WO2016110054A1 - 带有弹簧状散热器的灯 - Google Patents

带有弹簧状散热器的灯 Download PDF

Info

Publication number
WO2016110054A1
WO2016110054A1 PCT/CN2015/081593 CN2015081593W WO2016110054A1 WO 2016110054 A1 WO2016110054 A1 WO 2016110054A1 CN 2015081593 W CN2015081593 W CN 2015081593W WO 2016110054 A1 WO2016110054 A1 WO 2016110054A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
heat
heat sink
section
lamp
Prior art date
Application number
PCT/CN2015/081593
Other languages
English (en)
French (fr)
Inventor
张晶晶
孙宗明
Original Assignee
深圳市有为光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市有为光电有限公司 filed Critical 深圳市有为光电有限公司
Publication of WO2016110054A1 publication Critical patent/WO2016110054A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/78Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with helically or spirally arranged fins or blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources

Definitions

  • the invention relates to LED lamps, in particular to lamps with spring-like radiators.
  • heat-dissipating components mainly heat-dissipating blades
  • One problem is to quickly transfer the heat of the heat source through the heat-conducting component to the heat-dissipating component that the radiator and the refrigerant (air or water) are in contact with.
  • the second is to quickly exchange heat with the refrigerant through the heat-dissipating component, thereby affecting the heat-dissipating component and the refrigerant.
  • There are two factors in the heat exchange effect one is the size of the contact area with the refrigerant, and the other is the ease of circulation of the refrigerant around the radiator.
  • heat sinks There are two main types of heat sinks.
  • One is that the heat-conducting parts and the heat-dissipating parts are made of the same material, such as extruded aluminum profiles, die-cast aluminum, and cast iron heat sinks, which are suitable for non-concentrated heat sources (ie, heat sources).
  • the area is relatively large)
  • the advantage is that the heat-conducting component and the heat-dissipating component are integrated, and the heat conduction speed is fast
  • the disadvantage is that the heat-dissipating component can only be made into a sheet shape due to the limitation of the process conditions, and cannot be made into other shapes, and can only be improved by increasing the heat dissipation area.
  • the heat dissipation efficiency results in a multiplication of weight and a large amount of material, and the air circulation performance is also not satisfactory.
  • the other is that the heat-conducting component and the heat-dissipating component are not integrally formed.
  • the heat-conducting component uses a material with a faster heat conduction speed (such as a heat pipe), and the heat-dissipating component uses a lower-cost material (such as an aluminum foil).
  • the heat pipe and fin heat sink are mainly used for concentrated heat sources (such as computer CPU) or heat source and heat dissipation in different spaces (such as air conditioning heat source outdoors, heat dissipation indoors), the heat dissipation structure has the following defects: 1.
  • Heat to the blade The conduction is limited by the contact method and the difference of materials; 2.
  • the heat dissipation direction is from one heat source to the far end, and the heat is easily collected near the heat source, and the uneven heat distribution affects the heat dissipation efficiency; 3.
  • the heat dissipation blade only passes through the surface The air flow takes away heat and the structure is not conducive to heat exchange by air convection.
  • the technical problem to be solved by the present invention is to provide a lamp with a spring-like heat sink which has both high heat conductivity, heat dissipation performance and air circulation performance.
  • the present invention provides a lamp with a spring-like heat sink, comprising a driving power source, a heat sink and an LED light board which are sequentially connected, wherein the heat sink comprises a hot carrier and is arranged At least one heat sink thereon, preferably a plurality of heat sinks, the bomb
  • the spring-shaped heat sink is integrally wound by a spring, and the heat sink comprises an axially stacked upper layer spring body and a lower layer spring body, a first extension section, a second extension section, a third extension section, and a first heat conduction a segment, a second heat conduction portion, a third heat conduction portion, and a fourth heat conduction portion;
  • the upper end of the first extension portion is in contact with the upper end of the upper layer spring body and extends to the bottom surface of the lower layer spring body, and one end of the first heat conduction portion is opposite to the lower end portion of the first extension portion Attached to the inner side of the lower spring body or around the outer side of the lower spring body;
  • the preferred method further includes a screw, an upper cover, a protective cover, a lower cover, an internal threaded rod adapted to the screw, a silicone pad, a reflective bowl, a PC cover, a lamp cover, an LED light board, a silicone pad, a reflective bowl, and a PC cover.
  • the lamp cover is sequentially stacked on the bottom of the hot carrier plate fixed to the heat sink, and the four internally threaded columns are disposed on the surface of the hot carrier plate, and the lower cover plate is provided with a hole adapted to the position of the internal thread column, the spring-like heat sink body, and the cross-sectional shape.
  • the hole of the lower cover plate is aligned with the internally threaded column and the spring-shaped heat sink body, and is pressed from the top to the bottom on the first heat conduction section and the third heat conduction section at the bottom of the spring-shaped heat sink body, and the top edge of the lower cover plate is provided with protection a groove adapted to the bottom edge of the cover, the diameter and height of the shield are slightly larger than the outer circumference of the spring-shaped heat sink and the internally threaded column, and the shield is placed on the groove from above the heat sink, and the upper cover is pressed
  • the driving power supply is placed on the top cover, the driving power is placed on the upper cover, and the screw is connected to the internal threaded post through the driving power source and the upper cover, thereby fixing the driving power source, the upper cover, the protective cover and the heat sink.
  • the cover further comprises a protective cover, a lamp cover and a screw;
  • the protective cover is sleeved around the spring-like heat sink of the heat sink from the top to the bottom, and the bottom is connected to the heat carrier of the heat sink by a screw, and the driving power is passed through the screw and the top of the shield.
  • the edge is connected, the LED light board is fixed on the bottom surface of the hot carrier board, and the lamp cover is fixed to the bottom surface of the hot carrier board by screws.
  • the first extension section and the second extension section are outside the upper layer spring body and the lower layer spring body, and the third extension section is outside the lower layer spring body.
  • the first heat conduction section, the second heat conduction section, the third heat conduction section and the bottom surface of the fourth heat conduction section are planes.
  • the shape is a cylindrical shape having the same diameter or a truncated cone shape which is large and small.
  • the first heat conducting section, the second heat conducting section, the third heat conducting section and the fourth heat conducting section are fixed to the hot carrier by welding, riveting and bolt pressing.
  • the spring-shaped heat sink has a diameter that is sequentially reduced and sequentially concentrically nested or They are distributed in an array on the hot carrier plate at intervals.
  • the heat sink comprises two round-shaped spring-like heat radiating bodies of different diameters and a plurality of cylindrical spring-shaped heat radiating bodies, and the spring-shaped heat radiating body with a larger diameter is sleeved in a spring shape with a smaller diameter.
  • the spring-like heat sink is disposed outside the heat sink, and is disposed in a hollow portion of the spring-shaped heat sink having a small diameter.
  • the heat conduction efficiency is higher.
  • the heat sink material may preferably further improve the heat conduction efficiency by using a material having higher heat conduction efficiency such as aluminum or copper;
  • the spring-shaped heat sink has a heat conduction section spiraled or surrounded on the bottom surface of the lower layer spring body, and the heat conduction section fully utilizes the space of the bottom surface of the lower layer spring body to extend,
  • the heat conduction length and area of the contact with the hot carrier plate are extended, and the space occupation is reduced, so that the heat of the hot carrier plate is transmitted to the upper spring body and the lower layer spring body more quickly, and the heat of the hot carrier plate is transferred in time.
  • the present invention not only fixes the shape of the heat sink into a spring shape, but also increases the heat dissipation area per unit volume and also reduces the occupation of space;
  • the spring-like heat dissipating body of the present invention comprises an upper layer spring body and a lower layer spring body of upper and lower layers, and the upper end and the lower end of the upper layer spring body are connected to the heat conducting section through the extension section, and the upper end of the lower layer spring body passes The extension section is connected to the heat conduction section, and the heat conduction sections of the two are connected to each other for fixing.
  • the heat of the heat conduction section can be transmitted to the both ends of the upper spring body and the lower layer spring body through the extension section, and then transmitted from the both ends to the upper layer.
  • the heat is dissipated between the spring body and the lower spring body. From the heat distribution, the temperature of the upper spring body and the lower spring body is higher, and the temperature in the middle is the lowest. Compared with the prior art, the heat is effectively prevented from approaching the hot carrier. A defect that accumulates and cannot be dissipated at the far end, and the heat can be contacted with the refrigerant (ie, air) at a shorter distance and dispersedly in various parts of the spring-like heat sink. Instead of a one-way transfer from proximal to distal, each segment to achieve a more uniform heat distribution effect, thereby enhancing the heat dissipation efficiency.
  • the refrigerant ie, air
  • the air flow performance is ideal. Compared with the various types of heat sinks of the prior art, the spring-like heat sink facilitates air circulation from a plurality of angles while avoiding heat accumulation and speeding up heat exchange.
  • the shape and arrangement of the spring-shaped heat sink can be flexibly set as needed.
  • the material, diameter, shape (ie, spiral diameter) and arrangement of the spring-shaped heat sink can be set as needed.
  • a material with good heat conductivity aluminum, copper, etc.
  • the spring wire can be a solid wire or a hollow pipe or a spring.
  • the heat dissipating body can be arranged in a dot matrix type, a concentric sleeve superposition type or a combination of the two on the hot carrier board, and can be flexibly set according to the heat dissipation requirement of the lamp, the cost requirement, and the site need to improve the heat conduction and heat dissipation efficiency.
  • Fig. 1 is a front view of a first spring-like heat sink.
  • Figure 2 is a left side view of the first spring-like heat sink.
  • Figure 3 is a right side view of the first spring-like heat sink.
  • Figure 4 is a plan view of the first spring-like heat sink.
  • Fig. 5 is a bottom view of the first spring-like heat sink.
  • Fig. 6 is a perspective view of the first spring-like heat sink.
  • Fig. 7 is a perspective view of the first spring-like heat sink.
  • Figure 8 is a front elevational view of the first heat sink.
  • Figure 9 is a top plan view of the first heat sink.
  • Figure 10 is a perspective view of the first heat sink.
  • Figure 11 is a plan view of a second heat sink.
  • Figure 12 is a perspective view of a second heat sink.
  • Figure 13 is a perspective view of a second heat sink.
  • Figure 14 is a front elevational view of a second heat sink.
  • Figure 15 is a cross-sectional view taken along line A-A of Figure 14.
  • Figure 16 is a perspective view of a second heat sink.
  • Figure 17 is an exploded front view of the second heat sink.
  • Figure 18 is an exploded perspective view of a second heat sink.
  • Figure 19 is a front elevational view of a third heat sink.
  • Figure 20 is a cross-sectional view taken along line B-B of Figure 19.
  • Figure 21 is a plan view of a third type of heat sink.
  • Figure 22 is a perspective view of a third heat sink.
  • Figure 23 is a front elevational view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 24 is a side view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 25 is a cross-sectional view taken along line C-C of Figure 24;
  • Fig. 26 is a perspective view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 27 is an exploded front view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 28 is a front exploded cross-sectional view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 29 is an exploded perspective view of the lamp with a spring-like heat sink of the first embodiment.
  • Figure 30 is a front elevational view of the lamp with a spring-like heat sink of the second embodiment.
  • Figure 31 is a side elevational view of the lamp with a spring-like heat sink of the second embodiment.
  • Figure 32 is a cross-sectional view taken along line D-D of Figure 31.
  • Figure 33 is a perspective view of a lamp with a spring-like heat sink of the second embodiment.
  • Figure 34 is an exploded front elevational view of the lamp with a spring-like heat sink of the second embodiment.
  • Figure 35 is a front exploded cross-sectional view of the lamp with a spring-like heat sink of the second embodiment.
  • Figure 36 is an exploded perspective view of the lamp with a spring-like heat sink of the second embodiment.
  • Fig. 37 is a front elevational view showing the heat sink of the lamp with a spring-like heat sink of the third embodiment.
  • Figure 38 is a front elevational view of the lamp with a spring-like heat sink of the third embodiment.
  • Figure 39 is a side elevational view of the lamp with a spring-like heat sink of the third embodiment.
  • Figure 40 is a cross-sectional view taken along line E-E of Figure 39.
  • Figure 41 is a perspective view of a lamp with a spring-like heat sink of the third embodiment.
  • Figure 42 is an exploded front view of the lamp with a spring-like heat sink of Embodiment 3.
  • Figure 43 is an exploded perspective view of the lamp with a spring-like heat sink of the third embodiment.
  • the spring-like heat dissipating body 10 is integrally wound by a spring.
  • the spring-like heat dissipating body 10 includes an upper layer spring body 110, a lower layer spring body 120, a first extension section 131, a second extension section 132, a third extension section 133, a first heat conduction section 141, and a second heat conduction section 142.
  • the upper layer spring body 110 and the lower layer spring body 120 are axially stacked.
  • the upper end of the first extension section 131 is connected to the upper end of the upper layer spring body 110 and extends to the bottom surface of the lower layer spring body 120.
  • the first heat conduction section 141 has one end and the first extension.
  • the lower end of the segment 131 is connected and surrounds the outer surface of the lower layer spring body 120.
  • the upper end of the second extension portion 132 is connected to the lower end of the upper layer spring body 110 and extends to the bottom surface of the lower layer spring body 120.
  • the second heat conduction portion 142 has one end and the second end.
  • the lower end of the extension portion 132 is connected to the bottom of the lower layer spring body 120 and spirals toward the center thereof.
  • the upper end of the third extension portion 133 is connected to the upper end of the lower layer spring body 120 and extends to the bottom surface of the lower layer spring body 120, and the third heat conduction portion 143 is at one end.
  • the fourth heat conducting portion 144 is in contact with the lower end of the lower layer spring body 120 and is disposed at the lower end of the lower layer spring body 120.
  • the fourth heat conducting portion 144 is in contact with the lower end of the lower layer spring body 120 and spirals toward the center of the lower layer spring body 120 at the inner side thereof.
  • the second heat conducting section 142 and the fourth heat conducting section 144 are spirally connected to the center of the bottom surface of the lower layer spring body 120 and connected to each other (as shown in FIG. 7).
  • the third heat conducting portion 143 surrounds the outer side of the lower layer spring body 120
  • the first heat conducting portion 141 surrounds the outer portion of the third heat conducting portion 143, so that the bottom of the lower layer spring body 120 has a diameter slightly larger than the upper layer spring body 110 and the lower layer spring.
  • the second heat conducting portion 142 and the fourth heat conducting portion 144 are fully circumscribed by the space inside the bottom surface of the lower layer spring body 120.
  • the first heat conducting portion 141 and the third heat conducting portion 143 are surrounded by the bottom surface of the lower layer spring body 120, thereby extending the spring.
  • the contact length and contact area of the heat dissipating body 10 and the hot carrier 20 allow the heat of the hot carrier 20 to be conducted more quickly, further improving the heat conduction effect.
  • the diameters of the first heat conduction section 141 and the third heat conduction section 143 are larger than the diameters of the upper and lower layer spring bodies, and are favorable for maintaining the spacing between the spring-like heat dissipation bodies 10 when mounted on a hot carrier or other heat source, preventing adjacent springs.
  • the arrangement between the heat sinks is too close to reduce air flow performance while maximizing coverage on the hot carrier or heat source.
  • the spring-like heat dissipating body 10 has a spring-to-spring pitch larger than the reed diameter, thereby ensuring sufficient clearance between the reed wires for air circulation, but the spring-to-spring spacing is not suitable. Too large, otherwise the length of the spring and the area of heat dissipation per unit volume will be reduced.
  • the upper spring body 110 and the lower spring body 120 are both cylindrical, and the first extension 131, the second extension 132, and the third extension 133 are parallel to the axis (or the bus bar) to ensure heat transfer from the bottom surface to the heat dissipation.
  • the distance between the upper end of the body 110 is the shortest and the fastest, so as to improve the heat conduction effect.
  • the first extension section 131 and the second extension section 132 are both outside the upper layer spring body 110 and the lower layer spring body 120, and the third extension section 133 is outside the lower layer spring body 120.
  • the spring-like heat radiating body 10 is fixed to the hot carrier 20 by welding, caulking, bolt pressing, or the like to form the heat sink 1.
  • the hot carrier 20 is square, and the spring-like heat sinks 10 are arranged in an array on the hot carrier 20 at intervals.
  • the bottom surfaces of the first heat-conducting section 141, the second heat-conducting section 142, the third heat-conducting section 143, and the fourth heat-conducting section 144 that are in contact with the hot-feeding board 20 are stamped or The polished surface is not curved.
  • the shape of the hot carrier 20 and the arrangement of the spring-like heat sink 10 are not limited to those shown in FIGS. 8 to 10, and may be arbitrarily arranged as needed.
  • FIG. 11 and FIG. 12 show that the spring-like heat sink 10 is In the arrangement of the circular hot carrier 20, the plurality of spring-like heat radiating bodies 10 are radially distributed at a plurality of angles centering on the center of the hot carrier 20.
  • the shape of the spring-like heat dissipating body is not limited to the cylindrical shape shown in FIGS. 1 to 7 , and is a perspective view of the second heat dissipating body 30 as shown in FIG. 13 , and the shape thereof is a truncated cone shape which is small in size, large in width, and hollow in the axial direction.
  • One end of the fourth heat conducting portion 344 is in contact with the lower end of the lower layer spring body 320 and surrounds the bottom surface of the lower layer spring body 320 along the original track.
  • the upper end of the second extending portion 332 is in contact with the lower end of the upper layer spring body 310 and extends to the lower layer spring body.
  • the bottom surface of the second heat conducting portion 342 is connected to the lower end of the second extending portion 332 and surrounds the outer surface of the lower layer spring body 320 on the outer side thereof, and the other end is connected to the fourth heat conducting portion 344; the upper end portion and the lower layer spring body of the third extending portion 333
  • the upper end of the 320 is connected to the bottom surface of the lower spring body 320.
  • the third heat conducting portion 343 is connected to the lower end of the third extended portion 333 and surrounds the outer surface of the lower spring body 320.
  • the upper end of the first extended portion 331 and the upper spring The upper end of the body 310 is connected to and extends to the bottom surface of the lower spring body 320.
  • One end of the first heat conducting portion 341 is in contact with the lower end of the first extending portion 331 and surrounds the second heat conducting portion 342 and the third heat conducting portion 343 on the bottom surface of the lower layer spring body 320. Outside.
  • an exploded front view and an exploded perspective view of the heat sink 3 include a plurality of spring-like heat radiating bodies 30, 30b, 30c, and 30d which are sequentially reduced in diameter and can be sequentially sleeved, and the heat radiating bodies 30, 30b,
  • the structure of 30c, 30d is as shown in FIG. 13 and described above, and will not be described again.
  • the diameter of the bottom surface of the adjacent spring-like heat radiating bodies 30, 30b, 30c, 30d should be smaller than the inner diameter of the bottom surface of the spring-like heat radiating bodies 30, 30b, 30c, 30d of the adjacent outer layers.
  • the innermost spring-like heat sink 30d may be a cone.
  • the spring-like heat sinks 30, 30b, 30c, 30d After being sleeved and fixed on the hot carrier 20, referring to Figures 14-16, the fixing method also adopts welding, riveting, bolt pressing and the like.
  • FIG. 19 to 22 show a third heat sink 4 comprising a hot carrier 20, two spring-shaped heat sinks 30, 30b of different diameters, a truncated cone shape, and a plurality of cylindrical spring-like heat sinks 10,
  • the structure of the spring-like heat radiating bodies 10, 30, and 30b is the same as that described above, and will not be described again.
  • the spring-shaped heat radiating body 30 having a large diameter is sleeved outside the spring-shaped heat radiating body 30b having a small diameter, and the spring-shaped heat radiating body 10 is provided in a hollow portion of the spring-shaped heat radiating body 30b having a small diameter, and the spring-like heat radiating body 10 30, 30b are all fixed on the hot carrier 20 .
  • lower layer spring bottom surface in the foregoing refers to the plane perpendicular to the axis of the lower layer spring body where the lower end of the lower layer spring body is located.
  • the first heat conduction section or the second heat conduction section may be connected to the third heat conduction section or the fourth heat conduction section according to the shape of the upper layer spring body and the lower layer spring body.
  • the spiral or circumferential manner (inside, outside, length, etc.) of the first heat conducting section, the second heat conducting section, the third heat conducting section, and the fourth heat conducting section on the bottom surface of the lower layer spring body is not limited to the foregoing.
  • the lamp 50 with a spring-like heat sink of the present embodiment including a screw 501, a driving power source 502, an upper cover 503, a shield 504, a lower cover 505, a heat sink 1, and
  • the screw 501 is fitted with an internally threaded post 506, an LED light panel 507, a silicone pad 508, a reflective bowl 509, a PC cover 510, and a lamp cover 511.
  • the heat sink 1 is composed of a hot carrier 20 and a plurality of said cylindrical spring-like heat sinks 10 fixed to the hot carrier 20, and the spring-like heat sink 10 is thermally loaded.
  • the center of the plate 20 is radially distributed centrally.
  • the LED lamp board 507, the silicone pad 508, the reflective bowl 509, the PC cover 510 and the lamp cover 511 are sequentially superposed and fixed on the bottom of the hot carrier 20 of the heat sink 1, and the fixing manner thereof may be a fixed manner of the existing LED lamp board.
  • Four internal threaded posts 506 are disposed on the upper surface of the hot carrier 20, and the lower cover 505 is provided with holes corresponding to the position of the internally threaded post 506, the spring-like heat dissipating body 10, and the cross-sectional shape, and the holes of the lower cover 505 are aligned.
  • the internally threaded post 506 and the spring-like heat dissipating body 10 are pressed from the top to the bottom on the first heat conducting portion 141 and the third heat conducting portion 143 at the bottom of the spring-like heat dissipating body 10 to perform aesthetic and heat conduction and heat dissipation.
  • the top edge of the lower cover 505 is provided with a groove 512 (shown in FIG. 28) adapted to the bottom edge of the shield 504.
  • the diameter and height of the shield 504 are slightly larger than the outer circumference of the spring-like heat radiator 10 and the internally threaded column 506.
  • the shield 504 is fitted onto the groove 512 from above the heat sink 1 .
  • the upper cover 503 is pressed against the top edge of the shield 504, the driving power source 502 is placed on the upper cover 503, and the screw 501 is connected to the internally threaded post 506 through the driving power source 502 and the upper cover 503, thereby driving the power source 502,
  • the cover 503 and the shield 504 are fixed to the heat sink 1.
  • FIGS. 13 to 18 show the structure of the lamp 60 with the spring-like heat sink of the present embodiment, including the drive The power source 602, the shield 604, the heat sink 3, the LED panel 606, the shade 607, and the screws 601, 603, 608.
  • the structure of the heat sink 3 used in the lamp 60 is as shown in FIGS. 13 to 18 and as described above, and a plurality of circular-arc spring-shaped heat radiating bodies whose diameters are sequentially reduced are sequentially sleeved and fixed on the hot carrier plate, in order to further improve utilization.
  • the hollow portion of the innermost spring-like heat radiating body is provided with a cylindrical spring-like heat radiating body 10 (as shown in FIG. 35).
  • the shield 604 is also in the shape of a truncated cone and a grid, and its diameter and height are slightly larger than the spring-like heat sink of the heat sink 3.
  • the shield 604 is sleeved around the spring-like heat sink of the heat sink 3 from the top to the bottom, and the bottom is passed through the screw.
  • 603 is connected to the hot carrier 20 of the heat sink 3
  • the driving power source 602 is connected to the top edge of the shield 604 by screws 601
  • the LED light board 606 is fixed to the bottom surface of the hot carrier 20
  • the lamp cover 607 is fixed to the bottom surface of the hot carrier 20 by screws 608. .
  • FIG. 37 shows a perspective view of another heat sink 7, and FIGS. 38-43 are the embodiment.
  • Various views of the lamp 70 employing the heat sink 7 also includes a drive power source 702, a shield 704, a heat sink 7, an LED light panel 706, a light cover 707, and screws 701, 703, 708.
  • the heat sink 7 includes a plurality of cylindrical spring-like heat sinks 10 and a hot carrier 20.
  • the shape of the hot-board 20 is rounded and rectangular, and a plurality of rows of spring-like heat sinks 10 are alternately arranged thereon.
  • the spring-like heat radiating body 10 of the heat radiating body 1 has a tighter interval.
  • the shield 704 is slightly larger than the spring-like heat sink 10 and has a grid shape.
  • the shield 704 is sleeved around the spring-like heat sink of the heat sink 7 from the top to the bottom, and the bottom is connected to the hot carrier of the heat sink 7 by screws 703.
  • the driving power source 702 is connected to the top edge of the shield 704 by a screw 701.
  • the LED light board 706 is fixed to the bottom surface of the hot carrier 20, and the lamp cover 707 is fixed to the bottom surface of the hot carrier 20 by screws 708.
  • the heat conduction efficiency is higher.
  • the heat sink material may preferably further improve the heat conduction efficiency by using a material having higher heat conduction efficiency such as aluminum or copper;
  • the spring-shaped heat sink has a heat conduction section spiraled or surrounded on the bottom surface of the lower layer spring body, and the heat conduction section fully utilizes the space of the bottom surface of the lower layer spring body to extend,
  • the heat conduction length and area of the contact with the hot carrier plate are extended, and the space occupation is reduced, so that the heat of the hot carrier plate is transmitted to the upper spring body and the lower layer spring body more quickly, and the heat of the hot carrier plate is transferred in time.
  • the present invention not only fixes the shape of the heat sink into a spring shape, but also increases the heat dissipation area per unit volume and also reduces the occupation of space;
  • the spring-like heat dissipating body of the present invention comprises an upper layer spring body and a lower layer spring body of upper and lower layers, and the upper end and the lower end of the upper layer spring body are connected to the heat conducting section through the extension section, and the upper end of the lower layer spring body passes The extension section is connected to the heat conduction section, and the heat conduction sections of the two are connected to each other for fixing.
  • the heat of the heat conduction section can be transmitted to the both ends of the upper spring body and the lower layer spring body through the extension section, and then transmitted from the both ends to the upper layer.
  • the heat is dissipated between the spring body and the lower spring body. From the heat distribution, the temperature of the upper spring body and the lower spring body are higher, and the temperature in the middle is the lowest, which is effective compared with the prior art. Avoiding the accumulation of heat near the hot carrier and the lack of heat dissipation at the far end.
  • the heat can be contacted with the refrigerant (ie, air) in various parts of the spring-like heat sink in a shorter distance, and is no longer unidirectional from the near end. Heat transfer to the far end to improve heat dissipation efficiency.
  • the air flow performance is ideal. Compared with the fin fins of the prior art, the spring-like heat sink facilitates air circulation from a plurality of angles while avoiding heat accumulation and speeding up heat exchange.
  • the shape and arrangement of the spring-shaped heat sink can be flexibly set as needed.
  • the material, diameter, shape (ie, spiral diameter) and arrangement of the spring-shaped heat sink can be set as needed.
  • a material with good heat conductivity aluminum, copper, etc.
  • the spring wire can be a solid wire or a hollow pipe or a spring.
  • the shape of the heat dissipating body is not limited to the cylindrical shape and the truncated cone shape of the embodiment, and the spring-shaped heat dissipating body may be arranged in a matrix, a concentric sleeve, or a combination of the two on the hot carrier plate, and the above various factors may be According to the heat dissipation needs of the lamp, the cost needs, and the venue need to be flexibly set to improve the heat conduction and heat dissipation efficiency.
  • the heat conduction section on the outer side achieves higher heat conduction efficiency, heat dissipation efficiency and good air circulation performance as compared with the prior art.

Abstract

一种带有弹簧状散热器的灯,包括依次连接的驱动电源(502)、散热器(1)和LED灯板(507),散热器(1)包括热载板(20)和布置于其上的至少一个弹簧状散热体(10)。弹簧状散热体(10)由一根弹簧整体绕制而成,包括轴向叠置的上层弹簧体(110)以及下层弹簧体(120)、第一延长段(131)、第二延长段(132)、第三延长段(133)、第一导热段(141)、第二导热段(142)、第三导热段(143)、第四导热段(144);第一延长段(131)上端与上层弹簧体(110)的上端相接并延伸至下层弹簧体(120)底面,第一导热段(141)一端与第一延长段(131)下端相接并在下层弹簧体(120)底面盘旋于其内侧或环绕于其外侧。带有弹簧状散热器的灯(50)导热效率和散热效率高,通风性能良好,重量降低,形状尺寸可灵活设置。

Description

带有弹簧状散热器的灯 技术领域
本发明涉及LED灯,尤其是带有弹簧状散热器的灯。
背景技术
诸多LED灯在运行时会产生热量,需借助散热部件(主要是散热叶片)将这些热量排出设备之外,以保证设备的稳定性及延长设备的使用寿命,散热器要实现散热功能需解决两个问题,一是将热源的热能快速地通过导热部件传导至散热器与冷媒(空气或水)接触的散热部件,二是要通过散热部件快速地与冷媒进行热交换,而影响散热部件与冷媒热交换效果的因素有两个,一是与冷媒接触面积的大小,二是散热器周围冷媒的流通难易程度。
现有的散热器主要分两种,一种是导热部件与散热部件为同一种材料一体式制成,如挤压铝型材、压铸铝、压铸铁散热器,适用于非集中型热源(即热源面积比较大),优点在于导热部件和散热部件一体化,导热速度较快,但缺点是因工艺条件的限制散热部件只能制成片状,无法制成其他造型,只能通过增加散热面积提高散热效率,导致重量成倍增加和耗费较多材料,且空气流通性能也不理想。另一种是导热部件与散热部件非一体式制成,通常导热部件采用导热速度较快的材料(如热管),而散热部件采用成本较低的材料(如铝箔),这类散热器主要为热管加鳍片式散热器,主要适用于集中型热源(如电脑CPU)或热源与散热在不同空间(如空调热源在室外,散热在室内),该散热结构存在以下缺陷:1、热量到叶片的传导受到接触方式以及材料差异的限制;2、散热方向是从靠近热源至远端单向散热,热量容易在热源附近聚集,热量分布不均匀影响散热效率;3、散热叶片仅通过与表面平行的空气流动方式带走热量,且结构不利于通过空气对流进行热交换。
发明内容
本发明要解决的技术问题是提供一种带有弹簧状散热器的灯,该灯兼具高效的导热、散热性能和空气流通性能。
为了解决上述技术问题,本发明提供了一种带有弹簧状散热器的灯,包括依次连接的驱动电源、散热器和LED灯板,其特征在于:所述散热器包括热载板和布置于其上的至少一个散热体,优选为多个散热体,所述弹 簧状散热体由一根弹簧整体绕制而成,所述散热体包括轴向叠置的上层弹簧体以及下层弹簧体、第一延长段、第二延长段、第三延长段、第一导热段、第二导热段、第三导热段、第四导热段;第一延长段上端与上层弹簧体的上端相接并延伸至下层弹簧体底面,第一导热段一端与第一延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;第二延长段上端与上层弹簧体的下端相接并延伸至下层弹簧体底面,第二导热段一端与第二延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;第三延长段上端与下层弹簧体的上端相接并延伸至下层弹簧体底面,第三导热段一端与第三延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;第四导热段一端与下层弹簧体的下端相接并在下层弹簧体底面盘旋或环绕于其外侧;所述第一导热段或第二导热段的另一端与第三导热段或第四导热段的另一端相接;所述第一导热段或第二导热段的另一端与第三导热段或第四导热段的另一端相接,所述弹簧状散热体通过第一导热段、第二导热段、第三导热段、第四导热段固定连接于热载板上。
作为优选方式,还包括螺丝、上盖板、防护罩、下盖、与螺丝适配的内螺纹柱、硅胶垫、反光碗、PC罩、灯罩,LED灯板、硅胶垫、反光碗、PC罩和灯罩依次叠加固定于散热器的热载板底部,四个内螺纹柱设置于热载板上表面,下盖板开有与内螺纹柱、弹簧状散热体的位置以及截面形状适配的孔,下盖板的孔对准内螺纹柱和弹簧状散热体后从上往下压在弹簧状散热体底部的第一导热段、第三导热段上,下盖板顶面边缘设有与防护罩底部边缘适配的沟槽,防护罩的直径和高度均略大于弹簧状散热体和内螺纹柱外周,所述防护罩从散热器上方向下套装于所述沟槽上,上盖板压合在防护罩顶部边缘,驱动电源置于上盖板上,螺丝穿过驱动电源和上盖板与内螺纹柱连接,从而使驱动电源、上盖板、防护罩与散热器固定。
作为优选方式,还包括防护罩、灯罩和螺丝;防护罩从上至下套在散热器的弹簧状散热体周围,底部通过螺丝与散热器的热载板连接,驱动电源通过螺丝与防护罩顶部边缘连接,LED灯板固定于热载板底面,灯罩通过螺丝固定于热载板底面。
作为优选方式,所述第一延长段和第二延长段在上层弹簧体以及下层弹簧体外侧,第三延长段在下层弹簧体外侧。
作为优选方式,所述第一导热段、第二导热段、第三导热段和第四导热段底面为平面。
作为优选方式,其形状为直径相同的圆柱状或上小下大的圆台状。
作为优选方式,所述第一导热段、第二导热段、第三导热段、第四导热段通过焊接、铆接、螺栓压合固定于热载板上。
作为优选方式,所述弹簧状散热体的直径依次减小且依次同心套接或 呈阵列状相互间隔地分布在热载板上。
作为优选方式,所述散热器包括两个直径不一的圆台形的弹簧状散热体以及多个圆柱形的弹簧状散热体,直径较大的弹簧状散热体套接于直径较小的弹簧状散热体外,所述弹簧状散热体设于直径较小的弹簧状散热体的中空部位。
本发明带有弹簧状散热器的灯具有如下优点:
1、导热效率更高。散热器材料可优选铝或铜等热传导效率更高的材质进一步提高导热效率;弹簧状散热体具有在下层弹簧体底面盘旋或环绕的导热段,导热段充分利用下层弹簧体底面的空间进行延伸,延长了与热载板的接触导热长度和面积,同时减少对空间的占用,使得热载板的热量更快地传导至上层弹簧体和下层弹簧体,及时转移热载板的热量。
2、散热效率更高。为了在热载板的热量传导至弹簧状散热体后更高效地散热,本发明除了将散热体的形状设置成弹簧状,提高了单位体积内的散热面积,也减少对空间的占用;另一方面,与一般弹簧不同的是,本发明的弹簧状散热体包括上下两层的上层弹簧体和下层弹簧体,上层弹簧体的上端和下端通过延长段与导热段相连,下层弹簧体的上端通过延长段与导热段相连,两者的导热段相连从而实现固定,通过这种结构使得导热段的热量可通过延长段传导至上层弹簧体和下层弹簧体的两端,再从两端传至上层弹簧体和下层弹簧体中间进行散热,从热量分布上看,上层弹簧体和下层弹簧体两端的温度较高,中间的温度最低,与现有技术相比,有效避免热量在接近热载板处积聚、远端无法散热的缺陷,热量能更短距离、分散地在弹簧状散热体各个部位与冷媒(即空气)接触,而不再是单向地从近端至远端传热,达到各段热量分布更均匀的效果,从而提高散热效率。
3、空气流动性能理想。与现有技术的各类型散热片相比,弹簧状散热体有利于空气从多个角度流通,同时避免热量聚集,加快热交换速度。
4、弹簧状散热体的形状、排布可根据需要灵活设置。弹簧状散热体的材料、直径、形状(即螺旋线径)、排布可根据需要设置,例如选用导热良好的材料(铝、铜等),弹簧线可为实心线也可为空心管,弹簧状散热体可在热载板上呈点阵式、同心套叠加接式或结合两者混合排布,可根据灯的散热需要、成本需要、场地需要灵活设置,以提高导热、散热效率。
附图说明
下面结合附图和具体实施方式,对本发明作进一步地详细说明:
图1为第一种弹簧状散热体的主视图。
图2为第一种弹簧状散热体的左视图。
图3为第一种弹簧状散热体的右视图。
图4为第一种弹簧状散热体的俯视图。
图5为第一种弹簧状散热体的仰视图。
图6为第一种弹簧状散热体的立体图。
图7为第一种弹簧状散热体的立体图。
图8为第一种散热器的主视图。
图9为第一种散热器的俯视图。
图10为第一种散热器的立体图。
图11为第二种散热器的俯视图。
图12为第二种散热器的立体图。
图13为第二种散热体的立体图。
图14为第二种散热器的主视图。
图15为图14中沿A-A线的剖视图。
图16为第二种散热器的立体图。
图17为第二种散热器的爆炸主视图。
图18为第二种散热器的爆炸立体图。
图19为第三种散热器的主视图。
图20为图19中沿B-B线的剖视图。
图21为第三种散热器的俯视图。
图22为第三种散热器的立体图。
图23为实施例1的带有弹簧状散热器的灯的主视图。
图24为实施例1的带有弹簧状散热器的灯的侧视图。
图25为图24中沿C-C线的剖视图。
图26为实施例1的带有弹簧状散热器的灯的立体图。
图27为实施例1的带有弹簧状散热器的灯的爆炸主视图。
图28为实施例1的带有弹簧状散热器的灯的主视爆炸剖视图。
图29为实施例1的带有弹簧状散热器的灯的爆炸立体图。
图30为实施例2的带有弹簧状散热器的灯的主视图。
图31为实施例2的带有弹簧状散热器的灯的侧视图。
图32为图31中沿D-D线的剖视图。
图33为实施例2的带有弹簧状散热器的灯的立体图。
图34为实施例2的带有弹簧状散热器的灯的爆炸主视图。
图35为实施例2的带有弹簧状散热器的灯的主视爆炸剖视图。
图36为实施例2的带有弹簧状散热器的灯的爆炸立体图。
图37为实施例3的带有弹簧状散热器的灯的散热器的主视图。
图38为实施例3的带有弹簧状散热器的灯的主视图。
图39为实施例3的带有弹簧状散热器的灯的侧视图。
图40为图39中沿E-E线的剖视图。
图41为实施例3的带有弹簧状散热器的灯的立体图。
图42为实施例3的带有弹簧状散热器的灯的爆炸主视图。
图43为实施例3的带有弹簧状散热器的灯的爆炸立体图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步的说明。
如图1~图7所示为第一种弹簧状散热体10的主视图、左右视图、俯视图、仰视图和两个不同角度的立体图,所述弹簧状散热体10由一根弹簧整体绕制而成,所述弹簧状散热体10包括上层弹簧体110、下层弹簧体120、第一延长段131、第二延长段132、第三延长段133、第一导热段141、第二导热段142、第三导热段143、第四导热段144。所述上层弹簧体110和下层弹簧体120轴向叠置,第一延长段131上端与上层弹簧体110的上端相接并延伸至下层弹簧体120底面,第一导热段141一端与第一延长段131下端相接并在下层弹簧体120底面环绕于其外侧,第二延长段132上端与上层弹簧体110的下端相接并延伸至下层弹簧体120底面,第二导热段142一端与第二延长段132下端相接并在下层弹簧体120底面于其内侧向中心盘旋,第三延长段133上端与下层弹簧体120的上端相接并延伸至下层弹簧体120底面,第三导热段143一端与第三延长段133下端相接并在下层弹簧体120底面环绕于其外侧,第四导热段144一端与下层弹簧体120的下端相接并在下层弹簧体120底面于其内侧向中心盘旋。为使上层弹簧体110与下层弹簧体120相互固定,所述第二导热段142与第四导热段144盘旋至下层弹簧体120底面中心后彼此连接(如图7所示)。所述第三导热段143环绕在下层弹簧体120外侧,第一导热段141环绕于所述第三导热段143外一周,从而使下层弹簧体120底部的直径略大于上层弹簧体110和下层弹簧体120的主体直径。所述第二导热段142和第四导热段144充分利用下层弹簧体120底面内侧的空间盘旋连接,第一导热段141和第三导热段143在下层弹簧体120底面外侧围绕,从而延长了弹簧状散热体10与热载板20的接触长度和接触面积,使热载板20的热量更快地得到传导,进一步提高导热效果。而且,第一导热段141和第三导热段143的直径大于上下层弹簧体的直径,在安装于热载板或其他热源时有利于保持弹簧状散热体10之间的间距,防止相邻弹簧状散热体之间排布过于紧密降低空气流通性能,同时最大化覆盖在热载板或热源上。同样,为了保证弹簧状散热体10的空气流通性能,所述弹簧状散热体10的簧线间距大于簧线直径,从而保证簧线之间有足够的间隙供空气流通,但该簧线间距不宜过大,否则单位体积内的弹簧长度和散热面积将减少。
所述上层弹簧体110和下层弹簧体120均为圆柱形,第一延长段131、第二延长段132、第三延长段133均平行于其轴线(或母线),保证热量从底面传导至散热体110上端的距离最短、速度最快,以提高导热效果。所述第一延长段131和第二延长段132均在上层弹簧体110以及下层弹簧体120外侧,所述第三延长段133在下层弹簧体120外侧。
如图8~图10所示,所述弹簧状散热体10通过焊接、铆接、螺栓压合等方式固定于热载板20上,形成散热器1。所述热载板20为方形,所述弹簧状散热体10呈阵列状相互间隔地排布在热载板20上。为增加弹簧状散热体10与热载板20的接触面积,第一导热段141、第二导热段142、第三导热段143和第四导热段144与热载板20接触的底面为冲压或打磨后的平面而非弧形。
所述热载板20的形状和弹簧状散热体10的排布方式不限于图8~图10所示,可根据需要任意排布,例如图11和图12示出了弹簧状散热体10在圆形热载板20的排布方式,多个弹簧状散热体10以热载板20的圆心为中心多角度径向分布。
弹簧状散热体的形状也不限于图1~图7所示的圆柱状,如图13所示为第二种散热体30的立体图,其形状为上小下大、轴向中空的圆台形,包括上层弹簧体上层弹簧体310、下层弹簧体320、第一延长段331、第二延长段332、第三延长段333、第一导热段341、第二导热段342、第三导热段343、第四导热段344。
第四导热段344一端与下层弹簧体320的下端相接并在下层弹簧体320底面顺着原来的轨迹环绕,第二延长段332上端与上层弹簧体310的下端相接并延伸至下层弹簧体320底面,第二导热段342一端与第二延长段332下端相接并在下层弹簧体320底面环绕于其外侧,另一端与第四导热段344相连;第三延长段333上端与下层弹簧体320的上端相接并延伸至下层弹簧体320底面,第三导热段343一端与第三延长段333下端相接并在下层弹簧体320底面环绕于其外侧;第一延长段331上端与上层弹簧体310的上端相接并延伸至下层弹簧体320底面,第一导热段341一端与第一延长段331下端相接并在下层弹簧体320底面环绕于第二导热段342和第三导热段343外侧。
如图17、18所示为散热器3的爆炸主视图和爆炸立体图,包括多个直径依次减小且可依次套接的弹簧状散热体30、30b、30c、30d,散热体30、30b、30c、30d的结构如图13所示和前文所述,不再赘述。为保证能够依次套接,里外相邻的弹簧状散热体30、30b、30c、30d的底面直径应小于其相邻外层的弹簧状散热体30、30b、30c、30d的底面内径。优选地,最内侧的弹簧状散热体30d可为锥体。所述弹簧状散热体30、30b、30c、30d 套接后并固定于热载板20上,参见图14~16,固定方式同样采取焊接、铆接、螺栓压合等方式。
图19~图22示出了第三种散热器4,包括热载板20、两个直径不一、圆台形的弹簧状散热体30、30b以及多个圆柱形的弹簧状散热体10,所述弹簧状散热体10、30、30b的结构与前文所述一致,不再赘述。直径较大的弹簧状散热体30套接于直径较小的弹簧状散热体30b外,弹簧状散热体10设于直径较小的弹簧状散热体30b的中空部位,所述弹簧状散热体10、30、30b均固定于热载板20上。
前文中的“下层弹簧体底面”指下层弹簧体下端所在的垂直于下层弹簧体轴线的平面。
由前文可知,为实现上层弹簧体与下层弹簧体相互固定,根据上层弹簧体和下层弹簧体形状不同,也可使第一导热段或第二导热段与第三导热段或第四导热段相连,不限于前文所示。同样,第一导热段、第二导热段、第三导热段、第四导热段在下层弹簧体底面的盘旋或环绕方式(内侧、外侧、长度等)也不限于前文所示。
实施例1
图23~图29示出了本实施例带有弹簧状散热器的灯50的结构,包括螺丝501、驱动电源502、上盖板503、防护罩504、下盖板505、散热器1、与螺丝501适配的内螺纹柱506、LED灯板507、硅胶垫508、反光碗509、PC罩510、灯罩511。参见图11、图12和前文所述,散热器1由热载板20和固定于热载板20上的多个所述圆柱形的弹簧状散热体10构成,弹簧状散热体10以热载板20的圆心为中心径向分布。LED灯板507、硅胶垫508、反光碗509、PC罩510和灯罩511依次叠加固定于散热器1的热载板20底部,其固定方式采用现有LED灯板的固定方式即可。四个内螺纹柱506设置于热载板20上表面,下盖板505开有与内螺纹柱506、弹簧状散热体10的位置以及截面形状适配的孔,下盖板505的孔对准内螺纹柱506和弹簧状散热体10后从上往下压在弹簧状散热体10底部的第一导热段141、第三导热段143上起到美观以及导热、散热作用。下盖板505顶面边缘设有与防护罩504底部边缘适配的沟槽512(如图28所示),防护罩504的直径和高度均略大于弹簧状散热体10和内螺纹柱506外周,所述防护罩504从散热器1上方向下套装于所述沟槽512上。上盖板503压合在防护罩504顶部边缘,驱动电源502置于上盖板503上,螺丝501穿过驱动电源502和上盖板503与内螺纹柱506连接,从而使驱动电源502、上盖板503、防护罩504与散热器1固定。
实施例2
图30~图36示出了本实施例带有弹簧状散热器的灯60的结构,包括驱 动电源602、防护罩604、散热器3、LED灯板606、灯罩607和螺丝601、603、608。灯60采用的散热器3的结构如图13~18所示和前文所述,多个直径依次减小的圆台形弹簧状散热体依次套接并固定在热载板上,为了进一步提高利用率,最里层的弹簧状散热体的中空部位设有圆柱形的弹簧状散热体10(如图35所示)。防护罩604亦呈圆台形和网格状,其直径和高度均略大于散热器3的弹簧状散热体,防护罩604从上至下套在散热器3的弹簧状散热体周围,底部通过螺丝603与散热器3的热载板20连接,驱动电源602通过螺丝601与防护罩604顶部边缘连接,LED灯板606固定于热载板20底面,灯罩607通过螺丝608固定于热载板20底面。
实施例3
散热器的形状及其弹簧状散热体的排布可根据灯的形状设置,除了前文所述的形状外,图37示出了另一种散热器7的立体图,图38~43为本实施例采用该散热器7的灯70的各个视图,该灯70同样包括驱动电源702、防护罩704、散热器7、LED灯板706、灯罩707和螺丝701、703、708。所述散热器7包括多个圆柱形的弹簧状散热体10和热载板20,热载板20的形状呈圆角矩形,多排弹簧状散热体10交错排布于其上,间隔比图8~图10所示的散热体1的弹簧状散热体10的间隔更紧密。防护罩704体积略大于弹簧状散热体10且呈网格状,防护罩704从上至下套在散热器7的弹簧状散热体周围,底部通过螺丝703与散热器7的热载板连接,驱动电源702通过螺丝701与防护罩704顶部边缘连接,LED灯板706固定于热载板20底面,灯罩707通过螺丝708固定于热载板20底面。
采用上述弹簧状散热器的灯具有如下优点:
1、导热效率更高。散热器材料可优选铝或铜等热传导效率更高的材质进一步提高导热效率;弹簧状散热体具有在下层弹簧体底面盘旋或环绕的导热段,导热段充分利用下层弹簧体底面的空间进行延伸,延长了与热载板的接触导热长度和面积,同时减少对空间的占用,使得热载板的热量更快地传导至上层弹簧体和下层弹簧体,及时转移热载板的热量。
2、散热效率更高。为了在热载板的热量传导至弹簧状散热体后更高效地散热,本发明除了将散热体的形状设置成弹簧状,提高了单位体积内的散热面积,也减少对空间的占用;另一方面,与一般弹簧不同的是,本发明的弹簧状散热体包括上下两层的上层弹簧体和下层弹簧体,上层弹簧体的上端和下端通过延长段与导热段相连,下层弹簧体的上端通过延长段与导热段相连,两者的导热段相连从而实现固定,通过这种结构使得导热段的热量可通过延长段传导至上层弹簧体和下层弹簧体的两端,再从两端传至上层弹簧体和下层弹簧体中间进行散热,从热量分布上看,上层弹簧体和下层弹簧体两端的温度较高,中间的温度最低,与现有技术相比,有效 避免热量在接近热载板处积聚、远端无法散热的缺陷,热量能更短距离、分散地在弹簧状散热体各个部位与冷媒(即空气)接触,而不再是单向地从近端至远端传热,从而提高散热效率。
3、空气流动性能理想。与现有技术的鳍片状散热片相比,弹簧状散热体有利于空气从多个角度流通,同时避免热量聚集,加快热交换速度。
4、弹簧状散热体的形状、排布可根据需要灵活设置。弹簧状散热体的材料、直径、形状(即螺旋线径)、排布可根据需要设置,例如选用导热良好的材料(铝、铜等),弹簧线可为实心线也可为空心管,弹簧状散热体的形状不限于实施例的圆柱状和圆台状,弹簧状散热体可在热载板上呈点阵式、同心套叠加接式或结合两者混合排布等方式,上述各个因素可根据灯的散热需要、成本需要、场地需要灵活设置,以提高导热、散热效率。
当然,仅设置一层弹簧体时,即包括一层弹簧体、从弹簧体上端延伸至底面的延长段、与延长段下端和/或弹簧体下端相连并在其底面盘旋于其内侧或环绕于其外侧的导热段,与现有技术相比同样实现更高的导热效率、散热效率和具备良好的空气流通性能。

Claims (10)

  1. 一种带有弹簧状散热器的灯,包括依次连接的驱动电源、散热器和LED灯板,其特征在于:所述散热器包括热载板和布置于其上的至少一个散热体,优选为多个散热体,所述弹簧状散热体由一根弹簧整体绕制而成,所述散热体包括轴向叠置的上层弹簧体以及下层弹簧体、第一延长段、第二延长段、第三延长段、第一导热段、第二导热段、第三导热段、第四导热段;
    第一延长段上端与上层弹簧体的上端相接并延伸至下层弹簧体底面,第一导热段一端与第一延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;
    第二延长段上端与上层弹簧体的下端相接并延伸至下层弹簧体底面,第二导热段一端与第二延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;
    第三延长段上端与下层弹簧体的上端相接并延伸至下层弹簧体底面,第三导热段一端与第三延长段下端相接并在下层弹簧体底面盘旋于其内侧或环绕于其外侧;
    第四导热段一端与下层弹簧体的下端相接并在下层弹簧体底面盘旋或环绕于其外侧;
    所述第一导热段或第二导热段的另一端与第三导热段或第四导热段的另一端相接;
    所述第一导热段或第二导热段的另一端与第三导热段或第四导热段的另一端相接,所述弹簧状散热体通过第一导热段、第二导热段、第三导热段、第四导热段固定连接于热载板上。
  2. 根据权利要求1所述的带有弹簧状散热器的灯,其特征在于:还包括螺丝、上盖板、防护罩、下盖、与螺丝适配的内螺纹柱、硅胶垫、反光碗、PC罩、灯罩,LED灯板、硅胶垫、反光碗、PC罩和灯罩依次叠加固定于散热器的热载板底部,四个内螺纹柱设置于热载板上表面,下盖板开有与内螺纹柱、弹簧状散热体的位置以及截面形状适配的孔,下盖板的孔对准内螺纹柱和弹簧状散热体后从上往下压在弹簧状散热体底部的第一导热段、第三导热段上,下盖板顶面边缘设有与防护罩底部边缘适配的沟槽,防护罩的直径和高度均略大于弹簧状散热体和内螺纹柱外周,所述防护罩从散热器上方向下套装于所述沟槽上,上盖板压合在防护罩顶部边缘,驱动电源置于上盖板上,螺丝穿过驱动电源和上盖板与内螺纹柱连接,从而 使驱动电源、上盖板、防护罩与散热器固定。
  3. 根据权利要求1所述的带有弹簧状散热器的灯,其特征在于:还包括防护罩、灯罩和螺丝;防护罩从上至下套在散热器的弹簧状散热体周围,底部通过螺丝与散热器的热载板连接,驱动电源通过螺丝与防护罩顶部边缘连接,LED灯板固定于热载板底面,灯罩通过螺丝固定于热载板底面。
  4. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述第一延长段和第二延长段在上层弹簧体以及下层弹簧体外侧,第三延长段在下层弹簧体外侧。
  5. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述上层弹簧体以及下层弹簧体的簧线间距大于簧线直径。
  6. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述第一导热段、第二导热段、第三导热段和第四导热段底面为平面。
  7. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:其形状为直径相同的圆柱状或上小下大的圆台状。
  8. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述第一导热段、第二导热段、第三导热段、第四导热段通过焊接、铆接、螺栓压合固定于热载板上。
  9. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述弹簧状散热体的直径依次减小且依次同心套接或呈阵列状相互间隔地分布在热载板上。
  10. 根据权利要求1~3任意一项所述的带有弹簧状散热器的灯,其特征在于:所述散热器包括两个直径不一的圆台形的弹簧状散热体以及多个圆柱形的弹簧状散热体,直径较大的弹簧状散热体套接于直径较小的弹簧状散热体外,所述弹簧状散热体设于直径较小的弹簧状散热体的中空部位。
PCT/CN2015/081593 2015-01-09 2015-06-16 带有弹簧状散热器的灯 WO2016110054A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010425.5 2015-01-09
CN201510010425.5A CN104565938B (zh) 2015-01-09 2015-01-09 带有弹簧状散热器的灯

Publications (1)

Publication Number Publication Date
WO2016110054A1 true WO2016110054A1 (zh) 2016-07-14

Family

ID=53082655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081593 WO2016110054A1 (zh) 2015-01-09 2015-06-16 带有弹簧状散热器的灯

Country Status (2)

Country Link
CN (1) CN104565938B (zh)
WO (1) WO2016110054A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963741A (zh) * 2021-02-05 2021-06-15 曾祥胜 一种震颤散热型室内led灯

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104567510B (zh) * 2015-01-09 2017-05-24 深圳市有为光电有限公司 弹簧状散热体及带弹簧状散热体的散热器
CN104565938B (zh) * 2015-01-09 2017-01-04 深圳市有为光电有限公司 带有弹簧状散热器的灯
CN106594627A (zh) * 2016-12-30 2017-04-26 乐健科技(珠海)有限公司 Led车灯及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109287A (zh) * 2011-01-21 2011-06-29 马敏 一种热交换管及其冷却装置
CN102937245A (zh) * 2012-11-08 2013-02-20 浙江阳光照明电器集团股份有限公司 一种液体传热的led灯具
CN203431779U (zh) * 2013-06-29 2014-02-12 张景祥 一种led灯散热器
CN104100949A (zh) * 2014-07-25 2014-10-15 东莞市闻誉实业有限公司 螺旋散热器以及led灯具
CN204005380U (zh) * 2014-07-25 2014-12-10 东莞市闻誉实业有限公司 灯具
CN104565938A (zh) * 2015-01-09 2015-04-29 深圳市有为光电有限公司 带有弹簧状散热器的灯
CN204420639U (zh) * 2015-01-09 2015-06-24 深圳市有为光电有限公司 带有弹簧状散热器的灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101358615B (zh) * 2007-08-03 2012-03-21 富准精密工业(深圳)有限公司 固定弹片及使用该固定弹片的散热模组
DE202010007905U1 (de) * 2010-06-12 2010-08-26 Schneeberger Holding Ag Wärmeleitelement, Anordnung und Verwendung desselben
TW201313110A (zh) * 2011-09-05 2013-03-16 Foxconn Tech Co Ltd 散熱裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109287A (zh) * 2011-01-21 2011-06-29 马敏 一种热交换管及其冷却装置
CN102937245A (zh) * 2012-11-08 2013-02-20 浙江阳光照明电器集团股份有限公司 一种液体传热的led灯具
CN203431779U (zh) * 2013-06-29 2014-02-12 张景祥 一种led灯散热器
CN104100949A (zh) * 2014-07-25 2014-10-15 东莞市闻誉实业有限公司 螺旋散热器以及led灯具
CN204005380U (zh) * 2014-07-25 2014-12-10 东莞市闻誉实业有限公司 灯具
CN104565938A (zh) * 2015-01-09 2015-04-29 深圳市有为光电有限公司 带有弹簧状散热器的灯
CN204420639U (zh) * 2015-01-09 2015-06-24 深圳市有为光电有限公司 带有弹簧状散热器的灯

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112963741A (zh) * 2021-02-05 2021-06-15 曾祥胜 一种震颤散热型室内led灯

Also Published As

Publication number Publication date
CN104565938B (zh) 2017-01-04
CN104565938A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2016110054A1 (zh) 带有弹簧状散热器的灯
JP6098849B2 (ja) 電球型led照明器具
WO2017036282A1 (zh) 一种用于循环冷却系统的风冷半导体制冷装置
JP2015517185A5 (zh)
JP2010531536A (ja) 線形放熱部材を備えた放熱装置及びこれを備えたファンレスled照明器具
CN107293633B (zh) 一种用于大功率led的高热流密度冷却装置
CN101876427A (zh) Led灯具散热装置
WO2017045651A1 (zh) 一种利用导热材料线材编织物换热的装置
CN105953191B (zh) 散热灯具
WO2016110053A1 (zh) 弹簧状散热体及带弹簧状散热体的散热器
CN108489303A (zh) 一种带隔热层的散热器装置
CN204420639U (zh) 带有弹簧状散热器的灯
TWM381030U (en) Heat dissipating device
TWI487251B (zh) A motor with a housing with a heat dissipation inner runner
KR101439286B1 (ko) Led 조명 등기구용 히트싱크
CN204514154U (zh) 弹簧状散热体及带弹簧状散热体的散热器
JP2011165703A (ja) ヒートシンクおよび発光素子ユニット
CN201652270U (zh) 一种led灯具的光源散热器
CN207569839U (zh) 一种led灯冷锻一体式散热器
CN201122587Y (zh) 一种led模组散热器
RU2619912C2 (ru) Светодиодный осветительный прибор
TWI539266B (zh) Led照明裝置及其散熱器(一)
CN105101756A (zh) 一种高效电子器件散热方法及装置
KR101239836B1 (ko) 공랭식 방열수단을 구비한 led 조명장치
CN109668128A (zh) 一种采用铁磁流体散热的大功率led冷却系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876559

Country of ref document: EP

Kind code of ref document: A1