WO2016107516A1 - 硫熏食品或药品的鉴定方法 - Google Patents

硫熏食品或药品的鉴定方法 Download PDF

Info

Publication number
WO2016107516A1
WO2016107516A1 PCT/CN2015/099187 CN2015099187W WO2016107516A1 WO 2016107516 A1 WO2016107516 A1 WO 2016107516A1 CN 2015099187 W CN2015099187 W CN 2015099187W WO 2016107516 A1 WO2016107516 A1 WO 2016107516A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
tested
extract
raman spectrum
spectrum curve
Prior art date
Application number
PCT/CN2015/099187
Other languages
English (en)
French (fr)
Inventor
张建红
王红球
姜丽
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2016107516A1 publication Critical patent/WO2016107516A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the invention relates to the technical field of food or drug detection, in particular to a method for identifying a sulphur-smoked food or a medicine by using Raman spectroscopy.
  • Sulphur-smoked foods such as sulphur-smelling fans, sulphur-smelling ginger, sulfur-smoke, and sulphur-smelling drugs
  • sulphur-smelting process of food or medicine is due to the fact that sulphur dioxide produced by sulphur combustion is a strong reducing agent, which can bleach and prevent certain discoloration of chemical reactions, accelerate drying, and kill most bacteria.
  • the method is used to treat the drug, and some unscrupulous merchants are sulphur-smelling the food for the purpose of improving the color of the product.
  • Sulfur dioxide can also interact with the active ingredients in the medicinal materials, affecting the content of related ingredients, and more importantly, the foods and drugs will bring some harmful substances to the human body after being smouldered by sulfur, affecting human health. Therefore, there is a need for a method for identifying sulphur-smoked foods or medicines that is simple in operation and accurate in results.
  • a method of identifying a sulphur-smoked food or medicament comprising the steps of:
  • step (a) may comprise the following steps:
  • the step (a2) may include:
  • the sample to be tested mixed in the centrifuge tube is subjected to centrifugal extraction treatment with water to perform liquid stratification, and the supernatant liquid is extracted from the liquid subjected to centrifugal extraction treatment as a sample extract to be tested.
  • the step (a2) may include:
  • a surface enhancer is added to the sample extract to be tested prior to performing step (b).
  • the surface enhancer comprises a metal nanomaterial or a core-shell structure of a metal nanomaterial and an inorganic oxide.
  • the inorganic oxide comprises alumina or silica.
  • the metal nanomaterial comprises any one of gold, silver, copper, magnesium, aluminum, iron, cobalt, nickel, palladium, and platinum nanomaterials, or a combination thereof.
  • the enhancer further comprises chloride, bromide, sodium, potassium or sulfate ions.
  • the reference Raman spectral curve is obtained by the following steps:
  • the pretreatment performed on the reference sample is the same as the pretreatment performed on the sample to be tested.
  • step (d) comprises:
  • At least one aspect of the above technical solution of the present invention is capable of being sampled by using Raman spectroscopy
  • the product obtained by the pretreatment is tested to determine whether the sample to be tested contains sulfur dioxide residues.
  • FIG. 1 is a flow chart schematically showing a method for identifying a sulphur-smoked food or a drug according to an embodiment of the present invention
  • Figure 2 is a flow chart schematically showing an exemplary method of pretreating a sample to be tested
  • Figure 3 is a flow chart schematically showing an exemplary method of making a sample mixture to be tested
  • Figure 4 is a flow chart schematically showing another exemplary method of making a sample mixture to be tested
  • Figures 5a and 5b schematically show Raman spectra of sample extracts of sulphur-smelling fans and sulphur-free fans, respectively;
  • Figures 6a and 6b schematically show Raman spectra of sample extracts of sulphur-cured ginger and sulphur-free ginger, respectively.
  • Raman spectroscopy is a molecular vibrational spectroscopy that reflects the fingerprint characteristics of molecules and can be used to detect substances. Sulfur dioxide is dissolved in water to form sulfurous acid, which has a Raman characteristic spectrum. By detecting the Raman spectrum of the solution of the food or the drug to be tested, it can be determined whether or not sulfur dioxide remains in the food or drug to be tested, thereby judging whether or not it is subjected to sulfur fumigation treatment.
  • the authentication method 100 can include:
  • Step 10 pretreating the sample to be tested to form a sample extract to be tested
  • Step 20 irradiating the sample extract to be tested with excitation light and collecting Raman scattered light from the sample extract to be tested;
  • Step 30 obtaining a Raman spectrum curve of the sample extract to be tested from the collected Raman scattered light
  • Step 40 Compare the Raman spectrum curve with a reference Raman spectrum curve to determine whether the sample to be tested contains sulfur dioxide residue.
  • the method for identifying a sulphur-smoked food or a medicine does not need to completely separate sulfur dioxide from the sample to be tested, but only needs to treat the sample to be tested into a sample extract to be tested, and can directly perform the detection. This helps achieve fast on-site inspection.
  • Samples of the food or drug to be tested are usually solid, and when the content of the fumigant residue is small, direct detection of the solid sample may result in inaccurate results. Therefore, in the embodiment of the present invention, the sample to be tested is pretreated to form a sample extract to be tested, which helps to improve the detection accuracy.
  • step 10 may include:
  • Step 11 pulverizing the sample to be tested
  • the sample extract to be tested can be obtained by subjecting a mixture of the pulverized sample to be tested and water to a centrifugal extraction process.
  • the above step 12 may include:
  • Step 121 placing the pulverized sample to be tested into a centrifuge tube, adding water, and shaking the centrifuge tube to mix the sample to be tested with water;
  • Step 122 The sample to be tested mixed in the centrifuge tube is subjected to centrifugal extraction treatment with water to perform liquid stratification, and the supernatant liquid is extracted from the liquid subjected to centrifugal extraction treatment as a sample extract to be tested.
  • a small amount of the sample to be tested such as a smoky food or a drug
  • a small amount of the pulverized sample for example, 0.5 g to 1 g
  • a centrifuge tube for example, 2 ml to 5 ml
  • Add 1 to 2 ml of water to the centrifuge tube shake it thoroughly, for example, for 30 seconds, then let it stand for a certain period of time (for example, 2-5 minutes) to mix it evenly, and then mix the sample to be tested in the centrifuge tube.
  • the water is subjected to centrifugation, for example, centrifugation at 8000 rpm for 1 minute.
  • the liquid After centrifugation, the liquid will be stratified, the water-insoluble components will precipitate in the lower layer, and the water-soluble components will be in the upper layer of the liquid. Since sulfur dioxide is easily soluble in water, it is located in the supernatant of the upper layer. A supernatant (for example, 0.4 ml) of the centrifuged liquid is taken as a sample extract to be tested.
  • step 12' may include:
  • Step 121 Put the pulverized sample to be tested into a centrifuge tube, add water, and shake the centrifuge tube to mix the sample to be tested with water;
  • Step 123 ultrasonically extracting the sample to be tested mixed in the centrifuge tube and water for liquid stratification
  • Step 124 extracting the supernatant liquid of the ultrasonically extracted liquid and subjecting it to centrifugal extraction treatment.
  • the supernatant liquid is extracted from the liquid subjected to the centrifugal extraction treatment as a sample extract to be tested.
  • a small amount of the sample to be tested such as a smoky food or a drug
  • a small amount of the pulverized sample for example, 0.5 g to 1 g
  • a centrifuge tube for example, 2 ml to 5 ml
  • Add 1 to 2 ml of water to the centrifuge tube shake it thoroughly, mix it evenly, and then perform ultrasonic extraction (for example, for 120 seconds), then extract the supernatant of the ultrasonically extracted liquid and centrifuge it.
  • centrifugation is performed at 8000 rpm for 1 minute.
  • a supernatant (for example, 0.4 ml) of the liquid subjected to the centrifugal extraction treatment is taken as a sample extract to be tested.
  • the sample extract to be tested can be prepared at normal temperature, and the sample does not need to be heated at a high temperature, and the sulfur dioxide or sulfite is not completely separated from the sample to be tested, and only the sample is removed.
  • This pretreatment method for the sample to be tested is simple and easy, and facilitates rapid on-site detection. Ultrasonic extraction treatment can significantly improve the extraction efficiency and extraction purity of the sample extract to be tested.
  • a surface enhancer may be added to the sample extract to be tested before performing the above step 20.
  • the effective Raman spectroscopy signal can be amplified to increase the signal-to-noise ratio of the detection, which is especially beneficial for the case where the sulfur dioxide content in the sample to be tested is small.
  • the surface enhancer may include a metal nanomaterial or a core-shell structure of a metal nanomaterial and an inorganic oxide.
  • the inorganic oxide includes, for example, alumina or silica.
  • the metal nanomaterial may include any one of gold, silver, copper, magnesium, aluminum, iron, cobalt, nickel, palladium, and platinum nanomaterials, or a combination thereof.
  • the surface enhancer may further comprise chloride, bromide, sodium, potassium or sulfate ions.
  • the reference Raman spectral curve may be known data, such as data obtained from a commercial spectral database, or may be actually measured from a reference sample, such as by an optional step 50 shown in FIG. 70 (shown by the dashed box in Figure 1), in particular, these steps may include:
  • Step 50 pretreating the reference sample to form a reference sample extract
  • Step 60 irradiating the reference sample extract with excitation light and collecting Raman scattered light from the reference sample extract;
  • Step 70 Obtain a reference Raman spectrum curve from the collected Raman scattered light.
  • the pretreatment of the reference sample may be the same as or similar to the pretreatment performed on the sample to be tested described in any of the above embodiments, and will not be described herein.
  • the pretreatment performed on the reference sample is the same as the pretreatment performed on the sample to be tested for the same identification. That is, the same pre-processing method can be employed in step 10 and step 50.
  • the reference Raman spectrum curve may be a Raman spectrum curve of a reference sample extract of a sulfur-smoke reference sample, or a Raman spectrum curve of a reference sample extract of a reference sample without sulfur fumigation, or may At the same time, the Raman spectral curves of the two are used.
  • Figures 5a and 5b schematically show Raman spectra of sample extracts of sulphur-smelling fans and sulphur-free fans, respectively.
  • 5a and 5b in the Raman spectrum of the extract of the sulfur-smelted vermicelli, there is a characteristic peak at the Raman shift position of 628 cm -1 (as indicated by the arrow in the figure); This characteristic peak does not exist in the Raman spectrum curve of the sample extract of the sulfur-smoked fan.
  • This characteristic peak is the characteristic of characterizing sulfur dioxide in the fan sample in Raman spectroscopy. By the identification of the characteristic peak, it is possible to determine whether or not the sulfur dioxide residue is present in the fan sample.
  • Figures 6a and 6b schematically show Raman spectra of sample extracts of sulphur-cured ginger and sulphur-free ginger, respectively.
  • Fig. 6a and Fig. 6b in the Raman spectrum of the sulfur - soiled ginger extract, there is a characteristic peak at a Raman shift position of 628 cm -1 (as indicated by the arrow in the figure); This characteristic peak does not exist in the Raman spectrum curve of the sample extract of ginger which has not been subjected to sulfur.
  • This characteristic peak is the characteristic of the presence of sulfur dioxide in the ginger sample in the Raman spectrum.
  • embodiments of the present invention also provide a specific method for comparing the Raman spectrum curve with a reference Raman spectrum curve to determine whether a sulfur dioxide residue is contained in a sample to be tested, that is, calculating a sample extract to be tested. The similarity between the Raman spectrum curve and the reference Raman spectrum curve and determining whether the sample to be tested contains sulfur dioxide residue according to the similarity.
  • Corr represents the similarity between the Raman spectral curve function of the sample to be tested and the reference Raman spectral curve function, and " ⁇ " represents the dot product operation.
  • A(x) and B(x) may be separately sampled to obtain n sample points each, denoted as A 1 , A 2 , . . . , A n and B 1 , B 2 , . . . , B n , the similarity of the Raman spectral curve function of the sample to be tested and the reference Raman spectral curve function Corr can be calculated according to the formula (2):
  • also represents a dot product operation.
  • A(x) and B(x) may also be sampled separately to obtain n sample points, respectively denoted as A 1 , A 2 , . . . , A n and B 1 , B 2 ,... , B n , the similarity of the Raman spectral curve function of the sample to be tested and the reference Raman spectral curve function Corr can be calculated according to the formula (3):
  • the above similarity calculation may be performed for the entire Raman spectrum curve, or may be performed only for the portion having the characteristic portion in the Raman spectrum curve. Especially for the detection of sulphur-smoked foods or medicines, it can be calculated only for the portion of the curve near the 628 cm -1 Raman shift.
  • the above is merely an example of some similarity calculations, and some other similarity calculation methods known to those skilled in the art are also feasible.
  • the composition of the sample to be tested is consistent with the composition of the sample corresponding to the reference Raman spectral curve.
  • the identification of the sample to be tested is completed. Conversely, if it is below a predetermined threshold, it can be determined that the composition of the sample to be tested does not coincide with the composition of the sample corresponding to the reference Raman spectrum curve.
  • the predetermined threshold can be given according to actual detection requirements, accuracy of the detection instrument, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种硫熏食品或药品的鉴定方法,包括以下步骤:(a)对待测样品进行预处理以形成待测样品提取液;(b)用激发光照射待测样品提取液并收集来自待测样品提取液的拉曼散射光;(c)由所收集到的拉曼散射光获得待测样品提取液的拉曼光谱曲线;以及(d)将该拉曼光谱曲线与参考曲线进行对比以确定待测样品中是否含有二氧化硫。该方法可以实现对于硫熏食品或药品的高效、简便和准确的鉴定。

Description

硫熏食品或药品的鉴定方法
本申请要求于2014年12月31日递交中国专利局的、申请号为201410854190.3的中国专利申请的权益,该申请的全部公开内容以引用方式并入本文。
技术领域
本发明涉及食品或药品检测技术领域,尤其涉及一种利用拉曼光谱技术来对硫熏食品或药品进行鉴定的方法。
背景技术
硫熏食品,如硫熏粉丝、硫熏生姜、硫熏银耳等,以及硫熏药品可能会导致严重的食品安全问题。食品或药品采用硫磺熏制过程是由于硫磺燃烧产生的二氧化硫是一种较强的还原剂,能漂白和阻止某些变色的化学反应发生,并能加速干燥,还可以杀死多数细菌,因此硫熏方法被用于对药品进行处理,而一些不法商家更是以改进商品色泽为目的对食品进行硫熏处理。二氧化硫还可与药材中有效成分作用,影响有关成分的含量,更重要的是食品药品经过硫熏后会带入一些对人体有害的物质,影响人体健康。因此,需要一种操作简单,结果准确的硫熏食品或药品的鉴定方法。
发明内容
本发明的目的是提供一种利用拉曼光谱技术来对硫熏食品或药品进行鉴定的方法,其能够快速、高效、准确地鉴定待测样品是否经过硫磺熏制。
为了实现上述发明目的,本发明的技术方案通过以下方式来实现:
根据本发明的第一方面,提供一种硫熏食品或药品的鉴定方法,包括以下步骤:
(a)对待测样品进行预处理以形成待测样品提取液;
(b)用激发光照射待测样品提取液并收集来自待测样品提取液的拉曼散射光;
(c)由所收集到的拉曼散射光获得待测样品提取液的拉曼光谱曲线;以及
(d)将该拉曼光谱曲线与参考拉曼光谱曲线进行对比以确定待测样品中是否含有二氧化硫残留物。
在一实施例中,所述步骤(a)可以包括以下步骤:
(a1)将所述待测样品进行粉碎;以及
(a2)将经过粉碎的待测样品与水混合并进行萃取以形成待测样品提取液。
在一实施例中,所述步骤(a2)可以包括:
(a21)将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;以及
(a22)对在离心管中混合的该待测样品与水进行离心萃取处理以进行液体分层并从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
在一实施例中,所述步骤(a2)可以包括:
(a21)将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;
(a23)对在离心管中混合的该待测样品与水进行超声波萃取处理以进行液体分层;以及
(a24)提取经过超声波萃取处理的液体的上层清液并对其进行离心萃取处理,从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
在一实施例中,在执行步骤(b)之前,在待测样品提取液中加入表面增强剂。
在一实施例中,所述表面增强剂包括金属纳米材料或金属纳米材料与无机氧化物的核壳结构。
在一实施例中,所述无机氧化物包括氧化铝或二氧化硅。
在一实施例中,所述金属纳米材料包括金、银、铜、镁、铝、铁、钴、镍、钯和铂纳米材料中的任一种或它们的组合。
在一实施例中,所述增强剂还包含氯离子、溴离子、钠离子、钾离子或硫酸根离子。
在一实施例中,所述参考拉曼光谱曲线由以下步骤获得:
(x)对参考样品进行预处理以形成参考样品提取液;
(y)用激发光照射参考样品提取液并收集来自参考样品提取液的拉曼散射光;以及
(z)由所收集到的拉曼散射光获得参考拉曼光谱曲线。
在一实施例中,对参考样品进行的预处理与对待测样品进行的预处理相同。
在一实施例中,步骤(d)包括:
计算待测样品提取液的拉曼光谱曲线与参考拉曼光谱曲线的相似度并根据所述相似度来确定待测样品中是否含有二氧化硫残留物。
本发明的上述技术方案中的至少一个方面能够通过利用拉曼光谱技术对待测样 品经过预处理所得的提取液进行检测来确定待测样品是否含有二氧化硫残留物。这种方案可以实现对于硫熏食品或药品的高效、简便和准确的鉴定。
附图说明
图1示意性地示出根据本发明一实施例的硫熏食品或药品的鉴定方法的流程图;
图2示意性地示出对待测样品进行预处理的一示例性方法的流程图;
图3示意性地示出制作待测样品混合液的一示例性方法的流程图;
图4示意性地示出制作待测样品混合液的另一示例性方法的流程图;
图5a和5b分别示意性地示出经过硫熏的粉丝和没有经过硫熏的粉丝的样品提取液的拉曼光谱曲线;和
图6a和6b分别示意性地示出经过硫熏的生姜和没有经过硫熏的生姜的样品提取液的拉曼光谱曲线。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号表示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
拉曼光谱是一种分子振动光谱,它可以反映分子的指纹特征,可用于对物质的检测。二氧化硫溶于水后形成亚硫酸,亚硫酸具有拉曼特征光谱。通过对待测的食品或药品的溶液的拉曼光谱进行检测可以确定该待测的食品或药品中是否残留有二氧化硫,从而判断其是否经过硫熏处理。
图1示意性地示出根据本发明一实施例的硫熏食品或药品的鉴定方法的流程图。该鉴定方法100可以包括:
步骤10:对待测样品进行预处理以形成待测样品提取液;
步骤20:用激发光照射待测样品提取液并收集来自待测样品提取液的拉曼散射光;
步骤30:由所收集到的拉曼散射光获得待测样品提取液的拉曼光谱曲线;以及
步骤40:将该拉曼光谱曲线与参考拉曼光谱曲线进行对比以确定待测样品中是否含有二氧化硫残留物。
采用本发明的实施例的硫熏食品或药品的鉴定方法,不需要从待测样品中完全地分离二氧化硫,而只需要将待测样品处理成待测样品提取液,就可以直接进行检测。这有助于实现快速的现场检测。
待测的食品或药品的样品通常为固体,而当熏硫残留物含量较小时,直接对固体样品进行检测可能会导致结果不准确。因此,在本发明的实施例中,采用了对待测样品进行预处理而形成待测样品提取液,有助于提高检测准确性。
在一示例中,如图2所示,步骤10可以包括:
步骤11:将所述待测样品进行粉碎;
步骤12(12’):将经过粉碎的待测样品与水混合并进行萃取以形成待测样品提取液。
作为示例,待测样品提取液可以通过对经过粉碎的待测样品与水的混合物进行离心萃取处理来获得。例如,上述步骤12可以包括:
步骤121:将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;以及
步骤122:对在离心管中混合的该待测样品与水进行离心萃取处理以进行液体分层并从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
在一示例中,可以将少量的待测样品,例如硫熏食品或药品打碎,取少量的经过粉碎的样品(例如0.5克至1克)放入离心管(例如2毫升至5毫升),向离心管内加入1至2毫升的水,充分晃动,例如晃动30秒,然后静置一定的时间(例如2-5分钟)使之均匀混合,之后对在离心管中混合的该待测样品与水进行离心处理,例如以8000转/分进行离心处理1分钟。经过离心处理后,液体将会产生分层,难溶于水的成分将沉淀于下层,而易溶于水的成分则位于液体的上层。由于二氧化硫易溶于水,其位于上层的清液中。取经过离心处理的液体的上层清液(例如0.4毫升)作为待测样品提取液。
作为示例,还可以在制作待测样品混合液的过程中加入超声波处理。例如,上述步骤12’可以包括:
步骤121:将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;
步骤123:对在离心管中混合的该待测样品与水进行超声波萃取处理以进行液体分层;以及
步骤124:提取经过超声波萃取处理的液体的上层清液并对其进行离心萃取处理, 从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
在一示例中,可以将少量的待测样品,例如硫熏食品或药品打碎,取少量的经过粉碎的样品(例如0.5克至1克)放入离心管(例如2毫升至5毫升),向离心管内加入1至2毫升的水,充分晃动,使之均匀混合,然后进行超声波萃取处理(例如持续120秒)之后提取经过超声波萃取处理的液体的上层清液并对其进行离心萃取处理,例如以8000转/分进行离心处理1分钟。取经过离心萃取处理的液体的上层清液(例如0.4毫升)作为待测样品提取液。
采用上述离心萃取的方法,可以在常温下制作待测样品提取液,不需要对样品进行高温加热,也不需要将二氧化硫或亚硫酸盐从待测样品中完全地分离,而只需去除样品中不易溶于水的成分。这种对于待测样品的预处理方法简单易行,利于进行快速的现场检测。采用超声波萃取处理,可以显著地提高待测样品提取液的提取效率和提取纯度。
作为示例,在执行上述步骤20之前,可以在待测样品提取液中加入表面增强剂。借助表面增强剂,可以将有效的拉曼光谱测量信号放大从而提高检测的信噪比,这对于待测样品中二氧化硫含量很小的情况尤其有益。作为示例,表面增强剂可以包括金属纳米材料或金属纳米材料与无机氧化物的核壳结构。所述无机氧化物例如包括氧化铝或二氧化硅。作为示例,所述金属纳米材料可以包括金、银、铜、镁、铝、铁、钴、镍、钯和铂纳米材料中的任一种或它们的组合。在一示例中,所述表面增强剂还可以包含氯离子、溴离子、钠离子、钾离子或硫酸根离子。
作为示例,参考拉曼光谱曲线可以是已知的数据,例如从商用光谱数据库中获得的数据,也可以是根据参考样品实际测量得到的,例如通过图1中示出的可选的步骤50-70(在图1中由虚线框示出)获得,具体地,这些步骤可以包括:
步骤50:对参考样品进行预处理以形成参考样品提取液;
步骤60:用激发光照射参考样品提取液并收集来自参考样品提取液的拉曼散射光;以及
步骤70:由所收集到的拉曼散射光获得参考拉曼光谱曲线。
作为示例,对参考样品的预处理可以采用与上述任一实施例所述的对待测样品进行的预处理相同或相似的预处理,在此不再赘述。在一示例中,为了尽可能避免由于预处理不一致导致的测量误差,对于同一次鉴定,对参考样品进行的预处理与对待测样品进行的预处理相同。即,在步骤10中和步骤50中可以采用相同的预处理方式。
作为示例,参考拉曼光谱曲线可以是经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线,也可以是没有经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线,或者可以同时采用这两者的拉曼光谱曲线。
图5a和5b分别示意性地示出经过硫熏的粉丝和没有经过硫熏的粉丝的样品提取液的拉曼光谱曲线。由图5a和图5b可知,在经过硫熏的粉丝的提取液的拉曼光谱中,在628cm-1的拉曼频移位置处(如图中箭头所指示)存在特征峰;而在没有经过硫熏的粉丝的样品提取液的拉曼光谱曲线中则不存在该特征峰。该特征峰正是拉曼光谱中表征粉丝样品中存在二氧化硫的特征。通过该特征峰的指认,就可以确定粉丝样品中是否存在二氧化硫的残留物。
图6a和6b分别示意性地示出经过硫熏的生姜和没有经过硫熏的生姜的样品提取液的拉曼光谱曲线。同样,由图6a和图6b可知,在经过硫熏的生姜的提取液的拉曼光谱中,在628cm-1的拉曼频移位置处(如图中箭头所指示)存在特征峰;而在没有经过硫熏的生姜的样品提取液的拉曼光谱曲线中则不存在该特征峰。该特征峰正是拉曼光谱中表征生姜样品中存在二氧化硫的特征。通过该特征峰的指认,就可以确定生姜样品中是否存在二氧化硫的残留物。
在实际中,在某些情况下可以考虑简单的利用特征峰指认的方式来确认待测样品中是否存在二氧化硫的残留物,然而,当需要处理的数据量很大的情况下,这种方式往往就难以满足检测效率的要求。因而,本发明的实施例还提供了一种将该拉曼光谱曲线与参考拉曼光谱曲线进行对比以确定待测样品中是否含有二氧化硫残留物的具体方法,即,计算待测样品提取液的拉曼光谱曲线与参考拉曼光谱曲线的相似度并根据所述相似度来确定待测样品中是否含有二氧化硫残留物。
相似度的定义和计算有多种方法。例如,假定待测样品的拉曼光谱曲线函数为A(x),参考拉曼光谱曲线函数为B(x),在一示例中,可以通过式(1)对两者的相似度进行计算:
Figure PCTCN2015099187-appb-000001
其中Corr表示待测样品的拉曼光谱曲线函数和参考拉曼光谱曲线函数的相似度,“·”表示点积运算。
在另一示例中,可以对A(x)和B(x)分别进行采样以各获得n个采样点,分 别表示为A1,A2,…,An以及B1,B2,…,Bn,待测样品的拉曼光谱曲线函数和参考拉曼光谱曲线函数的相似度Corr可以根据式(2)进行计算:
Figure PCTCN2015099187-appb-000002
其中,“·”也表示点积运算。
在另一示例中,亦可以对A(x)和B(x)分别进行采样以各获得n个采样点,分别表示为A1,A2,…,An以及B1,B2,…,Bn,待测样品的拉曼光谱曲线函数和参考拉曼光谱曲线函数的相似度Corr可以根据式(3)进行计算:
Figure PCTCN2015099187-appb-000003
上述相似度计算可以针对整个拉曼光谱曲线进行,也可以仅针对于拉曼光谱曲线中具有特征部分的局部进行。尤其是对于硫熏食品或药品的检测,可以仅针对于拉曼频移在628cm-1附近的曲线部分进行计算。以上仅是给出了一些相似度计算的示例,本领域技术人员所知的一些其他的相似度计算方法也是可行的。
对于待测样品的拉曼光谱曲线函数和参考拉曼光谱曲线函数的相似度,如果其超过预定的阈值,则可以判定待测样品的成分与参考拉曼光谱曲线所对应的样品的成分一致以完成对于待测样品的鉴定。相反,如果其低于预定的阈值,则可以判定待测样品的成分与参考拉曼光谱曲线所对应的样品的成分不一致。该预定的阈值可以根据实际的检测需要、检测仪器的精度等因素来给出。
作为示例,在采用经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线或没有经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线作为参考拉曼光谱曲线的情况下,可以仅计算待测样品的拉曼光谱曲线与该参考拉曼光谱曲线的相似度;而在采用经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线和没有经过硫熏的参考样品的参考样品提取液的拉曼光谱曲线作为参考拉曼光谱曲线的情况下,可以分别计算待测样品的拉曼光谱曲线与这两种参考拉曼光谱曲线的相似度,取相似度大者作为鉴定依 据。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本发明总体构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。

Claims (12)

  1. 一种硫熏食品或药品的鉴定方法,包括以下步骤:
    (a)对待测样品进行预处理以形成待测样品提取液;
    (b)用激发光照射待测样品提取液并收集来自待测样品提取液的拉曼散射光;
    (c)由所收集到的拉曼散射光获得待测样品提取液的拉曼光谱曲线;以及
    (d)将该拉曼光谱曲线与参考拉曼光谱曲线进行对比以确定待测样品中是否含有二氧化硫残留物。
  2. 根据权利要求1所述的鉴定方法,其中,所述步骤(a)包括以下步骤:
    (a1)将所述待测样品进行粉碎;以及
    (a2)将经过粉碎的待测样品与水混合并进行萃取以形成待测样品提取液。
  3. 根据权利要求2所述的鉴定方法,其中,所述步骤(a2)包括:
    (a21)将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;以及
    (a22)对在离心管中混合的该待测样品与水进行离心萃取处理以进行液体分层并从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
  4. 根据权利要求2所述的鉴定方法,其中,所述步骤(a2)包括:
    (a21)将经过粉碎的待测样品放入离心管内、加入水并晃动离心管使该待测样品与水混合;
    (a23)对在离心管中混合的该待测样品与水进行超声波萃取处理以进行液体分层;以及
    (a24)提取经过超声波萃取处理的液体的上层清液并对其进行离心萃取处理,从经过离心萃取处理的液体中提取上层清液作为待测样品提取液。
  5. 根据权利要求1-4中任一项所述的鉴定方法,其中,在执行步骤(b)之前,在待测样品提取液中加入表面增强剂。
  6. 根据权利要求5所述的鉴定方法,其中,所述表面增强剂包括金属纳米材料或金属纳米材料与无机氧化物的核壳结构。
  7. 根据权利要求6所述的鉴定方法,其中,所述无机氧化物包括氧化铝或二氧化硅。
  8. 根据权利要求6所述的鉴定方法,其中,所述金属纳米材料包括金、银、铜、 镁、铝、铁、钴、镍、钯和铂纳米材料中的任一种或它们的组合。
  9. 根据权利要求6所述的鉴定方法,其中,所述增强剂还包含氯离子、溴离子、钠离子、钾离子或硫酸根离子。
  10. 根据权利要求1-4中任一项所述的鉴定方法,其中,所述参考拉曼光谱曲线由以下步骤获得:
    (x)对参考样品进行预处理以形成参考样品提取液;
    (y)用激发光照射参考样品提取液并收集来自参考样品提取液的拉曼散射光;以及
    (z)由所收集到的拉曼散射光获得参考拉曼光谱曲线。
  11. 根据权利要求10所述的鉴定方法,其中,对参考样品进行的预处理与对待测样品进行的预处理相同。
  12. 根据权利要求1-4中任一项所述的鉴定方法,其中,步骤(d)包括:
    计算待测样品提取液的拉曼光谱曲线与参考拉曼光谱曲线的相似度并根据所述相似度来确定待测样品中是否含有二氧化硫残留物。
PCT/CN2015/099187 2014-12-31 2015-12-28 硫熏食品或药品的鉴定方法 WO2016107516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410854190.3A CN105806822B (zh) 2014-12-31 2014-12-31 硫熏食品或药品的鉴定方法
CN201410854190.3 2014-12-31

Publications (1)

Publication Number Publication Date
WO2016107516A1 true WO2016107516A1 (zh) 2016-07-07

Family

ID=56284268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099187 WO2016107516A1 (zh) 2014-12-31 2015-12-28 硫熏食品或药品的鉴定方法

Country Status (2)

Country Link
CN (1) CN105806822B (zh)
WO (1) WO2016107516A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333214A (zh) * 2018-11-14 2019-10-15 厦门市普识纳米科技有限公司 一种保健品中违法添加药品成分的检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109765211A (zh) * 2019-01-18 2019-05-17 河北省食品检验研究院 一种天然植物提取物中残留二氧化硫的快速检测方法
CN114264641A (zh) * 2020-09-16 2022-04-01 中国科学院过程工程研究所 一种微量离子液体浓度的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092275A2 (de) * 2005-02-28 2006-09-08 Platte, Frank Verfahren zur bestimmung der art, grösse, und/oder konzentration von bestandteilen in einer probe mittels raman-spektroskopie
CN101995405A (zh) * 2010-11-12 2011-03-30 辽宁省食品药品检验所 一种快速测定硫熏中药材的方法
CN103698314A (zh) * 2014-01-07 2014-04-02 厦门大学 一种食品中二氧化硫残留的快速检测方法
CN104165878A (zh) * 2014-08-12 2014-11-26 厦门大学 一种检测葡萄酒中二氧化硫的方法
CN104931483A (zh) * 2015-06-30 2015-09-23 北京工商大学 果蔬中农药残留的拉曼光谱检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201173921Y (zh) * 2007-11-01 2008-12-31 钦州华成自控设备有限公司 硫熏强度自动检测装置
CN102288713A (zh) * 2011-07-29 2011-12-21 江苏省中医药研究院 一种快速判断白芍是否经过硫磺熏蒸的鉴定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006092275A2 (de) * 2005-02-28 2006-09-08 Platte, Frank Verfahren zur bestimmung der art, grösse, und/oder konzentration von bestandteilen in einer probe mittels raman-spektroskopie
CN101995405A (zh) * 2010-11-12 2011-03-30 辽宁省食品药品检验所 一种快速测定硫熏中药材的方法
CN103698314A (zh) * 2014-01-07 2014-04-02 厦门大学 一种食品中二氧化硫残留的快速检测方法
CN104165878A (zh) * 2014-08-12 2014-11-26 厦门大学 一种检测葡萄酒中二氧化硫的方法
CN104931483A (zh) * 2015-06-30 2015-09-23 北京工商大学 果蔬中农药残留的拉曼光谱检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333214A (zh) * 2018-11-14 2019-10-15 厦门市普识纳米科技有限公司 一种保健品中违法添加药品成分的检测方法

Also Published As

Publication number Publication date
CN105806822B (zh) 2019-06-14
CN105806822A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
Verplanken et al. Rapid evaporative ionization mass spectrometry for high-throughput screening in food analysis: The case of boar taint
EP2853885B1 (en) Raman spectrum measuring method for drug inspection
Hare et al. Protocol for production of matrix-matched brain tissue standards for imaging by laser ablation-inductively coupled plasma-mass spectrometry
Lin et al. Label-free detection of blood plasma using silver nanoparticle based surface-enhanced Raman spectroscopy for esophageal cancer screening
WO2015101223A1 (zh) 农药残留检测方法
WO2016107516A1 (zh) 硫熏食品或药品的鉴定方法
Batista et al. A fast ultrasound-assisted extraction procedure for trace elements determination in hair samples by ICP-MS for forensic analysis
CN103698314B (zh) 一种食品中二氧化硫残留的快速检测方法
Williams et al. HIV/HAART-associated oxidative stress is detectable by metabonomics
Wozniak et al. Metal concentrations in hair of patients with various head and neck cancers as a diagnostic aid
Lin et al. Calibration set selection method based on the “M+ N” theory: application to non-invasive measurement by dynamic spectrum
Nasir et al. Surface enhanced Raman spectroscopy of RNA samples extracted from blood of hepatitis C patients for quantification of viral loads
Méndez et al. Ultrasonic extraction combined with fast furnace analysis as an improved methodology for total selenium determination in seafood by electrothermal-atomic absorption spectrometry
Fu-Li et al. Surface-enhanced Raman spectroscopy for rapid determination of β-agonists in swine urine
Welna et al. Improvement of a sample preparation procedure for multi-elemental determination in Brazil nuts by ICP-OES
Leporati et al. Development, validation and application to real samples of a multiresidue LC‐MS/MS method for determination of β2‐agonists and anabolic steroids in bovine hair
Ahmed et al. Laser induced breakdown spectroscopy with machine learning reveals lithium-induced electrolyte imbalance in the kidneys
CN103245713A (zh) 基于支持向量机和离子迁移谱的中草药产地鉴别方法
Yuan et al. Determination of trace element silver in animal serum, tissues and organs by microwave digestion-ICP-MS
Radzol et al. Raman molecular fingerprint of non-structural protein 1 in phosphate buffer saline with gold substrate
CN107389654A (zh) 一种基于表面增强拉曼光谱的食品添加剂检测方法
Su et al. A colorimetric sensing strategy for detecting 10-hydroxy-2-decenoic acid in royal jelly based on Ag (I)-tetramethylbenzidine
Zhai et al. Rapid detection of salbutamol in fresh muscle tissues based on surface enhanced Raman spectroscopy
Almeida et al. Development of a simple and fast ultrasound-assisted extraction method for trace element determination in tobacco samples using ICP-MS
Wang et al. Development status of novel spectral imaging techniques and application to traditional Chinese medicine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875192

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875192

Country of ref document: EP

Kind code of ref document: A1