WO2016107206A1 - 主动降噪耳机及应用于该耳机的降噪控制方法和系统 - Google Patents

主动降噪耳机及应用于该耳机的降噪控制方法和系统 Download PDF

Info

Publication number
WO2016107206A1
WO2016107206A1 PCT/CN2015/089249 CN2015089249W WO2016107206A1 WO 2016107206 A1 WO2016107206 A1 WO 2016107206A1 CN 2015089249 W CN2015089249 W CN 2015089249W WO 2016107206 A1 WO2016107206 A1 WO 2016107206A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise reduction
feedback
sub
band
noise
Prior art date
Application number
PCT/CN2015/089249
Other languages
English (en)
French (fr)
Inventor
刘崧
王林章
李波
Original Assignee
歌尔声学股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔声学股份有限公司 filed Critical 歌尔声学股份有限公司
Priority to US15/126,754 priority Critical patent/US9928825B2/en
Priority to JP2016559193A priority patent/JP6215488B2/ja
Priority to EP15874892.1A priority patent/EP3107312B1/en
Priority to DK15874892.1T priority patent/DK3107312T3/en
Publication of WO2016107206A1 publication Critical patent/WO2016107206A1/zh
Priority to US15/857,903 priority patent/US10115387B2/en

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17815Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the reference signals and the error signals, i.e. primary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17823Reference signals, e.g. ambient acoustic environment
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • G10K11/17825Error signals
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1783Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase handling or detecting of non-standard events or conditions, e.g. changing operating modes under specific operating conditions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17857Geometric disposition, e.g. placement of microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3016Control strategies, e.g. energy minimization or intensity measurements
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3046Multiple acoustic inputs, multiple acoustic outputs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/05Noise reduction with a separate noise microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2410/00Microphones
    • H04R2410/07Mechanical or electrical reduction of wind noise generated by wind passing a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/01Hearing devices using active noise cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones

Definitions

  • the invention relates to the field of active noise reduction technology of a smart earphone, in particular to a noise reduction control method and system applied to an active noise canceling earphone and an active noise canceling earphone.
  • Headphones have been widely used in people's ordinary life and work. In addition to the functions of listening to music and entertainment, earphones are widely used to isolate noise and maintain a relatively quiet environment, but the headphones are separated from low frequency noise. Noise effects and capabilities are limited.
  • the active noise reduction technique uses a method that produces a signal of the same phase as the amplitude of the external noise to counteract the noise entering the earphone.
  • the active noise reduction technology currently used in headphones is mostly a fixed noise reduction technology.
  • This fixed noise reduction technology has the following drawbacks: the external environment constantly changes, and when the external noise and the fixed noise reduction amount are equivalent, it will be better. Noise reduction effect, however, when the external noise is higher than the fixed noise reduction, the noise reduction effect will not be optimal, or when the external noise is lower than the fixed noise reduction, the active noise reduction module will essentially produce one. New noise reaches the human ear.
  • the main object of the present invention is to provide a noise reduction control method and system for an active noise canceling earphone and an active noise canceling earphone, and the active noise reduction technology for solving the fixed noise reduction cannot make noise reduction.
  • the effect reaches the optimal technical problem.
  • the embodiment of the present invention provides a noise reduction control method applied to an active noise canceling earphone.
  • Each feedthrough microphone is disposed on each earphone of the active noise canceling earphone, and the feedforward microphone is disposed on the outer side of the earphone.
  • Noise control methods include:
  • the energy value of the first sub-band of the noise signal collected by the feedforward microphone at the current time and the energy value of the second sub-band are calculated, wherein the first sub-band and the second sub-band are respectively according to the earphone
  • the feedforward noise reduction curve and the feedback noise reduction curve are determined;
  • the control earphone performs feedforward noise reduction according to the feedforward noise reduction amount, and controls the earphone to perform feedback noise reduction according to the feedback noise reduction amount.
  • an embodiment of the present invention further provides a noise reduction control system applied to an active noise canceling earphone, wherein each feedthrough microphone is disposed on each earphone of the active noise canceling earphone, and the feedforward microphone is disposed outside the earphone.
  • the noise reduction control system includes:
  • the energy weighting unit is configured to perform frequency domain weighting and time domain weighting on the noise signal collected by the feedforward microphone at the current moment to obtain weighted energy
  • An active noise reduction determining unit is configured to determine, according to the weighted energy obtained by the energy weighting unit, whether active noise reduction control is required at the current time;
  • the sub-band energy calculation unit is configured to calculate, when the active noise reduction determination unit determines that the active noise reduction control is required, the energy value of the first sub-band and the energy value of the second sub-band of the noise signal collected by the feedforward microphone at the current time, wherein, the first sub-band and the second sub-band are respectively determined according to a feedforward noise reduction curve and a feedback noise reduction curve of the earphone;
  • a noise reduction amount determining unit configured to determine a feedforward noise reduction amount and a feedback noise reduction amount according to the energy value of the first sub-band calculated by the sub-band energy calculation unit and the energy value of the second sub-band;
  • a feedforward noise reduction control unit for controlling the earphone to perform feedforward noise reduction according to the feedforward noise reduction amount
  • the feedback noise reduction control unit is configured to control the earphone to perform feedback noise reduction according to the feedback noise reduction amount.
  • an embodiment of the present invention provides an active noise canceling earphone, wherein each feedthrough microphone and a feedback microphone are disposed on each earphone of the active noise canceling earphone, wherein the feedforward microphone is disposed outside the earphone, and the feedback microphone is Set in the coupling cavity of the earphone and the human ear; each ear of the active noise canceling earphone
  • the noise reduction control system provided by the above technical solution is provided in the machine.
  • the technical solution of the embodiment of the present invention can detect the environmental condition of the user wearing the active noise canceling earphone according to the hearing characteristic of the human ear by using the technical means of calculating the weighted energy of the signal from the two aspects of the frequency domain and the time domain, and aiming at the current noise.
  • the type and frequency distribution comprehensively determine whether active noise reduction control is required; the technical means of calculating the sub-band energy value of the noise signal collected by the microphone in real time can dynamically calculate the size of the adjusted noise reduction; and, through feedforward noise reduction
  • the technique of feedback noise reduction by feedback feedforward noise reduction and feedback noise reduction is used to intelligently adopt different noise reduction schemes for different noise reduction systems.
  • the scheme can accurately reduce the noise control, and the dynamic intelligent noise reduction adjustment can achieve the best noise reduction effect compared with the existing fixed noise reduction active noise reduction technology.
  • the present invention can also provide a feedback microphone on each earphone of the active noise canceling earphone, and use the feedback microphone disposed in the coupling cavity of the earphone and the human ear to fine tune the feedback noise reduction of the feedback noise reduction system. Quantity to ensure the best effect of noise suppression.
  • the present invention employs a dynamic double threshold threshold such that the dynamic adjustment process is a slowly varying process, thereby avoiding the noise caused by frequent adjustments to the noise reduction level.
  • the present invention can also determine whether there is current wind noise according to the correlation of the noise signals collected by the two feedforward microphones, and perform special noise reduction control under wind noise conditions.
  • FIG. 1 is a schematic diagram of an active noise canceling earphone with two microphones according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a noise reduction control method applied to an active noise canceling earphone according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a level hopping of a noise reduction system according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a noise reduction control system applied to an active noise canceling earphone according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of an active noise canceling earphone according to an embodiment of the present invention.
  • the main technical idea of the present invention is to detect the environment in which the user wears the active noise canceling earphone by using multiple microphones, and based on the hearing effect of the human ear, determine whether to use active noise reduction for the current noise type and frequency distribution, and adopt dynamic Adjustable noise reduction scheme, and intelligent combination of feedforward and feedback two noise reduction systems in the earphone to ensure the best effect of noise suppression.
  • FIG. 1 is a schematic diagram showing an active noise canceling earphone with two microphones according to an embodiment of the present invention.
  • One of them is a feedforward microphone, such as MIC_1 in Fig. 1, which is disposed outside the earphone; the other is a feedback microphone, such as MIC_2 in Fig. 1, which is disposed in the coupling cavity of the earphone and the human ear.
  • the active noise canceling headphones will start working (can be forced to close).
  • the entire noise reduction system can also be divided into a feedforward noise reduction system and a feedback noise reduction system. These two systems are different in the frequency band of noise reduction, so it is necessary to intelligently detect the external environment and intelligently combine two noise reduction systems to achieve the best noise reduction.
  • the principle of the active noise canceling earphone is to cancel the noise by generating a signal having a phase opposite to the external noise to achieve noise reduction.
  • the MIC_1 is mounted on the outside of the earphone (such as the upper outer corner) to detect external noise, thereby controlling the speaker to produce a phase-inverted signal, which is a feedforward noise reduction system.
  • the MIC_2 is mounted in the coupling cavity of the earphone and the human ear. It detects the residual noise in the coupler cavity and also generates a signal opposite to the phase of the coupling cavity noise, further reducing the noise entering the human ear, resulting in noise reduction. Maximize.
  • an embodiment of the present invention provides a noise reduction control method applied to an active noise canceling earphone.
  • 2 is a flow chart showing a noise reduction control method applied to an active noise canceling earphone according to an embodiment of the present invention. As shown in Figure 2, the method includes:
  • Step S210 Perform frequency domain weighting and time domain on the noise signal collected by the feedforward microphone at the current time. Calculate the power and get the weight of energy.
  • the present embodiment measures the weight of the input signal to The current type and frequency distribution of noise uses a dynamically adjustable noise reduction scheme.
  • the weighting measurement includes two aspects: frequency domain weighting and time domain weighting.
  • the first step is frequency domain weighting.
  • the frequency filter R(f) is designed according to the frequency weighting formula described below, where f is the frequency of the signal and R A (f) is the frequency weighting factor:
  • the second step is time domain weighting.
  • the frequency-weighted data is more in line with the human ear's hearing in the frequency domain, but in the time domain, if the noise suddenly disappears, its sound level will not disappear immediately, there will be a falling rate, then a time constant is used.
  • For signal smoothing perform time domain weighting processing.
  • Time domain weighting can be performed using the following time weighting method:
  • SPL(n) is the sound level, that is, the weighted energy finally obtained;
  • is the time weighting coefficient,
  • Energy(n) is the energy value of the current frame, and
  • Energy(n) is the y(n) after the above frequency is weighted. square.
  • Step S220 Determine, according to the weighted energy, whether active noise reduction control is required at the current time.
  • the weighted energy SPL(n) obtained in the above step S210 is compared with a threshold. Active noise reduction is performed when SPL(n) is greater than the threshold, and active noise reduction is not required if SPL(n) is less than the threshold.
  • the size of the threshold needs to be selected based on the actual design of the headset.
  • Step S230 when the active noise reduction control is required, calculate the energy value of the first sub-band and the energy value of the second sub-band of the noise signal collected by the feedforward microphone at the current time.
  • the suppression of the external environmental noise in this embodiment is divided into frequency bands, that is, the effect of noise reduction on different frequencies is also different. This is mainly considered if the active noise reduction is mainly concentrated in the low frequency part, and the noise entering the human ear is mainly high frequency noise. At this time, if the same active noise reduction method is still used in different frequency bands, it is actually not helpful for noise reduction. Instead, it will introduce more noise, causing discomfort in the human ear. Therefore, the present embodiment performs different noise reduction processing through different frequency bands, thereby improving the noise reduction effect.
  • the first sub-band and the second sub-band are respectively determined according to a feedforward noise reduction curve and a feedback noise reduction curve of the active noise canceling earphone.
  • the feedforward noise reduction curve can be obtained by detecting the feedforward noise reduction performance of the active noise canceling earphone, and the feedback noise reduction curve is obtained by detecting the feedback noise reduction performance of the active noise canceling earphone, and the maximum amplitude of the feedforward noise reduction curve is obtained.
  • the first sub-band is selected within a certain frequency band range near the point (the difference between the frequency point of the maximum amplitude in the certain frequency band range and the frequency point of the maximum amplitude point of the entire feedforward noise reduction curve is less than the set value) a certain frequency band range near the maximum amplitude point of the feedback noise reduction curve (the difference between the frequency point of the maximum amplitude in the certain frequency band range and the frequency point of the maximum amplitude point of the entire feedback noise reduction curve is smaller than the setting Within the value), the second sub-band is selected.
  • the energy value of the first sub-band and the energy value of the second sub-band need to be separately obtained.
  • the noise signal s1 collected by the feedforward microphone MIC_1 at the current time passes through the band pass filter h A (n) of the first sub-band A and the band pass filter of the second sub-band B. h B (n).
  • s1 can be passed to the frequency domain by FFT transform (Fast Fourier Transformation), and then the energy values of the first sub-band A and the second sub-band B are counted.
  • FFT transform Fast Fourier Transformation
  • the energy value Energy A of the first sub-band A is calculated by the sub-band filter method, as shown in the following formula:
  • y(n) represents the subband signal after s1 has passed h A (n), and n represents time.
  • is a weighting coefficient, and the value of ⁇ can be determined according to a frequency response curve; (subband1, Subband2) is the frequency domain range of subband A.
  • Step S240 determining a feedforward noise reduction amount and a feedback noise reduction amount according to the energy value of the first subband and the energy value of the second subband, respectively.
  • the energy values of the two sub-bands are compared with a preset threshold. Specifically, in this embodiment, the energy value of the first sub-band and the energy value of the second sub-band are respectively compared with threshold values corresponding to different noise reduction levels, and the initial value of the feedforward noise reduction amount and the initial value of the feedback noise reduction are respectively determined. value.
  • the headset when the headset is turned on, the default does not currently require active noise reduction. After it is determined that the active noise reduction needs to be turned on, the initial values of the two sub-band energies are calculated, and then the feedforward noise reduction amount and the feedback noise reduction amount at the initial time are determined according to the noise reduction level corresponding to the initial value.
  • the present embodiment tracks and calculates the sub-band energy value every certain time (for example, every second).
  • the noise changes cause the feedforward active noise reduction and feedback active noise reduction modules to re-adjust their own noise reduction.
  • the adjustment process is a slowly changing process. In order to prevent the noise from falling around the threshold and causing the noise reduction level to jump back and forth, causing the human ear to be uncomfortable, this scheme adopts a double threshold method.
  • the rising threshold threshold and the falling threshold threshold are respectively set for the two adjacent noise reduction levels, and the rising threshold threshold is greater than the falling threshold threshold; and the energy of the subband of the noise signal collected by the feedforward microphone acquired at each moment is recorded. value.
  • the energy value of the first sub-band and the energy value of the second sub-band need to be separately recorded, because the method of determining the feedforward noise reduction amount by using the energy value of the first sub-band and the energy using the second sub-band
  • the value determination feedback noise reduction method is the same, and is described below as a sub-band, and the first sub-band and the second sub-band are no longer distinguished.
  • the energy value of the sub-band at the current time is in the process of changing the energy value from small to large (the magnitude of the energy value of the recorded sub-band can be used to obtain the change trend of the energy value)
  • the energy value of the sub-band is greater than the falling threshold threshold
  • the energy value of the sub-band is greater than the rising threshold threshold, before determining The feed noise reduction or feedback noise reduction increases a noise reduction level.
  • the feedforward noise reduction amount or the feedback noise reduction amount keeps the original noise reduction level unchanged, and when the energy value of the subband is less than the falling threshold threshold, determining the feedforward noise reduction amount or the feedback drop The noise is reduced by a noise reduction level.
  • FIG. 3 is a schematic diagram showing the level hopping of the noise reduction system according to an embodiment of the present invention.
  • the rising threshold threshold Threshold0_up and the falling threshold threshold Threshold0_down are used, and Threshold0_up>Threshold0_down is always established:
  • the sub-band energy of the external environmental noise changes from small to large, that is, when the system is at the noise reduction level A, when the sub-band energy is greater than Threshold0_down, the active noise reduction system does not beat the noise reduction level, but if The energy continues to increase.
  • the feedforward noise reduction or feedback noise reduction of the active noise reduction system jumps up one level to the noise reduction level B.
  • the ambient noise sub-band energy decreases from large to small, that is, when the system is at the noise reduction level B, when the sub-band energy is less than Threshold0_up, the active noise reduction system does not beat the noise reduction level.
  • the feedforward noise reduction or feedback noise reduction of the active noise reduction system jumps down one level to the noise reduction level A.
  • the number of the above noise reduction levels should be selected according to the needs of the active noise canceling headphones, that is, the noise reduction level can also jump between the noise reduction level B, the noise reduction level C, and the like.
  • the noise reduction level can be selected as 10, and if the active noise reduction earphone can achieve a noise reduction range of 25 dB, the number of dB corresponding to each noise reduction level is increased, and the first level is 2.5 dB of noise reduction.
  • the second level is 5dB of noise reduction, the third level is 7.5dB of noise reduction, and so on.
  • Step S250 the control earphone performs feedforward noise reduction according to the determined feedforward noise reduction amount, and controls the earphone to perform feedback noise reduction according to the determined feedback noise reduction amount.
  • the feedforward noise reduction module in the control earphone performs feedforward noise reduction according to the determined feedforward noise reduction amount
  • the feedback noise reduction module in the control earphone performs feedback noise reduction according to the determined feedback noise reduction amount.
  • the noise reduction control method applied to the active noise canceling earphone shown in FIG. 2 is completed.
  • the operations of the above steps S210 to S250 can be performed by the control chip in the earphone.
  • the technical solution of the embodiment of the present invention calculates the weighting power of the signal from two angles of the frequency domain and the time domain.
  • the technical means of quantity can detect the environmental condition of the user wearing the active noise canceling earphone according to the auditory characteristics of the human ear, comprehensively judge whether the active noise reduction control is needed for the current noise type and frequency distribution, and calculate the noise signal collected by the microphone in real time.
  • the technical method of sub-band energy value can dynamically calculate the size of the adjusted noise reduction; and the technique of feedback noise reduction by feedforward noise reduction and feedback noise reduction by feedforward noise reduction, for different degradation
  • the noise system intelligently uses different noise reduction schemes.
  • the scheme can accurately reduce the noise control, and the dynamic intelligent noise reduction adjustment can achieve the best noise reduction effect compared with the existing fixed noise reduction active noise reduction technology.
  • the invention can adaptively adjust the active noise reduction amount of the earphone according to the environment in which the user uses the earphone, ensure that the earphone obtains the maximum noise reduction amount of the external environment noise, and at the same time, judge the use state of the user, and does not generate any music signal. damage.
  • the noise reduction control method in still another preferred embodiment provides a scheme for adaptively fine-tuning the noise reduction amount of the feedback microphone to improve the accuracy of the feedback noise reduction control, and the method further includes :
  • the feedback microphone set in the coupling cavity of the earphone and the human ear is used on each earphone of the active noise canceling earphone to calculate the energy of the signal collected by the feedback microphone at the current time.
  • the step of controlling the earphone according to the determined feedback noise reduction amount in the step S250 the method further includes: adjusting the feedback noise reduction amount according to the calculated energy of the signal collected by the microphone at the current time, and controlling the earphone according to the adjusted
  • the feedback noise reduction amount is used for feedback noise reduction. Therefore, according to the noise reduction result of the feedback microphone, appropriate adaptive modification of the feedback noise reduction amount is performed.
  • the noise-reduced signal collected by the feedback microphone is obtained, and the energy of the noise-reduced signal is calculated; whether the energy of the signal collected by the feedback microphone is compared at the current time is compared. If the energy of the signal after the noise reduction is less than, the control earphone performs feedback noise reduction according to the adjusted feedback noise reduction amount. If not, the control earphone performs feedback noise reduction according to the feedback noise reduction amount before the adjustment.
  • the preferred embodiment of the present invention utilizes a feedback microphone disposed in the coupling cavity of the earphone and the human ear to ensure optimal suppression of noise suppression by adaptively adjusting the feedback noise reduction amount of the feedback noise reduction system.
  • the noise reduction control method of the present invention provides a wind noise solution, the method further comprising:
  • the control earphone stops the feedforward noise reduction according to the feedforward noise reduction amount, and determines the increment of the feedback noise reduction amount according to the feedforward noise reduction amount, and controls the earphone to perform feedback noise reduction according to the incremental feedback noise reduction amount.
  • the feedforward active noise reduction system can not reduce the noise for wind noise, on the contrary, it amplifies the noise, so when wind noise occurs, this embodiment adopts the off feed forward active noise reduction to increase the feedback noise reduction. Program.
  • the wind noise detection adopted in this embodiment is implemented according to the correlation of signals.
  • the inventor discovered by analyzing the principle of wind noise generation that when the wind passes through the microphone, a pressure is generated on the microphone.
  • the wind noise collected by each microphone is random, that is, the wind noise collected by any two microphones is irrelevant.
  • the two inputs of the feedforward microphone can be used for correlation determination: if the signals arriving at the two feedforward microphones are irrelevant, it can be judged that the wind noise is currently encountered. Any other noise and voice will have a strong correlation. Therefore, the determination of wind noise can be judged by calculating the correlation of the signals of the two feedforward microphones.
  • the specific calculation process is:
  • step 3 Normalize the calculation result R(k) and smooth the calculation result. It is possible to confirm whether there is wind noise by the correlation of the smoothing calculation results obtained in this step, that is, when the smoothing calculation result indicates that the correlation is low, it is confirmed that there is wind noise. Or go to step 4, and then perform the judgment after extracting the smooth calculation result obtained in this step.
  • an embodiment of the present invention further provides a noise reduction control system applied to an active noise canceling earphone.
  • 4 is a schematic structural diagram of a noise reduction control system applied to an active noise canceling earphone according to an embodiment of the present invention.
  • the noise reduction control system includes: an energy weighting unit 41, an active noise reduction determining unit 42, and a subband energy calculation.
  • the energy weighting unit 41 is configured to perform frequency domain weighting and time domain weighting on the noise signal collected by the feedforward microphone at the current time to obtain weighted energy.
  • the human ear is less sensitive to low frequency and high frequency signals than the intermediate frequency, in order to more realistically calculate the human perception of noise.
  • the input signal is weighted to measure the current noise type and frequency distribution, using a dynamically adjustable noise reduction scheme.
  • the energy weighting unit 41 is specifically configured to sequentially calculate the weighted energy of the frequency domain weighting and the time domain weighting.
  • the first step is frequency domain weighting.
  • the frequency filter R(f) is designed according to the frequency weighting formula described below, where f is the frequency of the signal and R A (f) is the frequency weighting factor:
  • the second step is time domain weighting.
  • the frequency-weighted data is more in line with the hearing of the human ear in the frequency domain, but In the time domain, if the noise suddenly disappears, its sound level does not disappear immediately, there will be a falling rate. At this time, a time constant is used to smooth the signal and perform time domain weighting processing.
  • Time domain weighting can be performed using the following time weighting method:
  • SPL(n) is the sound level, that is, the weighted energy finally obtained;
  • is the time weighting coefficient,
  • Energy(n) is the energy value of the current frame, and
  • Energy(n) is the weighting of the above frequency y(n) squared.
  • the active noise reduction determining unit 42 is configured to determine, according to the weighted energy obtained by the energy weighting unit 41, whether active noise reduction control is required at the current time.
  • the sub-band energy calculation unit 43 is configured to calculate, when the active noise reduction determination unit 42 determines that the active noise reduction control is required, the energy value of the first sub-band and the energy of the second sub-band of the noise signal collected by the feedforward microphone at the current time. a value, wherein the first sub-band and the second sub-band are respectively determined according to a feedforward noise reduction curve and a feedback noise reduction curve of the earphone.
  • the suppression of the external environmental noise in this embodiment is divided into frequency bands, that is, the effect of noise reduction on different frequencies is also different. This is mainly considered if the active noise reduction is mainly concentrated in the low frequency part, and the noise entering the human ear is mainly high frequency noise. At this time, if the same active noise reduction method is still used in different frequency bands, it is actually not helpful for noise reduction. Instead, it will introduce more noise, causing discomfort in the human ear. Therefore, the present embodiment performs different noise reduction processing through different frequency bands, thereby improving the noise reduction effect.
  • the feedforward noise reduction curve can be obtained by detecting the feedforward noise reduction performance of the active noise canceling earphone, and the feedback noise reduction curve is obtained by detecting the feedback noise reduction performance of the active noise canceling earphone, respectively, and the maximum amplitude of the feedforward noise reduction curve respectively.
  • the first sub-range is selected within a certain frequency band range near the value point (the difference between the frequency point of the maximum amplitude in the certain frequency band range and the frequency point of the maximum amplitude point of the entire feedforward noise reduction curve is less than a set value) Band, a certain frequency band range near the maximum amplitude point of the feedback noise reduction curve (the difference between the frequency point of the maximum amplitude in the certain frequency band range and the frequency point of the maximum amplitude point of the entire feedback noise reduction curve is less than
  • the second sub-band is selected within the fixed value).
  • the noise reaches the threshold requirement, when the active drop control noise needs to be performed, the energy value of the first sub-band and the energy value of the second sub-band need to be separately obtained.
  • s1 can be passed to the frequency domain by FFT transform (Fast Fourier Transformation), and then the energy values of the first sub-band A and the second sub-band B are counted.
  • FFT transform Fast Fourier Transformation
  • the energy value Energy A of the first sub-band A is calculated by the sub-band filter method, as shown in the following formula:
  • y(n) represents the subband signal after s1 has passed h A (n), and n represents time.
  • is a weighting coefficient, and the value of ⁇ can be determined according to a frequency response curve; (subband1, subband2) is a frequency domain range of the subband A.
  • the noise reduction amount determining unit 44 is configured to determine the feedforward noise reduction amount and the feedback noise reduction amount according to the energy value of the first sub-band calculated by the sub-band energy calculation unit 43 and the energy value of the second sub-band, respectively.
  • the noise reduction amount determining unit 44 includes an initial value determining module, a dual threshold setting module, an energy value recording module, an increased noise reduction level module, and a reduced noise reduction level module:
  • the initial value determining module is configured to compare the energy value of the first sub-band and the energy value of the second sub-band with threshold values corresponding to different noise reduction levels, respectively, and determine initial values of feedforward noise reduction and initial feedback noise reduction value;
  • the dual threshold setting module is configured to respectively set a rising threshold threshold and a falling threshold threshold for the adjacent two noise reduction levels, and the rising threshold threshold is greater than the falling threshold threshold;
  • An energy value recording module configured to record an energy value of a first sub-band of the noise signal collected by the feedforward microphone acquired at each moment and an energy value of the second sub-band;
  • Increasing the noise reduction level module for determining the energy value of the first sub-band or the second sub-band at the current moment
  • the noise reduction level module is configured to determine when the energy value of the first sub-band or the energy value of the second sub-band is in a process in which the energy value changes from large to small, when the energy value of the first sub-band or the second When the energy value of the sub-band is less than the rising threshold threshold, it is determined that the feedforward noise reduction amount or the feedback noise reduction amount keeps the original noise reduction level unchanged, when the energy value of the first sub-band or the energy value of the second sub-band is less than the falling threshold threshold. When determining the feedforward noise reduction or feedback noise reduction, reduce the noise reduction level.
  • the feedforward noise reduction control unit 45 is configured to control the earphone to perform feedforward noise reduction according to the feedforward noise reduction amount.
  • the feedback noise reduction control unit 46 is configured to control the earphone to perform feedback noise reduction according to the feedback noise reduction amount.
  • the noise reduction control system is provided with a feedback microphone on each earphone of the active noise canceling headphone, and the feedback microphone is disposed in the coupling cavity of the earphone.
  • the noise reduction control system further includes: a feedback energy calculation unit, configured to calculate the energy of the signal collected by the feedback microphone at the current time when determining that there is no sound playback in the speaker.
  • the feedback noise reduction control unit 46 in the embodiment shown in FIG. 4 further includes: a feedback noise reduction amount adjustment module, configured to feedback the energy of the signal collected by the microphone at the current time according to the feedback energy calculation unit The noise is adjusted, and the control earphone performs feedback noise reduction according to the adjusted feedback noise reduction amount.
  • a feedback noise reduction amount adjustment module configured to feedback the energy of the signal collected by the microphone at the current time according to the feedback energy calculation unit The noise is adjusted, and the control earphone performs feedback noise reduction according to the adjusted feedback noise reduction amount.
  • the feedback noise reduction adjustment module is further configured to: after controlling the earphone to perform feedback noise reduction according to the adjusted feedback noise reduction amount, obtain a noise-reduced signal collected by the feedback microphone, and calculate the noise-reduced signal.
  • the energy of the signal collected by the feedback microphone is less than the energy of the signal after the noise reduction. If yes, the control earphone performs feedback noise reduction according to the adjusted feedback noise reduction amount. If not, the earphone is controlled according to the adjustment. Feedback noise reduction for feedback noise reduction.
  • the preferred embodiment of the present invention utilizes a feedback microphone disposed in the coupling cavity of the earphone and the human ear to ensure optimal suppression of noise suppression by adaptively adjusting the feedback noise reduction amount of the feedback noise reduction system.
  • the noise reduction control system further includes:
  • the wind noise judging unit is configured to calculate a correlation of the noise signals collected by the two feedforward microphones on the two earphones of the active noise canceling earphone at the current moment, and determine whether there is wind noise at the current moment according to the calculation result of the correlation;
  • the wind noise processing unit is configured to determine, when the wind noise determining unit determines that there is wind noise at the current moment, control the earphone to stop feeding forward noise reduction according to the feedforward noise reduction amount, and determine the increment of the feedback noise reduction amount according to the feedforward noise reduction amount.
  • the control earphone performs feedback noise reduction according to the feedback noise reduction amount after the increment.
  • an active noise canceling earphone is further provided, wherein each of the active noise canceling earphones is provided with a feedforward microphone and a feedback microphone, wherein the feedforward microphone is disposed outside the earphone, and the feedback The microphone is disposed in the coupling cavity of the earphone; the noise reduction control system provided by the above technical solution is disposed in each earphone of the active noise canceling earphone.
  • FIG. 5 is a schematic structural diagram of an active noise canceling earphone according to an embodiment of the present invention.
  • the functions performed by the noise detection module 51 and the noise analysis and control module 52 can also be implemented by the noise reduction control system applied to the active noise canceling headphones shown in FIG.
  • the ambient noise detecting module 51 collects the current time noise signal in real time through the feedforward microphone to detect the environmental noise.
  • the noise analysis and control module 52 calculates the weighted energy of the noise signal collected by the feedforward microphone at the current time, and determines whether the current time needs active noise reduction control according to the weighted energy analysis, and further calculates if the active noise reduction control is needed.
  • the feedforward noise reduction amount and the feedback noise reduction amount are determined, and the feedforward noise reduction mode 531 in the active noise reduction module 53 is controlled to perform feedforward noise reduction according to the feedforward noise reduction amount, and the feedback noise reduction in the active noise reduction module 53 is controlled.
  • the mode 532 performs feedback noise reduction based on the feedback noise reduction amount.
  • the present invention provides a noise reduction control method and system for an active noise canceling earphone, and an active noise canceling earphone, which can detect the environment of the active noise canceling earphone, and is aimed at the current noise.
  • Type and frequency distribution using a dynamic adjustable noise reduction scheme to suppress ambient noise, Compared with the existing fixed noise reduction active noise reduction technology, the noise reduction effect can be optimized.
  • the present invention can also provide a feedback microphone on each earphone of the active noise canceling earphone, and use the feedback microphone disposed in the coupling cavity of the earphone and the human ear to fine tune the feedback noise reduction of the feedback noise reduction system. Quantity to ensure the best effect of noise suppression.
  • the present invention employs a dynamic double threshold threshold such that the dynamic adjustment process is a slowly varying process, thereby avoiding the noise caused by frequent adjustments to the noise reduction level.
  • the present invention can also determine whether there is current wind noise according to the correlation of the noise signals collected by the two feedforward microphones, and perform special noise reduction control under wind noise conditions.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Headphones And Earphones (AREA)

Abstract

公开了一种主动降噪耳机及应用于该耳机的降噪控制方法和系统。该方法通过在主动降噪耳机的每只耳机的外侧各设置一个前馈麦克风,利用前馈麦克风检测外界噪声的大小,计算噪声信号的计权能量,根据计权能量确定是否需要打开主动降噪系统,在需要主动降噪控制时,计算噪声信号中的分别对应前馈降噪量和反馈降噪量的两个子带的能量值,从而确定出前馈降噪系统和反馈降噪系统的降噪量,并控制耳机对应进行前馈降噪和反馈降噪。该技术方案对主动降噪耳机的环境进行检测,针对当前噪声的类型和频率分布,采用动态的可调的降噪方案对周围噪声进行抑制,相比于现有固定降噪的主动降噪技术,能够使降噪效果达到最佳。

Description

主动降噪耳机及应用于该耳机的降噪控制方法和系统 技术领域
本发明涉及智能耳机的主动降噪技术领域,特别涉及一种应用于主动降噪耳机的降噪控制方法和系统及一种主动降噪耳机。
发明背景
耳机在人们的寻常生活和工作中已经得到了广泛应用,耳机除了用来欣赏音乐、娱乐的功能之外,也被广泛的应用于隔离噪声,保持相对安静的环境,但是耳机对低频噪声的隔噪效果和能力是有局限性的。
主动降噪技术采用的方法是产生一个与外界噪声幅度相同相位相反的信号来抵消进入耳机的噪声。但是目前耳机中采用的主动降噪技术多是固定降噪的技术,这种固定降噪技术存在以下缺陷:外界环境不停变化,当外界噪声和固定降噪量相当的时候会产生比较好的降噪效果,但是,当外界噪声高于固定降噪量,就会出现降噪效果达不到最优,或者当外界噪声低于固定降噪量的时候,主动降噪模块实质上会产生一个新的噪声到达人的耳朵。
发明内容
有鉴于此,本发明的主要目的在于提供了一种应用于主动降噪耳机的降噪控制方法和系统及一种主动降噪耳机,用于解决固定降噪的主动降噪技术不能使降噪效果达到最优的技术问题。
为达到上述目的,本发明实施例的技术方案是这样实现的:
一方面,本发明实施例提供了一种应用于主动降噪耳机的降噪控制方法,在主动降噪耳机的每只耳机上各设置一个前馈麦克风,前馈麦克风设置在耳机的外侧,降噪控制方法包括:
对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域计权,得到 计权能量;
根据计权能量判断当前时刻是否需要主动降噪控制;
当需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值,其中,第一子带和第二子带分别根据耳机的前馈降噪曲线和反馈降噪曲线确定;
根据第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量;
控制耳机根据前馈降噪量进行前馈降噪,控制耳机根据反馈降噪量进行反馈降噪。
另一方面,本发明实施例还提供了一种应用于主动降噪耳机的降噪控制系统,在主动降噪耳机的每只耳机上各设置一个前馈麦克风,前馈麦克风设置在耳机的外侧,降噪控制系统包括:
能量计权单元,用于对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域计权,得到计权能量;
主动降噪判断单元,用于根据能量计权单元得到的计权能量判断当前时刻是否需要主动降噪控制;
子带能量计算单元,用于当主动降噪判断单元判断需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值,其中,第一子带和第二子带分别根据耳机的前馈降噪曲线和反馈降噪曲线确定;
降噪量确定单元,用于根据子带能量计算单元计算出的第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量;
前馈降噪控制单元,用于控制耳机根据前馈降噪量进行前馈降噪;
反馈降噪控制单元,用于控制耳机根据反馈降噪量进行反馈降噪。
又一方面,本发明实施例提供了一种主动降噪耳机,在主动降噪耳机的每只耳机上各设置一个前馈麦克风和一个反馈麦克风,其中前馈麦克风设置在耳机的外侧,反馈麦克风设置在耳机和人耳的耦合腔内;主动降噪耳机的每只耳 机内设置有上述技术方案提供的降噪控制系统。
与现有技术相比,本发明实施例的有益效果是:
本发明实施例的技术方案,通过从频域和时域两个角度计算信号的计权能量的技术手段,能够根据人耳的听觉特性,检测用户佩戴主动降噪耳机的环境状况,针对当前噪声的类型和频率分布综合判断是否需要主动降噪控制;通过计算麦克风实时采集到的噪声信号的子带能量值的技术手段,能够动态计算出调整降噪量的大小;以及,通过前馈降噪量进行前馈降噪和反馈降噪量进行反馈降噪的技术手段,对不同的降噪系统智能地采用不同的减噪方案。本方案能够准确的降噪控制,动态的智能降噪调整,相比于现有固定降噪的主动降噪技术,能够使降噪效果达到最佳。
在一优选方案中,本发明还可以在主动降噪耳机的每只耳机上各设置一个反馈麦克风,利用设置在耳机和人耳的耦合腔内的反馈麦克风,微调反馈降噪系统的反馈降噪量,保证噪声抑制达到最佳效果。在另一优选方案中,本发明采用动态双门限阈值,使得动态调整过程是一个缓变的过程,从而避免频繁调整降噪等级而带来的噪声。在又一优选方案中,本发明还可以根据两个前馈麦克风采集到的噪声信号的相关性,判断当前是否存在风噪,并对风噪情况下进行特殊的降噪控制。
附图简要说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为本发明实施例提供的设置两个麦克风的主动降噪耳机的示意图;
图2为本发明实施例提供的一种应用于主动降噪耳机的降噪控制方法的流程图;
图3为本发明实施例提供的降噪系统等级跳动示意图;
图4为本发明实施例提供的一种应用于主动降噪耳机的降噪控制系统结构示意图;
图5为本发明实施例提供的一种主动降噪耳机的结构示意图。
具体实施方式
本发明的主要技术构思是:利用多麦克风对用户佩戴主动降噪耳机的环境进行检测,基于人耳的听觉效应,针对当前噪声的类型和频率分布,判定是否使用主动降噪,并采用动态的可调的降噪方案,并智能结合耳机中前馈和反馈两个降噪系统保证噪声抑制达到最佳效果。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
为了改善传统主动降噪耳机不会考虑外界噪声的种类,对所有噪声都做统一的处理的缺陷,本方案采用了多麦克风对外界环境的检测。图1示出了本发明实施例的设置两个麦克风的主动降噪耳机的示意图。其中一个为前馈麦克风,如图1中的MIC_1,设置在耳机的外侧;另一个是反馈麦克风,如图1中的MIC_2,设置在耳机和人耳的耦合腔内。当耳机打开上电后,主动降噪耳机便开始工作(可强制关闭)。整个降噪系统也可以分为前馈降噪系统和反馈降噪系统。这两个系统在降噪的频带偏重上是不相同的,所以需要对外界环境智能检测,智能组合两个降噪系统,从而达到最佳的降噪量。
主动降噪耳机的原理是,通过产生与外界噪声相位相反的信号来抵消噪声,从而实现降噪的目的。如图1所示MIC_1安装在耳机的外侧(如外侧上角),用来检测外界的噪声,从而控制扬声器产生相位相反的信号,这是前馈降噪系统。MIC_2安装在耳机和人耳朵的耦合腔里面,它会检测耦合器腔里面残留的噪声的大小,同时也产生一个与耦合腔噪声相位相反的信号,进一步降低进入人耳的噪声,使得降噪量达到最大化。
一方面,本发明实施例提供了一种应用于主动降噪耳机的降噪控制方法。图2示出了本发明实施例的一种应用于主动降噪耳机的降噪控制方法的流程图。如图2所示,该方法包括:
步骤S210,对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域 计权,得到计权能量。
因为人耳的特殊性,人耳对低频和高频信号的敏感度都要低于中频,为了更加真实的计算出人对噪声的感觉,本实施例对输入的信号进行计权衡量,以针对当前噪声的类型和频率分布,采用动态的可调的降噪方案。
该计权衡量包括频域计权和时域计权两个方面。
第一步频域计权。根据下述的频率计权公式设计频率滤波器R(f),其中f为信号的频率,RA(f)为频率计权系数:
Figure PCTCN2015089249-appb-000001
若声音信号是s1,经过频率计权后得到y(n),则有y(n)=RA(f)*s1。
第二步时域计权。频率计权后的数据,更符合人耳在频域的听觉,但是在时域上,如果噪声突然消失,其声级并不会马上消失,会有一个下降速率,这时采用一个时间常数来对信号平滑,执行时域计权处理。
可以使用如下的时间计权方式进行时域计权:
SPL(n)=α*Energy(n)+(1-α)*SPL(n-1)
其中SPL(n)是声级,即最终得到的计权能量;α是时间计权系数,Energy(n)是当前帧的能量值,Energy(n)为上述频率计权后y(n)的平方。
步骤S220,根据计权能量判断当前时刻是否需要主动降噪控制。
上述步骤S210得到的计权能量SPL(n)会跟一个阈值进行比较。当SPL(n)大于阈值就进行主动降噪,如果SPL(n)小于阈值就无需主动降噪。阈值的大小需要根据实际设计的耳机进行选择。
步骤S230,当需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值。
本实施例对外界环境噪声的抑制是分频带的,即在不同的频率上面降噪的效果也是不一样的。这主要考虑到,如果主动降噪主要集中在低频部分,而进入人耳的噪声主要是高频噪声,这个时候若不同频带仍采用相同的主动降噪方法,实质上对降噪是没有帮助的,反而会引入更多噪声,造成人耳的不舒适。 所以本实施例通过不同频带进行不同的降噪处理,提高了降噪效果。
其中,第一子带和第二子带分别根据主动降噪耳机的前馈降噪曲线和反馈降噪曲线确定。具体地,可以通过检测主动降噪耳机的前馈降噪性能得到前馈降噪曲线,通过检测主动降噪耳机的反馈降噪性能得到反馈降噪曲线,在前馈降噪曲线的最大幅值点附近的一定频带范围(该一定频带范围中最大幅值的频点与整个前馈降噪曲线的最大幅值点的频点之间的差值小于设定值)内选取出第一子带,在反馈降噪曲线的最大幅值点附近的一定频带范围(该一定频带范围中最大幅值的频点与整个反馈降噪曲线的最大幅值点的频点之间的差值小于设定值)内选取处第二子带。
当噪声达到阈值要求时,需要执行主动降噪控制时,就需要分别来求第一子带的能量值和第二子带的能量值。
计算方式有两种:一种是可以使前馈麦克风MIC_1当前时刻采集到的噪声信号s1通过第一子带A的带通滤波器hA(n)和第二子带B的带通滤波器hB(n)。第二种是可以把s1通过FFT变换(Fast Fourier Transformation,快速傅氏变换)到频域,然后统计第一子带A和第二子带B的能量值的大小。现以第一子带A为示例进行说明。
方式一,通过子带滤波器的方法计算第一子带A的能量值EnergyA,参见如下公式:
y(n)=s1*hA(n)
EnergyA=∑y2(n)
其中,y(n)表示s1经过hA(n)后的子带信号,n表示时间。
方式二,通过FFT计算第一子带A的子带能量EnergyA的方法,参见如下公式:
S1(k)=FFT(s1)
Figure PCTCN2015089249-appb-000002
其中,α为加权系数,α的数值可以根据频响曲线确定;(subband1, subband2)为子带A的频域范围。
步骤S240,根据第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量。
得到第一子带和第二子带的能量之后,把两个子带的能量值和预先设置的阈值进行比较。具体地,本实施例是将第一子带的能量值和第二子带的能量值与不同降噪等级对应的阈值分别进行比较,分别确定出前馈降噪量初始值和反馈降噪量初始值。
需要说明的是,当打开耳机时,默认当前不需要主动降噪。当确定需要开启主动降噪后,计算出两个子带能量的初始值,然后按照该初始值对应的降噪等级,确定初始时刻前馈降噪量和反馈降噪量。
由于耳机所处的环境噪声会不停的发生变化,为了跟踪变化,本实施例每隔一定时间(例如每秒)跟踪计算一次子带能量值。噪声的变化使得前馈主动降噪和反馈主动降噪模块会重新调整自己的降噪量。不过其调整过程是一个缓变的过程,为了防止噪声在阈值附近变化而造成降噪等级来回跳动,引起人耳听觉不舒适性,本方案采用了双门限的方式。
具体地,为相邻的两个降噪等级分别设置上升门限阈值和下降门限阈值,而且上升门限阈值大于下降门限阈值;记录各个时刻获取到的前馈麦克风采集到的噪声信号的子带的能量值。需说明的是,第一子带的能量值和第二子带的能量值都需要分别记录,由于利用第一子带的能量值确定前馈降噪量的方法与利用第二子带的能量值确定反馈降噪量方法相同,下述统称为子带进行描述,不再区分第一子带和第二子带。
在判断当前时刻子带的能量值处于能量值从小变大的过程中时(可以利用记录的子带的能量值的大小获知能量值的变化趋势),当子带的能量值大于该下降门限阈值时,确定前馈降噪量(对应第一子带)或反馈降噪量(对应第二子带)保持原降噪等级不变,当子带的能量值大于该上升门限阈值时,确定前馈降噪量或反馈降噪量增大一个降噪等级。
在判断当前时刻子带的能量值处于能量值从大变小的过程中时,当子带的 能量值小于该上升门限阈值时,确定前馈降噪量或反馈降噪量保持原降噪等级不变,当子带的能量值小于该下降门限阈值时,确定前馈降噪量或反馈降噪量降低一个降噪等级。
图3示出了本发明实施例的降噪系统等级跳动示意图。如图3所示,在相邻的两个降噪等级(如降噪等级A、降噪等级B)中,采用了上升门限阈值Threshold0_up和下降门限阈值Threshold0_down,而且Threshold0_up>Threshold0_down恒成立:
1.第一种变化情况,外界环境噪声的子带能量从小变大的过程中,即系统在降噪等级A时,当子带能量大于Threshold0_down,主动降噪系统不跳动降噪等级,但是如果能量继续变大,当子带能量大于Threshold0_up的时候,主动降噪系统的前馈降噪量或反馈降噪量向上跳动一级到降噪等级B。
2.反之,第二种变化情况下,外界环境噪声子带能量从大变小,即当系统处在降噪等级B时,当子带能量小于Threshold0_up,主动降噪系统不跳动降噪等级,但是如果能量继续变小,当子带能量小于Threshold0_down的时候,主动降噪系统的前馈降噪量或反馈降噪量向下跳动一级到降噪等级A。
上述降噪等级的数量要根据主动降噪耳机的需要选取划分,即降噪等级还可以在降噪等级B,降噪等级C等等之间跳动。比如,可以将降噪等级选取为10个,若主动降噪耳机所能实现的降噪幅度范围为25dB,则各降噪等级对应的dB数量递增,第一等级为2.5dB的降噪量,第二等级为5dB的降噪量,第三等级为7.5dB的降噪量,以此类推。
步骤S250,控制耳机根据确定出的前馈降噪量进行前馈降噪,控制耳机根据确定出的反馈降噪量进行反馈降噪。例如控制耳机中的前馈降噪模块根据确定出的前馈降噪量进行前馈降噪,控制耳机中的反馈降噪模块根据确定出的反馈降噪量进行反馈降噪。
至此完成了图2所示的应用于主动降噪耳机的降噪控制方法。上述步骤S210至S250的操作可以由耳机中的控制芯片执行。
本发明实施例的技术方案,通过从频域和时域两个角度计算信号的计权能 量的技术手段,能够根据人耳的听觉特性,检测用户佩戴主动降噪耳机的环境状况,针对当前噪声的类型和频率分布综合判断是否需要主动降噪控制;通过计算麦克风实时采集到的噪声信号的子带能量值的技术手段,能够动态计算出调整降噪量的大小;以及,通过前馈降噪量进行前馈降噪和反馈降噪量进行反馈降噪的技术手段,对不同的降噪系统智能地采用不同的减噪方案。本方案能够准确的降噪控制,动态的智能降噪调整,相比于现有固定降噪的主动降噪技术,能够使降噪效果达到最佳。
通过本发明可以根据用户使用耳机的环境,自适应的调整耳机的主动降噪量,保证耳机获得对外界环境噪声的最大降噪量,同时,判断用户的使用状态,不产生对音乐信号的任何损伤。
在上述实施例的基础上,又一优选实施例中的降噪控制方法提供了一种对反馈麦克风的降噪量自适应微调的方案,以提高反馈降噪控制的准确度,该方法进一步包括:
在判断扬声器中无声音播放时,利用主动降噪耳机的每只耳机上在耳机和人耳的耦合腔内各设置的反馈麦克风,计算当前时刻反馈麦克风采集到的信号的能量。
则上述步骤S250中控制耳机根据确定出的反馈降噪量进行反馈降噪还包括:根据计算出的当前时刻反馈麦克风采集到的信号的能量对该反馈降噪量进行调整,控制耳机根据调整后的反馈降噪量进行反馈降噪。从而根据反馈麦克风的降噪结果,对反馈降噪量进行适当的自适应修改。
对反馈降噪量进行适当的自适应修改的过程如下:
在控制耳机根据调整后的反馈降噪量进行反馈降噪后,获取反馈麦克风采集到的降噪后的信号,计算降噪后的信号的能量;比较当前时刻反馈麦克风采集到的信号的能量是否小于该降噪后的信号的能量,若是,控制耳机根据调整后的反馈降噪量进行反馈降噪,若否,控制耳机根据调整前的反馈降噪量进行反馈降噪。
也即是说,首先应用图2所示的方案执行降噪控制,判断反馈麦克风采集 到的信号s2的能量,超过一定阈值时,就提高反馈降噪量使用新的降噪等级,对反馈降噪量进行调整;然后比较调整前的信号能量与调整后的信号能量,如果提高反馈降噪量能够降低s2的能量,就继续使用调整后的新的降噪等级;如果提高反馈降噪量不能降低s2的能量,就恢复为调整前的原来的降噪等级。
本发明的该优选实施例,利用在耳机和人耳的耦合腔内设置的反馈麦克风,通过自适应微调反馈降噪系统的反馈降噪量,保证了噪声抑制达到最佳效果。
在另一优选实施例中,本发明的降噪控制方法提供了一种风噪的解决方案,该方法还进一步包括:
计算当前时刻主动降噪耳机的两只耳机上的两个前馈麦克风采集到的噪声信号的相关性,根据相关性的计算结果判断当前时刻是否存在风噪;如果判断当前时刻存在风噪,则控制耳机停止根据前馈降噪量进行前馈降噪,并根据该前馈降噪量确定出反馈降噪量的增量,控制耳机根据增量后的反馈降噪量进行反馈降噪。
考虑到前馈主动降噪系统对于风噪不能起到降噪的效果,相反,还会放大噪声,所以当风噪出现时,本实施例采用关闭前馈主动降噪,增大反馈降噪量的方案。
本实施例采用的风噪检测是根据信号的相关性实现的。发明人通过分析风噪产生的原理发现,风经过麦克风时,在麦克风上产生压强。每一个麦克风采集到的风噪都是随机的,即,任何两个麦克风采集的风噪是不相关的。而对于任何有源噪声和信号,其麦克风采集到的信号与信号源之间都是有相关性的。因为耳机是立体声的,可以利用前馈麦克风的两个输入进行相关性判断:如果到达两个前馈麦克风的信号是不相关的,即可判断当前遇到了风噪。而其他任何噪声和语音都会有极强的相关性。所以,风噪的判断可通过计算两个前馈麦克风的信号的相关性来判断。其具体计算过程是:
1.假设两个前馈麦克风采集的信号分别是x1(n),x2(n)。首先计算两路信号的FFT,得到两路信号的频域信号X1(k),X2(k)。
2.根据如下自相关的公式,计算两路信号频域的自相关函数R(k),其中, conj表示求复数共轭:
R(k)=X1(k)*conj(X2(k))。
3.归一化计算结果R(k),平滑计算结果。可以通过本步骤得出的平滑计算结果的相关性来确认是否存在风噪,即平滑计算结果指示相关性低时,确认存在风噪。或者进入步骤4,对本步骤得出的平滑计算结果进行抽取之后再执行判断。
4.抽取设定频带(如93.75Hz~781.25Hz)的信号的相关性进行判断。
本发明的该优选实施例,可以判断当前是否存在风噪,并对风噪情况下进行消除风噪的降噪控制。
另一方面,本发明实施例还提供了一种应用于主动降噪耳机的降噪控制系统。图4为本发明实施例提供的一种应用于主动降噪耳机的降噪控制系统的结构示意图,该降噪控制系统包括:能量计权单元41、主动降噪判断单元42、子带能量计算单元43、降噪量确定单元44、前馈降噪控制单元45和反馈降噪控制单元46。
其中,能量计权单元41,用于对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域计权,得到计权能量。
因为人耳的特殊性,人耳对低频和高频信号的敏感度都要低于中频,为了更加真实的计算出人对噪声的感觉。对输入的信号进行计权衡量,以针对当前噪声的类型和频率分布,采用动态的可调的降噪方案。
能量计权单元41具体用于依次计算频域计权和时域计权的计权能量。
第一步频域计权。根据下述的频率计权公式设计频率滤波器R(f),其中f为信号的频率,RA(f)为频率计权系数:
Figure PCTCN2015089249-appb-000003
若声音信号是s1,则经过频率计权后得到y(n),则有y(n)=RA(f)*s1。
第二步时域计权。频率计权后的数据,更符合人耳在频域的听觉,但是在 时域上,如果噪声突然消失,其声级并不会马上消失,会有一个下降速率,这时采用一个时间常数来对信号平滑,执行时域计权处理。
可以使用如下的时间计权方式进行时域计权:
SPL(n)=α*Energy(n)+(1-α)*SPL(n-1)
其中SPL(n)是声级,即是最终得到的计权能量;α是时间计权系数,Energy(n)是当前帧的能量值,Energy(n)为上述频率计权后y(n)的平方。
主动降噪判断单元42,用于根据能量计权单元41得到的计权能量判断当前时刻是否需要主动降噪控制。
子带能量计算单元43,用于当主动降噪判断单元42判断需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值,其中,第一子带和第二子带分别根据耳机的前馈降噪曲线和反馈降噪曲线确定。
本实施例对外界环境噪声的抑制是分频带的,即在不同的频率上面降噪的效果也是不一样的。这主要考虑到,如果主动降噪主要集中在低频部分,而进入人耳的噪声主要是高频噪声,这个时候若不同频带仍采用相同的主动降噪方法,实质上对降噪是没有帮助的,反而会引入更多噪声,造成人耳的不舒适。所以本实施例通过不同频带进行不同的降噪处理,提高了降噪效果。
具体地,可以通过检测主动降噪耳机的前馈降噪性能得到前馈降噪曲线,通过检测主动降噪耳机的反馈降噪性能得到反馈降噪曲线,分别在前馈降噪曲线的最大幅值点附近的一定频带范围(该一定频带范围中最大幅值的频点与整个前馈降噪曲线的最大幅值点的频点之间的差值小于设定值)内选取出第一子带,在反馈降噪曲线的最大幅值点附近的一定频带范围(该一定频带范围中最大幅值的频点与整个反馈降噪曲线的最大幅值点的频点之间的差值小于设定值)内选取处第二子带。
当噪声达到阈值要求时,需要执行主动降控制噪时,就需要分别来求第一子带的能量值和第二子带的能量值。
计算方式有两种:一种是可以使前馈麦克风MIC_1当前时刻采集到的噪声 信号s1通过第一子带A的带通滤波器hA(n)和第二子带B的带通滤波器hB(n)。第二种是可以把s1通过FFT变换(Fast Fourier Transformation,快速傅氏变换)到频域,然后统计第一子带A和第二子带B的能量值的大小。现以第一子带A为示例进行说明。
方式一,通过子带滤波器的方法计算第一子带A的能量值EnergyA,参见如下公式:
y(n)=s1*hA(n)
EnergyA=∑y2(n)
其中,y(n)表示s1经过hA(n)后的子带信号,n表示时间。
计算方法2,通过FFT计算子带能量方法:
S1(k)=FFT(s1)
Figure PCTCN2015089249-appb-000004
其中,α为加权系数,α的数值可以根据频响曲线确定;(subband1,subband2)为子带A的频域范围。
降噪量确定单元44,用于根据子带能量计算单元43计算出的第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量。
优选地,降噪量确定单元44包括初始值确定模块、双阈值设置模块、能量值记录模块、增大降噪等级模块和降低降噪等级模块:
初始值确定模块,用于将第一子带的能量值和第二子带的能量值与不同降噪等级对应的阈值分别进行比较,分别确定出前馈降噪量初始值和反馈降噪量初始值;
双阈值设置模块,用于为相邻的两个降噪等级分别设置上升门限阈值和下降门限阈值,而且上升门限阈值大于下降门限阈值;
能量值记录模块,用于记录各个时刻获取到的前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值;
增大降噪等级模块,用于在判断当前时刻第一子带的能量值或第二子带的 能量值处于能量值从小变大的过程中时,当第一子带的能量值或第二子带的能量值大于下降门限阈值时,确定前馈降噪量或反馈降噪量保持原降噪等级不变,当第一子带的能量值或第二子带的能量值大于上升门限阈值时,确定前馈降噪量或反馈降噪量增大一个降噪等级;
降低降噪等级模块,用于在判断当前时刻第一子带的能量值或第二子带的能量值处于能量值从大变小的过程中时,当第一子带的能量值或第二子带的能量值小于上升门限阈值时,确定前馈降噪量或反馈降噪量保持原降噪等级不变,当第一子带的能量值或第二子带的能量值小于下降门限阈值时,确定前馈降噪量或反馈降噪量降低一个降噪等级。
前馈降噪控制单元45,用于控制耳机根据前馈降噪量进行前馈降噪。
反馈降噪控制单元46,用于控制耳机根据反馈降噪量进行反馈降噪。
在一优选实施例中,上述降噪控制系统在主动降噪耳机的每只耳机上各设置一个反馈麦克风,该反馈麦克风设置在耳机的耦合腔内。该降噪控制系统还包括:反馈能量计算单元,用于在判断扬声器中无声音播放时,计算当前时刻反馈麦克风采集到的信号的能量。
优选地,图4所示实施例中的反馈降噪控制单元46还包括:反馈降噪量调整模块,用于根据反馈能量计算单元计算出的当前时刻反馈麦克风采集到的信号的能量对反馈降噪量进行调整,控制耳机根据调整后的反馈降噪量进行反馈降噪。
进一步优选地,反馈降噪量调整模块,还具体用于在控制耳机根据调整后的反馈降噪量进行反馈降噪后,获取反馈麦克风采集到的降噪后的信号,计算降噪后的信号的能量;比较当前时刻反馈麦克风采集到的信号的能量是否小于降噪后的信号的能量,若是,控制耳机根据调整后的反馈降噪量进行反馈降噪,若否,控制耳机根据调整前的反馈降噪量进行反馈降噪。
本发明的该优选实施例,利用在耳机和人耳的耦合腔内设置的反馈麦克风,通过自适应微调反馈降噪系统的反馈降噪量,保证了噪声抑制达到最佳效果。
在另一优选实施例中,上述降噪控制系统进一步包括:
风噪判断单元,用于计算当前时刻主动降噪耳机的两只耳机上的两个前馈麦克风采集到的噪声信号的相关性,根据相关性的计算结果判断当前时刻是否存在风噪;
风噪处理单元,用于风噪判断单元判断当前时刻存在风噪时,控制耳机停止根据前馈降噪量进行前馈降噪,并根据前馈降噪量确定出反馈降噪量的增量,控制耳机根据增量后的反馈降噪量进行反馈降噪。
本发明的该优选实施例,可以判断当前是否存在风噪,并对风噪情况下进行消除风噪的降噪控制。
本发明的另一方面,还提供了一种主动降噪耳机,在该主动降噪耳机的每只耳机上各设置一个前馈麦克风和一个反馈麦克风,其中前馈麦克风设置在耳机的外侧,反馈麦克风设置在耳机的耦合腔内;该主动降噪耳机的每只耳机内设置有上述技术方案提供的降噪控制系统。
参见图5,图5为本发明实施例提供的一种主动降噪耳机的结构示意图。包括环境噪声检测模块51、噪声分析和控制模块52、前馈降噪模块531和反馈降噪模块532,其中前馈降噪模块531和反馈降噪模块532共同构成主动降噪模块53,而环境噪声检测模块51和噪声分析和控制模块52执行的功能也可以由图4示出的应用于主动降噪耳机的降噪控制系统来实现。
主动降噪耳机工作时,环境噪声检测模块51通过前馈麦克风实时采集当前时刻的噪声信号,对环境噪声进行检测。噪声分析和控制模块52对前馈麦克风当前时刻采集到的噪声信号进行计权能量计算,根据计权能量分析判断当前时刻是否需要主动降噪控制,如果判断需要主动降噪控制时,则进一步计算并确定出前馈降噪量和反馈降噪量,控制主动降噪模块53中的前馈降噪模531根据前馈降噪量进行前馈降噪,控制主动降噪模块53中的反馈降噪模532根据反馈降噪量进行反馈降噪。
综上所述,本发明实施例提供的一种应用于主动降噪耳机的降噪控制方法和系统及一种主动降噪耳机,能够通过对主动降噪耳机的环境进行检测,针对当前噪声的类型和频率分布,采用动态的可调的降噪方案对周围噪声进行抑制, 相比于现有固定降噪的主动降噪技术,能够使降噪效果达到最佳。
在一优选方案中,本发明还可以在主动降噪耳机的每只耳机上各设置一个反馈麦克风,利用设置在耳机和人耳的耦合腔内的反馈麦克风,微调反馈降噪系统的反馈降噪量,保证噪声抑制达到最佳效果。在另一优选方案中,本发明采用动态双门限阈值,使得动态调整过程是一个缓变的过程,从而避免频繁调整降噪等级而带来的噪声。在又一优选方案中,本发明还可以根据两个前馈麦克风采集到的噪声信号的相关性,判断当前是否存在风噪,并对风噪情况下进行特殊的降噪控制。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (12)

  1. 一种应用于主动降噪耳机的降噪控制方法,其特征在于,在主动降噪耳机的每只耳机上各设置一个前馈麦克风,所述前馈麦克风设置在耳机的外侧,所述降噪控制方法包括:
    对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域计权,得到计权能量;
    根据所述计权能量判断当前时刻是否需要主动降噪控制;
    当需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值,其中,所述第一子带和第二子带分别根据耳机的前馈降噪曲线和反馈降噪曲线确定;
    根据所述第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量;
    控制耳机根据所述前馈降噪量进行前馈降噪,控制耳机根据所述反馈降噪量进行反馈降噪。
  2. 根据权利要求1所述的降噪控制方法,其特征在于,在主动降噪耳机的每只耳机上各设置一个反馈麦克风,所述反馈麦克风设置在耳机和人耳的耦合腔内,所述降噪控制方法进一步包括:
    在判断扬声器中无声音播放时,计算当前时刻反馈麦克风采集到的信号的能量;
    所述控制耳机根据所述反馈降噪量进行反馈降噪还包括:
    根据计算出的当前时刻反馈麦克风采集到的信号的能量对所述反馈降噪量进行调整;
    控制耳机根据调整后的反馈降噪量进行反馈降噪。
  3. 根据权利要求2所述的降噪控制方法,其特征在于,所述控制耳机根据调整后的反馈降噪量进行反馈降噪包括:
    在控制耳机根据调整后的反馈降噪量进行反馈降噪后,获取反馈麦克风采 集到的降噪后的信号,计算降噪后的信号的能量;
    比较当前时刻反馈麦克风采集到的信号的能量是否小于所述降噪后的信号的能量,若是,控制耳机根据调整后的反馈降噪量进行反馈降噪,若否,控制耳机根据调整前的反馈降噪量进行反馈降噪。
  4. 根据权利要求1所述的降噪控制方法,其特征在于,所述根据所述第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量包括:
    将所述第一子带的能量值和所述第二子带的能量值与不同降噪等级对应的阈值分别进行比较,分别确定出前馈降噪量初始值和反馈降噪量初始值。
  5. 根据权利要求4所述的降噪控制方法,其特征在于,所述根据所述第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量还包括:
    为相邻的两个降噪等级分别设置上升门限阈值和下降门限阈值,而且上升门限阈值大于下降门限阈值;
    记录各个时刻获取到的前馈麦克风采集到的噪声信号的所述第一子带的能量值和所述第二子带的能量值;
    在判断当前时刻所述第一子带的能量值或第二子带的能量值处于能量值从小变大的过程中时,当所述第一子带的能量值或第二子带的能量值大于所述下降门限阈值时,确定所述前馈降噪量或反馈降噪量保持原降噪等级不变,当所述第一子带的能量值或第二子带的能量值大于所述上升门限阈值时,确定所述前馈降噪量或反馈降噪量增大一个降噪等级;
    在判断当前时刻所述第一子带的能量值或第二子带的能量值处于能量值从大变小的过程中时,当所述第一子带的能量值或第二子带的能量值小于所述上升门限阈值时,确定所述前馈降噪量或反馈降噪量保持原降噪等级不变,当所述第一子带的能量值或第二子带的能量值小于所述下降门限阈值时,确定所述前馈降噪量或反馈降噪量降低一个降噪等级。
  6. 根据权利要求1-5任一项所述的降噪控制方法,其特征在于,所述降噪控制方法还包括:
    计算当前时刻主动降噪耳机的两只耳机上的两个前馈麦克风采集到的噪声信号的相关性,根据所述相关性的计算结果判断当前时刻是否存在风噪;
    如果判断当前时刻存在风噪,则控制耳机停止根据所述前馈降噪量进行前馈降噪,并根据所述前馈降噪量确定出反馈降噪量的增量,控制耳机根据增量后的反馈降噪量进行反馈降噪。
  7. 一种应用于主动降噪耳机的降噪控制系统,其特征在于,在主动降噪耳机的每只耳机上各设置一个前馈麦克风,所述前馈麦克风设置在耳机的外侧,所述降噪控制系统包括:
    能量计权单元,用于对前馈麦克风当前时刻采集到的噪声信号进行频域计权和时域计权,得到计权能量;
    主动降噪判断单元,用于根据所述能量计权单元得到的计权能量判断当前时刻是否需要主动降噪控制;
    子带能量计算单元,用于当所述主动降噪判断单元判断需要主动降噪控制时,计算当前时刻前馈麦克风采集到的噪声信号的第一子带的能量值和第二子带的能量值,其中,所述第一子带和第二子带分别根据耳机的前馈降噪曲线和反馈降噪曲线确定;
    降噪量确定单元,用于根据所述子带能量计算单元计算出的所述第一子带的能量值和第二子带的能量值分别确定出前馈降噪量和反馈降噪量;
    前馈降噪控制单元,用于控制耳机根据所述前馈降噪量进行前馈降噪;
    反馈降噪控制单元,用于控制耳机根据所述反馈降噪量进行反馈降噪。
  8. 根据权利要求7所述的降噪控制系统,其特征在于,在主动降噪耳机的每只耳机上各设置一个反馈麦克风,所述反馈麦克风设置在耳机和人耳的耦合腔内,所述降噪控制系统进一步包括:反馈能量计算单元,用于在判断扬声器中无声音播放时,计算当前时刻反馈麦克风采集到的信号的能量;
    所述反馈降噪控制单元还包括:
    反馈降噪量调整模块,用于根据所述反馈能量计算单元计算出的当前时刻反馈麦克风采集到的信号的能量对所述反馈降噪量进行调整,控制耳机根据调 整后的反馈降噪量进行反馈降噪。
  9. 根据权利要求8所述的降噪控制系统,其特征在于,所述反馈降噪量调整模块,还具体用于在控制耳机根据调整后的反馈降噪量进行反馈降噪后,获取反馈麦克风采集到的降噪后的信号,计算降噪后的信号的能量;比较当前时刻反馈麦克风采集到的信号的能量是否小于所述降噪后的信号的能量,若是,控制耳机根据调整后的反馈降噪量进行反馈降噪,若否,控制耳机根据调整前的反馈降噪量进行反馈降噪。
  10. 根据权利要求7所述的降噪控制系统,其特征在于,所述降噪量确定单元包括:
    初始值确定模块,用于将所述第一子带的能量值和所述第二子带的能量值与不同降噪等级对应的阈值分别进行比较,分别确定出前馈降噪量初始值和反馈降噪量初始值;
    双阈值设置模块,用于为相邻的两个降噪等级分别设置上升门限阈值和下降门限阈值,而且上升门限阈值大于下降门限阈值;
    能量值记录模块,用于记录各个时刻获取到的前馈麦克风采集到的噪声信号的所述第一子带的能量值和所述第二子带的能量值;
    增大降噪等级模块,用于在判断当前时刻所述第一子带的能量值或第二子带的能量值处于能量值从小变大的过程中时,当所述第一子带的能量值或第二子带的能量值大于所述下降门限阈值时,确定所述前馈降噪量或反馈降噪量保持原降噪等级不变,当所述第一子带的能量值或第二子带的能量值大于所述上升门限阈值时,确定所述前馈降噪量或反馈降噪量增大一个降噪等级;
    降低降噪等级模块,用于在判断当前时刻所述第一子带的能量值或第二子带的能量值处于能量值从大变小的过程中时,当所述第一子带的能量值或第二子带的能量值小于所述上升门限阈值时,确定所述前馈降噪量或反馈降噪量保持原降噪等级不变,当所述第一子带的能量值或第二子带的能量值小于所述下降门限阈值时,确定所述前馈降噪量或反馈降噪量降低一个降噪等级。
  11. 根据权利要求7-10任一项所述的降噪控制系统,其特征在于,所述降噪控制系统还包括:
    风噪判断单元,用于计算当前时刻主动降噪耳机的两只耳机上的两个前馈麦克风采集到的噪声信号的相关性,根据所述相关性的计算结果判断当前时刻是否存在风噪;
    风噪处理单元,用于所述风噪判断单元判断当前时刻存在风噪时,控制耳机停止根据所述前馈降噪量进行前馈降噪,并根据所述前馈降噪量确定出反馈降噪量的增量,控制耳机根据增量后的反馈降噪量进行反馈降噪。
  12. 一种主动降噪耳机,其特征在于,在所述主动降噪耳机的每只耳机上各设置一个前馈麦克风和一个反馈麦克风,其中前馈麦克风设置在耳机的外侧,反馈麦克风设置在耳机和人耳的耦合腔内;所述主动降噪耳机的每只耳机内设置有权利要求7-11任一项所述的降噪控制系统。
PCT/CN2015/089249 2014-12-31 2015-09-09 主动降噪耳机及应用于该耳机的降噪控制方法和系统 WO2016107206A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/126,754 US9928825B2 (en) 2014-12-31 2015-09-09 Active noise-reduction earphones and noise-reduction control method and system for the same
JP2016559193A JP6215488B2 (ja) 2014-12-31 2015-09-09 能動騒音低減イヤホン、該イヤホンに適用する騒音低減制御方法及びシステム
EP15874892.1A EP3107312B1 (en) 2014-12-31 2015-09-09 Active noise reduction headphones, and noise reduction control method and system applied to headphones
DK15874892.1T DK3107312T3 (en) 2014-12-31 2015-09-09 Headphones with Active Noise Reduction and Noise Reduction Control Method and Headphone System
US15/857,903 US10115387B2 (en) 2014-12-31 2017-12-29 Active noise-reduction earphones and noise-reduction control method and system for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410854148.1A CN104602163B (zh) 2014-12-31 2014-12-31 主动降噪耳机及应用于该耳机的降噪控制方法和系统
CN201410854148.1 2014-12-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/126,754 A-371-Of-International US9928825B2 (en) 2014-12-31 2015-09-09 Active noise-reduction earphones and noise-reduction control method and system for the same
US15/857,903 Continuation US10115387B2 (en) 2014-12-31 2017-12-29 Active noise-reduction earphones and noise-reduction control method and system for the same

Publications (1)

Publication Number Publication Date
WO2016107206A1 true WO2016107206A1 (zh) 2016-07-07

Family

ID=53127596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089249 WO2016107206A1 (zh) 2014-12-31 2015-09-09 主动降噪耳机及应用于该耳机的降噪控制方法和系统

Country Status (6)

Country Link
US (2) US9928825B2 (zh)
EP (1) EP3107312B1 (zh)
JP (1) JP6215488B2 (zh)
CN (1) CN104602163B (zh)
DK (1) DK3107312T3 (zh)
WO (1) WO2016107206A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115387B2 (en) 2014-12-31 2018-10-30 Goertek Inc. Active noise-reduction earphones and noise-reduction control method and system for the same
CN114040284A (zh) * 2021-09-26 2022-02-11 北京小米移动软件有限公司 噪声的处理方法、噪声的处理装置、终端及存储介质

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105120391B (zh) * 2015-09-15 2018-04-10 中山阿迪通电子科技有限公司 一种能主动式降噪耳机音质提升的装置
CN105321524A (zh) * 2015-09-29 2016-02-10 深圳东方酷音信息技术有限公司 一种数字式前反馈自适应混合有源噪声控制方法及装置
CN105744417A (zh) * 2016-01-20 2016-07-06 苏州咖啦魔哆信息技术有限公司 一种可降噪的蓝牙耳机
CN105979415B (zh) * 2016-05-30 2019-04-12 歌尔股份有限公司 一种自适应调节降噪增益的降噪方法、装置及降噪耳机
CN107517415B (zh) * 2016-06-16 2024-06-07 江西斐耳科技有限公司 智能耳机
CN106535027B (zh) * 2016-12-30 2020-01-31 佳禾智能科技股份有限公司 监测降噪耳机降噪效果的装置和可调节降噪效果的主动降噪耳机
JP6875164B2 (ja) * 2017-03-27 2021-05-19 旭化成エレクトロニクス株式会社 信号処理装置およびアクティブノイズキャンセルシステム
US10582293B2 (en) * 2017-08-31 2020-03-03 Bose Corporation Wind noise mitigation in active noise cancelling headphone system and method
US10096313B1 (en) * 2017-09-20 2018-10-09 Bose Corporation Parallel active noise reduction (ANR) and hear-through signal flow paths in acoustic devices
CN107750028B (zh) * 2017-12-06 2024-03-29 贵州翔通科技实业有限公司 耳机
CN110278502A (zh) * 2018-03-16 2019-09-24 李鹏 耳机装置
CN108513100B (zh) * 2018-04-13 2019-04-09 张洋 基于信号分析的自动消音系统
CN111971741A (zh) * 2018-05-02 2020-11-20 哈曼贝克自动系统股份有限公司 前馈有源噪声控制
CN108847208B (zh) * 2018-05-04 2020-11-27 歌尔科技有限公司 一种降噪处理方法、装置和耳机
CN108429960B (zh) * 2018-05-08 2021-07-27 深圳市乔威电源有限公司 防风降噪耳机
CN108712709A (zh) * 2018-08-15 2018-10-26 会听声学科技(北京)有限公司 降噪耳机测试装置及系统、其麦克风故障诊断装置、系统及方法
CN109195045B (zh) * 2018-08-16 2020-08-25 歌尔科技有限公司 检测耳机佩戴状态的方法、装置及耳机
CN109151643A (zh) * 2018-09-07 2019-01-04 歌尔科技有限公司 耳机和耳机单元
CN109474865B (zh) * 2018-10-30 2021-03-09 歌尔科技有限公司 一种防风噪方法、耳机及存储介质
US20220254329A1 (en) * 2019-02-05 2022-08-11 Sony Group Corporation Speaker unit and sound system
US10586523B1 (en) * 2019-03-29 2020-03-10 Sonova Ag Hearing device with active noise control based on wind noise
CN110031088B (zh) * 2019-04-17 2020-04-07 珠海格力电器股份有限公司 电子设备故障检测方法、装置、设备和吸油烟机
CN111866662B (zh) * 2019-04-25 2022-01-04 瑞昱半导体股份有限公司 用于主动式降噪的调校方法以及相关电路
CN110099323B (zh) * 2019-05-23 2021-04-23 歌尔科技有限公司 一种主动降噪耳机
CN110610693B (zh) * 2019-08-09 2022-04-05 漳州立达信光电子科技有限公司 权重式混合型态主动抗噪系统及控制器
US11996074B2 (en) 2019-10-03 2024-05-28 Sony Group Corporation Signal processing device and signal processing device, and sound device
CN110830862A (zh) * 2019-10-10 2020-02-21 广东思派康电子科技有限公司 一种自适应降噪的降噪耳机
DE102020202206A1 (de) * 2020-02-20 2021-08-26 Sivantos Pte. Ltd. Verfahren zur Unterdrückung eines Eigenrauschens einer Mikrofonanordnung
CN113286214B (zh) 2020-02-20 2022-09-27 小鸟创新(北京)科技有限公司 耳机信号处理方法、装置和耳机
CN111405406B (zh) * 2020-03-27 2021-12-24 歌尔股份有限公司 混合降噪耳机的降噪方法、装置、无线耳机及存储介质
US20230169948A1 (en) * 2020-05-07 2023-06-01 Sony Group Corporation Signal processing device, signal processing program, and signal processing method
CN111935584A (zh) * 2020-08-26 2020-11-13 恒玄科技(上海)股份有限公司 用于无线耳机组件的风噪处理方法、装置以及耳机
CN111741401B (zh) * 2020-08-26 2021-01-01 恒玄科技(北京)有限公司 用于无线耳机组件的无线通信方法以及无线耳机组件
CN112420066B (zh) * 2020-11-05 2024-05-14 深圳市卓翼科技股份有限公司 降噪方法、装置、计算机设备和计算机可读存储介质
CN112492438B (zh) * 2020-11-16 2022-07-26 上海电机学院 机舱内反馈式主动降噪耳机主动降噪方法
CN112584267A (zh) * 2020-12-03 2021-03-30 广东思派康电子科技有限公司 一种防大风噪方法及耳机
CN112866852A (zh) * 2020-12-23 2021-05-28 广东思派康电子科技有限公司 一种大风噪触发防乒乓的迟滞设计方法及蓝牙耳机
CN112788466A (zh) * 2021-02-07 2021-05-11 恒玄科技(上海)股份有限公司 一种主动降噪耳机的滤波器参数配置方法及主动降噪耳机
CN113259797B (zh) * 2021-04-06 2022-06-14 歌尔股份有限公司 降噪电路、降噪方法及耳机
CN117203979A (zh) * 2021-04-30 2023-12-08 索尼集团公司 信息处理装置、信息处理方法和程序
CN113099350B (zh) * 2021-05-06 2023-02-03 深圳市美恩微电子有限公司 一种播放音乐时自动降噪的蓝牙耳机
CN113490123B (zh) * 2021-07-07 2023-10-31 东莞市逸音电子科技有限公司 基于ai的主动降噪自动生产测试方法
CN113421539B (zh) * 2021-07-19 2023-10-10 北京安声浩朗科技有限公司 主动降噪方法、装置、电子设备及计算机可读存储介质
US20230049570A1 (en) * 2021-08-11 2023-02-16 Scott C Harris Smart Sound Appliance
CN113573200A (zh) * 2021-08-13 2021-10-29 惠州市欧凡实业有限公司 主动平衡耳压的降噪耳机以及主动降噪方法
CN114095826B (zh) * 2021-11-23 2024-04-09 歌尔科技有限公司 骨传导耳机的控制方法、骨传导耳机及可读存储介质
CN114071309B (zh) * 2021-12-20 2023-08-25 歌尔科技有限公司 耳机降噪方法、装置、设备及计算机可读存储介质
CN114420081B (zh) * 2022-03-30 2022-06-28 中国海洋大学 一种有源降噪设备的风噪抑制方法
CN115580806B (zh) * 2022-11-25 2023-03-10 杭州兆华电子股份有限公司 基于滤波器的权重自动计算的耳机降噪方法及降噪耳机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264706A1 (en) * 2001-06-22 2004-12-30 Ray Laura R Tuned feedforward LMS filter with feedback control
CN102449687A (zh) * 2009-04-28 2012-05-09 伯斯有限公司 具有自适应增益的anr
CN104081789A (zh) * 2011-11-09 2014-10-01 索尼公司 耳机设备、终端设备、信息传送方法、程序和耳机系统
CN204046798U (zh) * 2014-08-29 2014-12-24 安百特半导体有限公司 一种前馈与反馈结合式消除噪声的耳机及其驱动电路
CN104602163A (zh) * 2014-12-31 2015-05-06 歌尔声学股份有限公司 主动降噪耳机及应用于该耳机的降噪控制方法和系统

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739214B1 (fr) * 1995-09-27 1997-12-19 Technofirst Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
CA2481629A1 (en) * 2004-09-15 2006-03-15 Dspfactory Ltd. Method and system for active noise cancellation
JP5194434B2 (ja) * 2006-11-07 2013-05-08 ソニー株式会社 ノイズキャンセリングシステムおよびノイズキャンセル方法
JP2008122729A (ja) * 2006-11-14 2008-05-29 Sony Corp ノイズ低減装置、ノイズ低減方法、ノイズ低減プログラムおよびノイズ低減音声出力装置
GB2449083B (en) * 2007-05-09 2012-04-04 Wolfson Microelectronics Plc Cellular phone handset with ambient noise reduction
JP5228647B2 (ja) * 2008-06-19 2013-07-03 ソニー株式会社 ノイズキャンセリングシステム、ノイズキャンセル信号形成方法およびノイズキャンセル信号形成プログラム
US9202456B2 (en) * 2009-04-23 2015-12-01 Qualcomm Incorporated Systems, methods, apparatus, and computer-readable media for automatic control of active noise cancellation
WO2010129272A1 (en) * 2009-04-28 2010-11-11 Bose Corporation Sound-dependent anr signal processing adjustment
US8184822B2 (en) * 2009-04-28 2012-05-22 Bose Corporation ANR signal processing topology
US8155334B2 (en) 2009-04-28 2012-04-10 Bose Corporation Feedforward-based ANR talk-through
CN102111697B (zh) * 2009-12-28 2015-03-25 歌尔声学股份有限公司 一种麦克风阵列降噪控制方法及装置
US8385559B2 (en) * 2009-12-30 2013-02-26 Robert Bosch Gmbh Adaptive digital noise canceller
EP2362381B1 (en) * 2010-02-25 2019-12-18 Harman Becker Automotive Systems GmbH Active noise reduction system
JP2012023637A (ja) * 2010-07-15 2012-02-02 Audio Technica Corp ノイズキャンセルヘッドホン
CN102469399A (zh) * 2010-11-10 2012-05-23 四川微迪数字技术有限公司 降噪助听器
CN102411936B (zh) * 2010-11-25 2012-11-14 歌尔声学股份有限公司 语音增强方法、装置及头戴式降噪通信耳机
US8718291B2 (en) * 2011-01-05 2014-05-06 Cambridge Silicon Radio Limited ANC for BT headphones
DE102011013343B4 (de) * 2011-03-08 2012-12-13 Austriamicrosystems Ag Regelsystem für aktive Rauschunterdrückung sowie Verfahren zur aktiven Rauschunterdrückung
US8693700B2 (en) * 2011-03-31 2014-04-08 Bose Corporation Adaptive feed-forward noise reduction
CN102306496B (zh) 2011-09-05 2014-07-09 歌尔声学股份有限公司 一种多麦克风阵列噪声消除方法、装置及系统
CN102348151B (zh) * 2011-09-10 2015-07-29 歌尔声学股份有限公司 噪声消除系统和方法、智能控制方法和装置、通信设备
EP2677765B1 (en) * 2012-06-20 2018-11-28 AKG Acoustics GmbH Headphone for active noise suppression
US9020160B2 (en) * 2012-11-02 2015-04-28 Bose Corporation Reducing occlusion effect in ANR headphones
CN104661153B (zh) * 2014-12-31 2018-02-02 歌尔股份有限公司 一种耳机音效补偿方法、装置及耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040264706A1 (en) * 2001-06-22 2004-12-30 Ray Laura R Tuned feedforward LMS filter with feedback control
CN102449687A (zh) * 2009-04-28 2012-05-09 伯斯有限公司 具有自适应增益的anr
CN104081789A (zh) * 2011-11-09 2014-10-01 索尼公司 耳机设备、终端设备、信息传送方法、程序和耳机系统
CN204046798U (zh) * 2014-08-29 2014-12-24 安百特半导体有限公司 一种前馈与反馈结合式消除噪声的耳机及其驱动电路
CN104602163A (zh) * 2014-12-31 2015-05-06 歌尔声学股份有限公司 主动降噪耳机及应用于该耳机的降噪控制方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3107312A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115387B2 (en) 2014-12-31 2018-10-30 Goertek Inc. Active noise-reduction earphones and noise-reduction control method and system for the same
CN114040284A (zh) * 2021-09-26 2022-02-11 北京小米移动软件有限公司 噪声的处理方法、噪声的处理装置、终端及存储介质
CN114040284B (zh) * 2021-09-26 2024-02-06 北京小米移动软件有限公司 噪声的处理方法、噪声的处理装置、终端及存储介质

Also Published As

Publication number Publication date
US10115387B2 (en) 2018-10-30
CN104602163A (zh) 2015-05-06
US9928825B2 (en) 2018-03-27
US20180018954A1 (en) 2018-01-18
EP3107312B1 (en) 2018-04-18
US20180122359A1 (en) 2018-05-03
CN104602163B (zh) 2017-12-01
DK3107312T3 (en) 2018-07-16
JP2017518522A (ja) 2017-07-06
EP3107312A1 (en) 2016-12-21
JP6215488B2 (ja) 2017-10-18
EP3107312A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
WO2016107206A1 (zh) 主动降噪耳机及应用于该耳机的降噪控制方法和系统
CN112334972B (zh) 耳机系统、个人声学设备以及用于检测反馈不稳定性的方法
EP3704688B1 (en) Compressive hear-through in personal acoustic devices
EP3635714B1 (en) Spectral optimization of audio masking waveforms
EP2819429B1 (en) A headset having a microphone
US10497354B2 (en) Spectral optimization of audio masking waveforms
US10614790B2 (en) Automatic gain control in an active noise reduction (ANR) signal flow path
WO2016107207A1 (zh) 一种耳机音效补偿方法、装置及耳机
US9560456B2 (en) Hearing aid and method of detecting vibration
JP5903921B2 (ja) ノイズ低減装置、音声入力装置、無線通信装置、ノイズ低減方法、およびノイズ低減プログラム
WO2022218093A1 (zh) 音频信号补偿方法及装置、耳机、存储介质
CN114173244A (zh) 具有泄漏检测的稳健开耳式环境声音控制
JP2022514895A (ja) ロバストな適応ノイズキャンセリングシステムおよび方法
US10595126B1 (en) Methods, systems and apparatus for improved feedback control
US20240078995A1 (en) Active noise reduction with impulse detection and suppression
US20230197050A1 (en) Wind noise suppression system
US20230087943A1 (en) Active noise control method and system for headphone
US11527232B2 (en) Applying noise suppression to remote and local microphone signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874892

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015874892

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15126754

Country of ref document: US

Ref document number: 2015874892

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016559193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE