WO2016108642A1 - 냉동싸이클을 이용한 순간 냉각장치 - Google Patents

냉동싸이클을 이용한 순간 냉각장치 Download PDF

Info

Publication number
WO2016108642A1
WO2016108642A1 PCT/KR2015/014517 KR2015014517W WO2016108642A1 WO 2016108642 A1 WO2016108642 A1 WO 2016108642A1 KR 2015014517 W KR2015014517 W KR 2015014517W WO 2016108642 A1 WO2016108642 A1 WO 2016108642A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
reservoir
refrigerant
fluid
condenser
Prior art date
Application number
PCT/KR2015/014517
Other languages
English (en)
French (fr)
Inventor
임성택
홍현기
Original Assignee
주식회사 피코그램
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150113215A external-priority patent/KR101749964B1/ko
Application filed by 주식회사 피코그램 filed Critical 주식회사 피코그램
Publication of WO2016108642A1 publication Critical patent/WO2016108642A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus
    • F25D31/002Liquid coolers, e.g. beverage cooler

Definitions

  • the present invention relates to an instantaneous cooling device, and more specifically, an instantaneous cooling device using a refrigeration cycle for cooling raw water such as tap water by mutual heat exchange with a refrigerant circulated along a cooling coil wound around an outer circumference of a water tank. It is about.
  • the instantaneous cooling device is provided with a water purifier for treating tap water, or a cold and hot water dispenser for supplying bottled water sold in a container, and cooling the water to a predetermined temperature to supply the user.
  • a liquid storage tank and a cooling device are provided to cool a liquid such as water, beverage, liquor, etc. to a predetermined temperature.
  • the liquid storage tank is provided with a supply port for injecting liquid, and a discharge port for discharging the liquid contained in the liquid storage tank to the outside, the liquid contained in the liquid storage tank is cooled to a predetermined temperature through a cooling device.
  • the discharge port is provided with a cock to discharge the liquid contained in the liquid storage tank, and when a certain amount of the liquid contained in the liquid storage tank is used, the amount of new liquid is supplied through the supply port.
  • the liquid when the liquid flows into the liquid storage tank through the supply port, the liquid is mixed with the cooled liquid in the liquid storage tank, so that the liquid in the liquid storage tank increases in temperature so that the user may use uncooled liquid. .
  • Korean Patent Publication No. 10-2002-0021228 discloses a cooling device for a water purifier.
  • the present invention is to solve the above problems, to provide an instant cooling device using a refrigeration cycle that does not require the use of a separate heating element to secure the fluid movement passage when the water temperature inside the reservoir is below the set temperature.
  • a water tank in which a fluid inlet port and a fluid outlet port are formed
  • a compressor connected to the outlet side of the cooling coil to compress the refrigerant returned
  • a tube installed in the water reservoir, into which a condensed refrigerant flows from a condenser condensing the refrigerant moving from the compressor;
  • It provides an instantaneous cooling device using a refrigeration cycle, characterized in that it comprises an expansion valve for expanding the liquid refrigerant to be moved after the heat exchange in the tube of the water reservoir to supply to the cooling coil.
  • a water tank in which a fluid inlet port and a fluid outlet port are formed
  • a compressor connected to the outlet side of the cooling coil to compress the refrigerant returned
  • a tube inlet pipe branched from one side of a pipe for moving the refrigerant of the compressor to a condenser and connected to the tube inlet of the reservoir;
  • a tube discharge tube having an inlet connected to the tube outlet of the reservoir and an outlet connected to the tube inlet tube of the condenser;
  • a three-way valve installed at a branched portion of the pipe and the tube inlet pipe;
  • a check valve installed in the tube discharge tube and configured to allow a refrigerant moving from the tube of the reservoir to move in one direction with respect to the condenser.
  • a water tank in which a fluid inlet port and a fluid outlet port are formed
  • a compressor connected to the outlet side of the cooling coil to compress the refrigerant returned
  • An expansion valve which expands and supplies the refrigerant moved from the condenser to the cooling coil
  • a tube inlet pipe branched from one side of a pipe connected to the condenser from the compressor and connected to the tube inlet of the reservoir;
  • a tube discharge tube having an inlet connected to the tube outlet of the reservoir and an outlet connected to the tube inlet tube of the condenser;
  • a solenoid valve installed on the tube inlet pipe
  • a check valve installed in the tube discharge tube and configured to allow a refrigerant moving from the tube of the reservoir to move in one direction with respect to the condenser.
  • a raw water supply pipe for supplying the raw water to the inlet of the water reservoir characterized in that it comprises a water filter, a pressure reducing valve and a solenoid valve that is on and off control installed in the raw water supply pipe.
  • the reservoir is
  • a fluid guide member formed of a spiral guide plate for guiding the fluid introduced into the reservoir through the inlet toward the outlet;
  • a water temperature detection sensor installed inside the reservoir to detect water temperature.
  • the tube is
  • Cylindrical coupling grooves formed in the center of the fluid guide member and blocked at the upper and lower ends are divided into first and second passages by partitions, and the first and second passages communicate with each other in series. Is connected to be connected to the outlet of the tube inlet pipe, the second passage is characterized in that the joint is connected to the inlet of the tube discharge pipe.
  • the condenser can be improved in size, thereby making the condenser compact.
  • FIG. 1 is a view showing an instantaneous cooling apparatus using a refrigeration cycle according to a first embodiment of the present invention
  • FIG. 2 is a view showing an instantaneous cooling apparatus using a refrigeration cycle according to a second embodiment of the present invention
  • FIG. 3 is a view showing the instantaneous cooling apparatus using a refrigeration cycle according to a third embodiment of the present invention
  • FIG. 4 is a cross-sectional view showing a reservoir applied to the first to third embodiments of the present invention.
  • Figure 5 is a modified example of the reservoir applied to the first to third embodiments of the present invention.
  • tube discharge tube 176 check valve
  • FIG. 1 is a view showing an instantaneous cooling apparatus using a refrigeration cycle according to a first embodiment of the present invention
  • Figure 2 is a view showing an instantaneous cooling apparatus using a refrigeration cycle according to a second embodiment of the present invention
  • Figure 3 Is a view showing an instantaneous cooling apparatus using a refrigeration cycle according to a third embodiment of the present invention
  • Figure 4 is a cross-sectional view showing a water tank applied to the first to third embodiments of the present invention
  • Figure 5 6 is a view illustrating a modified example of the water tank applied to the first to third embodiments of the present invention
  • FIG. 6 is another modified example of the water tank applied to the first to third embodiments of the present invention.
  • a reservoir 12 having an inlet 10 through which fluid at room temperature (referred to as purified water or bottled water) (hereinafter referred to as an integer) and an outlet 11 through which the fluid is discharged are formed;
  • a compressor (3) connected to the outlet side of the cooling coil (13) to compress the refrigerant returned;
  • Expansion valve (5) for supplying the liquid refrigerant discharged after the heat exchange in the tube (17) of the reservoir (12) to the cooling coil (13).
  • the raw water supply unit is supplied by the raw water supply pipe (L1) for supplying purified water to the inlet of the reservoir 12, the purified water filter 21 formed in the raw water supply pipe (L1), the pressure reducing valve 20 and the electrical signal from the outside It is configured to include a solenoid valve 22 that is controlled on and off to open and close the raw water supply pipe (L1).
  • the drain water pipe (L2) is connected to the raw water supply pipe (L1) passing through the pressure reducing valve (20).
  • the drain pipe L2 induces drainage when the solenoid valve 22 is switched off.
  • the reservoir (12) includes a fluid guide member (15) consisting of a spiral guide plate (14) for guiding the purified water flowing into the reservoir (12) through the inlet (10) toward the outlet (11);
  • a water temperature sensor 18 installed inside the reservoir 12 to detect the water temperature inside the reservoir 12.
  • the ice wall 16 is formed on the inner wall of the reservoir 12 because the cooling operation to cool the purified water of the reservoir 12 is continuously performed by the repeated operation of the refrigeration cycle.
  • the refrigerant at high temperature and high pressure which is moved from the compressor 22, is transferred to the condenser 4 through the pipe 32.
  • the high temperature and high pressure refrigerant is transferred to the tube inlet pipe 172 and supplied to the tube 17 in the reservoir 12, and then heat exchanged.
  • the cooled refrigerant is transferred to the condenser 4 through the tube discharge tube 174 to condense into a liquid phase.
  • the condenser 4 is supplied to the expansion valve 5 to expand the refrigerant in the condensed state to lower the pressure.
  • the refrigerant conveyed from the expansion valve 5 cools the purified water of the reservoir 12 by mutual heat exchange with a refrigerant having a low temperature and a low pressure while passing through a cooling coil 13 surrounding the exterior of the reservoir 12.
  • the cooling coil 13 serves as the evaporator 6 of the refrigeration cycle.
  • Raw water such as tap water
  • the purified water filter 21 to filter foreign substances contained in the raw water.
  • the purified water passes through the solenoid valve 22 which is switched to the ON state after passing through the pressure reducing valve 20, and then passes through the inlet 10 of the reservoir 12 to store the reservoir 12. Flows into.
  • the purified water flowing through the inlet 10 to the reservoir 12 forms a spiral trajectory along the spiral guide plate 14 of the fluid guide member 15 installed in the reservoir 12 while the outlet 11 To the side.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 22 passes through the condenser 4 and the expansion valve 24 and the cooling coil 13 (evaporator of the refrigeration cycle). Served).
  • the purified water is cooled by mutual heat exchange between the refrigerant supplied to the cooling coil 13 spirally wound around the outer circumference of the reservoir 12 and the purified water in the reservoir 12.
  • the refrigerant of the cooling coil 13 which is heat-exchanged with the purified water is repeated to return to the compressor 22.
  • the purified water of the reservoir 12 is cooled to a predetermined temperature by heat exchange with the refrigerant of the cooling coil 13, but since the cooling operation is continuously repeated, the purified water of the reservoir 12 is frozen and the reservoir 12 Ice wall 16 is formed on the inner wall of the).
  • the ice wall 16 gradually thickens with time and extends toward the center of the reservoir 12, thereby narrowing the purified water passage inside the reservoir 12.
  • the high temperature condensation heat generated by the freezing cycle is supplied to the tube 17 installed in the center of the reservoir 12 by the detection signal of the water temperature sensor 18 installed in the reservoir 12.
  • the condensed refrigerant supplied to the tube 17 is heat-exchanged with the fluid in the reservoir 12 and then returned to the expansion valve 5 or the condenser 4.
  • the purified water passage can be secured between the inlet 10 and the outlet 11 of the reservoir 12. This makes it unnecessary to use a heater (not shown) for melting the ice in order to secure the purified water passage in the water reservoir 12 when the ice is formed in the water tank 12.
  • the condensation heat generated by the condenser 4 of the refrigeration cycle provided in the water purifier Since the number of parts is reduced, the cost can be reduced by simplifying the structure of the instantaneous cooling system.
  • condensation efficiency of the condenser 4 can be improved.
  • the size of the condenser (heat sink) can be made compact.
  • a reservoir 12 having an inlet 10 through which fluid at room temperature is introduced and an outlet 11 through which the fluid is discharged;
  • a compressor (3) connected to the outlet side of the cooling coil (13) to compress the refrigerant returned;
  • a tube inlet pipe 172 branched from one side of the pipe 32 connected to the condenser 4 from the compressor 3 and inserted into the reservoir 12, and connected to the inside of the reservoir 12 and the condenser
  • a tube discharge pipe 174 connected to the tube inlet pipe 172 of (4)
  • a three-way valve 7 is formed at a branched portion of the pipe 32 and the tube inlet pipe 172, and the gas of the high temperature and high pressure is stored in the reservoir 12 by switching the three-way valve 7. ) To be supplied.
  • the tube discharge pipe 174 is equipped with a check valve 176 to allow the refrigerant movement in only one direction so that the refrigerant that was supplied to the reservoir 12 is transferred to the condenser 4 but does not flow back.
  • the raw water supply unit is turned on by the raw water supply pipe (L1) for supplying the raw water to the inlet of the reservoir 12, the water filter 21 formed in the raw water supply pipe (L1), the pressure reducing valve 20 and the electrical signals from the outside A solenoid valve 22 that is controlled off.
  • the drain water pipe (L2) is connected to the raw water supply pipe (L1) passing through the pressure reducing valve (20).
  • the drain pipe L2 induces drainage when the solenoid valve 22 is turned off.
  • the reservoir 12 includes a fluid guide member 15 formed of a spiral guide plate 14 for guiding fluid flowing into the reservoir 12 through the inlet 10 toward the outlet 11;
  • the refrigerant in the condensed state to be moved from the condenser 4 to secure the fluid movement passage through which the fluid is moved in the reservoir 12 heat exchanged with the fluid A core-shaped tube 17 for moving to the expansion valve 5 afterwards; It includes; water temperature sensor 18 is installed in the reservoir 12 to detect the temperature of the water in the reservoir 12.
  • the ice wall 16 is formed on the inner wall of the reservoir 12 because the cooling operation to cool the purified water of the reservoir 12 is continuously performed by the repeated operation of the refrigeration cycle.
  • the refrigerant in the high temperature and high pressure state which is moved from the compressor 22, is transferred to the condenser 4 through the pipe 32, and the direction of travel is determined by switching the on / off state of the three-way valve 7.
  • the three-way valve 7 When the three-way valve 7 is turned on (on), the high temperature and high pressure refrigerant is transferred to the tube inlet pipe 172 is supplied to the tube 17 in the reservoir 12 and then heat exchanged.
  • the opening amount is adjusted by the three-way valve 28, the amount of refrigerant in the high temperature state supplied from the compressor 22 to the tube 17 can be variably adjusted.
  • the cooled refrigerant is transferred to the condenser 4 through the tube discharge tube 174 to condense into a liquid phase.
  • the condensed refrigerant condensed in the condenser (4) is supplied to the expansion valve (5) to lower the pressure.
  • the refrigerant conveyed from the expansion valve 5 cools the purified water of the reservoir 12 by mutual heat exchange with a refrigerant having a low temperature and a low pressure while passing through a cooling coil 13 surrounding the exterior of the reservoir 12.
  • the cooling coil 13 acts as an evaporator 6.
  • the high temperature and high pressure refrigerant supplied to the tube 17 in the reservoir 12 is transferred to the condenser 4 after heat exchange with the fluid in the reservoir 12.
  • the purified water passage can be secured between the inlet 10 and the outlet 11 of the reservoir 12, if ice is formed in the reservoir 12, the purified water passage is secured in the reservoir 12. In order to do this, the use of a heater (not shown) for melting the ice becomes unnecessary.
  • a reservoir 12 having an inlet 10 through which fluid at room temperature is introduced and an outlet 11 through which the fluid is discharged;
  • a compressor (3) connected to the outlet side of the cooling coil (13) to compress the refrigerant returned;
  • a tube inlet pipe 172 branched from one side of the pipe 32 connected to the condenser 4 from the compressor 3 and inserted into the reservoir 12, and connected to the inside of the reservoir 12 and the condenser
  • a tube discharge pipe 174 connected to the tube inlet pipe 172 of (4)
  • the solenoid valve 9 is installed in the tube inlet pipe 172, and the on / off operation of supplying the gas of the high temperature and high pressure to the reservoir 12 may be performed by the operation of the solenoid valve 9.
  • the tube discharge tube 174 is provided with a check valve 176 that allows the refrigerant to be moved in one direction so that the refrigerant supplied to the reservoir 12 is transferred to the condenser 4 but is not flowed back.
  • the raw water supply unit is turned on by the raw water supply pipe (L1) for supplying the raw water to the inlet of the reservoir 12, the water filter 21 formed in the raw water supply pipe (L1), the pressure reducing valve 20 and the electrical signals from the outside A solenoid valve 22 that is controlled off.
  • a drain pipe L2 is connected to the raw water supply pipe L1 passing through the pressure reducing valve 20.
  • the drain pipe L2 induces drainage when the solenoid valve 22 is turned off.
  • the reservoir 12 includes a fluid guide member 15 formed of a spiral guide plate 14 for guiding fluid flowing into the reservoir 12 through the inlet 10 toward the outlet 11;
  • the ice wall 16 is formed on the inner wall of the reservoir 12 because the cooling operation to cool the purified water of the reservoir 12 is continuously performed by the repeated operation of the refrigeration cycle.
  • the refrigerant in the high temperature and high pressure state which is moved from the compressor 22, is transferred to the condenser 4 through the pipe 32, and the traveling direction is determined by switching the on / off state of the solenoid valve 9.
  • the solenoid valve 9 When the solenoid valve 9 is switched to an on state, the high temperature and high pressure refrigerant is transferred to the tube inlet pipe 172 and supplied to the tube 17 in the reservoir 12, and then heat exchanged.
  • the cooled refrigerant is transferred to the condenser 4 through the tube discharge tube 174 to condense into a liquid phase.
  • the condensed refrigerant condensed in the condenser (4) is supplied to the expansion valve (5) to lower the pressure.
  • the refrigerant conveyed from the expansion valve 5 cools the purified water of the reservoir 12 by mutual heat exchange with a refrigerant having a low temperature and a low pressure while passing through a cooling coil 13 surrounding the exterior of the reservoir 12.
  • the cooling coil 13 acts as an evaporator 6.
  • the solenoid valve (9) is the initial state to block the supply of the refrigerant in the condensation state to the tube (17) when the water temperature of the reservoir 12 by the detection signal from the water temperature sensor 18 When the water temperature of the reservoir 12 is below the set temperature, the tube 17 is operated to switch to the ON state by applying an electrical signal to supply the refrigerant in the condensed state.
  • the high temperature and high pressure refrigerant supplied to the tube 17 in the reservoir 12 is returned to the condenser 4 after heat exchange with the fluid in the reservoir 12.
  • the purified water passage can be secured between the inlet 10 and the discharge port 11 of the reservoir 12, if the ice is formed in the reservoir 12, the purified water passage in the reservoir 12 is secured. In order to do this, the use of a heater (not shown) for melting the ice becomes unnecessary.
  • the tube 17 is a core-shaped coupling groove formed in the center of the fluid guide member 15 It can be made in 40.
  • the inlet of the tube 17 is connected to the tube inlet tube 172 so that the refrigerant flows from the condenser 4 or the compressor 3, and the refrigerant is exchanged after the heat exchange from the tube 17.
  • the outlet of the tube 17 is connected to communicate with the tube discharge tube 174 to move to the expansion valve 5 or the condenser 4.
  • the refrigerant moved from the condenser 4 or the compressor 3 is moved to the tube 17 through the tube inlet pipe 172, it is supplied to the fluid in the reservoir 12 and the tube 17.
  • the refrigerant moved from the condenser 4 or the compressor 3 is moved to the tube 17 through the tube inlet pipe 172, it is supplied to the fluid in the reservoir 12 and the tube 17.
  • the refrigerant supplied to the tube 17 is exchanged with the fluid in the reservoir 12 and then moved to the expansion valve 5 or the condenser 4 through the tube discharge tube 174.
  • the coupling groove 40 formed in the center of the fluid guide member 15, the upper and lower ends are blocked.
  • 41 may be connected to be connected to the outlet of the tube inlet tube 172 and the second passage 42 may be connected to the inlet of the tube discharge tube 174.
  • connection portion between the first passage 41 and the tube inlet tube 172 and the connection portion between the second passage 42 and the tube discharge tube 174 may be connected to each other by welding or a connector. Since these joint connection methods are technical contents used in the art, detailed description of these configurations will be omitted.
  • the refrigerant moved from the condenser 4 or the compressor 3 is moved to the first passage 41 through the tube inlet pipe 172, the fluid in the reservoir 12 and the first passage ( By the mutual heat exchange of the refrigerant in the high temperature state supplied to 41) it is possible to secure the fluid passage in the reservoir (12).
  • the coolant supplied to the first passage 41 and heat-exchanged with the fluid in the reservoir 12 is connected to the first passage 41 through the second passage 42 and the tube discharge tube 174.
  • the expansion valve 5 or condenser 4 is moved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

저수조의 외주연에 권선된 냉각코일을 따라 순환되는 냉매와 상호 열교환에 의해 원수를 냉각하기 위한 순간 냉각장치를 개시한다. 본 발명에 따른 순간 냉각장치에 있어서, 유입구 및 배출구가 형성되는 저수조; 상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되어 상기 저수조의 유체를 냉각시키는 냉각코일; 상기 냉각코일의 출구측에 연결되는 압축기; 상기 저수조 내에 설치되고 응축기로부터 응축상태의 냉매가 유입되는 튜브; 상기 저수조의 튜브에서 열교환된 후 이동되는 액상 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치를 제공한다.

Description

냉동싸이클을 이용한 순간 냉각장치
본 발명은 순간 냉각장치에 관한 것으로, 보다 구체적으로 설명하면, 저수조의 외주연에 권선된 냉각코일을 따라 순환되는 냉매와 상호 열교환에 의해 수돗물 등의 원수를 냉각하기 위한 냉동싸이클을 이용한 순간 냉각장치에 관한 것이다.
일반적으로, 순간 냉각장치는 수돗물을 정수처리하는 정수기, 또는 용기에 담겨져 판매되는 생수를 공급하는 냉온수기 등에 제공되어 물을 소정온도로 냉각하여 사용자에게 공급하는 장치이다.
업소에서 음료수나 생맥주와 같은 주류 등을 일정량으로 제한하여 판매할 때에도 순간 냉각장치 등을 이용하여 음용수를 소정온도로 냉각시켜 판매하고 있다.
전술한 바와 같이 물, 음료, 주류 등과 같은 액체를 소정온도로 냉각하기 위하여 액체저장탱크 및 냉각장치가 제공된다.
상기 액체저장탱크는 액체를 투입하기 위한 공급구와, 액체저장탱크에 수용된 액체를 외부로 배출하기 위한 배출구가 형성되며, 상기 액체저장탱크에 수용된 액체는 냉각장치를 통하여 소정온도로 냉각된다.
상기 배출구에는 콕이 구비되어 상기 액체저장탱크에 수용된 액체를 배출시킬 수 있으며, 상기 액체저장탱크에 수용된 액체를 일정량 사용하면 사용한 양 만큼의 새로운 액체가 상기 공급구를 통하여 공급된다.
종래의 순간 냉각장치는 공급구를 통하여 액체저장탱크로 액체가 유입되면, 액체저장탱크의 냉각된 액체와 섞이게 됨으로 액체저장탱크의 액체는 그만큼 온도가 상승하여 사용자는 냉각되지 않은 액체를 사용할 수도 있다.
상기 액체저장탱크로 유입되는 액체가 액체저장탱크에 있던 액체와 혼합되는 경우 냉각효율이 떨어지는 문제점을 갖게 된다.
공개특허공보 제10-2002-0021228호에 정수기의 냉각장치가 개시되어 있다.
따라서, 본 발명은 전술한 문제점을 해결하고자 하는 것으로, 저수조 내부의 수온이 설정온도 이하일 경우에 유체이동통로를 확보하기 위해 별도의 발열체 사용이 불필요하게 되는 냉동싸이클을 이용한 순간 냉각장치를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적은, 응축기의 응축 효율이 높아져 응축기의 사이즈를 컴팩트화할 수 있도록 한 냉동싸이클을 이용한 순간 냉각장치를 제공하는 것이다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 일 실시예에 따르면,
원수 공급부;
유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
상기 저수조 내에 설치되고, 상기 압축기로부터 이동되는 냉매를 응축시키는 응축기로부터 응축상태의 냉매가 유입되는 튜브;
상기 저수조의 튜브에서 열교환된 후 이동되는 액상 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치를 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 다른 실시예에 따르면,
원수 공급부;
유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
상기 저수조 내에 설치되고, 상기 압축기로부터 압축된 냉매가 유입되는 튜브;
상기 압축기에서 압축된 냉매, 또는 상기 튜브에서 열교환된 후 이동되는 냉매를 응축시키는 응축기;
상기 응축기에서 응축된 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;
상기 압축기의 냉매를 응축기로 이동시키는 배관의 일측으로부터 분기되어 상기 저수조의 튜브 입구에 연결되는 튜브 인입관;
상기 저수조의 튜브 출구에 입구가 연결되고 상기 응축기의 튜브 인입관에 출구가 연결되는 튜브 토출관;
상기 배관과 튜브 인입관의 분기되는 부위에 설치되는 삼방밸브;
상기 튜브 토출관에 설치되고, 상기 저수조의 튜브로부터 이동되는 냉매를 상기 응축기에 대해 일방향으로 이동을 허용하는 체크밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치를 제공한다.
상기 및 기타 본 발명의 목적을 달성하기 위하여 본 발명의 또다른 실시예에 따르면,
원수 공급부;
유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
상기 저수조 내에 설치되고, 상기 압축기로부터 압축된 냉매가 유입되는 튜브;
상기 압축기에서 압축된 냉매 또는 상기 튜브에서 열교환된 후 이동되는 냉매를 응축시키는 응축기;
상기 응축기로부터 이동되는 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;
상기 압축기로부터 응축기로 연결되는 배관의 일측으로부터 분기되어 상기 저수조의 튜브 입구에 연결되는 튜브 인입관;
상기 저수조의 튜브 출구에 입구가 연결되고, 상기 응축기의 튜브 인입관에 출구가 연결되는 튜브 토출관;
상기 튜브 인입관에 설치되는 솔레노이드밸브;
상기 튜브 토출관에 설치되고, 상기 저수조의 튜브로부터 이동되는 냉매를 상기 응축기에 대해 일방향으로 이동을 허용하는 체크밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치를 제공한다.
상기 원수 공급부는
원수를 상기 저수조의 유입구에 공급하는 원수 공급관과, 상기 원수 공급관에 설치되는 정수필터, 감압밸브 및 온 오프 제어되는 솔레노이드밸브를 구비하는 것을 특징으로 한다.
상기 저수조는
상기 유입구를 통해 상기 저수조에 유입되는 유체를 상기 배출구쪽으로 가이드 하기 위해 나선형 유도판으로 이루어지는 유체 가이드부재;
상기 냉각코일의 냉매에 의해 상기 저수조의 내벽에 생성되는 얼음벽;
상기 유체 가이드부재의 중앙에 형성되고, 상기 저수조의 내부에 상기 유체가 이동되는 유체이동통로를 확보하기 위해 상기 응축기 또는 압축기로부터 이동되는 냉매를 상기 저수조의 유체와 열교환시킨 후 상기 팽창밸브로 이동시키는 튜브;
상기 저수조의 내부에 설치되어 수온을 감지하기 위한 수온감지센서;를 구비하는 것을 특징으로 한다.
상기 튜브는
상기 유체 가이드부재의 중앙에 형성되는 결합홈에 내설되는 것을 특징으로 한다.
상기 유체 가이드부재의 중앙에 형성되고 상,하단이 막힌 원통형상의 결합홈을 칸막이에 의해 제1,2통로로 분할구획하되, 상기 제1,2통로는 직렬형으로 서로 연통되며, 상기 제1통로는 상기 튜브 인입관의 출구에 연통되도록 이음연결되고, 상기 제2통로는 상기 튜브 토출관의 입구에 연통되도록 이음연결되는 것을 특징으로 한다.
전술한 구성을 갖는 본 발명에 따르면 아래와 같은 이점을 갖는다.
저수조 내부의 수온이 설정온도 이하일 경우에 저수조 내벽의 결빙을 녹여 유체이동통로를 확보하기 위해 별도의 전열선 또는 히터의 사용이 불필요하게 되므로, 부품수를 줄여 구조 간단화로 인해 원가비용을 절감할 수 있다.
또한, 응축열 일부를 저수조 내벽의 결빙을 해동시키도록 사용하므로 응축기의 응축 효율을 향상시켜 응축기의 사이즈를 컴팩트화할 수 있다.
도 1은 본 발명의 제1실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면,
도 2는 본 발명의 제2실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면,
도 3은 본 발명의 제3실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면,
도 4는 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조를 나타낸 단면도,
도 5는 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조의 변형예시도,
도 6은 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조의 다른 변형예시도이다.
〈도면의 주요 부분에 대한 참조 부호의 설명〉
3 : 압축기 4 : 응축기
5 : 팽창밸브 6 : 증발기
7 : 삼방밸브 9 ; 솔레노이드밸브
12 : 저수조 13 : 냉각코일
14 : 유도판 15 : 유체가이드부재
16 ; 얼음벽 17 : 튜브
18 : 수온감지센서 20 ; 감압밸브
21 : 정수필터 22 : 솔레노이드밸브
32 : 배관 172 : 튜브 인입관
174 : 튜브 토출관 176 : 체크밸브
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예에 따른 냉동싸이클을 이용한 순간 냉각장치를 상세히 설명하기로 한다.
도 1은 본 발명의 제1실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면이고, 도 2는 본 발명의 제2실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면이며, 도 3은 본 발명의 제3실시예에 의한 냉동싸이클을 이용한 순간 냉각장치를 나타낸 도면이며, 도 4는 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조를 나타낸 단면도이며, 도 5는 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조의 변형예시도이며, 도 6은 본 발명의 제1실시예 내지 제3실시예에 적용되는 저수조의 다른 변형예시도이다.
[제1실시예]
도 1 및 도 4를 참조하면, 본 발명의 제1실시예에 의한 냉동싸이클을 이용한 순간 냉각장치는
원수 공급부;
상온의 유체(정수 또는 생수를 말함)(이하 정수 라고 함)가 유입되는 유입구(10) 및 상기 유체가 배출되는 배출구(11)가 형성되는 저수조(12);
상기 저수조(12)의 외주연에 이와 접촉면적을 증대시켜 냉각효율을 높이도록 나선형으로 권선되며, 냉동싸이클에 의해 생성되어 순환되는 저온의 냉매와 상기 저수조(12)의 유체와 상호 열교환에 의해 상기 정수를 냉각시키는 냉각코일(13);
상기 냉각코일(13)의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기(3);
상기 저수조(12) 내에 설치되고, 상기 압축기(3)에서 압축된 냉매를 응축시키는 응축기(4)로부터 응축상태의 냉매가 유입되는 튜브(17);
상기 저수조(12)의 튜브(17)에서 열 교환된 후 배출된 액상 냉매를 냉각코일(13)에 공급하는 팽창밸브(5)를 포함한다.
상기 원수 공급부는 정수를 저수조(12)의 유입구에 공급하는 원수공급관(L1)과, 상기 원수공급관(L1)에 형성된 정수필터(21)와, 감압밸브(20) 및 외부로부터의 전기적신호에 의해 온 오프 제어되어 상기 원수공급관(L1)을 개폐시키는 솔레노이드밸브(22)를 포함하여 구성된다.
상기 감압밸브(20)를 지난 원수공급관(L1)에는 배수관(L2)이 연통되도록 연결된다. 배수관(L2)은 솔레노이드밸브(22)가 오프상태로 전환되었을 때 배수를 유도한다.
상기 저수조(12)는 상기 유입구(10)를 통해 저수조(12)에 유입되는 정수를 상기 배출구(11)쪽으로 가이드 하기 위해 나선형 유도판(14)으로 이루어지는 유체 가이드부재(15);
상기 냉각코일(13)의 냉매에 의해 상기 저수조(12)의 내벽에 생성되는 얼음벽(16);
상기 유체 가이드부재(15)의 중앙에 형성되고, 상기 저수조(12) 내부에 상기 유체가 이동되는 유체이동통로를 확보하기 위해 상기 응축기(4)로부터 이동되는 응축상태의 냉매를 상기 정수와 열교환시킨 후 상기 팽창밸브(5)로 이동시키는 코어형상의 튜브(17);
상기 저수조(12) 내부의 수온을 감지하기 위해 상기 저수조(12)의 내부에 설치되는 수온감지센서(18);를 구비한다.
상기 얼음벽(16)은 냉동싸이클의 반복적인 동작에 의해 저수조(12)의 정수를 냉각시키는 냉각작용이 지속적으로 이루어지므로 저수조(12)의 내벽에 형성된다.
압축기(22)로부터 이동되는 고온 고압상태의 냉매는 배관(32)을 통해 응축기(4)로 이송된다.
이후, 고온 고압의 냉매는 튜브 인입관(172)으로 이송되어 저수조(12) 내의 튜브(17)로 공급된 후 열교환된다.
이후, 냉각된 냉매는 튜브 토출관(174)을 통해 응축기(4)로 이송되어 액상으로 응축된다.
이후, 상기 응축기(4)에서 응축된 응축상태의 냉매를 팽창시켜 압력을 낮추도록 팽창밸브(5)에 공급된다.
상기 팽창밸브(5)에서 이송되는 냉매는 저수조(12)의 외관을 둘러싸는 냉각코일(13)을 경유하면서 저수조(12)의 정수를 저온, 저압의 냉매와 상호 열교환에 의해 냉각시키게 되고, 상기 냉각코일(13)은 냉동싸이클의 증발기(6)의 역할을 하게된다.
이후, 상기 냉각코일(13)로부터 리턴되는 냉매를 압축기(3)에서 고온, 고압의 가스로 압축시키는 냉동싸이클이 반복된다.
이러한 냉동싸이클은 당해분야에서 사용되는 기술내용이므로 이들의 상세한 설명은 생략한다.
이하, 본 발명의 제1실시예에 의한 냉동싸이클을 이용한 순간 냉각장치의 작용을 설명한다.
수돗물 등의 원수는 정수필터(21)에 의해 원수 중에 함유되는 이물질이 여과되어 정수처리 된다.
정수처리된 정수는 상기 감압밸브(20)를 통과한 후 온(ON) 상태로 전환된 솔레노이드밸브(22)를 통과한 후, 상기 저수조(12)의 유입구(10)를 통과하여 저수조(12)에 유입된다.
이때, 상기 유입구(10)를 통과하여 저수조(12)에 유입되는 정수는 상기 저수조(12) 내에 설치된 유체 가이드부재(15)의 나선형 유도판(14)을 따라 나선형 궤적을 이루면서 상기 배출구(11)쪽으로 이동된다.
이때, 냉동싸이클이 가동됨에 따라 상기 압축기(22)에 의해 압축된 고온, 고압의 기체상태의 냉매는 응축기(4) 및 팽창밸브(24)를 통과하여 상기 냉각코일(13)(냉동싸이클의 증발기 역할을 하게 됨)에 공급된다.
이로 인해, 상기 저수조(12)의 외주연에 나선형으로 권선된 냉각코일(13)에 공급되는 냉매와 상기 저수조(12) 내의 정수의 상호 열교환에 의해 정수를 냉각시키게 된다.
상기 정수와 열교환된 냉각코일(13)의 냉매는 상기 압축기(22)로 리턴되는 과정을 반복하게 된다.
전술한 바와 같이 상기 저수조(12)의 정수는 상기 냉각코일(13)의 냉매와 열교환에 의해 소정온도로 냉각되는 데, 냉각작용이 지속적으로 반복되므로 저수조(12)의 정수는 결빙되어 저수조(12)의 내벽에 얼음벽(16)이 형성된다.
상기 얼음벽(16)은 시간의 경과에 따라 점차적으로 두꺼워져 저수조(12)의 중앙쪽으로 확장되므로 상기 저수조(12) 내부의 정수 이동통로가 협소해진다.
이때, 상기 저수조(12) 내부에 설치된 수온감지센서(18)의 검출신호에 의해 저수조(12) 중앙에 설치된 튜브(17)에 냉동싸이클에 의해 생성되는 고온의 응축열을 공급하게 된다.
따라서, 상기 저수조(12) 내에 결빙이 형성되는 경우에도 상기 튜브(17)에 공급되는 고온의 응축열에 의해 튜브(17) 주변의 결빙을 녹이게 되므로 정수 이동통로를 확보할 수 있다.
한편, 상기 튜브(17)에 공급되는 응축상태의 냉매는 저수조(12) 내의 유체와 열교환된 후 팽창밸브(5) 또는 응축기(4)로 복귀된다.
따라서, 상기 저수조(12)의 유입구(10)와 배출구(11)사이에 정수 이동통로를 확보할 수 있다. 이로 인해 저수조(12) 내에 결빙이 형성되는 경우에 상기 저수조(12) 내에 정수 이동통로를 확보하기 위해 결빙을 녹이기 위한 히터(미도시됨) 사용이 불필요하게 된다.
또한, 상기 결빙을 녹이기 위해 상기 튜브(17)에 고온을 응축열을 공급하여 상기 저수조(12) 내에 정수 이동통로를 확보할 경우, 정수기에 구비되는 냉동싸이클의 응축기(4)에 의해 생성되는 응축열을 이용하게 되므로, 해당 부품수를 줄여 순간 냉각장치의 구조 간단화로 인해 원가비용을 절감할 수 있게 된다.
또한, 상기 응축기(4)로부터 이동되는 응축열 일부를 상기 튜브(17)를 통해 저수조(12) 내의 정수와 열교환에 의해 결빙을 해동시키도록 사용하게 되므로, 응축기(4)의 응축 효율을 향상시킬 수 있어 응축기(방열판) 사이즈를 컴팩트화할 수 있다.
한편, 상기 냉동싸이클의 가동이 정지된 상태일 경우, 상기 저수조(12)의 정수가 상기 유체 가이드부재(15)의 나선형 유도판(14)을 따라 상기 배출구(11)쪽으로 이동될 경우, 상기 저수조(12)의 정수가 저수조(12)의 얼음벽(16)을 통과하여 배출구(11)쪽으로 이동되므로 정수의 냉각효율을 높일 수 있게 된다.
[제2실시예]
도 2 및 도 4를 참조하면, 본 발명의 제2실시예에 의한 냉동싸이클을 이용한 순간 냉각장치는,
원수 공급부;
상온의 유체가 유입되는 유입구(10) 및 상기 유체가 배출되는 배출구(11)가 형성되는 저수조(12);
상기 저수조(12)의 외주연에 권선되며, 냉동싸이클에 의해 생성되어 순환되는 저온의 냉매와 상기 저수조(12)의 유체와 상호 열교환에 의해 상기 원수를 냉각시키는 냉각코일(13);
상기 냉각코일(13)의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기(3);
상기 압축기(3)에서 압축된 냉매를 응축하여 상기 저수조(12) 내에 공급하는 응축기(4);
상기 저수조(12)에서 열 교환된 후 배출된 액상 냉매를 팽창 증발시켜 냉각코일(13)에 공급하는 팽창밸브(5);를 포함하고,
상기 압축기(3)로부터 응축기(4)로 연결되는 배관(32)의 일측으로부터 분기되어 상기 저수조(12) 내로 삽입되는 튜브인입관(172)과, 상기 저수조(12)의 내부에 연결되며 상기 응축기(4)의 튜브인입관(172)에 연결되는 튜브토출관(174)을 포함하고,
상기 배관(32)과 튜브인입관(172)의 분기되는 부위에 삼방밸브(3-way valve)(7)가 형성되고, 상기 삼방밸브(7)의 전환에 의해 고온 고압의 기체가 저수조(12)로 공급되도록 한 것이다.
상기 튜브토출관(174)에는 저수조(12)에 공급되었던 냉매가 응축기(4)로 이송되되 역류되지 않도록 일방향으로만 냉매 이동을 허용하는 체크밸브(176)가 장착된다.
상기 원수 공급부는 원수를 저수조(12)의 유입구에 공급하는 원수공급관(L1)과, 상기 원수공급관(L1)에 형성된 정수필터(21), 감압밸브(20) 및 외부로부터의 전기적신호에 의해 온 오프 제어되는 솔레노이드밸브(22)를 포함한다.
상기 감압밸브(20)를 지난 원수공급관(L1)에는 배수관(L2)이 연통되도록 연결된다. 배수관(L2)은 솔레노이드밸브(22)가 오프(OFF)상태로 전환되었을 때 배수를 유도한다.
상기 저수조(12)는 상기 유입구(10)를 통해 저수조(12)에 유입되는 유체를 상기 배출구(11)쪽으로 가이드하기 위해 나선형 유도판(14)으로 이루어지는 유체 가이드부재(15);
상기 냉각코일(13)의 냉매에 의해 상기 저수조(12)의 내벽에 생성되는 얼음벽(16);
상기 유체 가이드부재(15)의 중앙에 형성되고, 상기 저수조(12) 내부에 상기 유체가 이동되는 유체이동통로를 확보하기 위해 상기 응축기(4)로부터 이동되는 응축상태의 냉매를 상기 유체와 열교환시킨 후 상기 팽창밸브(5)로 이동시키는 코어형상의 튜브(17); 상기 저수조(12) 내부의 수온을 감지하기 위해 상기 저수조(12)의 내부에 설치되는 수온감지센서(18);를 포함한다.
상기 얼음벽(16)은 냉동싸이클의 반복적인 작동에 의해 저수조(12)의 정수를 냉각시키는 냉각작용이 지속적으로 이루어지므로 저수조(12)의 내벽에 형성된다.
이하, 본 발명의 제2실시예에 의한 냉동싸이클을 이용한 순간 냉각장치의 작용을 설명하면 다음과 같다.
상기 압축기(22)로부터 이동되는 고온 고압상태의 냉매는 배관(32)을 통해 응축기(4)쪽으로 이송되는데 상기 삼방밸브(7)의 온, 오프상태로 전환에 의해 진행 방향이 결정된다.
상기 삼방밸브(7)가 온(on)상태로 전환되면 고온 고압의 냉매는 튜브 인입관(172)으로 이송되어 저수조(12) 내의 튜브(17)로 공급된 후 열교환된다.
이때, 상기 삼방밸브(28)에 의해 개구량이 조절되므로 압축기(22)로부터 튜브(17)로 공급되는 고온상태의 냉매 량을 가변 조절할 수 있다.
이후, 상기 냉각된 냉매는 튜브 토출관(174)을 통해 응축기(4)로 이송되어 액상으로 응축된다.
이후, 상기 응축기(4)에서 응축된 응축된 냉매를 팽창시켜 압력을 낮추도록 팽창밸브(5)에 공급된다.
상기 팽창밸브(5)에서 이송되는 냉매는 저수조(12)의 외관을 둘러싸는 냉각코일(13)을 경유하면서 저수조(12)의 정수를 저온, 저압의 냉매와 상호 열교환에 의해 냉각시키게 되고, 상기 냉각코일(13)은 증발기(6)로 작용하게 된다.
이후, 상기 냉각코일(13)로부터 리턴되는 냉매를 압축기(3)에서 고온, 고압의 가스로 압축시키는 냉동싸이클이 반복된다.
이러한 냉동싸이클은 당해분야에서 사용되는 기술내용이므로 이들의 상세한 설명은 생략한다.
상기 제1실시예에서 설명한 바와 같이, 상기 저수조(12) 내의 튜브(17)에 공급되는 고온 고압의 냉매는 저수조(12) 내의 유체와 열교환된 후 응축기(4)로 이동된다.
따라서, 상기 저수조(12)의 유입구(10)와 배출구(11)사이에 정수 이동통로를 확보할 수 있게 되므로 저수조(12) 내에 결빙이 형성되는 경우, 상기 저수조(12) 내에 정수 이동통로를 확보하기 위해 결빙을 녹이기 위한 히터(미도시됨) 사용이 불필요하게 된다.
또한, 상기 결빙을 녹이기 위해 상기 튜브(17)에 고온의 응축열을 공급하여 상기 저수조(12) 내에 정수 이동통로를 확보할 경우, 정수기에 구비하는 냉동싸이클의 응축기(4)에 의해 생성되는 응축열을 이용하게 되므로, 해당 부품수를 줄여 순간 냉각장치의 구조 간단화로 인해 원가비용을 절감할 수 있게 된다.
[제3실시예]
도 3 및 도 4를 참조하면, 본 발명의 제3실시예에 의한 냉동싸이클을 이용한 순간 냉각장치는
원수 공급부;
상온의 유체가 유입되는 유입구(10) 및 상기 유체가 배출되는 배출구(11)가 형성되는 저수조(12);
상기 저수조(12)의 외주연에 권선되며, 냉동싸이클에 의해 생성되어 순환되는 저온의 냉매와 상기 저수조(12)의 유체와 상호 열교환에 의해 상기 원수를 냉각시키는 냉각코일(13);
상기 냉각코일(13)의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기(3);
상기 압축기(3)에서 압축된 냉매를 응축하여 상기 저수조(12) 내에 공급하는 응축기(4);
상기 저수조(12)에서 열 교환된 후 배출된 액상 냉매를 팽창 증발시켜 냉각코일(13)에 공급하는 팽창밸브(5);를 포함하고,
상기 압축기(3)로부터 응축기(4)로 연결되는 배관(32)의 일측으로부터 분기되어 상기 저수조(12) 내로 삽입되는 튜브 인입관(172)과, 상기 저수조(12)의 내부에 연결되며 상기 응축기(4)의 튜브 인입관(172)에 연결되는 튜브 토출관(174)을 포함하고,
상기 튜브 인입관(172)에 솔레노이드밸브(9)가 설치되고, 상기 솔레노이드밸브(9)의 작동에 의해 고온 고압의 기체를 저수조(12)에 공급하는 온/오프 작동이 실행될 수 있다.
상기 튜브 토출관(174)에는 저수조(12)에 공급되었던 냉매가 응축기(4)로 이송되되 역류되지 않도록 일방향으로만 냉매 이동을 허용하는 체크밸브(176)가 설치된다.
상기 원수 공급부는 원수를 저수조(12)의 유입구에 공급하는 원수공급관(L1)과, 상기 원수공급관(L1)에 형성된 정수필터(21), 감압밸브(20) 및 외부로부터의 전기적신호에 의해 온 오프 제어되는 솔레노이드밸브(22)를 포함한다.
상기 감압밸브(20)를 지난 원수공급관(L1)에는 배수관(L2)이 연결된다. 배수관(L2)은 솔레노이드밸브(22)가 오프(off)상태로 전환되었을 때 배수를 유도한다.
상기 저수조(12)는 상기 유입구(10)를 통해 저수조(12)에 유입되는 유체를 상기 배출구(11)쪽으로 가이드하기 위해 나선형 유도판(14)으로 이루어지는 유체 가이드부재(15);
상기 냉각코일(13)의 냉매에 의해 상기 저수조(12)의 내벽에 생성되는 얼음벽(16);
상기 유체 가이드부재(15)의 중앙에 형성되고, 상기 저수조(12) 내부에 상기 유체가 이동되는 유체이동통로를 확보하기 위해 상기 응축기(4)로부터 이동되는 응축상태의 냉매를 상기 유체와 열교환시킨 후 상기 팽창밸브(5)로 이동시키는 코어형상의 튜브(17);
상기 저수조(12) 내부의 수온을 감지하기 위해 상기 저수조(12)의 내부에 설치되는 수온감지센서(18)를 포함한다.
상기 얼음벽(16)은 냉동싸이클의 반복적인 작동에 의해 저수조(12)의 정수를 냉각시키는 냉각작용이 지속적으로 이루어지므로 저수조(12)의 내벽에 형성된다.
이하, 본 발명의 제3실시예에 의한 냉동싸이클을 이용한 순간 냉각장치의 작용을 설명하면 다음과 같다.
상기 압축기(22)로부터 이동되는 고온 고압상태의 냉매는 배관(32)을 통해 응축기(4)쪽으로 이송되는데 솔레노이드밸브(9)의 온 오프상태로 전환에 의해 진행 방향이 결정된다.
상기 솔레노이드밸브(9)가 온(on) 상태로 전환되면 고온 고압의 냉매는 튜브인입관(172)으로 이송되어 저수조(12) 내의 튜브(17)로 공급된 후 열교환 된다.
이후, 냉각된 냉매는 튜브 토출관(174)을 통해 응축기(4)로 이송되어 액상으로 응축된다.
이후, 상기 응축기(4)에서 응축된 응축된 냉매를 팽창시켜 압력을 낮추도록 팽창밸브(5)에 공급된다.
상기 팽창밸브(5)에서 이송되는 냉매는 저수조(12)의 외관을 둘러싸는 냉각코일(13)을 경유하면서 저수조(12)의 정수를 저온, 저압의 냉매와 상호 열교환에 의해 냉각시키게 되고, 상기 냉각코일(13)은 증발기(6)로 작용하게 된다.
이후, 상기 냉각코일(13)로부터 리턴되는 냉매를 압축기(3)에서 고온, 고압의 가스로 압축시키는 냉동싸이클이 반복된다.
이러한 냉동싸이클은 당해분야에서 사용되는 기술내용이므로 이들의 상세한 설명은 생략한다.
상기 솔레노이드밸브(9)는 수온감지센서(18)로부터의 검출신호에 의해 상기 저수조(12)의 수온이 설정온도 이상일 경우 상기 튜브(17)에 응축상태의 냉매 공급을 차단하는 초기상태와, 상기 저수조(12)의 수온이 설정온도 이하일 경우 상기 튜브(17)에 응축상태의 냉매를 공급하기 위해 전기적신호 인가에 의해 온(ON) 상태로 절환시키도록 작동된다.
상기 제1실시예에서 설명한 바와 같이, 상기 저수조(12) 내의 튜브(17)에 공급되는 고온 고압의 냉매는 저수조(12) 내의 유체와 열교환된 후 응축기(4)로 복귀된다.
따라서, 상기 저수조(12)의 유입구(10)와 배출구(11)사이에 정수 이동통로를 확보할 수 있게 되므로, 저수조(12) 내에 결빙이 형성되는 경우 상기 저수조(12) 내에 정수 이동통로를 확보하기 위해 결빙을 녹이기 위한 히터(미도시됨) 사용이 불필요하게 된다.
또한, 상기 결빙을 녹이기 위해 상기 튜브(17)에 고온의 응축열을 공급하여 상기 저수조(12) 내에 정수 이동통로를 확보할 경우, 정수기에 구비하는 냉동싸이클의 응축기(4)에 의해 생성되는 응축열을 이용하게 되므로, 해당 부품수를 줄여 순간 냉각장치의 구조 간단화로 인해 원가비용을 절감할 수 있게 된다.
도 5에서와 같이, 본 발명의 실시예에 의한 냉동싸이클을 이용한 순간 냉각장치의 저수조(12)에서, 상기 튜브(17)는 상기 유체 가이드부재(15)의 중앙에 형성되는 코어 형상의 결합홈(40)에 내설시킬 수 있다.
이때, 상기 응축기(4) 또는 압축기(3)로부터 냉매가 유입되도록 상기 튜브(17)의 입구는 상기 튜브 인입관(172)에 연통되도록 이음연결되고, 상기 튜브(17)로부터 열교환된 후 냉매를 팽창밸브(5) 또는 응축기(4)로 이동시키도록 상기 튜브(17)의 출구는 상기 튜브 토출관(174)에 연통되도록 이음연결된다.
따라서, 상기 응축기(4) 또는 압축기(3)로부터 이동되는 냉매가 상기 튜브 인입관(172)을 통해 상기 튜브(17)에 이동되므로, 상기 저수조(12) 내의 유체와 상기 튜브(17)에 공급되는 고온 상태의 냉매의 상호 열교환에 의해 상기 저수조(12) 내에 유체이동통로를 확보할 수 있게 된다.
한편, 상기 튜브(17)에 공급되는 냉매는 상기 저수조(12) 내의 유체와 열교환된 후 상기 튜브 토출관(174)을 통해 상기 팽창밸브(5) 또는 응축기(4)로 이동된다.
도 6에서와 같이, 본 발명의 실시예에 의한 냉동싸이클을 이용한 순간 냉각장치의 저수조(12)에서, 상기 유체 가이드부재(15)의 중앙에 형성되고 상,하단이 막힌 원통형상의 결합홈(40)을 중앙에 위치하는 칸막이(43)에 의해 제1,2통로(41,42)로 분할구획하되, 상기 제1,2통로(41,42)는 직렬형으로 서로 연통되며, 상기 제1통로(41)는 상기 튜브 인입관(172)의 출구에 연통되도록 이음연결되고 상기 제2통로(42)는 상기 튜브 토출관(174)의 입구에 연통되도록 이음연결될 수 있다.
이때, 상기 제1통로(41)와 튜브 인입관(172)의 연결부 및 상기 제2통로(42)와 튜브 토출관(174)의 연결부는 용접, 또는 커넥터 등에 의해 연통되도록 이음연결될 수 있다. 이들의 이음연결방식은 당해분야에서 사용되는 기술내용이므로 이들구성의 상세한 설명은 생략한다.
따라서, 상기 응축기(4) 또는 압축기(3)로부터 이동되는 냉매가 상기 튜브 인입관(172)을 통해 상기 제1통로(41)에 이동되므로, 상기 저수조(12) 내의 유체와 상기 제1통로(41)에 공급되는 고온 상태의 냉매의 상호 열교환에 의해 상기 저수조(12) 내에 유체이동통로를 확보할 수 있게 된다.
한편, 상기 제1통로(41)에 공급되어 상기 저수조(12) 내의 유체와 열교환된 냉매는 상기 제1통로(41)와 연통되는 제2통로(42) 및 상기 튜브 토출관(174)을 통해 상기 팽창밸브(5) 또는 응축기(4)로 이동된다.
여기에서, 상술한 본 발명에서는 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야에서 숙련된 당업자는 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경할 수 있음을 이해할 수 있을 것이다.
전술한 구성을 갖는 본 발명에 따르면, 저수조의 외주연에 권선된 냉각코일을 따라 순환되는 냉매와 상호 열교환에 의해 수돗물 등의 원수를 냉각시킬 수 있는 효과가 있다.

Claims (7)

  1. 원수 공급부;
    유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
    상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
    상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
    상기 저수조 내에 설치되고, 상기 압축기로부터 이동되는 냉매를 응축시키는 응축기로부터 응축상태의 냉매가 유입되는 튜브;
    상기 저수조의 튜브에서 열교환된 후 이동되는 액상 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  2. 원수 공급부;
    유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
    상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
    상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
    상기 저수조 내에 설치되고, 상기 압축기로부터 압축된 냉매가 유입되는 튜브;
    상기 압축기에서 압축된 냉매, 또는 상기 튜브에서 열교환된 후 이동되는 냉매를 응축시키는 응축기;
    상기 응축기에서 응축된 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;
    상기 압축기의 냉매를 응축기로 이동시키는 배관의 일측으로부터 분기되어 상기 저수조의 튜브 입구에 연결되는 튜브 인입관;
    상기 저수조의 튜브 출구에 입구가 연결되고 상기 응축기의 튜브 인입관에 출구가 연결되는 튜브 토출관;
    상기 배관과 튜브 인입관의 분기되는 부위에 설치되는 삼방밸브;
    상기 튜브 토출관에 설치되고, 상기 저수조의 튜브로부터 이동되는 냉매를 상기 응축기에 대해 일방향으로 이동을 허용하는 체크밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  3. 원수 공급부;
    유체가 유입되는 유입구 및 상기 유체가 배출되는 배출구가 형성되는 저수조;
    상기 저수조의 외주연에 접촉면적을 증대시키도록 나선형으로 권선되며, 냉동싸이클에 의해 순환되는 저온의 냉매와 상호 열교환에 의해 상기 저수조의 유체를 냉각시키는 냉각코일;
    상기 냉각코일의 출구측에 연결되어 리턴되는 냉매를 압축하는 압축기;
    상기 저수조 내에 설치되고, 상기 압축기로부터 압축된 냉매가 유입되는 튜브;
    상기 압축기에서 압축된 냉매 또는 상기 튜브에서 열교환된 후 이동되는 냉매를 응축시키는 응축기;
    상기 응축기로부터 이동되는 냉매를 팽창시켜 상기 냉각코일에 공급하는 팽창밸브;
    상기 압축기로부터 응축기로 연결되는 배관의 일측으로부터 분기되어 상기 저수조의 튜브 입구에 연결되는 튜브 인입관;
    상기 저수조의 튜브 출구에 입구가 연결되고, 상기 응축기의 튜브 인입관에 출구가 연결되는 튜브 토출관;
    상기 튜브 인입관에 설치되는 솔레노이드밸브;
    상기 튜브 토출관에 설치되고, 상기 저수조의 튜브로부터 이동되는 냉매를 상기 응축기에 대해 일방향으로 이동을 허용하는 체크밸브;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 원수 공급부는
    원수를 상기 저수조의 유입구에 공급하는 원수 공급관과, 상기 원수 공급관에 설치되는 정수필터, 감압밸브 및 온 오프 제어되는 솔레노이드밸브를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 저수조는
    상기 유입구를 통해 상기 저수조에 유입되는 유체를 상기 배출구쪽으로 가이드 하기 위해 나선형 유도판으로 이루어지는 유체 가이드부재;
    상기 냉각코일의 냉매에 의해 상기 저수조의 내벽에 생성되는 얼음벽;
    상기 유체 가이드부재의 중앙에 형성되고, 상기 저수조의 내부에 상기 유체가 이동되는 유체이동통로를 확보하기 위해 상기 응축기 또는 압축기로부터 이동되는 냉매를 상기 저수조의 유체와 열교환시킨 후 상기 팽창밸브로 이동시키는 튜브;
    상기 저수조의 내부에 설치되어 수온을 감지하기 위한 수온감지센서;를 구비하는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  6. 제5항에 있어서, 상기 튜브는
    상기 유체 가이드부재의 중앙에 형성되는 결합홈에 내설되는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
  7. 제5항에 있어서,
    상기 유체 가이드부재의 중앙에 형성되고 상,하단이 막힌 원통형상의 결합홈을 칸막이에 의해 제1,2통로로 분할구획하되, 상기 제1,2통로는 직렬형으로 서로 연통되며, 상기 제1통로는 상기 튜브 인입관의 출구에 연통되도록 이음연결되고, 상기 제2통로는 상기 튜브 토출관의 입구에 연통되도록 이음연결되는 것을 특징으로 하는 냉동싸이클을 이용한 순간 냉각장치.
PCT/KR2015/014517 2014-12-30 2015-12-30 냉동싸이클을 이용한 순간 냉각장치 WO2016108642A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140193041 2014-12-30
KR10-2014-0193041 2014-12-30
KR10-2015-0113215 2015-08-11
KR1020150113215A KR101749964B1 (ko) 2014-12-30 2015-08-11 냉동싸이클을 이용한 순간 냉각장치

Publications (1)

Publication Number Publication Date
WO2016108642A1 true WO2016108642A1 (ko) 2016-07-07

Family

ID=56284690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014517 WO2016108642A1 (ko) 2014-12-30 2015-12-30 냉동싸이클을 이용한 순간 냉각장치

Country Status (1)

Country Link
WO (1) WO2016108642A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024236A (ko) * 2002-02-07 2002-03-29 김기호 냉온정수기의 급속냉각장치
JP2007198657A (ja) * 2006-01-25 2007-08-09 Kisei:Kk 氷菓子製造装置
KR100770093B1 (ko) * 2007-03-13 2007-10-24 김기호 다면연속 균일급속 냉각장치
KR101275188B1 (ko) * 2011-08-22 2013-06-18 엘지전자 주식회사 제빙수단을 갖는 정수기
KR20140049882A (ko) * 2012-10-18 2014-04-28 주식회사 위닉스 순간 냉각장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020024236A (ko) * 2002-02-07 2002-03-29 김기호 냉온정수기의 급속냉각장치
JP2007198657A (ja) * 2006-01-25 2007-08-09 Kisei:Kk 氷菓子製造装置
KR100770093B1 (ko) * 2007-03-13 2007-10-24 김기호 다면연속 균일급속 냉각장치
KR101275188B1 (ko) * 2011-08-22 2013-06-18 엘지전자 주식회사 제빙수단을 갖는 정수기
KR20140049882A (ko) * 2012-10-18 2014-04-28 주식회사 위닉스 순간 냉각장치

Similar Documents

Publication Publication Date Title
WO2011149152A1 (en) Hot water supply device associated with heat pump
WO2017105079A1 (en) Refrigerator
WO2011145780A1 (en) Hot water supply device associated with heat pump
WO2011149151A1 (en) Hot water supply device associated with heat pump
WO2016013798A1 (en) Refrigerator and control method thereof
WO2019172532A1 (ko) 냉장고 및 그 제어방법
EP3338041A1 (en) Refrigerator
WO2015194891A1 (en) Refrigerator
WO2016114557A1 (en) Air conditioning system
WO2017069472A1 (ko) 공기조화기 및 그 제어방법
WO2018088839A1 (ko) 냉장고 및 냉장고의 제어 방법
WO2011062349A1 (ko) 히트 펌프
WO2015142028A1 (ko) 열교환기 및 그 제조방법
WO2019194453A1 (en) Water purifier and method for controlling the same
WO2020111688A1 (en) Refrigerator and control method thereof
US5960868A (en) Adiabatic apparatus
WO2016099107A1 (ko) 제상장치를 구비한 냉장고
WO2016108642A1 (ko) 냉동싸이클을 이용한 순간 냉각장치
WO2010098607A2 (ko) 케스케이드 열교환기를 이용한 냉난방 시스템
WO2011043602A4 (ko) 냉장고
WO2019172531A1 (en) Water dispensing device
WO2020197052A1 (en) Air conditioning apparatus
WO2014030884A1 (ko) 차량용 히트 펌프 시스템
WO2019050077A1 (ko) 공기열원 축냉운전 또는 축열운전과 수열원 축냉축열 동시운전 또는 축열축냉 동시운전을 갖는 다중열원 멀티 히트펌프 시스템 및 제어방법
US6051822A (en) Method of operating an inductor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875736

Country of ref document: EP

Kind code of ref document: A1