WO2015142028A1 - 열교환기 및 그 제조방법 - Google Patents

열교환기 및 그 제조방법 Download PDF

Info

Publication number
WO2015142028A1
WO2015142028A1 PCT/KR2015/002568 KR2015002568W WO2015142028A1 WO 2015142028 A1 WO2015142028 A1 WO 2015142028A1 KR 2015002568 W KR2015002568 W KR 2015002568W WO 2015142028 A1 WO2015142028 A1 WO 2015142028A1
Authority
WO
WIPO (PCT)
Prior art keywords
header
tubes
mold
refrigerant
pipe
Prior art date
Application number
PCT/KR2015/002568
Other languages
English (en)
French (fr)
Inventor
정영민
이수영
길성호
정문일
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP15764496.4A priority Critical patent/EP3121545B1/en
Priority to US15/124,622 priority patent/US10048010B2/en
Priority to CN201580014862.2A priority patent/CN106133467B/zh
Publication of WO2015142028A1 publication Critical patent/WO2015142028A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14598Coating tubular articles
    • B29C45/14614Joining tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2602Mould construction elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/261Moulds having tubular mould cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/2628Moulds with mould parts forming holes in or through the moulded article, e.g. for bearing cages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0224Header boxes formed by sealing end plates into covers
    • F28F9/0226Header boxes formed by sealing end plates into covers with resilient gaskets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/253Preform
    • B29K2105/258Tubular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2705/00Use of metals, their alloys or their compounds, for preformed parts, e.g. for inserts
    • B29K2705/08Transition metals
    • B29K2705/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/18Heat-exchangers or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0061Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/14Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded
    • F28F2255/143Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes molded injection molded
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/16Safety or protection arrangements; Arrangements for preventing malfunction for preventing leakage

Definitions

  • the present invention relates to a heat exchanger and a manufacturing method thereof, and more particularly, to a heat exchanger having an improved structure so as to improve the heat exchange efficiency and a manufacturing method thereof.
  • a heat exchanger in general, includes a tube in which refrigerant flows and exchanges heat with external air, a heat exchange fin contacting the tube so as to increase a heat dissipation area, and a header in which both ends of the tube communicate with each other.
  • the heat exchanger includes an evaporator or a condenser, and may constitute a refrigeration cycle apparatus together with a compressor for compressing the refrigerant and an expansion valve for expanding the refrigerant.
  • the tube of the heat exchanger is formed in the form of a copper tube
  • the heat exchange fin is formed in the form of a thin film of aluminum.
  • Tubes and heat exchange fins of the heat exchanger formed of a metal material is difficult to deform the shape, it may cause a manufacturing cost synergistic effect.
  • the tube is mainly manufactured by welding, refrigerant leakage may occur frequently through gaps generated during welding.
  • One aspect of the present invention provides a heat exchanger having an improved structure such that a heat exchange area between a refrigerant and external air is expanded, and a method of manufacturing the same.
  • Another aspect of the present invention provides a heat exchanger having an improved structure and a manufacturing method thereof so as to satisfy mass production and cost reduction at the same time.
  • Another aspect of the present invention provides a heat exchanger having an improved structure to prevent refrigerant leakage and a method of manufacturing the same.
  • a heat exchanger includes at least one tube array through which refrigerant flows, and the at least one tube array connects the plurality of tubes and the plurality of tubes in which a channel is formed. And a connection member coupled to both ends of the plurality of tubes, wherein the plurality of tubes and the connection member are integrally injection molded.
  • the plurality of tubes and the connecting member may have a polymer material.
  • the heat exchanger according to the spirit of the present invention may further include a header coupled to both ends of the at least one tube array.
  • the header may include a main header coupled to both ends of the at least one tube array, and the main header may be injection molded to couple to both ends of the at least one tube array.
  • the at least one tube array includes a plurality of tube arrays arranged side by side, and the main header is coupled to both ends of the plurality of tube arrays to form a tube assembly connecting the plurality of tube arrays. It can be injection molded.
  • the main header may have a polymer material.
  • the main header may be injection molded to be coupled to the connection member, and at least one refrigerant leakage preventing recess recessed toward an inner side of the connection member may be formed on an outer surface of the connection member.
  • the header further includes a sub header coupled to an outer side of the main header to form a refrigerant movement path, and the method of combining the sub header and the main header may include a heat fusion method and an induction heating method. have.
  • a plurality of cooling fins are provided on the outer circumferential surface of the plurality of tubes, and the plurality of cooling fins may be injection molded integrally with the plurality of tubes and the connecting member.
  • the plurality of cooling fins may have a polymer material.
  • a plurality of cooling fins may be provided on the plurality of tube outer peripheral surfaces, and the plurality of cooling fins may have an annular shape and may be disposed along the outer peripheral surfaces of the plurality of tubes in the longitudinal direction of the plurality of tubes.
  • the plurality of cooling fins may have an inclined annular shape.
  • the plurality of cooling fins includes a first cooling fin having an annular shape inclined toward one end of the plurality of tubes and a second cooling fin having an annular shape inclined toward another end of the plurality of tubes, The first cooling fin and the second cooling fin may form at least one intersection point.
  • the plurality of tubes may include a first tube provided with the first cooling fin on an outer circumferential surface thereof, and a second tube adjacent to the first tube and provided with the second cooling fin on an outer circumferential surface thereof, and facing each other.
  • One end of the cooling fin and the second cooling fin may be alternately disposed along the longitudinal direction of the plurality of tubes.
  • the sub-header may have a polymer material, and the sub-header may include an inlet header provided with an inlet through which the coolant flows toward the plurality of tubes, and an outlet header provided with an outlet through which the coolant flows.
  • the heat exchanger may further include a pipe connected to at least one of the inlet and the outlet to move the refrigerant, and having a material different from that of the sub header, wherein the pipe may have an insert during injection molding of the sub header. And may be integrally formed with the sub header.
  • the material of the pipe may include copper (Cu), and a leakage preventing ring may be positioned between the pipe and the sub header to prevent the refrigerant from leaking between the pipe and the sub header.
  • Cu copper
  • the leak prevention ring may include silicon and rubber material.
  • the heat exchanger according to the spirit of the present invention is arranged in parallel with each other, the plurality of tubes in which the refrigerant flows therein, coupled to both ends of the plurality of tubes to connect the plurality of tubes, the inlet and outlet of the refrigerant is formed in the header And a pipe coupled to at least one of the inlet and the outlet such that the refrigerant flows along the plurality of tubes, wherein the pipe is inserted into the header when the injection molding of the header is performed.
  • At least one leakage preventing ring may be disposed between the pipe and the header to prevent the refrigerant from leaking between the pipe and the header.
  • the pipe is connected to at least one end of the body to be coupled to at least one of the inlet and the outlet and the body is formed a flow path through which the refrigerant flows, and includes a neck having a different diameter from the body, the at least One leakage preventing ring may be disposed on the outer circumferential surface of the body to approach the neck.
  • the neck has a larger diameter than the body, and the diameter of the neck may decrease as it approaches the body.
  • the header includes a protrusion that protrudes toward the outside of the header so that the inlet and the outlet are provided, and the body includes at least one of the inlet and the outlet such that the at least one leak prevention ring is located inside the protrusion. Can be coupled to.
  • a plurality of cooling channels are formed in a channel in which a refrigerant flows therein, and are coupled to surfaces of the plurality of tubes arranged side by side and spaced apart from each other in the longitudinal direction of the tubes.
  • a header coupled to both ends of the fin and the plurality of tubes, wherein the plurality of tubes and the plurality of cooling fins are integrally injection molded.
  • a method of manufacturing a heat exchanger includes injection molding integrally a plurality of tubes and a connecting member coupled to both ends of the plurality of tubes to form at least one tube array, and the amount of the at least one tube array.
  • the at least one tube array includes a plurality of tube arrays, and the plurality of tube arrays are disposed side by side, and injection molding the main header at both ends of the plurality of tube arrays.
  • a plurality of cooling fins are formed on an outer circumferential surface of the plurality of tubes, and the plurality of cooling fins are injection molded integrally with the plurality of tubes and the connecting member.
  • the method of combining the sub header and the main header may include a heat fusion method and an induction heating method.
  • At least one refrigerant leakage preventing groove recessed toward the inner side of the connection member may be formed on an outer surface of the connection member.
  • the sub-header may be injection molded by inserting a pipe through which a refrigerant moves.
  • the sub header may be injection molded by inserting the pipe so that a part of the pipe is located outside the sub header.
  • the sub header is injection molded by inserting the pipe in a state in which a leak prevention ring is disposed on an outer circumferential surface of the pipe to prevent the refrigerant from leaking between the pipe and the sub header.
  • the first mold and the second mold is coupled, and the third mold and the fourth mold are combined to form a molding space together with the first mold and the second mold, and the refrigerant moves inside the plurality of tubes.
  • a piston core is inserted into the molding space to form a channel, resin is injected into the molding space to injection mold the tube array, and the piston core is formed into the first mold, the second mold, the third mold, and the After the separation of the fourth mold is characterized in that the separation in the molding space.
  • the first mold and the second mold are combined to form a shape of the plurality of tubes and the plurality of cooling fins.
  • the third mold and the fourth mold is combined with the first mold and the second mold to form a shape of the connection member.
  • Tubes having a polymer material can be mass-produced by injection and extrusion molding, thereby reducing process costs, and the weight of the heat exchanger can be expected due to the characteristics of the polymer material.
  • the tube having a polymer material is easy to deform in shape, it can appropriately correspond to product deformation in which a heat exchanger is used.
  • connection member By forming at least one refrigerant leakage preventing groove on the outer surface of the connection member, it is possible to increase the coupling reliability between the main header and the connection member, thereby preventing the refrigerant leakage between the main header and the connection member.
  • FIG. 1 is a perspective view showing the appearance of a heat exchanger according to an embodiment of the present invention
  • FIG. 2 is an exploded perspective view showing a heat exchanger according to an embodiment of the present invention
  • FIG 3 is a perspective view illustrating a tube array and a tube assembly of a heat exchanger according to an embodiment of the present invention.
  • Figure 4 is an enlarged view showing a coupling structure of the connection member and the main header of the heat exchanger according to an embodiment of the present invention
  • FIG. 5 is a view illustrating a process of combining a main header and a sub header of a heat exchanger according to an embodiment of the present invention
  • 6a to 6e is a view showing the shape of the various cooling fins of the heat exchanger according to an embodiment of the present invention
  • Figure 7 is a perspective view showing a state in which the pipe is coupled to the heat exchanger according to an embodiment of the present invention
  • Figure 8 is a perspective view showing a pipe coupled to the heat exchanger according to an embodiment of the present invention
  • Figure 9 is an enlarged cross-sectional view showing a coupling structure of the heat exchanger and the pipe according to an embodiment of the present invention
  • FIG. 10 is a flow chart showing a method of manufacturing a heat exchanger according to an embodiment of the present invention (FLOW CHART)
  • 11A and 11B illustrate a process of manufacturing a tube array of a heat exchanger according to an embodiment of the present invention.
  • 12A and 12B illustrate a process of manufacturing a tube assembly of a heat exchanger according to an embodiment of the present invention.
  • FIG. 13 is a flow chart showing a method of manufacturing a heat exchanger according to another embodiment of the present invention (FLOW CHART)
  • FIG. 1 is a perspective view showing the appearance of a heat exchanger according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view showing a heat exchanger according to an embodiment of the present invention
  • 3 is a perspective view illustrating a tube array and a tube assembly of a heat exchanger according to an embodiment of the present invention.
  • the heat exchanger 1 may include a tube array 100 and a tube assembly 200 as structural units.
  • the heat exchanger 1 may include at least one tube array 100 through which a refrigerant flows.
  • the tube array 100 may be formed by combining a plurality of tubes 10, and the tube assembly 200 may be formed by combining a plurality of tube arrays 100.
  • the heat exchanger 1 may be formed by combining at least one tube assembly 200.
  • the heat exchanger 1 may include a plurality of tubes 10, a plurality of cooling fins 20, and headers 30a and 30b.
  • the plurality of tubes 10 may be arranged next to each other.
  • the plurality of tubes 10 may include a channel 11 formed therein to allow the refrigerant, which is a fluid, to flow.
  • the refrigerant exchanges heat with the outside air while phase shifting (compressing) from the gas state to the liquid state, or heat exchanges with the outside air while phase shifting (expanding) from the liquid state to the gas state.
  • the heat exchanger 1 is used as a condenser, and when the refrigerant phase changes from the liquid state to the gaseous state, the heat exchanger 1 is used as an evaporator.
  • the plurality of tubes 10 may have a polymer material.
  • the polymer material may include nylon, polyvinyl chloride (PVC), polycarbonate (PC), and ABS resin (Acrylonitrile butadiene styrene).
  • the plurality of tubes 10 may be extruded and injection molded. Hereinafter, for convenience of description, the plurality of tubes 10 are considered to be injection molded.
  • the connecting member 12 may be coupled to both ends of the plurality of tubes 10.
  • connection member 12 may be coupled to both ends of the plurality of tubes 10 to form the tube array 100.
  • connection member 12 may have a polymer material similarly to the plurality of tubes 10.
  • connection member 12 may be injection molded integrally with the plurality of tubes 10.
  • the headers 30a and 30b may include a first header 30a and a second header 30b coupled to the outside of the connection member 12.
  • the first header 30a may be coupled to the outside of the connection member 12 so that the first header A faces the first direction A and the second header 30b faces the second direction B.
  • the first header 30a and the second header 30b may be disposed to be spaced apart from each other by a predetermined interval, and a plurality of tubes 10 may be disposed between the first header 30a and the second header 30b.
  • One end of the plurality of tubes 10 facing the first direction A may communicate with the first header 30a, and the plurality of tubes 10 facing the second direction B with the second header 30b. The other end of) may be in communication.
  • the arrangement structure of the headers 30a and 30b and the plurality of tubes 10 is not limited to the above examples.
  • the first header 30a and the second header 30b may include a main header 40 and a sub header 50, respectively.
  • the main header 40 may be coupled to both ends of the plurality of tube arrays 100 to connect the plurality of tube arrays 100 to form the tube assembly 200.
  • the main header 40 may have a polymer material.
  • the main header 40 may be injection molded to be coupled to both ends of the plurality of tube arrays 100. Specifically, the main header 40 may be injection molded on the outside of the connecting member 12 to form the tube assembly 200.
  • the sub header 50 may be coupled to the outside of the main header 40 to connect the plurality of tube assemblies 200.
  • the sub header 50 may have a polymer material.
  • the sub header 50 may be coupled to the outside of the main header 40 to form the refrigerant movement path 70.
  • the refrigerant movement path 70 serves as a chamber for dispersing and supplying the refrigerant supplied from the outside into the plurality of tubes 10.
  • the sub header 60 may include an inflow header 51 and an outflow header 52.
  • the inlet header 51 is formed with an inlet 51a through which the refrigerant flows toward the plurality of tubes 10, and the outlet header 52 has an outlet 52a through which the refrigerant flows from the plurality of tubes 10. Can be.
  • the inflow header 51 and the outflow header 52 face different directions so that the inflow header 51 is provided in any one of the first header 30a and the second header 30b, and the outflow header 52 is It may be provided in the other of the first header 30a and the second header 30b.
  • the plurality of tube assemblies 200 may have a stacked structure.
  • the plurality of tube assemblies 200 may have a stacked structure in the vertical direction.
  • the refrigerant movement passage 70 may guide the flow operation of the refrigerant flowing through the plurality of tubes 10 sequentially in the vertical direction.
  • the inflow header 51 and the outflow header 52 may be disposed up and down.
  • the outlet header 52 may be disposed above the inlet header 51.
  • the inflow header 51 and the outflow header 52 may both be provided in the first header 30a or the second header 30b to face the same direction.
  • the inflow header 51 and the outflow header 52 are provided in one of the first header 30a and the second header 30b so that the inflow header 51 faces different directions, and outflow is performed.
  • the header 52 may be provided in the other of the first header 30a and the second header 30b.
  • a plurality of cooling fins 20 may be coupled to the surfaces of the plurality of tubes 10 so that the refrigerant flowing along the channel 11 may efficiently exchange heat with the outside air.
  • the plurality of cooling fins 20 may be spaced apart from each other at regular intervals in the longitudinal direction of the plurality of tubes 10.
  • the plurality of cooling fins 20 are coupled to the outer circumferential surfaces of the plurality of tubes 10 to widen the contact area between the refrigerant flowing along the channel 11 and the outside air.
  • the plurality of cooling fins 20 may have a polymer material.
  • the plurality of cooling fins 20 may be injection molded integrally with the plurality of tubes 10.
  • the plurality of cooling fins 20 may be injection molded integrally with the plurality of tubes 10 and the connecting member 12.
  • the plurality of cooling fins 20 may have various shapes, which will be described later.
  • the heat exchanger 1 may further include an air movement passage 60 through which external air moves.
  • the air movement path 60 may be formed between the plurality of tube arrays 100.
  • Air movement path 60 may be disposed in a vertical direction with respect to the longitudinal direction of the plurality of tubes (10). That is, the flow of external air moving along the air movement path 60 and the flow of the refrigerant flowing along the channel 11 may be orthogonal to each other.
  • Figure 4 is an enlarged view showing a coupling structure of the connection member and the main header of the heat exchanger according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3.
  • the main header 40 may be coupled to the outside of the connecting member 12 to form the tube assembly 200.
  • At least one refrigerant leakage preventing groove 13 recessed toward the inner side of the connection member 12 may be formed on an outer surface of the connection member 12.
  • At least one refrigerant leakage preventing groove 13 may be provided along the outer circumferential surface of the connection member 12 to form a closed curve in the longitudinal direction of the connection member 12.
  • Insertion protrusion 41 protruding from the main header 40 may be coupled to the at least one refrigerant leakage preventing groove 13.
  • Insertion protrusion 41 may have a closed curve shape corresponding to the at least one refrigerant leakage preventing groove (13).
  • the coupling member 12 and the main header 40 can be firmly coupled, and the airtightness of the refrigerant can be maintained.
  • the insertion protrusion 41 may be formed by filling the at least one refrigerant leakage preventing groove 13 of the connection member 12 in the injection molding process of the main header 40.
  • FIG. 5 is a view illustrating a process of combining the main header and the sub header of the heat exchanger according to an embodiment of the present invention.
  • the sub header 50 may be coupled to the outside of the main header 40 to form the refrigerant movement path 70.
  • the coupling part 45 of the main header 40 and the sub header 50 may be formed along the edges of the main header 40 and the sub header 50.
  • the method of combining the main header 40 and the sub header 50 may include a heat fusion method and an induction heating method.
  • the thermal fusion method is a heat fusion jig (not shown) having a temperature above the melting point of the main header 40 and the sub-header 50 to melt and press the coupling portion 45 at the same time to press the main header 40 and the sub
  • This is a method of joining the header 50.
  • Induction heating method is a method of joining the main header 40 and the sub-header 50 by inserting a metal member (not shown) between the coupling portion 45 to induce an external magnetic field or an external electric field.
  • FIGS. 6A to 6E are views illustrating shapes of various cooling fins of a heat exchanger according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3. In addition, redundant description is abbreviate
  • a plurality of cooling fins 20 may be provided on the outer circumferential surface of the plurality of tubes 10.
  • the plurality of cooling fins 20 may have an annular shape.
  • the plurality of cooling fins 20 may be spaced apart along the outer circumferential surface of the plurality of tubes 10 in the longitudinal direction of the plurality of tubes 10.
  • the plurality of cooling fins 20 may have an annular shape inclined with respect to the vertical direction X with respect to the plurality of tubes 10.
  • the inclination degree of the plurality of cooling fins 20 may vary.
  • the plurality of cooling fins 20 include the first cooling fins 21 and the second cooling fins 22.
  • the first cooling fin 21 has an annular shape inclined toward one end of the plurality of tubes 10 facing the first direction A with respect to the vertical direction X with respect to the plurality of tubes 10
  • the second cooling fin 22 may have an annular shape inclined toward the other end of the plurality of tubes 10 facing the second direction B with respect to the vertical direction X with respect to the plurality of tubes 10. (See Figure 6b.)
  • the first cooling fin 21 and the second cooling fin 22 may be provided on the surfaces of the plurality of tubes 10 to form at least one intersection point.
  • the first cooling fin 21 and the second cooling fin 22 may cross each other in an “X” shape to form one intersection point (see FIG. 6C).
  • the plurality of tubes 10 include a first tube 14 and a second tube 15 adjacent to each other.
  • the first cooling fin 21 may be provided on the outer circumferential surface of the first tube 14, and the second cooling fin 22 may be provided on the outer circumferential surface of the second tube 15.
  • One end 21a, 22a of the first cooling fin 21 and the second cooling fin 22 facing each other may be alternately arranged along the longitudinal direction of the plurality of tubes 10 (see FIG. 6D).
  • the plurality of cooling fins 20 disposed on the outer circumferential surface of the plurality of tubes 10 may be omitted (see FIG. 6E).
  • the plurality of cooling fins 20 are disposed on the surfaces of the plurality of tubes 10, the contact area of the refrigerant flowing through the channel 11 and the outside air increases, and the plurality of cooling fins 20 Since turbulence may be promoted, an effect of improving heat exchange capacity of 20 to 25% can be expected as compared with the case where the plurality of cooling fins 20 are omitted.
  • the plurality of cooling fins 20 may have a hemispherical shape that protrudes toward the outside of the plurality of tubes 10.
  • the plurality of cooling fins 20 may have various shapes and are not limited to the above examples.
  • FIG. 7 is a perspective view illustrating a pipe coupled to a heat exchanger according to an embodiment of the present invention
  • FIG. 8 is a perspective view illustrating a pipe coupled to a heat exchanger according to an embodiment of the present invention.
  • 9 is an enlarged cross-sectional view of a coupling structure of a heat exchanger and a pipe according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3. In addition, redundant description is abbreviate
  • the heat exchanger 1 may further include a pipe 80 coupled to at least one of the inlet 51a and the outlet 52a.
  • the pipe 80 may have a material different from that of the sub header 50.
  • the material of the pipe 80 may include copper (Cu).
  • a low temperature low pressure liquid or gaseous refrigerant passing through an expansion valve may be introduced into the first pipe 81 coupled to the inlet 51a.
  • the refrigerant introduced into the first pipe (81) may pass through the plurality of tubes (10), take away heat from outside, and evaporate, and may flow out to the outside through the second pipe (82) coupled to the outlet (52a).
  • the heat exchanger 1 when used as a condenser, the high temperature and high pressure gaseous refrigerant passing through the compressor (not shown) is introduced through the second pipe 82, and passes through the plurality of tubes 10 to the outside.
  • the heat is condensed by being condensed, and the condensed refrigerant may flow out through the first pipe (81).
  • the pipe 80 may be inserted in the injection molding of the sub header 50 to be integrally formed with the sub header 50.
  • At least one leak prevention ring 83 may be disposed between the pipe 80 and the sub header 50 to prevent the refrigerant from leaking between the pipe 80 and the sub header 50.
  • the at least one leak prevention ring 83 may have a material capable of withstanding high temperature heat generated during injection molding of the sub header 50.
  • the at least one leak prevention ring 83 may include silicon and rubber materials.
  • Tubing 80 may include a body 84 and a neck 85.
  • the body 84 may have a hollow cylindrical shape, and a flow path 84a through which a refrigerant flows may be formed.
  • the neck 85 is connected to one end of the body 84 to be coupled to at least one of the inlet 51a and the outlet 52a, and may have a different diameter than the body 84.
  • the neck 85 may have a larger diameter than the body 84.
  • the diameter of the neck 85 may decrease as it approaches the body 84. That is, the neck 85 may have a funnel shape in which the diameter increases with distance from the body 84.
  • At least one leak prevention ring 83 may be disposed on an outer circumferential surface of the body 84 to approach the neck 85.
  • the at least one leak prevention ring 83 may have an annular shape to be disposed along the outer circumferential surface of the body 84.
  • the sub header 50 may include a protrusion 53 protruding toward the outside of the sub header 50 so that the inlet 51a and the outlet 52a are provided.
  • the body 84 may be coupled to at least one of the inlet 51a and the outlet 52a such that the at least one leakage preventing ring 83 is positioned inside the protrusion 53.
  • the sub header 50 When injection molding the sub header 50 in a state in which at least one leak prevention ring 83 is disposed on the outer surface of the pipe 80, the sub header 50 prevents at least one leak by shrinkage in the injection molding process.
  • the ring 83 is pressed, thereby ensuring the airtightness of the refrigerant.
  • FIGS. 10 is a flow chart illustrating a method of manufacturing a heat exchanger according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3.
  • the manufacturing method of the heat exchanger 1 forms the tube array 100 (S1), forms the tube assembly 200 (S2), the main header 40, and the sub header 50. ) May include combining (S3).
  • the tube array 100 may be formed by integrally injection molding the plurality of tubes 10 and the connecting members 12 coupled to both ends of the plurality of tubes 10.
  • the plurality of cooling fins 20 may be injection molded integrally with the plurality of tubes 10 and the connecting member 12 to be provided on the outer circumferential surface of the plurality of tubes 10.
  • the tube array 100 may be injection molded to form at least one refrigerant leakage preventing groove 13 recessed toward the inner side of the connecting member 12 on the outer surface of the connecting member 12.
  • the tube assembly 200 may be formed by inserting a plurality of tube arrays 100 arranged side by side and injection molding the main header 40.
  • the tube array 100 and the main header 40 may have different polymer materials.
  • the main header 40 may be located at both ends of the plurality of tube arrays 100.
  • the sub header 50 may be injection molded by inserting the pipe 80 through which the refrigerant moves. Specifically, the sub header 50 is injection molded by inserting the pipe 80 such that a part of the pipe 80 is located outside the sub header 50, that is, a part of the pipe 80 is exposed to the outside. Can be.
  • the sub-header 50 may be coupled to the outside of the main header 40 to form the refrigerant movement path 70 in combination with the main header 40.
  • the method of combining the main header 40 and the sub header 50 may include a heat fusion method and an induction heating method.
  • FIGS. 11A and 11B illustrate a process of manufacturing a tube array of a heat exchanger according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3.
  • the tube array 100 may be molded in the first mold apparatus 300.
  • the first mold apparatus 300 may include a first mold 310, a second mold 320, a third mold 330, and a fourth mold 340.
  • the first mold 310 is located above, and the second mold 320 is located below.
  • the third mold 330 is located at the left side, and the fourth mold 340 is located at the right side.
  • the first mold 310, the second mold 320, the third mold 330, and the fourth mold 340 are combined with each other to form a first molding space 350.
  • the first mold 310 and the second mold 320 may be combined with each other to form the shape of the plurality of tubes 10.
  • the first mold 310 and the second mold 320 may be coupled to each other to integrally form the shapes of the plurality of tubes 10 and the plurality of cooling fins 20.
  • the third mold 330 and the fourth mold 340 may be combined with the first mold 310 and the second mold 320 to form a shape of the connection member 12.
  • the piston core 360 may be inserted into the first molding space 350 to form the channel 11 through which the refrigerant moves in the plurality of tubes 10.
  • the peace cone core 360 may be inserted into the first molding space 350 so that one end thereof contacts the inner surface of the third mold 330 through the fourth mold 340.
  • the first mold 310, the second mold 320, the third mold 330, and the fourth mold 340 are separated, and finally, the piscon core 360 is opened in the first molding space (
  • the tube array 100 made of a polymer material is taken out from the tube 350.
  • the peace cone core 360 may be separated from the first molding space 350 by the air cylinder 380.
  • Inner surfaces of the third mold 330 and the fourth mold 340 may be provided with protrusions (not shown) protruding toward the first molding space 350.
  • the protrusions provided in the third mold 330 and the fourth mold 340 may form at least one refrigerant leakage preventing groove 13 in the connection member 12. That is, the protrusion may have a shape corresponding to the at least one refrigerant leakage preventing groove 13.
  • FIGS. 12A and 12B are views illustrating a process of manufacturing a tube assembly of a heat exchanger according to an embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3.
  • the tube assembly 200 may be molded in a second mold apparatus 400.
  • the second mold apparatus 400 may include a fifth mold (not shown), a sixth mold 420, a seventh mold 430, and an eighth mold 440.
  • the fifth mold (not shown) is located above, and the sixth mold 420 is located below.
  • the seventh mold 430 is located at the left side, and the eighth mold 440 is located at the right side.
  • the fifth mold (not shown), the sixth mold 420, the seventh mold 430 and the eighth mold 440 are combined with each other to form a second molding space 450.
  • the plurality of injection-molded tube arrays 100 are arranged side by side and inserted into the second molding space 450.
  • the second molding spaces are formed through the plurality of resin inlets 470 such that the main headers 40 are formed at both ends of the plurality of tube arrays 100.
  • 450 is injected into the resin.
  • the fifth mold (not shown), the sixth mold 420, the seventh mold 430 and the eighth mold 440 is separated, the tube assembly 200 in the second molding space (450) Take out.
  • FIG. 13 is a flow chart illustrating a method of manufacturing a heat exchanger according to another embodiment of the present invention. Reference numerals not shown refer to FIGS. 1 to 3. Descriptions overlapping with those described in FIG. 10 will be omitted.
  • the manufacturing method of the heat exchanger 1 forms the tube array 100 (T1), forms the tube assembly 200 (T2), the sub header 50, and the pipe 80. May be combined (T3), and the main header 40 and the subheader 50 may be combined (T4).
  • the sub header 50 may be injection molded from a polymer material.
  • the pipe 80 may be inserted during injection molding of the sub header 50 to connect the pipe 80 to at least one of the inlet 51a and the outlet 52a provided in the sub header 50.
  • the pipe 80 is inserted into the sub-head ( 50) can be injection molded.
  • the injection condition of the sub-header 50 may be adjusted so that the at least one leak prevention ring 83 is not damaged.
  • the headers 30a and 30b are coupled to the tube assembly 200
  • an embodiment in which the headers 30a and 30b are coupled to the tube array 100 is also possible. That is, the main header 40 is coupled to both ends of the tube array 100 including the plurality of tubes 10, and the sub header 50 is coupled to the outer side of the main header 40 to allow the refrigerant to move through the passage 70. ) Can be formed.
  • the heat exchanger 1 according to the present invention can be applied to various electronic devices including a refrigerator and an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

열교환 효율을 향상시킬 수 있도록 개선된 구조를 가지는 열교환기 및 그 제조방법을 개시한다. 본 발명의 사상에 따른 열교환기는 내부에 냉매가 유동하는 적어도 하나의 튜브 어레이(Tube array)를 포함하고, 상기 적어도 하나의 튜브 어레이는 내부에 채널이 형성되는 복수의 튜브 및 상기 복수의 튜브를 연결하도록 상기 복수의 튜브 양 단부에 결합되는 연결부재를 포함하고, 상기 복수의 튜브 및 상기 연결부재는 일체로 사출 성형되는 것을 특징으로 한다.

Description

열교환기 및 그 제조방법
본 발명은 열교환기 및 그 제조방법에 관한 것으로, 상세하게는 열교환 효율을 향상시킬 수 있도록 개선된 구조를 가지는 열교환기 및 그 제조방법에 관한 것이다.
일반적으로 열교환기는 내부에 냉매가 유동하며 외부 공기와 열교환하는 튜브와, 방열 면적을 넓히도록 상기 튜브에 접촉하는 열교환핀과, 상기 튜브의 양단이 연통되는 헤더를 구비하여, 냉매를 외부 공기와 열교환시키는 장치이다. 열교환기는 증발기 또는 응축기를 포함하고, 냉매를 압축하는 압축기와, 냉매를 팽창시키는 팽창밸브와 더불어 냉동 사이클 장치를 구성할 수 있다.
일반적으로 열교환기의 튜브는 구리재질의 관 형태로 형성되고, 열교환핀은 알루미늄재질의 박막 형태로 형성된다.
금속재질로 형성되는 열교환기의 튜브 및 열교환핀은 형상 변형이 어렵고, 형상 변형 시 제작비 상승효과를 초래할 수 있다.
또한, 튜브는 주로 용접에 의해 제조되므로, 용접 시 발생하는 틈새를 통해 냉매누설이 빈번하게 발생할 수 있다.
이처럼, 금속재질의 튜브 및 열교환핀을 포함하는 열교환기를 제조하기 위해서는 용접공정 및 냉매누설검사공정 등 복잡한 제조과정을 거쳐야 한다. 따라서, 열교환기의 제조비용이 상승하고, 제조시간이 지연된다는 문제점이 있다.
본 발명의 일 측면은 냉매 및 외부공기 사이의 열교환 면적이 확대되도록 개선된 구조를 가지는 열교환기 및 그 제조방법을 제공한다.
본 발명의 다른 일 측면은 대량생산 및 비용절감을 동시에 만족시킬 수 있도록 개선된 구조를 가지는 열교환기 및 그 제조방법을 제공한다.
본 발명의 또 다른 일 측면은 냉매 누설을 방지할 수 있도록 개선된 구조를 가지는 열교환기 및 그 제조방법을 제공한다.
본 발명의 사상에 따른 열교환기는 내부에 냉매가 유동하는 적어도 하나의 튜브 어레이(Tube array)를 포함하고, 상기 적어도 하나의 튜브 어레이는 내부에 채널이 형성되는 복수의 튜브 및 상기 복수의 튜브를 연결하도록 상기 복수의 튜브 양 단부에 결합되는 연결부재를 포함하고, 상기 복수의 튜브 및 상기 연결부재는 일체로 사출 성형되는 것을 특징으로 한다.
상기 복수의 튜브 및 상기 연결부재는 폴리머(Polymer) 재질을 가질 수 있다.
본 발명의 사상에 따른 열교환기는 상기 적어도 하나의 튜브 어레이의 양 단부에 결합되는 헤더(Header)를 더 포함할 수 있다.
상기 헤더는 상기 적어도 하나의 튜브 어레이의 양 단부에 결합되는 메인 헤더(Main header)를 포함하고, 상기 메인 헤더는 상기 적어도 하나의 튜브 어레이의 양 단부에 결합되도록 사출 성형될 수 있다.
상기 적어도 하나의 튜브 어레이는 나란히 배치되는 복수의 튜브 어레이를 포함하고, 상기 메인 헤더는 상기 복수의 튜브 어레이의 양 단부에 결합하여 상기 복수의 튜브 어레이를 연결하는 튜브 어셈블리(Tube assembly)를 형성하도록 사출 성형될 수 있다.
상기 메인 헤더는 폴리머 재질을 가질 수 있다.
상기 메인 헤더는 상기 연결부재에 결합되도록 사출 성형되고, 상기 연결부재의 외면에는 상기 연결부재의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈이 형성될 수 있다.
상기 헤더는 상기 메인 헤더의 외측에 결합하여 냉매이동통로를 형성하는 서브 헤더(Sub header)를 더 포함하고, 상기 서브 헤더 및 상기 메인 헤더의 결합방법은 열융착 방법 및 유도가열 방법을 포함할 수 있다.
상기 복수의 튜브 외주면에는 복수의 냉각핀이 마련되고, 상기 복수의 냉각핀은 상기 복수의 튜브 및 상기 연결부재와 일체로 사출 성형될 수 있다.
상기 복수의 냉각핀은 폴리머 재질을 가질 수 있다.
상기 복수의 튜브 외주면에는 복수의 냉각핀이 마련되고, 상기 복수의 냉각핀은 환형상을 가지고, 상기 복수의 튜브의 길이방향으로 상기 복수의 튜브의 외주면을 따라 배치될 수 있다.
상기 복수의 냉각핀은 기울어진 환형상을 가질 수 있다.
상기 복수의 냉각핀은 상기 복수의 튜브의 일 단부를 향하여 기울어진 환형상을 가지는 제 1냉각핀 및 상기 복수의 튜브의 다른 단부를 향하여 기울어진 환형상을 가지는 제 2냉각핀을 포함하고, 상기 제 1냉각핀 및 상기 제 2냉각핀은 적어도 하나의 교점을 형성할 수 있다.
상기 복수의 튜브는 외주면에 상기 제 1냉각핀이 마련되는 제 1튜브 및 상기 제 1튜브에 인접하고, 외주면에 상기 제 2냉각핀이 마련되는 제 2튜브를 포함하고,서로 마주하는 상기 제 1냉각핀 및 상기 제 2냉각핀의 일 단부는 상기 복수의 튜브의 길이방향을 따라 교대로 배치될 수 있다.
상기 서브 헤더는 폴리머 재질을 가지고, 상기 서브 헤더는 상기 복수의 튜브를 향하여 상기 냉매가 유입되는 유입구가 마련되는 유입헤더 및 상기 냉매가 유출되는 유출구가 마련되는 유출헤더를 포함할 수 있다.
본 발명의 사상에 따른 열교환기는 상기 냉매가 이동하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 연결되고, 상기 서브 헤더와 다른 재질을 가지는 배관을 더 포함하고, 상기 배관은 상기 서브 헤더의 사출 성형 시 인서트되어 상기 서브 헤더와 일체로 형성될 수 있다.
상기 배관의 재질은 구리(Cu)를 포함하고, 상기 냉매가 상기 배관 및 상기 서브 헤더 사이에서 누출되는 것을 방지하도록 상기 배관 및 상기 서브 헤더 사이에는 누출방지링이 위치할 수 있다.
상기 누출방지링은 실리콘 및 고무 재질을 포함할 수 있다.
본 발명의 사상에 따른 열교환기는 서로 나란히 배치되어 내부에 냉매가 유동하는 복수의 튜브, 상기 복수의 튜브를 연결하도록 상기 복수의 튜브의 양 단부에 결합되고, 상기 냉매의 유입구 및 유출구가 형성되는 헤더 및 상기 냉매가 상기 복수의 튜브를 따라 유동하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 결합되는 배관을 포함하고, 상기 배관은 상기 헤더의 사출 성형 시 인서트되어 상기 헤더와 일체로 형성되는 것을 특징으로 한다.
상기 냉매가 상기 배관 및 상기 헤더 사이에서 누출되는 것을 방지하도록 상기 배관 및 상기 헤더 사이에는 적어도 하나의 누출방지링이 배치될 수 있다.
상기 배관은 내부에 상기 냉매가 유동하는 유로가 형성되는 바디 및 상기 유입구 및 상기 유출구 중 적어도 하나에 결합되도록 상기 바디의 일 단부에 연결되고, 상기 바디와 다른 직경을 가지는 넥을 포함하고, 상기 적어도 하나의 누출방지링은 상기 넥에 근접하도록 상기 바디의 외주면에 배치될 수 있다.
상기 넥은 상기 바디보다 큰 직경을 가지고, 상기 넥의 직경은 상기 바디에 근접함에 따라 감소할 수 있다.
상기 헤더는 상기 유입구 및 상기 유출구가 마련되도록 상기 헤더의 외측을 향하여 돌출 형성되는 돌기부를 포함하고, 상기 바디는 상기 적어도 하나의 누출방지링이 상기 돌기부 내측에 위치하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 결합될 수 있다.
본 발명의 사상에 따른 열교환기는 내부에 냉매가 유동하는 채널이 형성되고, 서로 나란히 배치되는 복수의 튜브, 상기 복수의 튜브의 표면에 결합되고, 상기 튜브의 길이방향으로 서로 이격 배치되는 복수의 냉각핀 및 상기 복수의 튜브의 양 단부에 결합되는 헤더를 포함하고, 상기 복수의 튜브 및 상기 복수의 냉각핀은 일체로 사출 성형되는 것을 특징으로 한다.
본 발명의 사상에 따른 열교환기의 제조방법은 적어도 하나의 튜브 어레이를 형성하도록 복수의 튜브 및 상기 복수의 튜브 양 단부에 결합되는 연결부재를 일체로 사출 성형하고, 상기 적어도 하나의 튜브 어레이의 양 단부에 메인 헤더를 사출 성형하고, 상기 메인 헤더와 결합하여 냉매이동통로를 형성하도록 상기 메인 헤더의 외측에 서브 헤더를 결합시키는 것을 포함할 수 있다.
상기 적어도 하나의 튜브 어레이는 복수의 튜브 어레이를 포함하고, 상기 복수의 튜브 어레이를 나란히 배치하고, 상기 복수의 튜브 어레이의 양 단부에 상기 메인 헤더를 사출 성형하는 것을 특징으로 한다.
상기 복수의 튜브의 외주면에는 복수의 냉각핀이 형성되고, 상기 복수의 냉각핀은 상기 복수의 튜브 및 상기 연결부재와 일체로 사출 성형되는 것을 특징으로 한다.
상기 서브 헤더 및 상기 메인 헤더의 결합방법은 열융착 방법 및 유도가열방법을 포함할 수 있다.
상기 연결부재의 외면에는 상기 연결부재의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈이 형성될 수 있다.
상기 서브 헤더를 냉매가 이동하는 배관을 인서트하여 사출 성형하는 것을 특징으로 한다.
상기 서브 헤더를 상기 배관의 일부가 상기 서브 헤더의 외측에 위치하도록 상기 배관을 인서트하여 사출 성형하는 것을 특징으로 한다.
상기 냉매가 상기 배관 및 상기 서브 헤더 사이에서 누출되는 것을 방지하도록 상기 배관의 외주면에 누출방지링이 배치된 상태로 상기 배관을 인서트하여 상기 서브 헤더를 사출 성형하는 것을 특징으로 한다.
제 1금형 및 제 2금형이 결합하고, 제 3금형 및 제 4금형이 결합하여 상기 제 1금형 및 상기 제 2금형과 함께 성형공간을 형성하고, 상기 복수의 튜브의 내부에 상기 냉매가 이동하는 채널을 형성하도록 피스톤 코어를 상기 성형공간에 삽입하고, 상기 튜브 어레이를 사출 성형하도록 상기 성형공간에 수지를 주입하고, 상기 피스톤 코어를 상기 제 1금형, 상기 제 2금형, 상기 제 3금형 및 상기 제 4금형의 분리 후 상기 성형공간에서 분리하는 것을 특징으로 한다.
상기 제 1금형 및 상기 제 2금형이 결합하여 상기 복수의 튜브 및 상기 복수의 냉각핀의 형상을 형성하는 것을 특징으로 한다.
상기 제 3금형 및 상기 제 4금형이 상기 제 1금형 및 상기 제 2금형과 결합하여 상기 연결부재의 형상을 형성하는 것을 특징으로 한다.
폴리머 재질로 튜브 및 냉각핀을 일체로 성형함으로써, 튜브 내로 유동하는 냉매와 외부 공기와의 접촉 면적을 넓혀 열교환 효율을 향상시킬 수 있다.
폴리머 재질을 가지는 튜브는 사출 및 압출 성형에 의해 대량 생산이 가능하므로 공정 비용을 감소시킬 수 있고, 폴리머 재질의 특성 상 열교환기의 경량화를 기대할 수 있다.
폴리머 재질을 가지는 튜브는 형상 변형이 용이하므로 열교환기가 사용되는 제품 변형에 적절히 대응할 수 있다.
연결부재의 외면에 적어도 하나의 냉매 누설 방지홈을 형성함으로써, 메인 헤더 및 연결부재 사이의 결합 신뢰성을 증가시킬 수 있고, 그에 따라 메인 헤더 및 연결부재 사이의 냉매 누설을 방지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 열교환기의 외관을 도시한 사시도
도 2는 본 발명의 일 실시예에 따른 열교환기를 도시한 분해사시도
도 3은 본 발명의 일 실시예에 따른 열교환기의 튜브 어레이 및 튜브 어셈블리를 도시한 사시도
도 4는 본 발명의 일 실시예에 따른 열교환기의 연결부재 및 메인 헤더의 결합구조를 확대하여 도시한 도면
도 5는 본 발명의 일 실시예에 따른 열교환기의 메인 헤더 및 서브 헤더의 결합과정을 도시한 도면
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 열교환기의 다양한 냉각핀의 형상을 도시한 도면
도 7은 본 발명의 일 실시예에 따른 열교환기에 배관이 결합된 상태를 도시한 사시도
도 8은 본 발명의 일 실시예에 따른 열교환기에 결합되는 배관을 도시한 사시도
도 9는 본 발명의 일 실시예에 따른 열교환기 및 배관의 결합구조를 확대하여 도시한 단면도
도 10은 본 발명의 일 실시예에 따른 열교환기의 제조방법을 나타낸 플로우 차트(FLOW CHART)
도 11a 및 도 11b는 본 발명의 일 실시예에 따른 열교환기의 튜브 어레이를 제조하는 과정을 도시한 도면
도 12a 및 도 12b는 본 발명의 일 실시예에 따른 열교환기의 튜브 어셈블리를 제조하는 과정을 도시한 도면
도 13은 본 발명의 다른 실시예에 따른 열교환기의 제조방법을 나타낸 플로우 차트(FLOW CHART)
이하에서는 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다.
하기의 설명에서 사용된 용어 "선단", "후단", "상부", "하부", "상단" 및 "하단" 등은 도면을 기준으로 정의한 것이며, 이 용어에 의하여 각 구성요소의 형상 및 위치가 제한되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 열교환기의 외관을 도시한 사시도이고, 도 2는 본 발명의 일 실시예에 따른 열교환기를 도시한 분해사시도이다. 도 3은 본 발명의 일 실시예에 따른 열교환기의 튜브 어레이 및 튜브 어셈블리를 도시한 사시도이다.
도 1 내지 도 3에 도시된 바와 같이, 열교환기(1)는 구성 단위로써 튜브 어레이(Tube array)(100) 및 튜브 어셈블리(Tube assembly)(200)를 포함할 수 있다.
열교환기(1)는 내부에 냉매가 유동하는 적어도 하나의 튜브 어레이(100)를 포함할 수 있다.
튜브 어레이(100)는 복수의 튜브(10)가 결합되어 형성될 수 있고, 튜브 어셈블리(200)는 복수의 튜브 어레이(100)가 결합되어 형성될 수 있다. 열교환기(1)는 적어도 하나의 튜브 어셈블리(200)가 결합되어 형성될 수 있다.
열교환기(1)는 복수의 튜브(10), 복수의 냉각핀(20) 및 헤더(30a,30b)를 포함할 수 있다.
복수의 튜브(10)는 서로 나란히 배치될 수 있다.
복수의 튜브(10)는 유체인 냉매가 유동할 수 있도록 내부에 형성되는 채널(11)을 포함할 수 있다.
냉매는 기체상태에서 액체상태로 상 변화(압축)하면서 외부 공기와 열교환하거나, 액체상태에서 기체상태로 상 변화(팽창)하면서 외부 공기와 열교환한다. 냉매가 기체상태에서 액체상태로 상 변화할 때, 열교환기(1)는 응축기로 사용되고, 냉매가 액체상태에서 기체상태로 상 변화할 때, 열교환기(1)는 증발기로 사용된다.
복수의 튜브(10)는 폴리머(Polymer) 재질을 가질 수 있다.
폴리머 재질은 나일론(Nylon), 염화 비닐(Polyvinyl chloride, PVC), 폴리카보네이트(Polycarbonate, PC) 및 ABS 수지(Acrylonitrile butadiene styrene)를 포함할 수 있다.
복수의 튜브(10)는 압출 및 사출 성형될 수 있다. 이하, 설명의 편의를 위해 복수의 튜브(10)는 사출 성형된 것으로 본다.
복수의 튜브(10)의 양 단부에는 연결부재(12)가 결합될 수 있다.
연결부재(12)는 복수의 튜브(10)의 양 단부에 결합되어 튜브 어레이(100)를 형성할 수 있다.
연결부재(12)는 복수의 튜브(10)와 마찬가지로 폴리머 재질을 가질 수 있다.
또한, 연결부재(12)는 복수의 튜브(10)와 일체로 사출 성형될 수 있다.
헤더(30a,30b)는 연결부재(12)의 외측에 결합되는 제 1헤더(30a) 및 제 2헤더(30b)를 포함할 수 있다. 제 1헤더(30a)는 제 1방향(A)을 향하고, 제 2헤더(30b)는 제 2방향(B)을 향하도록 연결부재(12)의 외측에 결합될 수 있다. 제 1헤더(30a) 및 제 2헤더(30b)는 상호 소정 간격 이격되도록 배치되고, 제 1헤더(30a) 및 제 2헤더(30b)의 사이에는 복수의 튜브(10)가 배치될 수 있다.
제 1헤더(30a)에는 제 1방향(A)을 향하는 복수의 튜브(10)의 일 단부가 연통될 수 있고, 제 2헤더(30b)에는 제 2방향(B)을 향하는 복수의 튜브(10)의 다른 단부가 연통될 수 있다.
다만, 헤더(30a,30b) 및 복수의 튜브(10)의 배치구조는 상기 예에 한정하지 않는다.
제 1헤더(30a) 및 제 2헤더(30b)는 각각 메인 헤더(Main header)(40) 및 서브 헤더(Sub header)(50)를 포함할 수 있다.
메인 헤더(40)는 복수의 튜브 어레이(100)를 연결하여 튜브 어셈블리(200)를 형성하도록 복수의 튜브 어레이(100)의 양 단부에 결합될 수 있다.
메인 헤더(40)는 폴리머 재질을 가질 수 있다.
메인 헤더(40)는 복수의 튜브 어레이(100)의 양 단부에 결합되도록 사출 성형될 수 있다. 구체적으로, 메인 헤더(40)는 튜브 어셈블리(200)를 형성할 수 있도록 연결부재(12)의 외측에 사출 성형될 수 있다.
서브 헤더(50)는 복수의 튜브 어셈블리(200)를 연결하도록 메인 헤더(40)의 외측에 결합될 수 있다.
서브 헤더(50)는 폴리머 재질을 가질 수 있다.
서브 헤더(50)는 메인 헤더(40)의 외측에 결합하여 냉매이동통로(70)를 형성할 수 있다.
냉매이동통로(70)는 외부로부터 공급되는 냉매를 복수의 튜브(10)로 분산시켜 공급하는 챔버역할을 한다.
서브 헤더(60)는 유입헤더(51) 및 유출헤더(52)를 포함할 수 있다. 유입헤더(51)에는 복수의 튜브(10)를 향하여 냉매가 유입되는 유입구(51a)가 형성되고, 유출헤더(52)에는 복수의 튜브(10)에서 냉매가 유출되는 유출구(52a)가 형성될 수 있다.
유입헤더(51) 및 유출헤더(52)는 서로 다른 방향을 향하도록 유입헤더(51)는 제 1헤더(30a) 및 제 2헤더(30b) 중 어느 하나에 마련되고, 유출헤더(52)는 제 1헤더(30a) 및 제 2헤더(30b) 중 다른 하나에 마련될 수도 있다.
복수의 튜브 어셈블리(200)는 적층구조를 가질 수 있다.
복수의 튜브 어셈블리(200)는 상하방향으로 적층된 구조를 가질 수 있다.
복수의 튜브 어셈블리(200)가 상하방향으로 적층되는 경우, 냉매이동통로(70)는 복수의 튜브(10)를 순차적으로 유동하는 냉매의 흐름 동작을 상하방향으로 가이드할 수 있다. 또한, 유입헤더(51) 및 유출헤더(52)는 상하로 배치될 수 있다. 바람직하게는, 유출헤더(52)는 유입헤더(51)의 상방에 배치될 수 있다.
유입헤더(51) 및 유출헤더(52)는 동일한 방향을 향하도록 모두 제 1헤더(30a) 또는 제 2헤더(30b)에 마련될 수 있다.
앞서 설명한 바와 같이, 유입헤더(51) 및 유출헤더(52)는 서로 다른 방향을 향하도록 유입헤더(51)는 제 1헤더(30a) 및 제 2헤더(30b) 중 어느 하나에 마련되고, 유출헤더(52)는 제 1헤더(30a) 및 제 2헤더(30b) 중 다른 하나에 마련될 수도 있다.
채널(11)을 따라 유동하는 냉매가 외부 공기와 효율적으로 열교환할 수 있도록 복수의 튜브(10)의 표면에는 복수의 냉각핀(20)이 결합될 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)의 길이방향으로 일정간격 서로 이격 배치될 수 있다. 복수의 냉각핀(20)은 복수의 튜브(10)의 외주면에 결합되어 채널(11)을 따라 유동하는 냉매 및 외부 공기의 접촉면적을 넓히는 역할을 한다.
복수의 냉각핀(20)은 폴리머 재질을 가질 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)와 일체로 사출 성형될 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10) 및 연결부재(12)와 일체로 사출 성형될 수 있다.
복수의 냉각핀(20)은 다양한 형상을 가질 수 있고, 이에 대한 상세한 설명은 후술한다.
열교환기(1)는 외부 공기가 이동하는 공기이동통로(60)를 더 포함할 수 있다.
공기이동통로(60)는 복수의 튜브 어레이(100)의 사이에 형성될 수 있다.
공기이동통로(60)는 복수의 튜브(10)의 길이방향에 대하여 수직방향으로 배치될 수 있다. 즉, 공기이동통로(60)를 따라 이동하는 외부 공기의 흐름과 채널(11)을 따라 유동하는 냉매의 흐름은 서로 직교할 수 있다.
도 4는 본 발명의 일 실시예에 따른 열교환기의 연결부재 및 메인 헤더의 결합구조를 확대하여 도시한 도면이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다.
도 4에 도시된 바와 같이, 메인 헤더(40)는 튜브 어셈블리(200)를 형성하도록 연결부재(12)의 외측에 결합될 수 있다.
연결부재(12)의 외면에는 연결부재(12)의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈(13)이 형성될 수 있다.
적어도 하나의 냉매 누설 방지홈(13)은 연결부재(12)의 길이방향으로 폐곡선을 형성하도록 연결부재(12)의 외둘레면을 따라 마련될 수 있다.
적어도 하나의 냉매 누설 방지홈(13)에는 메인 헤더(40)에서 돌출 형성되는 삽입 돌기부(41)가 결합될 수 있다. 삽입 돌기부(41)는 적어도 하나의 냉매 누설 방지홈(13)에 대응하는 폐곡선 형상을 가질 수 있다.
적어도 하나의 냉매 누설 방지홈(13) 및 삽입 돌기부(41)의 결합에 의해, 연결부재(12) 및 메인 헤더(40)의 결합을 견고히 할 수 있고, 냉매의 기밀성을 유지할 수 있다.
삽입 돌기부(41)는 메인헤더(40)의 사출성형과정에서 사출물이 연결부재(12)의 적어도 하나의 냉매 누설 방지홈(13)에 채워져 형성될 수 있다.
도 5는 본 발명의 일 실시예에 따른 열교환기의 메인 헤더 및 서브 헤더의 결합과정을 도시한 도면이다.
도 5에 도시된 바와 같이, 서브 헤더(50)는 메인 헤더(40)의 외측에 결합하여 냉매이동통로(70)를 형성할 수 있다.
메인 헤더(40) 및 서브 헤더(50)의 결합부(45)는 메인 헤더(40) 및 서브 헤더(50)의 가장자리를 따라 형성될 수 있다.
메인 헤더(40) 및 서브 헤더(50)의 결합방법은 열융착 방법 및 유도가열 방법을 포함할 수 있다. 구체적으로, 열융착 방법은 메인 헤더(40) 및 서브 헤더(50)의 용융점 이상의 온도를 가지는 열융착지그(미도시)로 결합부(45)를 녹임과 동시에 가압하여 메인 헤더(40) 및 서브 헤더(50)를 접합시키는 방법이다. 유도가열 방법은 결합부(45) 사이에 금속부재(미도시)를 삽입한 후 외부 자기장 또는 외부 전기장을 유도하여 메인 헤더(40) 및 서브 헤더(50)를 접합시키는 방법이다.
메인 헤더(40) 및 서브 헤더(50)의 결합을 견고히 함으로써 냉매 누설을 방지할 수 있다.
도 6a 내지 도 6e는 본 발명의 일 실시예에 따른 열교환기의 다양한 냉각핀의 형상을 도시한 도면이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다. 또한, 중복되는 설명은 생략한다.
도 6a 내지 도 6d에 도시된 바와 같이, 복수의 튜브(10)의 외주면에는 복수의 냉각핀(20)이 마련될 수 있다.
복수의 냉각핀(20)은 환형상을 가질 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)의 길이방향으로 복수의 튜브(10)의 외주면을 따라 이격 배치될 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)에 대한 수직방향(X)을 기준으로 기울어진 환형상을 가질 수 있다.
복수의 냉각핀(20)의 기울어진 정도는 다양할 수 있다.
설명의 편의상, 복수의 냉각핀(20)이 제 1냉각핀(21) 및 제 2냉각핀(22)을 포함한다고 가정한다. 제 1냉각핀(21)은 복수의 튜브(10)에 대한 수직방향(X)을 기준으로 제 1방향(A)을 향하는 복수의 튜브(10)의 일 단부를 향하여 기울어진 환형상을 가지고, 제 2냉각핀(22)은 복수의 튜브(10)에 대한 수직방향(X)을 기준으로 제 2방향(B)을 향하는 복수의 튜브(10)의 다른 단부를 향하여 기울어진 환형상을 가질 수 있다.(도6b참고)
제 1냉각핀(21) 및 제 2냉각핀(22)은 복수의 튜브(10)의 표면에 마련되어 적어도 하나의 교점을 형성할 수 있다. 일 예로써, 제 1냉각핀(21) 및 제 2냉각핀(22)은 "X자" 형태로 교차하여 하나의 교점을 형성할 수 있다.(도6c참고)
설명의 편의상, 복수의 튜브(10)가 서로 인접하는 제 1튜브(14) 및 제 2튜브(15)를 포함한다고 가정한다. 제 1튜브(14)의 외주면에는 제 1냉각핀(21)이 마련되고, 제 2튜브(15)의 외주면에는 제 2냉각핀(22)이 마련될 수 있다. 서로 마주하는 제 1냉각핀(21) 및 제 2냉각핀(22)의 일 단부(21a,22a)는 복수의 튜브(10)의 길이방향을 따라 교대로 배치될 수 있다.(도6d참고)
한편, 도 6e에 도시된 바와 같이, 복수의 튜브(10)의 외주면에 배치되는 복수의 냉각핀(20)은 생략될 수 있다.(도6e참고)
다만, 복수의 튜브(10)의 표면에 복수의 냉각핀(20)이 배치되는 경우, 채널(11)을 유동하는 냉매 및 외부 공기의 접촉면적이 증가하고, 복수의 냉각핀(20)에 의해 난류가 촉진될 수 있으므로, 복수의 냉각핀(20)을 생략한 경우에 비하여 20~25%의 열교환능력 향상 효과를 기대할 수 있다.
특히, 도 6b에 도시된 바와 같이, 서로 마주하는 제 1냉각핀(21) 및 제 2냉각핀(22)의 일 단부(21a,22a)가 교대로 배치되는 경우, 냉매 및 외부 공기의 접촉면적이 크고, 접촉면적 내에서의 열저항이 작으므로, 가장 우수한 열교환 능력 향상 효과를 기대할 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)의 외측을 향하여 돌출되는 반구 형상을 가질 수 있다.
복수의 냉각핀(20)은 다양한 형상을 가질 수 있고, 상기 예에 한정하지 않는다.
도 7은 본 발명의 일 실시예에 따른 열교환기에 배관이 결합된 상태를 도시한 사시도이고, 도 8은 본 발명의 일 실시예에 따른 열교환기에 결합되는 배관을 도시한 사시도이다. 도 9는 본 발명의 일 실시예에 따른 열교환기 및 배관의 결합구조를 확대하여 도시한 단면도이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다. 또한, 중복되는 설명은 생략한다.
도 7 내지 도 9에 도시된 바와 같이, 열교환기(1)는 유입구(51a) 및 유출구(52a) 중 적어도 하나에 결합되는 배관(80)을 더 포함할 수 있다.
배관(80)은 서브 헤더(50)와 다른 재질을 가질 수 있다.
배관(80)의 재질은 구리(Cu)를 포함할 수 있다.
열교환기(1)가 증발기로 사용되는 경우, 유입구(51a)에 결합되는 제 1배관(81)에는 팽창밸브(미도시)를 통과한 저온저압의 액상 또는 기상 냉매가 유입될 수 있다. 제 1배관(81)으로 유입된 냉매는 복수의 튜브(10)를 통과하여 외부의 열을 빼앗아 증발되고, 유출구(52a)에 결합되는 제 2배관(82)을 통해 외부로 유출될 수 있다.
이와 반대로, 열교환기(1)가 응축기로 사용되는 경우, 압축기(미도시)를 통과한 고온고압의 기상 냉매가 제 2배관(82)을 통해 유입되고, 복수의 튜브(10)를 통과하여 외부에 열을 빼앗겨 응축되며, 응축된 냉매가 제 1배관(81)을 통해 외부로 유출될 수 있다.
배관(80)은 서브 헤더(50)의 사출 성형 시 인서트되어 서브 헤더(50)와 일체로 형성될 수 있다.
냉매가 배관(80) 및 서브 헤더(50) 사이에서 누출되는 것을 방지하도록 배관(80) 및 서브 헤더(50) 사이에는 적어도 하나의 누출방지링(83)이 배치될 수 있다.
적어도 하나의 누출방지링(83)은 서브 헤더(50)의 사출 성형 시 발생하는 고온의 열에 견딜 수 있는 재질을 가질 수 있다.
적어도 하나의 누출방지링(83)은 실리콘 및 고무 재질을 포함할 수 있다.
배관(80)은 바디(84) 및 넥(85)을 포함할 수 있다.
바디(84)는 중공의 원기둥 형상을 가질 수 있고, 내부에 냉매가 유동하는 유로(84a)가 형성될 수 있다.
넥(85)은 유입구(51a) 및 유출구(52a) 중 적어도 하나에 결합되도록 바디(84)의 일 단부에 연결되고, 바디(84)와 다른 직경을 가질 수 있다.
넥(85)은 바디(84)보다 큰 직경을 가질 수 있다.
넥(85)의 직경은 바디(84)에 근접함에 따라 감소할 수 있다. 즉, 넥(85)은 바디(84)에서 멀어질수록 직경이 증가하는 깔때기 형상을 가질 수 있다.
적어도 하나의 누출방지링(83)은 넥(85)에 근접하도록 바디(84)의 외주면에 배치될 수 있다.
적어도 하나의 누출방지링(83)은 바디(84)의 외주면을 따라 배치될 수 있도록 환형상을 가질 수 있다.
서브 헤더(50)는 유입구(51a) 및 유출구(52a)가 마련되도록 서브 헤더(50)의 외측을 향하여 돌출 형성되는 돌기부(53)를 포함할 수 있다.
바디(84)는 적어도 하나의 누출방지링(83)이 돌기부(53)의 내측에 위치하도록 유입구(51a) 및 유출구(52a) 중 적어도 하나에 결합될 수 있다.
배관(80)의 외면에 적어도 하나의 누출방지링(83)이 배치된 상태에서 서브 헤더(50)를 사출 성형할 경우, 서브 헤더(50)는 사출 성형과정에서 수축에 의해 적어도 하나의 누출방지링(83)을 가압하게 되고, 그로 인해 냉매의 기밀성을 확보할 수 있다.
도 10은 본 발명의 일 실시예에 따른 열교환기의 제조방법을 나타낸 플로우 차트(FLOW CHART)이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다.
도 10에 나타낸 바와 같이, 열교환기(1)의 제조방법은 튜브 어레이(100)를 형성하고(S1), 튜브 어셈블리(200)를 형성하고(S2), 메인 헤더(40) 및 서브 헤더(50)를 결합시키는 것(S3)을 포함할 수 있다.
구체적으로, 복수의 튜브(10) 및 복수의 튜브(10)의 양 단부에 결합되는 연결부재(12)를 일체로 사출 성형하여 튜브 어레이(100)를 형성할 수 있다.
복수의 냉각핀(20)은 복수의 튜브(10)의 외주면에 마련되도록 복수의 튜브(10) 및 연결부재(12)와 일체로 사출 성형될 수 있다.
튜브 어레이(100)는 연결부재(12)의 외면에 연결부재(12)의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈(13)이 형성되도록 사출 성형될 수 있다.
서로 나란히 배치되는 복수의 튜브 어레이(100)를 인서트하고, 메인 헤더(40)를 사출 성형하여 튜브 어셈블리(200)를 형성할 수 있다.
튜브 어레이(100) 및 메인 헤더(40)는 서로 다른 폴리머 재질을 가질 수 있다.
메인 헤더(40)는 복수의 튜브 어레이(100)의 양 단부에 위치할 수 있다.
서브 헤더(50)는 냉매가 이동하는 배관(80)을 인서트하여 사출 성형될 수 있다. 구체적으로, 서브 헤더(50)는 배관(80)의 일부가 서브 헤더(50)의 외측에 위치하도록, 즉, 배관(80)의 일부가 외부에 노출되도록, 배관(80)을 인서트하여 사출 성형될 수 있다.
메인 헤더(40)와 결합하여 냉매이동통로(70)를 형성하도록 메인 헤더(40)의 외측에 서브 헤더(50)를 결합시킬 수 있다.
메인 헤더(40) 및 서브 헤더(50)의 결합방법은 열융착 방법 및 유도가열방법을 포함할 수 있다.
도 11a 및 도 11b는 본 발명의 일 실시예에 따른 열교환기의 튜브 어레이를 제조하는 과정을 도시한 도면이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다.
도 11a 및 도 11b에 도시된 바와 같이, 튜브 어레이(100)는 제 1금형장치(300)에서 성형될 수 있다.
제 1금형장치(300)는 제 1금형(310), 제 2금형(320), 제 3금형(330) 및 제 4금형(340)을 포함할 수 있다. 제 1금형(310)은 상측에 위치하고, 제 2금형(320)은 하측에 위치한다. 제 3금형(330)은 좌측에 위치하고, 제 4금형(340)은 우측에 위치한다. 제 1금형(310), 제 2금형(320), 제 3금형(330) 및 제 4금형(340)은 서로 결합하여 제 1성형공간(350)을 형성한다.
제 1금형(310) 및 제 2금형(320)은 서로 결합하여 복수의 튜브(10)의 형상을 형성할 수 있다.
제 1금형(310) 및 제 2금형(320)은 서로 결합하여 복수의 튜브(10) 및 복수의 냉각핀(20)의 형상을 일체로 형성할 수 있다.
제 3금형(330) 및 제 4금형(340)은 제 1금형(310) 및 제 2금형(320)과 결합하여 연결부재(12)의 형상을 형성할 수 있다.
복수의 튜브(10)의 내부에 냉매가 이동하는 채널(11)을 형성하도록 피스톤 코어(360)가 제 1성형공간(350)에 삽입될 수 있다. 피스콘 코어(360)는 제 4금형(340)을 관통하여 일 단부가 제 3금형(330)의 내면에 접하도록 제 1성형공간(350)에 삽입될 수 있다.
피스콘 코어(360)가 제 1성형공간(350)에 삽입되면 복수의 수지 주입구(370)를 통해 제 1성형공간(350) 내부로 수지를 주입한다.
일정 시간 경과 후, 제 1금형(310), 제 2금형(320), 제 3금형(330) 및 제 4금형(340)을 분리하고, 최종적으로 피스콘 코어(360)를 제 1성형공간(350)에서 분리하여 폴리머 재질의 튜브 어레이(100)를 취출한다.
피스콘 코어(360)는 에어실린더(380)에 의해 제 1성형공간(350)에서 분리될 수 있다.
제 3금형(330) 및 제 4금형(340)의 내면에는 제 1성형공간(350)을 향하여 돌출되는 돌기부(미도시)가 마련될 수 있다. 제 3금형(330) 및 제 4금형(340)에 마련되는 돌기부는 연결부재(12)에 적어도 하나의 냉매 누설 방지홈(13)을 형성할 수 있다. 즉, 돌기부는 적어도 하나의 냉매 누설 방지홈(13)에 대응하는 형상을 가질 수 있다.
도 12a 및 도 12b는 본 발명의 일 실시예에 따른 열교환기의 튜브 어셈블리를 제조하는 과정을 도시한 도면이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다.
도 12a 및 도 12b에 도시된 바와 같이, 튜브 어셈블리(200)는 제 2금형장치(400)에서 성형될 수 있다.
제 2금형장치(400)는 제 5금형(미도시), 제 6금형(420), 제 7금형(430) 및 제 8금형(440)을 포함할 수 있다. 제 5금형(미도시)은 상측에 위치하고, 제 6금형(420)은 하측에 위치한다. 제 7금형(430)은 좌측에 위치하고, 제 8금형(440)은 우측에 위치한다. 제 5금형(미도시), 제 6금형(420), 제 7금형(430) 및 제 8금형(440)은 서로 결합하여 제 2성형공간(450)을 형성한다.
사출 성형된 복수의 튜브 어레이(100)는 서로 나란히 배치되어 제 2성형공간(450)에 인서트된다.
복수의 튜브 어레이(100)가 제 2성형공간(450)에 인서트되면 복수의 튜브 어레이(100)의 양 단부에 메인 헤더(40)가 형성되도록 복수의 수지 주입구(470)를 통해 제 2성형공간(450) 내부로 수지를 주입한다.
일정 시간 경과 후, 제 5금형(미도시), 제 6금형(420), 제 7금형(430) 및 제 8금형(440)을 분리하고, 제 2성형공간(450)에서 튜브 어셈블리(200)를 취출한다.
도 13은 본 발명의 다른 실시예에 따른 열교환기의 제조방법을 나타낸 플로우 차트(FLOW CHART)이다. 미도시된 도면 부호는 도 1 내지 도 3을 참조한다. 도 10에서 설명한 것과 중복되는 설명은 생략한다.
도 13에 나타낸 바와 같이, 열교환기(1)의 제조방법은 튜브 어레이(100)를 형성하고(T1), 튜브 어셈블리(200)를 형성하고(T2), 서브 헤더(50) 및 배관(80)을 결합시키고(T3), 메인 헤더(40) 및 서브 헤더(50)를 결합시키는 것(T4)를 포함할 수 있다.
서브 헤더(50)는 폴리머 재질로 사출 성형될 수 있다.
서브 헤더(50)에 마련되는 유입구(51a) 및 유출구(52a) 중 적어도 하나에 배관(80)을 연결하도록 서브 헤더(50)의 사출 성형 시 배관(80)을 인서트할 수 있다.
냉매가 배관(80) 및 서브 헤더(50) 사이에서 누출되는 것을 방지하도록 배관(80)의 외주면에 적어도 하나의 누출방지링(83)이 배치된 상태로 배관(80)을 인서트하여 서브 헤더(50)를 사출 성형할 수 있다. 이 때, 적어도 하나의 누출방지링(83)이 손상되지 않도록 서브 헤더(50)의 사출조건을 조절할 수 있다.
이상에서는 튜브 어셈블리(200)에 헤더(30a,30b)가 결합되는 실시예를 중심으로 설명하였으나, 튜브 어레이(100)에 헤더(30a,30b)가 결합되는 실시예도 가능하다. 즉, 복수의 튜브(10)를 포함하는 튜브 어레이(100)의 양 단부에 메인 헤더(40)가 결합되고, 메인 헤더(40)의 외측에 서브 헤더(50)가 결합되어 냉매이동통로(70)를 형성할 수 있다.
본 발명에 따른 열교환기(1)는 냉장고 및 공기조화기를 포함하는 다양한 전자기기에 적용될 수 있다.
이상에서는 특정의 실시예에 대하여 도시하고 설명하였다. 그러나, 상기한 실시예에만 한정되지 않으며, 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 이하의 청구범위에 기재된 발명의 기술적 사상의 요지를 벗어남이 없이 얼마든지 다양하게 변경 실시할 수 있을 것이다.

Claims (35)

  1. 내부에 냉매가 유동하는 적어도 하나의 튜브 어레이(Tube array)를 포함하는 열교환기에 있어서,
    상기 적어도 하나의 튜브 어레이는,
    내부에 채널이 형성되는 복수의 튜브; 및
    상기 복수의 튜브를 연결하도록 상기 복수의 튜브 양 단부에 결합되는 연결부재;를 포함하고,
    상기 복수의 튜브 및 상기 연결부재는 일체로 사출 성형되는 것을 특징으로 하는 열교환기.
  2. 제 1 항에 있어서,
    상기 복수의 튜브 및 상기 연결부재는 폴리머(Polymer) 재질을 가지는 것을 특징으로 하는 열교환기.
  3. 제 1 항에 있어서,
    상기 적어도 하나의 튜브 어레이의 양 단부에 결합되는 헤더(Header)를 더 포함하는 것을 특징으로 하는 열교환기.
  4. 제 3 항에 있어서,
    상기 헤더는 상기 적어도 하나의 튜브 어레이의 양 단부에 결합되는 메인 헤더(Main header)를 포함하고,
    상기 메인 헤더는 상기 적어도 하나의 튜브 어레이의 양 단부에 결합되도록 사출 성형되는 것을 특징으로 하는 열교환기.
  5. 제 4 항에 있어서,
    상기 적어도 하나의 튜브 어레이는 나란히 배치되는 복수의 튜브 어레이를 포함하고,
    상기 메인 헤더는 상기 복수의 튜브 어레이의 양 단부에 결합하여 상기 복수의 튜브 어레이를 연결하는 튜브 어셈블리(Tube assembly)를 형성하도록 사출 성형되는 것을 특징으로 하는 열교환기.
  6. 제 4 항에 있어서,
    상기 메인 헤더는 폴리머 재질을 가지는 것을 특징으로 하는 열교환기.
  7. 제 4 항에 있어서,
    상기 메인 헤더는 상기 연결부재에 결합되도록 사출 성형되고,
    상기 연결부재의 외면에는 상기 연결부재의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈이 형성되는 것을 특징으로 하는 열교환기.
  8. 제 4 항에 있어서,
    상기 헤더는 상기 메인 헤더의 외측에 결합하여 냉매이동통로를 형성하는 서브 헤더(Sub header)를 더 포함하고,
    상기 서브 헤더 및 상기 메인 헤더의 결합방법은 열융착 방법 및 유도가열 방법을 포함하는 것을 특징으로 하는 열교환기.
  9. 제 1 항에 있어서,
    상기 복수의 튜브 외주면에는 복수의 냉각핀이 마련되고,
    상기 복수의 냉각핀은 상기 복수의 튜브 및 상기 연결부재와 일체로 사출 성형되는 것을 특징으로 하는 열교환기.
  10. 제 9 항에 있어서,
    상기 복수의 냉각핀은 폴리머 재질을 가지는 것을 특징으로 하는 열교환기.
  11. 제 1 항에 있어서,
    상기 복수의 튜브 외주면에는 복수의 냉각핀이 마련되고,
    상기 복수의 냉각핀은 환형상을 가지고, 상기 복수의 튜브의 길이방향으로 상기 복수의 튜브의 외주면을 따라 배치되는 것을 특징으로 하는 열교환기.
  12. 제 11 항에 있어서,
    상기 복수의 냉각핀은 기울어진 환형상을 가지는 것을 특징으로 하는 열교환기.
  13. 제 11 항에 있어서,
    상기 복수의 냉각핀은,
    상기 복수의 튜브의 일 단부를 향하여 기울어진 환형상을 가지는 제 1냉각핀; 및
    상기 복수의 튜브의 다른 단부를 향하여 기울어진 환형상을 가지는 제 2냉각핀;을 포함하고,
    상기 제 1냉각핀 및 상기 제 2냉각핀은 적어도 하나의 교점을 형성하는 것을 특징으로 하는 열교환기.
  14. 제 13 항에 있어서,
    상기 복수의 튜브는,
    외주면에 상기 제 1냉각핀이 마련되는 제 1튜브; 및
    상기 제 1튜브에 인접하고, 외주면에 상기 제 2냉각핀이 마련되는 제 2튜브;를 포함하고,
    서로 마주하는 상기 제 1냉각핀 및 상기 제 2냉각핀의 일 단부는 상기 복수의 튜브의 길이방향을 따라 교대로 배치되는 것을 특징으로 하는 열교환기.
  15. 제 8 항에 있어서,
    상기 서브 헤더는 폴리머 재질을 가지고,
    상기 서브 헤더는,
    상기 복수의 튜브를 향하여 상기 냉매가 유입되는 유입구가 마련되는 유입헤더; 및
    상기 냉매가 유출되는 유출구가 마련되는 유출헤더;를 포함하는 것을 특징으로 하는 열교환기.
  16. 제 15 항에 있어서,
    상기 냉매가 이동하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 연결되고, 상기 서브 헤더와 다른 재질을 가지는 배관을 더 포함하고,
    상기 배관은 상기 서브 헤더의 사출 성형 시 인서트되어 상기 서브 헤더와 일체로 형성되는 것을 특징으로 하는 열교환기.
  17. 제 16 항에 있어서,
    상기 배관의 재질은 구리(Cu)를 포함하고,
    상기 냉매가 상기 배관 및 상기 서브 헤더 사이에서 누출되는 것을 방지하도록 상기 배관 및 상기 서브 헤더 사이에는 누출방지링이 위치하는 것을 특징으로 하는 열교환기.
  18. 제 17 항에 있어서,
    상기 누출방지링은 실리콘 및 고무 재질을 포함하는 것을 특징으로 하는 열교환기.
  19. 서로 나란히 배치되어 내부에 냉매가 유동하는 복수의 튜브;
    상기 복수의 튜브를 연결하도록 상기 복수의 튜브의 양 단부에 결합되고, 상기 냉매의 유입구 및 유출구가 형성되는 헤더; 및
    상기 냉매가 상기 복수의 튜브를 따라 유동하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 결합되는 배관;을 포함하고,
    상기 배관은 상기 헤더의 사출 성형 시 인서트되어 상기 헤더와 일체로 형성되는 것을 특징으로 하는 열교환기.
  20. 제 19 항에 있어서,
    상기 냉매가 상기 배관 및 상기 헤더 사이에서 누출되는 것을 방지하도록 상기 배관 및 상기 헤더 사이에는 적어도 하나의 누출방지링이 배치되는 것을 특징으로 하는 열교환기.
  21. 제 20 항에 있어서,
    상기 배관은,
    내부에 상기 냉매가 유동하는 유로가 형성되는 바디; 및
    상기 유입구 및 상기 유출구 중 적어도 하나에 결합되도록 상기 바디의 일 단부에 연결되고, 상기 바디와 다른 직경을 가지는 넥;을 포함하고,
    상기 적어도 하나의 누출방지링은 상기 넥에 근접하도록 상기 바디의 외주면에 배치되는 것을 특징으로 하는 열교환기.
  22. 제 21 항에 있어서,
    상기 넥은 상기 바디보다 큰 직경을 가지고,
    상기 넥의 직경은 상기 바디에 근접함에 따라 감소하는 것을 특징으로 하는 열교환기.
  23. 제 21 항에 있어서,
    상기 헤더는 상기 유입구 및 상기 유출구가 마련되도록 상기 헤더의 외측을 향하여 돌출 형성되는 돌기부를 포함하고,
    상기 바디는 상기 적어도 하나의 누출방지링이 상기 돌기부 내측에 위치하도록 상기 유입구 및 상기 유출구 중 적어도 하나에 결합되는 것을 특징으로 하는 열교환기.
  24. 내부에 냉매가 유동하는 채널이 형성되고, 서로 나란히 배치되는 복수의 튜브;
    상기 복수의 튜브의 표면에 결합되고, 상기 튜브의 길이방향으로 서로 이격 배치되는 복수의 냉각핀; 및
    상기 복수의 튜브의 양 단부에 결합되는 헤더;를 포함하고,
    상기 복수의 튜브 및 상기 복수의 냉각핀은 일체로 사출 성형되는 것을 특징으로 하는 열교환기.
  25. 적어도 하나의 튜브 어레이를 형성하도록 복수의 튜브 및 상기 복수의 튜브 양 단부에 결합되는 연결부재를 일체로 사출 성형하고,
    상기 적어도 하나의 튜브 어레이의 양 단부에 메인 헤더를 사출 성형하고,
    상기 메인 헤더와 결합하여 냉매이동통로를 형성하도록 상기 메인 헤더의 외측에 서브 헤더를 결합시키는 것을 포함하는 열교환기의 제조방법.
  26. 제 25 항에 있어서,
    상기 적어도 하나의 튜브 어레이는 복수의 튜브 어레이를 포함하고,
    상기 복수의 튜브 어레이를 나란히 배치하고, 상기 복수의 튜브 어레이의 양 단부에 상기 메인 헤더를 사출 성형하는 것을 특징으로 하는 열교환기의 제조방법.
  27. 제 25 항에 있어서,
    상기 복수의 튜브의 외주면에는 복수의 냉각핀이 형성되고,
    상기 복수의 냉각핀은 상기 복수의 튜브 및 상기 연결부재와 일체로 사출 성형되는 것을 특징으로 하는 열교환기의 제조방법.
  28. 제 25 항에 있어서,
    상기 서브 헤더 및 상기 메인 헤더의 결합방법은 열융착 방법 및 유도가열방법을 포함하는 것을 특징으로 하는 열교환기의 제조방법.
  29. 제 25 항에 있어서,
    상기 연결부재의 외면에는 상기 연결부재의 내측을 향하여 함몰되는 적어도 하나의 냉매 누설 방지홈이 형성되는 것을 특징으로 하는 열교환기의 제조방법.
  30. 제 25 항에 있어서,
    상기 서브 헤더를 냉매가 이동하는 배관을 인서트하여 사출 성형하는 것을 특징으로 하는 열교환기의 제조방법.
  31. 제 30 항에 있어서,
    상기 서브 헤더를 상기 배관의 일부가 상기 서브 헤더의 외측에 위치하도록 상기 배관을 인서트하여 사출 성형하는 것을 특징으로 하는 열교환기의 제조방법.
  32. 제 30 항에 있어서,
    상기 냉매가 상기 배관 및 상기 서브 헤더 사이에서 누출되는 것을 방지하도록 상기 배관의 외주면에 누출방지링이 배치된 상태로 상기 배관을 인서트하여 상기 서브 헤더를 사출 성형하는 것을 특징으로 하는 열교환기의 제조방법.
  33. 제 27 항에 있어서,
    제 1금형 및 제 2금형이 결합하고,
    제 3금형 및 제 4금형이 결합하여 상기 제 1금형 및 상기 제 2금형과 함께 성형공간을 형성하고,
    상기 복수의 튜브의 내부에 상기 냉매가 이동하는 채널을 형성하도록 피스톤 코어를 상기 성형공간에 삽입하고,
    상기 튜브 어레이를 사출 성형하도록 상기 성형공간에 수지를 주입하고,
    상기 피스톤 코어를 상기 제 1금형, 상기 제 2금형, 상기 제 3금형 및 상기 제 4금형의 분리 후 상기 성형공간에서 분리하는 것을 특징으로 하는 열교환기의 제조방법.
  34. 제 33 항에 있어서,
    상기 제 1금형 및 상기 제 2금형이 결합하여 상기 복수의 튜브 및 상기 복수의 냉각핀의 형상을 형성하는 것을 특징으로 하는 열교환기의 제조방법.
  35. 제 33 항에 있어서,
    상기 제 3금형 및 상기 제 4금형이 상기 제 1금형 및 상기 제 2금형과 결합하여 상기 연결부재의 형상을 형성하는 것을 특징으로 하는 열교환기의 제조방법.
PCT/KR2015/002568 2014-03-19 2015-03-17 열교환기 및 그 제조방법 WO2015142028A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15764496.4A EP3121545B1 (en) 2014-03-19 2015-03-17 Heat exchanger and method for manufacturing same
US15/124,622 US10048010B2 (en) 2014-03-19 2015-03-17 Heat exchanger and method for manufacturing same
CN201580014862.2A CN106133467B (zh) 2014-03-19 2015-03-17 热交换器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140032198A KR20150109130A (ko) 2014-03-19 2014-03-19 열교환기 및 그 제조방법
KR10-2014-0032198 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015142028A1 true WO2015142028A1 (ko) 2015-09-24

Family

ID=54144924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/002568 WO2015142028A1 (ko) 2014-03-19 2015-03-17 열교환기 및 그 제조방법

Country Status (5)

Country Link
US (1) US10048010B2 (ko)
EP (1) EP3121545B1 (ko)
KR (1) KR20150109130A (ko)
CN (1) CN106133467B (ko)
WO (1) WO2015142028A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093616B1 (ko) * 2018-12-17 2020-03-26 (주)런텍 핀튜브용 지지대 제조장치

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431240B (zh) * 2013-06-28 2017-09-19 施耐德电气It公司 间接蒸发式冷却器热交换器制造方法
WO2018024185A1 (zh) * 2016-08-03 2018-02-08 杭州三花研究院有限公司 热交换装置
IL248304B (en) * 2016-10-10 2021-07-29 Magen Eco Energy A C S Ltd Heat exchanger and its module
JP6794769B2 (ja) * 2016-10-21 2020-12-02 富士通株式会社 情報処理装置
JP6716016B2 (ja) * 2017-03-31 2020-07-01 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
KR101985250B1 (ko) * 2017-10-24 2019-06-04 롯데알미늄 주식회사 보일러용 스테인리스 열교환기의 측판 구조
KR102540887B1 (ko) * 2018-09-20 2023-06-08 현대자동차주식회사 연료전지를 구비한 차량의 냉각 장치
CN109940347B (zh) * 2019-03-27 2020-04-21 江苏利柏特股份有限公司 一种模块中的膜壳管管束的成型方法
KR20240031615A (ko) 2022-09-01 2024-03-08 삼성중공업 주식회사 해양구조물용 와류 저감 설계된 원통 어레이 구조물 및 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923004A (en) * 1987-05-14 1990-05-08 Du Pont Canada, Inc. Comfort heat exchanger
KR19990001084A (ko) * 1997-06-12 1999-01-15 구자홍 플라스틱 열교환기 튜브
KR100513008B1 (ko) * 2002-08-27 2005-09-05 엘지전자 주식회사 냉장고 열교환기의 냉매 누설 방지 구조
KR100854572B1 (ko) * 2006-08-11 2008-08-26 주식회사 엘지화학 플라스틱 열교환기의 및 그의 제조방법
JP2008304108A (ja) * 2007-06-06 2008-12-18 Calsonic Kansei Corp 熱交換器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178194A (ja) 1982-04-12 1983-10-19 Hitachi Ltd 熱交換器
DE3338157A1 (de) 1983-10-20 1985-05-02 Akzo Gmbh, 5600 Wuppertal Verfahren zum dichten verbinden von rohrenden in rohrboeden
NL8403934A (nl) 1984-12-24 1986-07-16 Gen Electric Warmtewisselaar.
US4693302A (en) * 1984-12-28 1987-09-15 Leonard Oboler Heat exchanging apparatus for cooling and condensing by evaporation
US4638852A (en) * 1985-08-16 1987-01-27 Basseen Sanjiv K Air dryer for pneumatic systems
DE3728303A1 (de) * 1987-08-25 1989-03-16 Sueddeutsche Kuehler Behr Waermetauscher mit einer rippen-rohranordnung
US5425414A (en) * 1993-09-17 1995-06-20 Evapco International, Inc. Heat exchanger coil assembly
IL109269A (en) * 1994-04-10 1996-10-31 Magen Plastic Heat exchanger
JPH08136183A (ja) * 1994-11-04 1996-05-31 Zexel Corp 積層型熱交換器
CN2356304Y (zh) * 1999-01-14 1999-12-29 李勇 双管一体型材
US20030116309A1 (en) 2001-12-21 2003-06-26 Dispenza John A. Heat exchanging apparatus and method of manufacture
WO2006059498A1 (ja) * 2004-11-30 2006-06-08 Matsushita Electric Industrial Co., Ltd. 熱交換器及びその製造方法
JP5275682B2 (ja) * 2008-05-21 2013-08-28 アァルピィ東プラ株式会社 樹脂製熱交換器ユニットの製造方法及び熱交換器の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923004A (en) * 1987-05-14 1990-05-08 Du Pont Canada, Inc. Comfort heat exchanger
KR19990001084A (ko) * 1997-06-12 1999-01-15 구자홍 플라스틱 열교환기 튜브
KR100513008B1 (ko) * 2002-08-27 2005-09-05 엘지전자 주식회사 냉장고 열교환기의 냉매 누설 방지 구조
KR100854572B1 (ko) * 2006-08-11 2008-08-26 주식회사 엘지화학 플라스틱 열교환기의 및 그의 제조방법
JP2008304108A (ja) * 2007-06-06 2008-12-18 Calsonic Kansei Corp 熱交換器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3121545A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093616B1 (ko) * 2018-12-17 2020-03-26 (주)런텍 핀튜브용 지지대 제조장치

Also Published As

Publication number Publication date
US10048010B2 (en) 2018-08-14
US20170016677A1 (en) 2017-01-19
KR20150109130A (ko) 2015-10-01
CN106133467A (zh) 2016-11-16
EP3121545A1 (en) 2017-01-25
EP3121545A4 (en) 2017-11-29
CN106133467B (zh) 2019-04-09
EP3121545B1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2015142028A1 (ko) 열교환기 및 그 제조방법
WO2012091499A2 (en) Cold water tank and water treatment apparatus having the same
WO2016010266A1 (ko) 자동차의 배기열 축열장치
WO2018070618A1 (ko) 감시 카메라용 냉각장치
WO2015102417A1 (ko) 불소수지 패킹 및 그것의 제조방법
WO2016013869A1 (ko) 차량용 에어컨시스템
WO2020130620A1 (en) Drain hose assembly and refrigerator including the same
WO2017003075A1 (ko) 실외열교환기
WO2021145663A1 (ko) 전장소자의 방열장치
WO2017078250A1 (ko) 증발기 및 이를 구비하는 냉장고
EP3295100A1 (en) Refrigerator
WO2020101091A1 (ko) 전력모듈 및 그의 제조방법, 전력모듈을 구비한 인버터 장치
WO2009136726A2 (en) Heat exchange system
WO2018012777A1 (ko) 탄성력을 이용하여 기밀성을 유지하는 연결부재 및 이를 포함하는 밸브
WO2020036367A1 (en) Air conditioner
WO2020122529A1 (en) Cooking appliance having cooling system
WO2018143619A1 (en) Heat exchanger and method of manufacturing the same
WO2021015456A1 (ko) 열교환기
AU2021396892A1 (en) Refrigerator
WO2022191388A1 (ko) 변압기용 콜게이트형 방열기
WO2022103180A1 (ko) 열교환기, 핀튜브 제조방법 및 열교환기 제조방법
WO2018212551A1 (ko) 유동교란 장치 및 이를 포함하는 공기 조화기
WO2024043644A1 (ko) 유체 수송 배관
WO2016068601A1 (ko) 축열 장치 및 이를 갖는 공기 조화기
WO2013129762A1 (ko) 사출 성형품 제조장치 및 이를 사용한 사출 성형품 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764496

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15124622

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015764496

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015764496

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE