耦合动力学试验系统及方法

Publications (1)

Publication Number Publication Date
WO2016110067A1 true WO2016110067A1 (zh) 2016-07-14

Family

ID=52850983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082590 WO2016110067A1 (zh) 2015-01-08 2015-06-29 一种真三轴多场多相耦合动力学试验系统及方法

Country Status (2)

Country Link
CN (1) CN104535409B (zh)
WO (1) WO2016110067A1 (zh)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198354A (zh) * 2016-08-19 2016-12-07 中国华电科工集团有限公司 一种渗流、应力、温度耦合试验机
CN106289993A (zh) * 2016-09-22 2017-01-04 合肥工业大学 一种干湿交替和应力共同作用的岩石崩解试验装置及试验方法
CN106442736A (zh) * 2016-12-06 2017-02-22 河南理工大学 用于单轴压缩测量含瓦斯煤冲击倾向性指标及声学特征的试验装置、试验系统和试验方法
CN106680103A (zh) * 2017-02-14 2017-05-17 南京泰克奥科技有限公司 一种岩土温度‑渗透‑应力‑化学耦合多功能试验系统及其操作方法
CN106770658A (zh) * 2016-12-27 2017-05-31 中国科学院武汉岩土力学研究所 基于平面波动的剪切波传播和节理动态剪切实验系统
CN107703002A (zh) * 2017-10-17 2018-02-16 中国科学院武汉岩土力学研究所 一种复合衬垫系统多相介质相互作用测试分析系统
CN108333055A (zh) * 2018-05-07 2018-07-27 中国科学院武汉岩土力学研究所 轮式岩石力学三轴试验仪、试验系统及试验方法
CN108414365A (zh) * 2018-04-09 2018-08-17 郑州大学 混凝土受自然力作用下破坏应力-应变全曲线测试装置
CN108414349A (zh) * 2018-06-19 2018-08-17 贵州省质安交通工程监控检测中心有限责任公司 一种真三轴试验机
CN108519317A (zh) * 2018-04-24 2018-09-11 钦州学院 直接拉伸荷载下的岩石应力-渗流耦合试验装置
CN109520842A (zh) * 2019-01-02 2019-03-26 安徽理工大学 动静载荷与裂隙压力耦合破裂岩石力学试验装置及其方法
CN109520843A (zh) * 2019-01-17 2019-03-26 湖南科技大学 一种测量不同深度围岩破碎程度的装置及使用方法
CN110044952A (zh) * 2019-04-29 2019-07-23 中国地质大学(武汉) 一种二氧化碳相变泄爆温压测试系统及其测试方法
CN110470547A (zh) * 2018-05-10 2019-11-19 中国电力科学研究院有限公司 一种导线单丝的试验装置
CN110595918A (zh) * 2019-10-25 2019-12-20 安徽理工大学 一种动静耦合加载锚固体试验装置
CN112033827A (zh) * 2020-09-11 2020-12-04 黄山学院 分离式霍普金森压杆的低温冲击试验装置
CN112326476A (zh) * 2020-11-02 2021-02-05 武汉科技大学 一种动荷载作用下岩石多场耦合流变试验测试方法及设备
CN112485295A (zh) * 2020-11-09 2021-03-12 广东电网有限责任公司广州供电局 油浸式变压器外部热源耐火性能综合测试平台
CN112504847A (zh) * 2020-10-30 2021-03-16 中国科学院武汉岩土力学研究所 岩石动静真/常三轴剪切流变thmc多场耦合试验装置
CN112697572A (zh) * 2020-12-18 2021-04-23 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112858024A (zh) * 2021-01-27 2021-05-28 天津大学 用于测量水力耦合作用下深部岩石动态性能的装置及方法
CN113310825A (zh) * 2021-05-28 2021-08-27 沈阳工业大学 碳酸盐岩溶蚀-冲剪交互作用试验系统及测试方法
CN113432992A (zh) * 2021-06-08 2021-09-24 太原理工大学 水-气-温多场耦合霍普金森压杆试验加载系统及方法
CN113588460A (zh) * 2021-07-27 2021-11-02 中南大学 用于岩石的高温三轴shpb装置及其装配方法和试验方法
CN113720662A (zh) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 岩石三向渗透率测试的样品结构、制样方法及测试系统
CN113776769A (zh) * 2021-09-28 2021-12-10 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113804389A (zh) * 2021-09-29 2021-12-17 广州计测检测技术股份有限公司 一种冲击试验检测方法
CN114137012A (zh) * 2021-10-29 2022-03-04 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种真三轴实验磁信号捕集装置及应用方法
CN114813011A (zh) * 2022-04-25 2022-07-29 山西大学 冲击和瞬态高温耦合下测试材料力学劣化行为的试验装置
CN114966114A (zh) * 2022-04-19 2022-08-30 北京理工大学 多分量冲击校准装置及连续多次加载同步校准方法
CN114965072A (zh) * 2022-04-21 2022-08-30 重庆大学 模拟原岩状态下卤水和超临界co2浸泡盐岩的系统及方法
CN115308058A (zh) * 2022-10-11 2022-11-08 中国矿业大学(北京) 地下工程支护体系高应变率动力学试验与评价系统及方法
CN116593280A (zh) * 2023-06-20 2023-08-15 天津大学 一种基于霍普金森杆的围压加载装置
CN117266799A (zh) * 2023-10-15 2023-12-22 东北石油大学 一种水平井多角度、多孔密螺旋射孔测试装置及测试方法
CN117288669A (zh) * 2023-11-24 2023-12-26 深圳市通泰盈科技股份有限公司 一种胶粘带耐酸碱盐腐蚀试验装置及方法
CN117606936A (zh) * 2024-01-23 2024-02-27 成都理工大学 一种岩石应力溶蚀试验装置及其方法
CN117907125A (zh) * 2024-01-22 2024-04-19 中山大学·深圳 基于超导技术的岩石高温与冲击波耦合试验装置及方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535409B (zh) * 2015-01-08 2017-12-08 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法
CN104897458B (zh) * 2015-04-30 2019-09-27 中国矿业大学 一种多相多场耦合锚固体组合变形测试方法
CN108072467B (zh) * 2016-11-14 2023-11-24 中国矿业大学(北京) 一种非连续结构体内部应力场的测量方法
CN106525292B (zh) * 2016-11-24 2018-12-21 中国矿业大学 一种位态可调的围岩应力测量装置
CN107014689A (zh) * 2017-03-20 2017-08-04 中国矿业大学 一种基于霍普金森压杆的真三轴动静组合加卸载试验系统
CN107014690B (zh) * 2017-03-24 2021-05-28 东北大学 一种低频扰动与高速冲击型高压真三轴试验装置及方法
US10324014B2 (en) 2017-03-24 2019-06-18 Northeastern University Low-frequency disturbance and high-speed impact type high-pressure true triaxial test apparatus and method
CN107907428A (zh) * 2018-01-02 2018-04-13 吉林大学 自带加热功能的半开放式方形岩芯水力压裂试验装置
CN108645562B (zh) * 2018-05-09 2020-09-22 西北工业大学 三维冲击力传感器的三轴Hopkinson杆同步动态标定装置及方法
CN108982206B (zh) * 2018-08-27 2020-09-25 北京工业大学 一种应变控制的拉-扭热机械疲劳试验方法
CN109406312B (zh) * 2018-12-26 2021-03-23 深圳大学 真三轴霍普金森杆固体动态损伤与超声波传播测试方法
CN109668775B (zh) * 2018-12-26 2021-03-23 深圳大学 真三轴霍普金森压杆的定位对中系统及方法
US11988645B2 (en) * 2018-12-26 2024-05-21 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system
CN109406310A (zh) * 2018-12-26 2019-03-01 深圳大学 三轴六向霍普金森压杆的动静载荷同步伺服控制系统
US11703433B2 (en) 2018-12-26 2023-07-18 Shenzhen University Dynamic true triaxial electromagnetic Hopkinson bar system and testing method
CN109406311A (zh) * 2018-12-26 2019-03-01 深圳大学 真三轴动静组合加载霍普金森压杆的温度控制系统及方法
CN109406313B (zh) * 2018-12-26 2021-08-31 深圳大学 霍普金森束杆动态测试系统
CN110296904A (zh) * 2019-07-03 2019-10-01 太原理工大学 一种煤岩体冲击作用下的伺服三轴加载装置和方法
CN110441170B (zh) 2019-07-17 2023-12-22 深圳大学 单轴双向同步控制电磁加载动态剪切试验装置和测试方法
US11921088B2 (en) * 2019-08-01 2024-03-05 Shenzhen University Thermal-stress-pore pressure coupled electromagnetic loading triaxial Hopkinson bar system and test method
CN110940578A (zh) * 2019-12-24 2020-03-31 南京理工大学 一种大尺寸冻土真三轴加载试验装置
CN111208047B (zh) * 2020-01-10 2020-11-06 中国矿业大学 一种可模拟复杂扰动条件下破碎岩体渗透性试验方法
CN111189706A (zh) * 2020-01-16 2020-05-22 南京卡恩姆航空科技有限公司 一种应用于小样品力学性能测试的系统及测试方法
CN112834320B (zh) * 2020-11-03 2022-11-29 贵州大学 一种干湿循环三轴试验机及其使用方法
CN112362485A (zh) * 2020-11-09 2021-02-12 中国石油大学(华东) 一种水合物沉积物的多功能综合试验系统及试验方法
CN112629785A (zh) * 2020-12-02 2021-04-09 中国航空工业集团公司沈阳飞机设计研究所 一种多场耦合受载试验装置
CN113984523B (zh) * 2021-10-28 2022-09-09 中国矿业大学 岩石模拟材料动静组合加载强度的测试装置及测试方法
CN114509366B (zh) * 2022-02-28 2024-04-09 东北大学 一种岩石真三轴试验机性能评定方法
CN116773328A (zh) * 2023-06-25 2023-09-19 中国地质大学(北京) 一种真三轴霍普金森压杆试验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065492A2 (en) * 1999-07-02 2001-01-03 Sumitomo Rubber Industries Ltd. Split Hopkinson bar testing apparatus and method
US20040073385A1 (en) * 2002-10-11 2004-04-15 Kazuyoshi Miyamoto Method of computing energy loss generated in viscoelastic material and method for evaluating energy loss of golf ball by using method of computing energy loss
CN202145186U (zh) * 2011-07-07 2012-02-15 中国人民解放军空军工程大学 用于主动围压霍普金森压杆实验的入射波整形机构
CN103674738A (zh) * 2013-12-13 2014-03-26 中国人民解放军理工大学 高温条件下shpb自动对杆冲击加载实验装置
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169069B (zh) * 2011-05-30 2012-09-05 浣石 三维冲击加载实验装置
CN202101910U (zh) * 2011-06-10 2012-01-04 中国矿业大学 三轴冲击动静载组合试验机
KR20130034321A (ko) * 2011-09-28 2013-04-05 한국건설기술연구원 Shtb를 이용한 콘크리트 인장 시험 장치 및 방법
CN102735532B (zh) * 2012-06-29 2014-06-04 东北大学 一种卸载时主应力方向可变换的岩石真三轴压力室
CN103728184B (zh) * 2012-10-16 2015-12-16 中国石油化工股份有限公司 模拟储层环境的应力应变测试系统及其测试方法
CN103257072A (zh) * 2013-04-28 2013-08-21 中国矿业大学 一种三维可视化真三轴模拟试验台
CN103852373A (zh) * 2014-03-20 2014-06-11 中国人民解放军理工大学 霍普金森压杆冲击实验三向围压温度联合加载装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065492A2 (en) * 1999-07-02 2001-01-03 Sumitomo Rubber Industries Ltd. Split Hopkinson bar testing apparatus and method
US20040073385A1 (en) * 2002-10-11 2004-04-15 Kazuyoshi Miyamoto Method of computing energy loss generated in viscoelastic material and method for evaluating energy loss of golf ball by using method of computing energy loss
CN202145186U (zh) * 2011-07-07 2012-02-15 中国人民解放军空军工程大学 用于主动围压霍普金森压杆实验的入射波整形机构
CN103674738A (zh) * 2013-12-13 2014-03-26 中国人民解放军理工大学 高温条件下shpb自动对杆冲击加载实验装置
CN104535409A (zh) * 2015-01-08 2015-04-22 中国矿业大学 一种真三轴多场多相耦合动力学试验系统及方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONG, FENGQIANG ET AL.: "Experimental Research Progress of Dynamic Characteristics for Rock Materials on Triaxial SHPB Apparatus", SCIENCE & TECHNOLOGY REVIEW, vol. 27, no. 18, 28 September 2009 (2009-09-28), pages 106 - 108 *
YU , YALUN: "Research Of Dynamic Load Characteristics For Rock with Triaxial SHPB Apparatus", CHINESE JOUNAL OF GEOTECHNICAL ENGINEERING, vol. 14, no. 3, 31 May 1992 (1992-05-31), pages 76 and - 77 *

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106198354B (zh) * 2016-08-19 2023-12-05 中国华电科工集团有限公司 一种渗流、应力、温度耦合试验机
CN106198354A (zh) * 2016-08-19 2016-12-07 中国华电科工集团有限公司 一种渗流、应力、温度耦合试验机
CN106289993B (zh) * 2016-09-22 2023-07-07 合肥工业大学 一种干湿交替和应力共同作用的岩石崩解试验装置及试验方法
CN106289993A (zh) * 2016-09-22 2017-01-04 合肥工业大学 一种干湿交替和应力共同作用的岩石崩解试验装置及试验方法
CN106442736A (zh) * 2016-12-06 2017-02-22 河南理工大学 用于单轴压缩测量含瓦斯煤冲击倾向性指标及声学特征的试验装置、试验系统和试验方法
CN106770658B (zh) * 2016-12-27 2023-04-18 中国科学院武汉岩土力学研究所 基于平面波动的剪切波传播和节理动态剪切实验系统
CN106770658A (zh) * 2016-12-27 2017-05-31 中国科学院武汉岩土力学研究所 基于平面波动的剪切波传播和节理动态剪切实验系统
CN106680103B (zh) * 2017-02-14 2024-01-09 南京泰克奥科技有限公司 一种岩土温度-渗透-应力-化学耦合多功能试验系统及其操作方法
CN106680103A (zh) * 2017-02-14 2017-05-17 南京泰克奥科技有限公司 一种岩土温度‑渗透‑应力‑化学耦合多功能试验系统及其操作方法
CN107703002A (zh) * 2017-10-17 2018-02-16 中国科学院武汉岩土力学研究所 一种复合衬垫系统多相介质相互作用测试分析系统
CN107703002B (zh) * 2017-10-17 2024-01-23 中国科学院武汉岩土力学研究所 一种复合衬垫系统多相介质相互作用测试分析系统
CN108414365A (zh) * 2018-04-09 2018-08-17 郑州大学 混凝土受自然力作用下破坏应力-应变全曲线测试装置
CN108414365B (zh) * 2018-04-09 2024-03-15 郑州大学 混凝土受自然力作用下破坏应力-应变全曲线测试装置
CN108519317B (zh) * 2018-04-24 2023-10-31 北部湾大学 直接拉伸荷载下的岩石应力-渗流耦合试验装置
CN108519317A (zh) * 2018-04-24 2018-09-11 钦州学院 直接拉伸荷载下的岩石应力-渗流耦合试验装置
CN108333055A (zh) * 2018-05-07 2018-07-27 中国科学院武汉岩土力学研究所 轮式岩石力学三轴试验仪、试验系统及试验方法
CN110470547A (zh) * 2018-05-10 2019-11-19 中国电力科学研究院有限公司 一种导线单丝的试验装置
CN110470547B (zh) * 2018-05-10 2023-05-23 中国电力科学研究院有限公司 一种导线单丝的试验装置
CN108414349B (zh) * 2018-06-19 2023-08-29 贵州省质安交通工程监控检测中心有限责任公司 一种真三轴试验机
CN108414349A (zh) * 2018-06-19 2018-08-17 贵州省质安交通工程监控检测中心有限责任公司 一种真三轴试验机
CN109520842A (zh) * 2019-01-02 2019-03-26 安徽理工大学 动静载荷与裂隙压力耦合破裂岩石力学试验装置及其方法
CN109520842B (zh) * 2019-01-02 2023-08-22 安徽理工大学 动静载荷与裂隙压力耦合破裂岩石力学试验装置及其方法
CN109520843B (zh) * 2019-01-17 2024-03-08 湖南科技大学 一种测量不同深度围岩破碎程度的装置及使用方法
CN109520843A (zh) * 2019-01-17 2019-03-26 湖南科技大学 一种测量不同深度围岩破碎程度的装置及使用方法
CN110044952A (zh) * 2019-04-29 2019-07-23 中国地质大学(武汉) 一种二氧化碳相变泄爆温压测试系统及其测试方法
CN110044952B (zh) * 2019-04-29 2024-05-10 中国地质大学(武汉) 一种二氧化碳相变泄爆温压测试系统及其测试方法
CN110595918A (zh) * 2019-10-25 2019-12-20 安徽理工大学 一种动静耦合加载锚固体试验装置
CN110595918B (zh) * 2019-10-25 2024-03-29 安徽理工大学 一种动静耦合加载锚固体试验装置
CN113720662A (zh) * 2020-05-25 2021-11-30 中国石油化工股份有限公司 岩石三向渗透率测试的样品结构、制样方法及测试系统
CN112033827B (zh) * 2020-09-11 2023-10-03 黄山学院 分离式霍普金森压杆的低温冲击试验装置
CN112033827A (zh) * 2020-09-11 2020-12-04 黄山学院 分离式霍普金森压杆的低温冲击试验装置
CN112504847A (zh) * 2020-10-30 2021-03-16 中国科学院武汉岩土力学研究所 岩石动静真/常三轴剪切流变thmc多场耦合试验装置
CN112326476A (zh) * 2020-11-02 2021-02-05 武汉科技大学 一种动荷载作用下岩石多场耦合流变试验测试方法及设备
CN112485295A (zh) * 2020-11-09 2021-03-12 广东电网有限责任公司广州供电局 油浸式变压器外部热源耐火性能综合测试平台
CN112697572B (zh) * 2020-12-18 2023-08-29 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112697572A (zh) * 2020-12-18 2021-04-23 浙江华东工程咨询有限公司 适用于泥质粉砂岩破碎的室内试验方法
CN112858024B (zh) * 2021-01-27 2023-09-22 天津大学 用于测量水力耦合作用下深部岩石动态性能的装置及方法
CN112858024A (zh) * 2021-01-27 2021-05-28 天津大学 用于测量水力耦合作用下深部岩石动态性能的装置及方法
CN113310825A (zh) * 2021-05-28 2021-08-27 沈阳工业大学 碳酸盐岩溶蚀-冲剪交互作用试验系统及测试方法
CN113310825B (zh) * 2021-05-28 2024-03-19 沈阳工业大学 碳酸盐岩溶蚀-冲剪交互作用试验系统及测试方法
CN113432992A (zh) * 2021-06-08 2021-09-24 太原理工大学 水-气-温多场耦合霍普金森压杆试验加载系统及方法
CN113588460A (zh) * 2021-07-27 2021-11-02 中南大学 用于岩石的高温三轴shpb装置及其装配方法和试验方法
CN113588460B (zh) * 2021-07-27 2022-09-16 中南大学 用于岩石的高温三轴shpb装置及其装配方法和试验方法
CN113776769A (zh) * 2021-09-28 2021-12-10 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113776769B (zh) * 2021-09-28 2023-06-06 重庆三峡学院 一种产生岩石累积损伤的锤击试验机
CN113804389B (zh) * 2021-09-29 2024-03-19 广州计测检测技术股份有限公司 一种冲击试验检测方法
CN113804389A (zh) * 2021-09-29 2021-12-17 广州计测检测技术股份有限公司 一种冲击试验检测方法
CN114137012A (zh) * 2021-10-29 2022-03-04 合肥综合性国家科学中心能源研究院(安徽省能源实验室) 一种真三轴实验磁信号捕集装置及应用方法
CN114966114A (zh) * 2022-04-19 2022-08-30 北京理工大学 多分量冲击校准装置及连续多次加载同步校准方法
CN114965072A (zh) * 2022-04-21 2022-08-30 重庆大学 模拟原岩状态下卤水和超临界co2浸泡盐岩的系统及方法
CN114813011A (zh) * 2022-04-25 2022-07-29 山西大学 冲击和瞬态高温耦合下测试材料力学劣化行为的试验装置
CN115308058A (zh) * 2022-10-11 2022-11-08 中国矿业大学(北京) 地下工程支护体系高应变率动力学试验与评价系统及方法
CN116593280A (zh) * 2023-06-20 2023-08-15 天津大学 一种基于霍普金森杆的围压加载装置
CN117266799B (zh) * 2023-10-15 2024-03-01 东北石油大学 一种水平井多角度、多孔密螺旋射孔测试装置及测试方法
CN117266799A (zh) * 2023-10-15 2023-12-22 东北石油大学 一种水平井多角度、多孔密螺旋射孔测试装置及测试方法
CN117288669B (zh) * 2023-11-24 2024-02-02 深圳市通泰盈科技股份有限公司 一种胶粘带耐酸碱盐腐蚀试验装置及方法
CN117288669A (zh) * 2023-11-24 2023-12-26 深圳市通泰盈科技股份有限公司 一种胶粘带耐酸碱盐腐蚀试验装置及方法
CN117907125A (zh) * 2024-01-22 2024-04-19 中山大学·深圳 基于超导技术的岩石高温与冲击波耦合试验装置及方法
CN117606936A (zh) * 2024-01-23 2024-02-27 成都理工大学 一种岩石应力溶蚀试验装置及其方法
CN117606936B (zh) * 2024-01-23 2024-04-09 成都理工大学 一种岩石应力溶蚀试验装置及其方法

Also Published As

Publication number Publication date
CN104535409B (zh) 2017-12-08
CN104535409A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
WO2016110067A1 (zh) 一种真三轴多场多相耦合动力学试验系统及方法
CN101718725B (zh) 一种原位测量样品热物性的装置
CN102519803B (zh) 一种多头微型试样蠕变试验装置及测试方法
WO2016173112A1 (zh) 一种多相多场耦合锚固体组合变形试验系统及方法
CN110567819B (zh) 一种材料高温压缩屈服强度试验方法
CN103163016A (zh) 一种用于准脆性材料进行轴向拉伸试验的辅助装置
CN103604915A (zh) 炸药化学反应性在线检测系统及检测方法
CN111060411B (zh) 一种智能化岩体蠕变剪切试验机与试验方法
CN102621178B (zh) 一种滚筒干燥过程中烟丝热物性在线测试装置和方法
CN209148501U (zh) 一种围压-温度作用下测试岩石Biot系数实验装置
CN108036906B (zh) 一种裂纹转子刚度系数测量方法
CN108061686A (zh) 同时获取岩石黏聚力和内摩擦角变化规律的测定方法及测定仪
CN109374441B (zh) 一种基于tsz全自动试验机的多功能环剪仪试验设备及其使用方法
CN111198131A (zh) 一种拉伸载荷下材料体积膨胀特性的测量装置和测量方法
CN107796927B (zh) 一种润滑脂的贮存加速试验装置
Liu et al. Investigating the cutting force monitoring system in the boring process
CN114323991A (zh) 一种高温铅铋环境蠕变疲劳试验装置
CN110501217B (zh) 一种蠕变压缩夹具
CN204718732U (zh) 多功能力值检定装置
Kimberley et al. A miniature tensile kolsky bar for thin film testing
CN101498650B (zh) 一种五联动岩石单轴流变仪
Sun et al. Analysis of the mechanical properties of Q345R steel in deep-regulating units by the spherical indentation method
CN221037900U (zh) 一种汽车线束端子头气密性检测工装
Mollamahmutoglu et al. Varying temperature and creep of silicate grouted sand
CN108168999A (zh) 一种钢丝绳扭矩和扭转角测定装置及其测定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876571

Country of ref document: EP

Kind code of ref document: A1