WO2016107153A1 - 一种无线通信网络中数据传输方法和装置 - Google Patents

一种无线通信网络中数据传输方法和装置 Download PDF

Info

Publication number
WO2016107153A1
WO2016107153A1 PCT/CN2015/084836 CN2015084836W WO2016107153A1 WO 2016107153 A1 WO2016107153 A1 WO 2016107153A1 CN 2015084836 W CN2015084836 W CN 2015084836W WO 2016107153 A1 WO2016107153 A1 WO 2016107153A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
end node
rule
receiving
sending
Prior art date
Application number
PCT/CN2015/084836
Other languages
English (en)
French (fr)
Inventor
戴谦
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/541,030 priority Critical patent/US10887777B2/en
Publication of WO2016107153A1 publication Critical patent/WO2016107153A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/60Scheduling or organising the servicing of application requests, e.g. requests for application data transmissions using the analysis and optimisation of the required network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/18Information format or content conversion, e.g. adaptation by the network of the transmitted or received information for the purpose of wireless delivery to users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • This paper relates to the field of communications, and in particular to a data transmission method and apparatus in a wireless communication network.
  • the transmission of one piece of data needs to span multiple transmission nodes, and a transmission bearer or a transmission channel dedicated to the data transceiver is required to be established between every two adjacent transmission nodes.
  • the network can maintain the transmission channel.
  • the network will release the transmission channel.
  • the transmitting end needs to send new data, the network reconstructs a transmission channel according to the request of the transmitting end. By transmitting new data, it can be seen that the overhead of the control plane paid by the network for each data transmission and the resource occupation of the communication channel cannot be ignored.
  • the invention provides a data transmission method and device in a wireless communication network, which solves the problem of how to reduce the pressure of small data on a wireless communication network.
  • a data transmission method in a wireless communication network comprising: acquiring a data rule of data in a transmitted data packet; determining a subsequent transmission mode of the data having the data rule and a corresponding receiving mode; and transmitting the device according to the determined sending mode Data on data laws.
  • the data rule is obtained by: detecting and counting data packets to be transmitted generated in the past to obtain the data rule; or receiving statistical results from the receiving end node, from the statistical result.
  • the data law is a condition in which the receiving end node has received.
  • the receiving the parameter information sent by the application layer includes: receiving parameter information sent by the local application layer; or receiving parameter information sent by the receiving end node, where the parameter information is the receiving end node Obtained by the application layer.
  • the data rule includes a repetition rule or a numerical change rule.
  • the repetition rule is obtained by determining that if a data packet or a part of the data packet has a repetition probability that reaches a preset threshold, determining that the data packet or a part of the data packet meets a repetition rule Identifying a data packet satisfying the threshold condition or a part of data of the data packet as the first type of optimizable data; wherein the statistical method of the repetition probability includes: a sum of repetition times in a preset time period; or a sum of consecutive repetition times .
  • the law of numerical variation includes an irregular sequence law, an equal ratio sequence rule, a periodic sequence rule, and an exponential sequence rule; the numerical change rule is preset by a sending end node or a receiving end node; or, the value is The variation rule is increased by the transmitting end node and the receiving end node as needed; wherein, the data that satisfies the numerical change rule is identified as the second type of optimizable data.
  • the data sending manner and the corresponding receiving manner of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule; wherein, the first The sending and receiving rules include: the transmitting end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node acquires the data rule.
  • the transmitting end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node; the receiving end node acquires the content corresponding to the data having the data rule And filling the obtained content into a data packet sent by the sending end node; wherein the second sending and receiving rule package Included: if the data packet to be transmitted is the data with data regularity or a part of the data packet to be transmitted is the data with data regularity, the transmitting end node allocates a unique corresponding temporary replacement code for each data having data regularity.
  • the method includes: the sending end node does not need to send the uplink resource that has the data regular data to the receiving end node, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node acquires the data rule The data conforms to the data rule, and the content of the data packet sent by the sending end node is calculated according to the data rule; or the transmitting end node only needs to send the data to be transmitted to the receiving end node in addition to the data rule.
  • the receiving end node acquires the data with the data law Law combined data and transmits the calculated content data package sent by the node based on the data in the end of the law, and to calculate the packet transmission end node transmits filled obtained content.
  • the first transceiving rule and/or the third transceiving rule further includes: sending, to the receiving end node, only the remaining part of the data packet to be transmitted except the data with data regularity
  • the current data of the receiving end node includes the data with the data regularity and the location of the data with the data regularity in the data packet;
  • the notification manner includes: accessing the control layer MAC through dedicated signaling or through the medium
  • the control head informs, or attaches an indication to the transmitted data for notification.
  • the temporary replacement code is defined by the sending end node or the receiving end node of the data packet to be transmitted, or is determined by the sending end node and the receiving end node jointly negotiated.
  • the sending method of the temporary substitute code includes: sending by using a control channel; or transmitting by using a dedicated data channel, where the dedicated data channel is data dedicated to sending a substitute code configured by the receiving end node for the sending end node.
  • Channel or, transmitted through a shared data channel, the shared data channel is a non-dedicated data channel for transmitting arbitrary user plane data, and the shared data temporarily configured for the transmitting end node only when the transmitting end node has a transmission substitute code requirement Resources in the channel.
  • determining the subsequent transmission manner of the data having the data rule and the corresponding receiving manner including: determining a type of the optimizable data corresponding to the data having the data rule; and determining the type of the data according to the optimizable data Determining a subsequent transmission method of the data having the data rule and The corresponding receiving method.
  • the sending manner and the corresponding receiving manner corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; and sending, corresponding to the second type of optimizable data
  • the receiving mode adopts the third sending and receiving rule.
  • the method includes: the transmitting end node determines a subsequent sending manner of the data of the data rule, and a corresponding receiving manner; or, the sending end The node receives, from the receiving end node, a subsequent transmission manner of the data of the data rule determined by the receiving end node and a corresponding receiving manner.
  • the method further includes: sending at least one of the following information to the receiving end node, including: a subsequent sending manner of the data having the data rule and Corresponding receiving mode; description information of data with data regularity.
  • the method further includes: when the sending end node is a core network node, the core network node sends a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and a description of the data having the data rule.
  • the information is sent to the access network node that establishes a connection with the receiving end node.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, and a location of the second type of optimizable data in the sequence of data rules that are met. Offset location offset, service data source, data transmission period of service data source, service type, and device type.
  • a data transmission method in a wireless communication network comprising: acquiring a data rule of data in a received data packet; determining a subsequent transmission mode of the data having the data rule and a corresponding receiving mode; and parsing according to the determined receiving mode Restore data with the data rules.
  • the data rule is obtained by: detecting and counting the received data packet to obtain the data rule; or receiving the statistical result from the sending end node, and obtaining the statistical result from the statistical result.
  • a data rule wherein the statistical result sent by the sending end node is obtained by the sending end node collecting statistics on the transmitted data packet; or receiving the application layer
  • the parameter information sent is obtained according to the parameter information.
  • receiving the parameter information sent by the application layer including: receiving parameter information sent by the local application layer; or receiving parameter information sent by the sending end node, where the parameter information is the sending end node from the application layer Obtained.
  • the data rule includes a repetition rule or a numerical change rule.
  • the repetition rule is obtained by determining that if a data packet or a part of the data packet has a repetition probability that reaches a preset threshold, determining that the data packet or a part of the data packet meets a repetition rule Identifying a data packet satisfying the threshold condition or a part of data of the data packet as the first type of optimizable data; wherein the statistical method of the repetition probability includes: a sum of repetition times in a preset time period; or a sum of consecutive repetition times .
  • the law of numerical variation includes an irregular sequence law, an equal ratio sequence rule, a periodic sequence rule, and an exponential sequence rule; the numerical change rule is preset by a sending end node or a receiving end node; or, the value is The variation rule is increased by the transmitting end node and the receiving end node as needed; wherein, the data that satisfies the numerical change rule is identified as the second type of optimizable data.
  • the data sending manner and the corresponding receiving manner of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule; wherein, the first The sending and receiving rules include: the transmitting end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node obtains the The content corresponding to the data of the data rule; or, the transmitting end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node; the receiving end node acquires the data corresponding to the data rule The content is filled into the data packet sent by the sending end node; wherein the second sending and receiving rule includes: if the data packet to be transmitted is the data with data regularity or part of the data packet to be transmitted is For data with data laws, the sender node assigns a unique pair for each data with data laws.
  • the third transceiver rule comprises:
  • the transmitting end node does not need to apply to the receiving end node to send the uplink of the data with data regularity.
  • the resource does not need to send the data with data regularity on the existing uplink resource;
  • the receiving end node acquires the data rule that the data with the data rule conforms, and calculates the sending end node according to the data rule.
  • the content of the data packet; or, the transmitting end node only needs to send the remaining part of the data to be transmitted except the data having the data rule to the receiving end node; the receiving end node acquires the data conforming to the data with the data regularity Regularly, and calculating the content in the data packet sent by the sending end node according to the data rule, and filling the obtained calculation result into the data packet sent by the sending end node.
  • determining the subsequent transmission manner of the data having the data rule and the corresponding receiving manner including: determining a type of the optimizable data corresponding to the data having the data rule; and determining the type of the data according to the optimizable data Determining a subsequent transmission manner of the data having the data rule and a corresponding receiving manner.
  • the sending manner and the corresponding receiving manner corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; and sending, corresponding to the second type of optimizable data
  • the receiving mode adopts the third sending and receiving rule.
  • the method includes: the receiving end node determines a subsequent transmission manner of the data of the data rule, and a corresponding receiving manner; or, the receiving end The node receives, from the sending end node, a subsequent sending manner of the data of the data rule determined by the sending end node and a corresponding receiving manner.
  • the method further includes: sending, to the sending end node, at least one of the following information, including: a subsequent sending manner of the data with the data rule and Corresponding receiving mode; description information of data with data regularity.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, and a location of the second type of optimizable data in the sequence of data rules that are met. Offset location offset, service data source, data transmission period of service data source, service type, and device type.
  • the method further includes: when the receiving end node is a core network node, the core network node sends a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and a description of the data having the data rule.
  • the information is sent to the access network node that establishes a connection with the sending end node.
  • a data transmission device in a wireless communication network comprising: a first obtaining module, configured to: obtain a data rule of data in a transmitted data packet; and a first determining module configured to: determine a subsequent transmission of data having the data rule The mode and the corresponding receiving mode; the first sending module is configured to: send the data with the data rule according to the determined sending manner.
  • the first determining module is configured to: receive parameter information sent by the local application layer; or receive parameter information sent by the receiving end node, where the parameter information is that the receiving end node is from the Obtained by the application layer.
  • the data rule includes a repetition rule or a numerical change rule.
  • the repetition rule is obtained by determining that if a data packet or a part of the data packet has a repetition probability that reaches a preset threshold, determining that the data packet or a part of the data packet meets a repetition rule Identifying a data packet satisfying the threshold condition or a part of the data of the data packet as the first type of optimizable data; wherein the statistical means for repeating the probability includes: a sum of repetition times within a preset time period; or a sum of consecutive repetition times .
  • the law of numerical variation includes an irregular sequence law, an equal ratio sequence rule, a periodic sequence rule, and an exponential sequence rule; the numerical change rule is preset by a sending end node or a receiving end node; or, the value is The variation rule is increased by the transmitting end node and the receiving end node as needed; wherein, the data that satisfies the numerical change rule is identified as the second type of optimizable data.
  • the data sending manner and the corresponding receiving manner of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule;
  • the first sending and receiving rule includes: the sending end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource;
  • the end node acquires the content corresponding to the data with the data rule; or the transmitting end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node;
  • the receiving end node acquires the data having the data Corresponding content of the regular data and filling the obtained content into the data packet sent by the sending end node;
  • the second sending and receiving rule comprises: if the data packet to be transmitted is the data with data regularity or the data packet to be transmitted Part of the data is data having data regularity, and the transmitting end node allocates a unique corresponding
  • the third sending and receiving rule includes: the transmitting end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource.
  • the receiving end node acquires the data rule that the data with the data rule conforms, and calculates the content of the data packet sent by the sending end node according to the data rule; or the sending end node only needs to send the sending end node to the receiving end node.
  • the receiving end node acquires a data rule that the data having the data rule conforms, and calculates a data packet sent by the sending end node according to the data rule.
  • the content, and the calculated content is filled into the data packet sent by the sending end node.
  • the first transceiving rule and/or the third transceiving rule further includes: sending, to the receiving end node, only the remaining part of the data packet to be transmitted except the data with data regularity
  • the current data of the receiving end node includes the data with the data regularity and the location of the data with the data regularity in the data packet;
  • the notification manner includes: accessing the control layer MAC through dedicated signaling or through the medium
  • the control head informs, or attaches an indication to the transmitted data for notification.
  • the temporary replacement code is defined by the sending end node or the receiving end node of the data packet to be transmitted, or is determined by the sending end node and the receiving end node jointly negotiated.
  • the sending apparatus of the temporary substitute code includes: sending by using a control channel; or transmitting by using a dedicated data channel, where the dedicated data channel is a receiving end node, and is a sending end node.
  • the first determining module includes: a first determining unit, configured to: determine a type of the optimizable data corresponding to the data having the data rule; and a second determining unit, configured to: according to the optimizable data The type, the subsequent transmission mode of the data having the data rule and the corresponding receiving mode are determined.
  • the sending manner and the corresponding receiving manner corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; and sending, corresponding to the second type of optimizable data
  • the receiving mode adopts the third sending and receiving rule.
  • the subsequent sending manner and the corresponding receiving manner of the data having the data rule are obtained by: the sending end node determining the subsequent sending manner of the data of the data rule and the corresponding receiving manner Or, the transmitting end node receives, from the receiving end node, a subsequent sending manner of the data of the data rule determined by the receiving end node and a corresponding receiving manner.
  • the device further includes: a second sending module, configured to: send the following at least one information to the receiving end node, including: a subsequent sending manner of the data having the data rule and a corresponding receiving manner; and the data having the data regularity Descriptive information.
  • a second sending module configured to: send the following at least one information to the receiving end node, including: a subsequent sending manner of the data having the data rule and a corresponding receiving manner; and the data having the data regularity Descriptive information.
  • the device further includes: a third sending module, configured to: when the sending end node is a core network node, send a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and have the data The description information of the regular data is sent to the access network node that establishes a connection with the receiving end node.
  • a third sending module configured to: when the sending end node is a core network node, send a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and have the data The description information of the regular data is sent to the access network node that establishes a connection with the receiving end node.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, and a location of the second type of optimizable data in the sequence of data rules that are met. Offset location offset, service data source, data transmission period of service data source, service type, and device type.
  • a data transmission device in a wireless communication network comprising: a second acquisition module, configured to: acquire a data rule of data in the received data packet; and a second determining module configured to: determine data subsequent to the data rule The sending mode and the corresponding receiving mode; the processing module is configured to: parse and restore the data having the data rule according to the determined receiving manner.
  • the data rule is obtained by: detecting and counting the received data packet to obtain the data rule; or receiving the statistical result from the sending end node, and obtaining the statistical result from the statistical result.
  • a data rule wherein the statistical result sent by the sending end node is obtained by the sending end node collecting statistics on the transmitted data packet; or receiving parameter information sent by the application layer, and acquiring the data according to the parameter information. law.
  • the second determining module is configured to: receive parameter information sent by the local application layer; or receive parameter information sent by the sending end node, where the parameter information is the sending end node from the application layer Obtained.
  • the data rule includes a repetition rule or a numerical change rule.
  • the repetition rule is obtained by determining that if a data packet or a part of the data packet has a repetition probability that reaches a preset threshold, determining that the data packet or a part of the data packet meets a repetition rule Identifying a data packet satisfying the threshold condition or a part of the data of the data packet as the first type of optimizable data; wherein the statistical means for repeating the probability includes: a sum of repetition times within a preset time period; or a sum of consecutive repetition times .
  • the law of numerical variation includes an irregular sequence law, an equal ratio sequence rule, a periodic sequence rule, and an exponential sequence rule; the numerical change rule is preset by a sending end node or a receiving end node; or, the value is The variation rule is increased by the transmitting end node and the receiving end node as needed; wherein, the data that satisfies the numerical change rule is identified as the second type of optimizable data.
  • the data sending manner and the corresponding receiving manner of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule; wherein, the first The sending and receiving rules include: the transmitting end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node obtains the The content corresponding to the data of the data rule; or, the transmitting end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node; the receiving end node acquires the data corresponding to the data rule Within And filling the obtained content into the data packet sent by the sending end node; wherein, the second sending and receiving rule comprises: if the data packet to be transmitted is the data with data regularity or a part of the data packet to be transmitted is If the data has regular data, the transmitting end node allocates a unique identifier
  • the sending end node Describe the content of the data packet sent by the sending end node; or, the sending end node only needs to send the receiving end node And transmitting, in addition to the data having the data rule, the remaining part of the data to be transmitted; the receiving end node acquires the data rule that the data with the data rule conforms, and calculates the data sent by the sending end node according to the data rule.
  • the contents of the package, and the resulting calculation results are filled into the data packets sent by the sending end node.
  • the second determining module includes: a third determining unit, configured to: determine a type of the optimizable data corresponding to the data having the data rule; and a fourth determining unit, configured to: according to the optimizable data The type, the subsequent transmission mode of the data having the data rule and the corresponding receiving mode are determined.
  • the sending manner and the corresponding receiving manner corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; and sending, corresponding to the second type of optimizable data
  • the receiving mode adopts the third sending and receiving rule.
  • the subsequent sending manner and the corresponding receiving manner of the data having the data rule are determined by: the receiving end node determining the data sending manner and the corresponding receiving manner of the data rule.
  • the receiving end node receives, from the sending end node, a subsequent sending manner of the data of the data rule determined by the sending end node and a corresponding receiving manner.
  • the device further includes: a fourth sending module, configured to: send the following at least one information to the sending end node, including: a subsequent sending manner of the data having the data rule and a corresponding receiving manner; and the data having the data regularity Descriptive information.
  • a fourth sending module configured to: send the following at least one information to the sending end node, including: a subsequent sending manner of the data having the data rule and a corresponding receiving manner; and the data having the data regularity Descriptive information.
  • the description information of the data having the data rule includes: The type of data that can be optimized, or the type of data that the second type of optimizable data conforms to.
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, and a location of the second type of optimizable data in the sequence of data rules that are met. Offset location offset, service data source, data transmission period of service data source, service type, and device type.
  • the apparatus further includes: a fifth sending module, configured to: when the receiving end node is a core network node, the core network node sends a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and has The description information of the data of the data rule is sent to an access network node that establishes a connection with the sending end node.
  • a fifth sending module configured to: when the receiving end node is a core network node, the core network node sends a subsequent sending manner of the data with the data rule and a corresponding receiving manner, and has The description information of the data of the data rule is sent to an access network node that establishes a connection with the sending end node.
  • a computer readable storage medium storing computer executable instructions for performing the method of any of the above.
  • the embodiment provided by the present invention acquires the data rule, reduces the number of times of sending small data by determining the sending and receiving mode of the data having the data regularity, and improves the use efficiency of the small data transmission to the wireless resource.
  • FIG. 1 is a schematic diagram of an LTE wireless communication system in related art
  • FIG. 2 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic diagram of a network according to Embodiment 6 of the present invention.
  • FIG. 9 is a schematic flowchart of a data transmission method in a wireless communication network according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of a data transmission method in a wireless communication network according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus in a wireless communication network according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus in a wireless communication network according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an LTE wireless communication system in the related art.
  • the access network shown in FIG. 1 is composed of a user terminal and an eNB (evolved NodeB), and the user plane data link of the access network is connected to a serving gateway SGW (Serving GateWay) of the core network.
  • eNB evolved NodeB
  • SGW Serving GateWay
  • the types of user terminals can be varied, such as mobile phones running IoT applications, or sensors, or any terminal with IoT capabilities.
  • Infrared moving object sensor in smart home the function is to detect whether there is a moving object in the range of the infrared sensor, and the generated output data is enumerated type: 0 and 1, 0 means no moving object, 1 means there is movement Object, output data generation period is 1 second;
  • the reported data format is composed of two parts: the first part is the code of the pressure sensing table, the part of the data is fixed without being changed by the user; the second part is the pressure value sensed by the pressure sensing table, Part of the data is dynamically changed, and the output data generation period is 2 seconds; after receiving the data, the user can monitor the dynamic change of the pressure value of each pressure gauge of the code.
  • Portable health monitor which can monitor the heart rate of the wearer in real time, send the data to the back of the hospital health center, and send an alarm indication to the background of the hospital health center in case of abnormal heart rate.
  • Heart rate monitoring There are two kinds of heart rate monitoring, one is the real-time monitoring value, the reporting period is 15 seconds, and the other is the hourly average level.
  • the reporting period is 1 hour, and its value range is [very low, low, normal, high, Extremely high] 5 levels.
  • the data format reported by the real-time heart rate monitoring value is [wearer code, heart rate real-time monitoring value]
  • the data format reported by the hourly average heart rate monitoring value is [wearer code, heart rate hourly average level]. The wearer can choose or consult with the hospital to choose which monitoring method to use.
  • - Terminal 4 Small alloy smelting boiler temperature sensor, divided into 100 temperature zones. When different alloy formulations and processes are used, different temperature adjustments are required for the temperature. Different processes have different temperature control curves, if some If the temperature of the time deviates from the predetermined curve, the quality of the alloy production will not be up to standard. In this example, it can be assumed that the smelting cycle of an alloy is 1 hour, and the temperature sensor reports the temperature monitoring value every 5 minutes.
  • the required temperature control curve is [50, 50, 60, 70, 80, 80, 80, 80, 80, 50, 25, 5], the number is the temperature zone value.
  • the optimizable data for each terminal is described below.
  • the first type of terminal has two kinds of optimizable data.
  • 0 and 1 have large repetition probability.
  • the repetition probability of 0 is extremely large; when used in a public place, since the number of people moving is large, the repetition probability of 1 is high.
  • the optimizable data of the second terminal is the first part of the output data, that is, the code of the pressure sensing table.
  • the optimizable data for the third terminal is the wearer code, heart rate hourly average.
  • the optimizable data of the fourth type of terminal is the temperature monitoring value.
  • the temperature value is in the form of a periodic series.
  • the data rule of the sending end node is obtained by the following methods, including:
  • the parameter information sent by the receiving application layer includes:
  • the data rule of the receiving end node is obtained by the following methods, including:
  • the receiving the parameter information sent by the application layer includes:
  • the data rule includes a repetition rule or a data change rule.
  • the data is the first type of optimizable data
  • the statistical method of the repetition probability includes: the sum of the repetition times in the preset time period; or the sum of the consecutive repetition times.
  • the law of numerical variation includes the law of arithmetic progression, the law of equal ratio series, the law of periodic series, and the law of index series;
  • the value change rule is preset by the sending end node or the receiving end node; or
  • the change rule of the value is increased by the sending end node and the receiving end node as needed;
  • the data that satisfies the law of numerical variation is identified as the second type of optimizable data.
  • sending and receiving rules may be determined by the sending end node, or may be determined by the receiving end node.
  • the corresponding receiving manner of the data having the data rule includes: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule;
  • the first sending and receiving rules include:
  • the transmitting end node does not need to apply to the receiving end node for sending the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node acquires the data with the data regularity.
  • the sending end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node; the receiving end node acquires the content corresponding to the data with the data rule and fills the obtained content to the sending In the data packet sent by the end node;
  • the second sending and receiving rules include:
  • the transmitting end node allocates a unique corresponding temporary replacement code for each data having data regularity, Corresponding temporary replacement code replaces the data with data regularity and sends the data to the receiving end node; the receiving end node replaces the temporary replacement code in the data packet sent by the sending end node by using the content corresponding to the temporary replacement code;
  • the third sending and receiving rules include:
  • the transmitting end node does not need to apply to the receiving end node for sending the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; the receiving end node acquires the data with the data regularity.
  • the data rule that is met, and the content of the data packet sent by the sending end node is calculated according to the data rule; or
  • the transmitting end node only needs to send the remaining part of the data to be transmitted except the data with the data rule to the receiving end node; the receiving end node acquires the data rule that the data with the data regularity conforms, and calculates according to the data rule Obtaining the content in the data packet sent by the sending end node, and filling the calculated content into the data packet sent by the sending end node.
  • the first sending and receiving rule and/or the third sending and receiving rule further includes:
  • the notification manner includes: being notified by dedicated signaling, or by a medium access control layer MAC control header, or an indication is provided in the transmitted data for notification.
  • Determining a subsequent transmission manner of the data having the data rule and a corresponding receiving manner including:
  • the sending mode and the corresponding receiving mode corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; the sending mode corresponding to the second type of optimizable data and the corresponding receiving
  • the method adopts the third transmission and reception rule.
  • the determining the subsequent sending manner of the data having the data rule and the corresponding receiving manner including:
  • the sending end node determines a subsequent sending manner of the data of the data rule and a corresponding receiving manner
  • the transmitting end node receives, from the receiving end node, a subsequent transmission manner of the data of the data rule determined by the receiving end node and a corresponding receiving manner.
  • the method further includes:
  • the core network node When the sending end node is a core network node, the core network node sends a subsequent sending manner of the data with the data regularity and a corresponding receiving manner and description information of the data having the data rule to the connecting end node and the receiving end node. Access network node.
  • the determining the subsequent sending manner of the data having the data rule and the corresponding receiving manner including:
  • the receiving end node determines a subsequent transmission manner of the data of the data rule and a corresponding receiving manner
  • the receiving end node receives, from the sending end node, a subsequent sending manner of the data of the data rule determined by the sending end node and a corresponding receiving manner.
  • the method further includes:
  • the core network node When the receiving end node is a core network node, the core network node will have the data of the data rule.
  • the subsequent transmission mode and the corresponding receiving mode and the description information of the data having the data rule are sent to the access network node that establishes a connection with the transmitting end node.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data. .
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, and a location of the second type of optimizable data in the sequence of the matched data laws. Offset location offset, service data source, data transmission period of service data source, service type, and device type.
  • the mechanism for data transfer optimization is as follows:
  • the terminal application layer performs statistics on the generated data.
  • the statistical results of the first type of terminal are as follows:
  • the optimizable data belongs to multiple repetitions, and is the first type of optimizable data. There are two types, and the second transmission and reception rules can be adopted.
  • the optimizable data belongs to multiple repetitions, and the first type of optimizable data has one type, and the first transmission and reception rule can be adopted.
  • the statistical results of the third terminal are as follows:
  • the optimizable data belongs to multiple repetitions, and is the first type of optimizable data. There is one type (wearer code), and the first transceiver rule can be adopted;
  • the data can be optimized according to the data sequence of the periodic series.
  • the third transceiving rule can be adopted.
  • Node 1 can assign a temporary replacement code for each optimizable data.
  • FIG. 2 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 1 of the present invention. The method is shown in Figure 2:
  • the function is to detect whether there is a moving object in the range of the infrared sensor, and the generated output data is of the enumerated type: N and Y, and N represents no moving object.
  • Y represents a moving object, and the output data generation period is 1 second;
  • Step 201 The terminal counts its own transmission data, because the output of the infrared moving object sensor has a single and a large repetition probability, so that the two output values can all be included in the optimizable data, and all belong to the first type of optimizable data.
  • the results are as follows:
  • Step 202 The terminal sends its optimizable data information to the base station, and the optimized data information includes: the optimized data content, the type of the optimizable data is the first type, and the data sending period of the service data source corresponding to the optimized data is optimized. 1 second,
  • Step 203 The terminal determines, according to its own optimizable data type, which optimized data transmission rule is selected. Since the type of the optimized data is small, and the data Y is generated during the day, the data N is generated in the middle of the night, and the two data overlap probabilities are not large. Therefore, the first transceiver rule and the second transceiver rule can be used. In this example, the terminal and the base station agree to select an optimized data transmission rule 2, and the terminal notifies the base station of the assigned temporary replacement code;
  • Step 204 The base station configures, for the terminal, a dedicated data channel that sends a temporary substitute code.
  • Step 205 The terminal senses, periodically sends the sensing output data to the base station, and the output data is replaced by a temporary replacement code, that is, the data N is replaced by 0, and the data Y is replaced by 1.
  • Step 206 After receiving the replacement code, the base station replaces the temporary replacement code with the optimizable data corresponding to the temporary replacement code, that is, N replaces 0 and Y replaces 1, so that the base station successfully receives the minimum air interface resource occupancy rate.
  • the actual sensory data sent by the terminal After receiving the replacement code, the base station replaces the temporary replacement code with the optimizable data corresponding to the temporary replacement code, that is, N replaces 0 and Y replaces 1, so that the base station successfully receives the minimum air interface resource occupancy rate.
  • the actual sensory data sent by the terminal is, N replaces 0 and Y replaces 1, so that the base station successfully receives the minimum air interface resource occupancy rate.
  • the pressure sensing meter in the smart industry the function is to sense the pressure value and report the sensing value to the factory's master control background.
  • the reported data format is composed of two parts: the first part is the code of the pressure sensing table, the part of the data is fixed without being changed by the user; the second part is the pressure value sensed by the pressure sensing table, Part of the data is dynamically changed, and the output data generation period is 2 seconds; after receiving the data, the user can monitor the dynamic change of the pressure value of each pressure gauge of the code.
  • the optimizable data of the pressure sensing meter is the first part of the output data, which is the code of the pressure sensing meter.
  • FIG. 3 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 2 of the present invention.
  • the method is as shown in FIG. 3: Step 301: The terminal collects its own sending data, and the optimizable data found by the statistics is as follows, and belongs to the first type of optimizable data;
  • Step 302 The terminal determines, according to its own optimizable data type, which optimized data transmission rule is selected. Since only one type of data can be optimized, the terminal and the base station agree to select the first sending and receiving rule.
  • Step 303 The terminal sends its optimizable data information to the base station, and the optimized data information includes: the optimized data content, the type of the optimizable data is the first type, and the data sending period of the service data source corresponding to the optimized data is 2 Seconds, the position where the data is in the current data packet is optimized as the starting position of the data;
  • Step 304 The terminal senses the pressure value, and periodically sends the sensing output data to the base station.
  • Step 305 The terminal does not send the code of the pressure sensing table, and only sends the second part of the data format, that is, the sensed pressure value;
  • Step 306 After receiving the pressure value sent by the terminal, the base station considers that the terminal sends the first part of the data format, that is, the code of the pressure sensing table.
  • - Portable health monitor that monitors the wearer's heart rate in real time, sends the data to the back of the hospital's health center, and sends an alert to the hospital health center in the event of an abnormal heart rate.
  • heart rate monitoring There are two kinds of heart rate monitoring, one is real-time monitoring value, the reporting period is 15 seconds, one is per The hourly average level, the reporting period is 1 hour, and its range is [very low, low, normal, high, very high] 5 levels.
  • the data format reported by the real-time heart rate monitoring value is [wearer code, heart rate real-time monitoring value]
  • the data format reported by the hourly average heart rate monitoring value is [wearer code, heart rate hourly average level]. The wearer can choose or consult with the hospital to choose which monitoring method to use.
  • FIG. 4 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 3 of the present invention. The method is shown in Figure 4:
  • Step 401 The terminal collects its own transmitted data, and the optimizable data found by the statistics are from two data sources. As follows, all belong to the first type of optimizable data,
  • Step 402 The terminal and the base station agree on which optimized data transmission rule is adopted. Since the "real-time heart rate monitoring" has only one optimizable data type, it is suitable to select the optimized data transmission rule 1; and the "hourly average heart rate monitoring" optimizable data It conforms to the enumerated type, and there are 5 types, which are suitable for selecting the second sending and receiving rules; therefore, the terminal and the base station adopt a dedicated signaling convention: the first sending and receiving rules are adopted for the real-time heart rate monitoring of the service data source; for the service data source The hourly mean heart rate monitoring adopts the optimized data transmission rule 2; at the same time, the temporary replacement code of the business data source “hourly mean heart rate monitoring” is agreed, for example, the optimizable data serial number is used as the substitute code ([wearer code, very low] The code is 2, [wearer code, low] substitute code is 3, and so on); the base station configures a dedicated data channel for the terminal to transmit the substitute code, or configures the terminal with a dedicated uplink control channel for transmission.
  • Step 403 The terminal sends its optimizable data information to the base station, and the optimized data information includes: optimizing the data content (the wearer code, the five enumerated values of the hourly average heart rate monitoring), and the type of the optimizable data is One type can optimize the data transmission period of the service data source corresponding to the data (the real-time heart rate monitoring is 15 seconds, the hourly average heart rate monitoring is 3600 seconds), and the position of the data in the current data packet can be optimized as the start of the data. Position (the wearer code is located at the beginning of the real-time heart rate monitoring data);
  • Step 404 The terminal monitors the human body, and periodically sends monitoring output data to the base station.
  • Step 405 When the transmission period of "real-time heart rate monitoring" is reached, the terminal does not send the first part of the data format (the wearer code), and only transmits the second part of the data format, that is, the sensed heart rate value; During the transmission period of the hourly mean heart rate monitoring, the terminal sends a corresponding substitute code to the base station according to the data generated by the terminal;
  • Step 406 After receiving the monitoring value of the “real-time heart rate monitoring” sent by the terminal, the base station considers that the terminal sends the first part of the “real-time heart rate monitoring” data format, that is, the wearer code; the base station receives the “hourly transmission” sent by the terminal. After the replacement code of the mean heart rate monitoring, the optimizable data corresponding to the substitute code is received by default;
  • Step 407 The base station extracts the “wearer code” from the optimizable data information, and combines with the monitored value of the “real-time heart rate monitoring” sent by the received terminal to form a complete data format; the “average heart rate per hour” that the base station will receive The "alarm” alternative code is converted to the corresponding data to form a complete data format.
  • the temperature sensor of small alloy smelting boiler is divided into 100 temperature zones. When different alloy formulations and processes are used, different temperature adjustments are needed for the temperature. Different processes have different temperature control curves, if the temperature deviates at a certain time in the process. The predetermined curve will lead to the failure of the alloy production quality. In this example, it can be assumed that the smelting cycle of an alloy is 1 hour, and the temperature sensor reports the temperature monitoring value every 5 minutes.
  • the required temperature control curve is [50, 50 , 60, 70, 80, 80, 80, 80, 80, 50, 25, 5], the number is the temperature zone value.
  • the optimizable data is the temperature monitoring value. When the smelting process control is stable, the temperature value is in the form of a periodic series.
  • FIG. 5 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 4 of the present invention; Figure. The method is shown in Figure 5:
  • Step 501 The terminal counts its own sending data, as follows:
  • the data can be optimized according to the data sequence of the cycle number sequence, and is cycled once every 12 data cycles, belonging to the second type of optimizable data.
  • Step 502 The terminal determines, according to its own optimizable data type, which optimized data transmission rule is selected. Because the second type of optimizable data belongs to the terminal, the terminal and the base station agree to adopt the third sending and receiving rule.
  • Step 503 The terminal sends its optimizable data information to the base station, and the optimized data information includes: the optimized data content, the type of the optimizable data is the second type, and the data sending period of the service data source corresponding to the optimized data is 5 Minute; optimize the data law corresponding to the data (in accordance with the "cycle number column", the next data packet is the Kth in the cycle number column);
  • Step 504 The terminal senses the temperature value, and periodically generates the sensing output data.
  • Step 505 When the transmission period of the temperature monitoring value is reached, the terminal does not send data.
  • Step 506 The base station does not receive any data sent by the terminal within a preset time period after the data transmission period arrives (assuming the preset time period is 10 seconds), and the base station considers that the temperature value sensed by the temperature sensor conforms to the standard curve.
  • the base station derives from the data law shown by the optimizable data information what temperature value the current temperature sensor should produce.
  • Embodiment 5 Optimization of downlink data transmission between base station and terminal in LTE wireless communication system architecture
  • Embodiment 1 It is assumed that the same scenario and network architecture (see FIG. 1) as in Embodiment 1 are similar to Embodiment 1.
  • the base station When the base station has an optimizable data service to be sent to the terminal, the base station can be used as the transmitting end node and the terminal as the receiving end node.
  • the pressure controller in the smart industry comes from the background control command, the data format of the control command is [pressure controller code, pressure target value], and the transmission period is 2 seconds;
  • FIG. 6 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 5 of the present invention. The method is shown in Figure 6:
  • Step 601 The base station counts its own sending data, and the first part of the statistical discovery data “pressure controller code” is repeated multiple times, and belongs to the first type of optimizable data;
  • Step 602 The base station determines, according to its own optimizable data type, which optimized data transmission rule is selected. Since only one type of data can be optimized, the terminal and the base station agree to select the first transceiver rule.
  • Step 603 The base station sends its optimizable data information to the terminal, and the optimized data information includes: the data content can be optimized, the type of the optimizable data is the first type, and the data sending period of the service data source corresponding to the optimized data is 2 Seconds, the position where the data is in the current data packet is optimized as the starting position of the data;
  • Step 604 The base station generates a pressure control command, and periodically sends an instruction to the terminal, and the base station does not send the pressure controller code, but only sends the second part of the data format, that is, the pressure target value;
  • Step 605 After receiving the instruction sent by the base station, the terminal assumes that the base station sends the first part of the data format, that is, the pressure controller code, and the terminal extracts the pressure controller code from the optimizable data information, and adds the instruction to the instruction. Complete instruction;
  • Embodiment 6 Optimization of data transmission between terminal and SGW in LTE wireless communication system architecture
  • FIG. 7 is a schematic flowchart of a data transmission method in a wireless communication network according to Embodiment 6 of the present invention. The method is shown in Figure 7.
  • the user plane data and the control plane data of the terminal need to pass through the SGW, so the terminal and the SGW can be combined to form a transmitting end node and a receiving end node in the data compression scenario.
  • FIG. 8 is a schematic diagram of a network according to Embodiment 6 of the present invention.
  • the link from the terminal to the SGW is composed of two links (terminal to base station, base station to SGW), wherein the terminal to the base station is a wireless link, and the base station to the SGW is a wired link.
  • the terminal is a portable health monitor, which only turns on the “real-time heart rate monitoring” function, which generates one every 15 seconds.
  • the secondary data the patient is located in the hospital ward, the data is fixedly reported to the hospital's health monitoring background, because the end-to-end communication link is fixed, so in the communication process, the two transmission protocol interfaces are unchanged, the IP addresses of the two parties will not change. Because it is small data, a complete data can be sent in a single transmission, so there is no need for the link layer to re-segment the data packet. Therefore, in the data packet sent by the terminal, the control plane data is fixed, and the user plane data is It changes in real time.
  • Step 701 The terminal collects its own sending data, and the statistically found data packet format is as follows, wherein the control face and the control plane data tail are repeated multiple times, belonging to the first type of optimizable data.
  • Control surface header Real-time heart rate monitoring value Control plane data tail
  • Step 702 The terminal determines, according to its own optimizable data type, which optimized data sending rule is selected. Since only one type of data can be optimized, the terminal and the SGW agree to select the first sending and receiving rule.
  • Step 703 The terminal sends its optimizable data information to the SGW, and the optimized data information includes: optimizing the data content (control face and control plane data tail), optimizing the type of the data to be the first type, and optimizing the data correspondence
  • the data transmission period of the service data source is 15 seconds, and the position where the data is located in the current data packet is optimized as the start position and the end position of the data;
  • Step 704 The terminal senses the real-time heart rate monitoring value, and periodically sends the sensing output data to the SGW.
  • Step 705 The terminal only sends the middle part of the data format, that is, the detected real-time heart rate monitoring value, without transmitting the control plane data;
  • Step 706 After receiving the real-time heart rate monitoring value sent by the terminal, the SGW considers that the terminal sends the control plane part in the data format by default, and the SGW extracts the control plane data from the optimizable data information together with the real-time heart rate monitoring value to form a complete data packet. ;
  • the law of the data in the data packet can be obtained not only by the sending end node but also by the receiving end node. described as follows:
  • the parameter information sent by the application layer is received, and the law of the data in the received data packet is obtained according to the parameter information.
  • receiving parameter information sent by the application layer includes:
  • Receiving parameter information sent by the local application layer for example, if the receiving end node is a sensor or other machine type terminal, the manufacturer of the terminal may preset the data rule that the data generated by the terminal may conform to in the application layer. Or, in the application layer, a function module for counting data is set to count the data rules that the data generated by the data is matched, and the application layer sends the data rule to the bottom layer of the terminal (for example, a NAS non-access layer or an AS connection).
  • the application may preset the data law that the data generated by the terminal may conform to in the machine type server corresponding to the machine type terminal, and then The network node or the core network node acquires the data rule from the machine type server.
  • the sending end node may be notified of the law to determine the subsequent transmission mode of the data having the regularity.
  • the subsequent transmission manner of the data having the rule in the embodiment is determined by the receiving end node, and the description is as follows:
  • the method for determining the subsequent transmission of the data having the data rule includes:
  • the subsequent transmission manner of the first type of optimizable data and the second type of optimizable data includes: a first sending rule
  • the first sending rule includes:
  • the subsequent sending manner of the first type of optimizable data further includes: a second sending rule
  • the second sending rule includes: assigning a unique corresponding temporary substitute code to each first type of optimizable data, and transmitting the first type of optimizable data by using the temporary substitute code; or And the partial data in the data packet to be transmitted is the first type of optimizable data, and the temporary replacement code is used to replace part of the data in the data packet to be transmitted, and the data packet after the replacement operation is sent out. .
  • the first sending rule further includes:
  • the transmitting end node notifies the receiving end that the current data includes the first type of optimizable data and the current data, and only sends the remaining portion of the data to be transmitted except the first type of optimizable data to the receiving end. Describe the location of the first type of optimizable data in the data packet;
  • the notification manner includes: the transmitting end is notified by dedicated signaling, or by a MAC control header, or an indication is provided in the transmitted data for notification.
  • the receiving end node further sends description information of the data having the data rule to the sending end node.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of: a location in the current data packet, a service data source, a data transmission period of the service data source, a service type, and a device type.
  • the method in the embodiment of the present invention does not limit the types of the transmitting end node and the receiving end node, nor the type of the link between the nodes, and both the wireless link and the wired link can be adopted. .
  • the related art wireless communication systems such as UMTS, TD-SCDMA, and CDMA2000 may adopt the flow of the foregoing embodiment, except for the difference in the name and type of the node.
  • FIG. 9 is a schematic flowchart of a data transmission method in a wireless communication network according to an embodiment of the present invention.
  • the method embodiment shown in Figure 9 includes:
  • Step 901 Obtain a data rule of data in the transmitted data packet.
  • Step 902 Determine a subsequent transmission manner of the data having the data rule and a corresponding receiving manner.
  • Step 903 Send data having the data rule according to the determined sending manner.
  • the method provided by the embodiment of the present invention acquires the data rule, and determines the transmission and reception mode of the data with the data rule to reduce the number of times the small data is transmitted, and improves the use efficiency of the small data transmission to the wireless resource.
  • FIG. 10 is a schematic flowchart of a data transmission method in a wireless communication network according to an embodiment of the present invention.
  • the method embodiment shown in FIG. 10 includes:
  • Step 1001 Obtain a data rule of data in the received data packet
  • Step 1002 Determine a subsequent transmission manner of the data having the data rule and a corresponding receiving manner
  • Step 1003 Parse and restore data having the data rule according to the determined receiving manner.
  • the method provided by the embodiment of the present invention acquires the data rule, reduces the number of times of sending small data by determining the sending and receiving mode of the data having the data rule, and improves the small data transmission to the wireless The efficiency of the use of resources.
  • FIG. 11 is a schematic structural diagram of a data transmission apparatus in a wireless communication network according to an embodiment of the present invention.
  • the device shown in Figure 11 includes:
  • the first obtaining module 1101 is configured to: obtain a data rule of data in the transmitted data packet;
  • the first determining module 1102 is configured to: determine a subsequent transmission manner of the data having the data rule, and a corresponding receiving manner;
  • the first sending module 1103 is configured to: send data having the data rule according to the determined sending manner.
  • the data rule determined by the first determining module is obtained by:
  • the first determining module is configured to:
  • the data rule includes a repetition rule or a numerical change rule.
  • the data is the first type of optimizable data
  • the statistical device in which the probability of repetition includes: the sum of the repetition times in the preset time period; or The sum of the number of repetitions.
  • the numerical variation law includes an irregular number sequence rule, an equal ratio sequence rule, a cycle number sequence rule, and an index sequence law;
  • the value change rule is preset by the sending end node or the receiving end node; or
  • the change rule of the value is increased by the sending end node and the receiving end node as needed;
  • the data that satisfies the law of numerical variation is identified as the second type of optimizable data.
  • the data transmission mode and the corresponding receiving mode of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule;
  • the first sending and receiving rule includes: the sending end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource;
  • the end node acquires the content corresponding to the data with the data rule; or the transmitting end node only needs to send the remaining part of the data to be transmitted except the data of the data rule to the receiving end node;
  • the receiving end node acquires the data having the data Corresponding content of the regular data and filling the obtained content into the data packet sent by the sending end node;
  • the second transceiving rule includes: if the data packet to be transmitted is the data with data regularity or a part of the data packet to be transmitted is the data with data regularity, the sending end node has each data rule The data is assigned a unique corresponding temporary replacement code, and the data having the data rule is replaced by the corresponding temporary replacement code and sent to the receiving end node; the receiving end node replaces the temporary replacement code by using the content corresponding to the temporary replacement code;
  • the third sending and receiving rule includes: the sending end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; The end node acquires the data rule that the data with the data rule conforms, and calculates the content of the data packet sent by the sending end node according to the data rule; or the sending end node only needs to send the data to be transmitted to the receiving end node.
  • the receiving end node acquires a data rule conformed to the data having the data rule, and calculates a content in the data packet sent by the sending end node according to the data rule And the calculated content is filled into the data packet sent by the sending end node.
  • the first sending and receiving rule and/or the third sending and receiving rule further include:
  • the notification manner includes: being notified by dedicated signaling, or by a medium access control layer MAC control header, or an indication is provided in the transmitted data for notification.
  • the temporary replacement code is defined by the sending end node or the receiving end node of the data packet to be transmitted, or is determined by the sending end node and the receiving end node jointly negotiated.
  • the sending device of the temporary replacement code includes:
  • the dedicated data channel is a data channel dedicated to the transmitting substitute code configured by the receiving end node for the transmitting end node;
  • the shared data channel is a non-dedicated data channel for transmitting any user plane data, and the resources in the shared data channel temporarily configured for the transmitting end node only when the transmitting end node has the requirement to transmit the substitute code.
  • the first determining module includes:
  • a first determining unit configured to: determine a type of the optimizable data corresponding to the data having the data rule;
  • the second determining unit is configured to: according to the type of the optimizable data, determine a subsequent sending manner of the data having the data rule and a corresponding receiving manner.
  • the sending mode and the corresponding receiving mode corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; the sending mode corresponding to the second type of optimizable data and the corresponding receiving
  • the method adopts the third transmission and reception rule.
  • the subsequent transmission manner and the corresponding receiving manner of the data having the data rule are obtained by:
  • the sending end node determines a subsequent sending manner of the data of the data rule and a corresponding receiving manner
  • the transmitting end node receives, from the receiving end node, the number of the data rules determined by the receiving end node According to the subsequent transmission mode and the corresponding receiving mode.
  • the device further comprises:
  • the second sending module is configured to: send at least one of the following information to the receiving end node, including:
  • the device further comprises:
  • the third sending module is configured to: when the sending end node is a core network node, send and receive the subsequent sending manner of the data with the data rule and the corresponding receiving manner and the description information of the data having the data rule
  • the end node establishes a connected access network node.
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of the following: a position in the current data packet, and a bias of the second type of optimizable data in the sequence of the matched data laws. Location offset, business data source, data transmission period of service data source, service type, and device type.
  • the device provided by the embodiment of the invention acquires the data rule, and reduces the number of times the small data is transmitted by determining the data transmission and reception mode of the data rule, and improves the use efficiency of the small data transmission to the wireless resource.
  • FIG. 12 is a schematic structural diagram of a data transmission apparatus in a wireless communication network according to an embodiment of the present invention.
  • the device shown in Figure 12 includes:
  • the second obtaining module 1201 is configured to: obtain a data rule of data in the received data packet;
  • the second determining module 1202 is configured to: determine a subsequent transmission manner of the data having the data rule, and a corresponding receiving manner;
  • the processing module 1203 is configured to parse and restore data having the data rule according to the determined receiving manner.
  • the data rule is obtained by the following methods, including:
  • the second determining module is configured to:
  • the data rule includes a repetition rule or a numerical change rule.
  • the data is the first type of optimizable data
  • the statistical device in which the probability of repetition includes: the sum of the repetition times in the preset time period; or the sum of the consecutive repetition times.
  • the numerical variation law includes an irregular number sequence rule, an equal ratio sequence rule, a cycle number sequence rule, and an index sequence law;
  • the data rule is preset by the sending end node or the receiving end node; or
  • the data rule is increased by the sending end node and the receiving end node as needed;
  • the data that satisfies the law of numerical variation is identified as the second type of optimizable data.
  • the data transmission mode and the corresponding receiving mode of the data rule include: at least one of a first sending and receiving rule, a second sending and receiving rule, and a third sending and receiving rule;
  • the first sending and receiving rule includes: the sending end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource;
  • the end node acquires content corresponding to the data with the data rule; or, the sending end node only needs to send the data to be transmitted to the receiving end node in addition to the data rule a remaining portion of the data other than the data;
  • the receiving end node acquires the content corresponding to the data having the data rule and fills the obtained content into the data packet sent by the sending end node;
  • the second transceiving rule includes: if the data packet to be transmitted is the data with data regularity or a part of the data packet to be transmitted is the data with data regularity, the sending end node has each data rule The data is assigned a unique corresponding temporary replacement code, and the data with the data rule is replaced by the corresponding temporary replacement code and sent to the receiving end node; the receiving end node replaces the sending end node by using the content corresponding to the temporary replacement code.
  • Temporary replacement code in the packet
  • the third sending and receiving rule includes: the sending end node does not need to apply to the receiving end node to send the uplink resource with the data regular data, and does not need to send the data with the data regularity on the existing uplink resource; The end node acquires the data rule that the data with the data rule conforms, and calculates the content of the data packet sent by the sending end node according to the data rule; or the sending end node only needs to send the data to be transmitted to the receiving end node.
  • the receiving end node acquires a data rule conformed to the data having the data rule, and calculates a content in the data packet sent by the sending end node according to the data rule And fill the obtained calculation result into the data packet sent by the sending end node.
  • the second determining module includes:
  • a third determining unit configured to: determine a type of the optimizable data corresponding to the data having the data rule;
  • the fourth determining unit is configured to: according to the type of the optimizable data, determine a subsequent sending manner of the data having the data rule and a corresponding receiving manner.
  • the sending mode and the corresponding receiving mode corresponding to the first type of optimizable data adopt a first sending and receiving rule and/or a second sending and receiving rule; the sending mode corresponding to the second type of optimizable data and the corresponding receiving
  • the method adopts the third transmission and reception rule.
  • the subsequent transmission manner and the corresponding receiving manner of the data having the data rule are determined by:
  • the receiving end node determines a subsequent transmission manner of the data of the data rule and a corresponding receiving manner
  • the receiving end node receives, from the sending end node, a subsequent sending manner of the data of the data rule determined by the sending end node and a corresponding receiving manner.
  • the device further comprises:
  • the fourth sending module is configured to: send at least one of the following information to the sending end node, including:
  • the description information of the data having the data rule includes: the content of the optimizable data, the type of the optimizable data, or the data law of the second type of optimizable data.
  • the description information of the data having the data rule further includes at least one of the following: a position in the current data packet, and a bias of the second type of optimizable data in the sequence of the matched data laws. Location offset, business data source, data transmission period of service data source, service type, and device type.
  • the device further comprises:
  • the fifth sending module is configured to: when the receiving end node is a core network node, the core network node sends the subsequent sending manner of the data with the data regularity and the corresponding receiving manner and the description information of the data having the data rule An access network node that establishes a connection with the sending end node.
  • the device provided by the embodiment of the invention acquires the data rule, and reduces the number of times the small data is transmitted by determining the data transmission and reception mode of the data rule, and improves the use efficiency of the small data transmission to the wireless resource.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • Each device/function module/functional unit in the above embodiments may be implemented by a general-purpose computing device, which may be concentrated on a single computing device. It can also be distributed over a network of multiple computing devices.
  • each device/function module/functional unit in the above embodiment When each device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiment provided by the present invention acquires the data rule, reduces the number of times of sending small data by determining the sending and receiving mode of the data having the data regularity, and improves the use efficiency of the small data transmission to the wireless resource.

Abstract

一种无线通信网络中数据传输方法和装置。所述方法,包括:获取传输的数据包中数据的数据规律;确定具有所述数据规律的数据后续的发送方式和对应的接收方式;按照确定的发送方式,发送具有所述数据规律的数据。

Description

一种无线通信网络中数据传输方法和装置 技术领域
本文涉及通信领域,尤其涉及一种无线通信网络中数据传输方法和装置。
背景技术
相关技术的数据通信网络中,一条数据的传输需要跨越多个传输节点,在每两个相邻传输节点间均需要建立专属于数据收发信者的传输承载,或者说传输信道。在数据传输较为频繁时,网络可以维持这条传输信道,而在数据传输不频繁时,网络会释放这条传输信道,当发送端需要发送新数据时,网络根据发送端的请求重建一条传输信道来传输新数据,可见网络为每条数据的传输所付出的控制面的开销以及对通信通道的资源占用是不可忽视的。
在目前的无线网络通信中,多为人与人的通信,通信过程所产生的数据的随机性很大。而当机器类型通信(或者称物联网)开始占据越来越大的通信市场时,机器类型的通信数据对网络的压力就变得越来越大,由于机器类通信的模式多为感应器向用户或者应用服务器上报感应数据,其数据量很小,且内容单一,在巨量机器类型终端进入无线通讯网络后,对无线通讯网络的容量和通道资源造成巨大压力,由于无线网络的通道资源受频谱资源限制,以目前最新的LTE(Long Term Evolution,长期演进)网络为例,其无线带宽最大为20MHz,远远小于有线网络吞吐量,因此这种压力在无线通信网络中表现得尤为突出。
考虑到机器类通信的数据和人与人通信不同,具有较强的规律性,因此有必要考虑针对性的数据传输优化方法,以减少小数据对无线通信网络的压力。
发明内容
本文提供的一种无线通信网络中数据传输方法和装置,解决如何减少小数据对无线通信网络的压力的问题。
一种无线通信网络中数据传输方法,包括:获取传输的数据包中数据的数据规律;确定具有所述数据规律的数据后续的发送方式和对应的接收方式;按照确定的发送方式,发送具有所述数据规律的数据。
可选地,所述数据规律是通过如下方式得到的,包括:对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
可选地,所述接收应用层发送的参数信息,包括:接收本地应用层发送的参数信息;或者,接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
可选地,所述数据规律包括重复规律或数值变化规律。
可选地,所述重复规律是通过如下方式得到的:若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;其中重复概率的统计方法包括:预设时间段内的重复次数之和;或者连续重复次数之和。
可选地,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;所述数值变化规律由发送端节点或接收端节点事先预设;或者,所述数值变化规律由发送端节点和接收端节点根据需要增加;其中,识别满足数值变化规律的数据为第二类型的可优化数据。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;其中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;其中,所述第二收发规则包 括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉临时替代码;其中,所述第三收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
可选地,所述第一收发规则和/或第三收发规则,还包括:在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
可选地,所述临时替代码由所述待传输数据包的发送端节点或者接收端节点定义,或者,由所述发送端节点和所述接收端节点共同协商确定。
可选地,所述临时替代码的发送方法包括:通过控制信道发送;或者,通过专用数据信道发送,其中所述专用数据信道是接收端节点为发送端节点配置的专用于发送替代码的数据信道;或者,通过共享数据信道发送,所述共享数据信道是非专用的数据信道,用以传输任意用户面数据,仅当发送端节点有传输替代码要求时,临时为发送端节点配置的共享数据信道中的资源。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:确定具有所述数据规律的数据对应的可优化数据的类型;根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和 对应的接收方式。
可选地,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:向接收端节点发送如下至少一个信息,包括:具有数据规律的数据的后续发送方式和对应的接收方式;具有数据规律的数据的描述信息。
可选地,所述方法还包括:当发送端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
可选地,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选地,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
一种无线通信网络中数据传输方法,包括:获取接收到的数据包中数据的数据规律;确定具有所述数据规律的数据后续的发送方式和对应的接收方式;按照确定的接收方式,解析并还原具有所述数据规律的数据。
可选地,所述数据规律是通过如下方式得到的,包括:对接收到的数据包进行检测和统计,得到所述数据规律;或者,从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,接收应用层发 送的参数信息,根据所述参数信息获取所述数据规律。
可选地,接收应用层发送的参数信息,包括:接收本地应用层发送的参数信息;或者,接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
可选地,所述数据规律包括重复规律或数值变化规律。
可选地,所述重复规律是通过如下方式得到的:若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;其中重复概率的统计方法包括:预设时间段内的重复次数之和;或者连续重复次数之和。
可选地,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;所述数值变化规律由发送端节点或接收端节点事先预设;或者,所述数值变化规律由发送端节点和接收端节点根据需要增加;其中,识别满足数值变化规律的数据为第二类型的可优化数据。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;其中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有所述数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;其中,所述第二收发规则包括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;其中,所述第三收发规则包括:
发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行 资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将得到的计算结果填充到发送端节点发送的数据包中。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:确定具有所述数据规律的数据对应的可优化数据的类型;根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:向发送端节点发送如下至少一个信息,包括:具有数据规律的数据的后续发送方式和对应的接收方式;具有数据规律的数据的描述信息。
可选地,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选地,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
可选地,所述方法还包括:当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
一种无线通信网络中数据传输装置,包括:第一获取模块,设置为:获取传输的数据包中数据的数据规律;第一确定模块,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;第一发送模块,设置为:按照确定的发送方式,发送具有所述数据规律的数据。
可选地,所述第一确定模块确定的所述数据规律是通过如下方式得到的,包括:对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
可选地,所述第一确定模块是设置为:接收本地应用层发送的参数信息;或者,接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
可选地,所述数据规律包括重复规律或数值变化规律。
可选地,所述重复规律是通过如下方式得到的:若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连续重复次数之和。
可选地,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;所述数值变化规律由发送端节点或接收端节点事先预设;或者,所述数值变化规律由发送端节点和接收端节点根据需要增加;其中,识别满足数值变化规律的数据为第二类型的可优化数据。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;其 中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;其中,所述第二收发规则包括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉临时替代码;其中,所述第三收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
可选地,所述第一收发规则和/或第三收发规则,还包括:在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
可选地,所述临时替代码由所述待传输数据包的发送端节点或者接收端节点定义,或者,由所述发送端节点和所述接收端节点共同协商确定。
可选地,所述临时替代码的发送装置包括:通过控制信道发送;或者,通过专用数据信道发送,其中所述专用数据信道是接收端节点为发送端节点 配置的专用于发送替代码的数据信道;或者,通过共享数据信道发送,所述共享数据信道是非专用的数据信道,用以传输任意用户面数据,仅当发送端节点有传输替代码要求时,临时为发送端节点配置的共享数据信道中的资源。
可选地,所述第一确定模块包括:第一确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;第二确定单元,设置为:根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式得到的,包括:发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述装置还包括:第二发送模块,设置为:向接收端节点发送如下至少一个信息,包括:具有数据规律的数据的后续发送方式和对应的接收方式;具有数据规律的数据的描述信息。
可选地,所述装置还包括:第三发送模块,设置为:当发送端节点为核心网节点时,将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
可选地,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选地,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
一种无线通信网络中数据传输装置,包括:第二获取模块,设置为:获取接收到的数据包中数据的数据规律;第二确定模块,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;处理模块,设置为:按照确定的接收方式,解析并还原具有所述数据规律的数据。
可选地,所述数据规律是通过如下方式得到的,包括:对接收到的数据包进行检测和统计,得到所述数据规律;或者,从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
可选地,所述第二确定模块是设置为:接收本地应用层发送的参数信息;或者,接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
可选地,所述数据规律包括重复规律或数值变化规律。
可选地,所述重复规律是通过如下方式得到的:若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连续重复次数之和。
可选地,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;所述数值变化规律由发送端节点或接收端节点事先预设;或者,所述数值变化规律由发送端节点和接收端节点根据需要增加;其中,识别满足数值变化规律的数据为第二类型的可优化数据。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;其中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有所述数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内 容并将得到的内容填充到发送端节点发送的数据包中;其中,所述第二收发规则包括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;其中,所述第三收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将得到的计算结果填充到发送端节点发送的数据包中。
可选地,所述第二确定模块包括:第三确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;第四确定单元,设置为:根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
可选地,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式的确定的,包括:接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
可选地,所述装置还包括:第四发送模块,设置为:向发送端节点发送如下至少一个信息,包括:具有数据规律的数据的后续发送方式和对应的接收方式;具有数据规律的数据的描述信息。
可选地,具有所述数据规律的数据的描述信息包括:可优化数据的内 容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选地,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
可选地,所述装置还包括:第五发送模块,设置为:当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述任一项的方法。
本发明提供的实施例,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线资源的使用效率。
附图概述
图1为相关技术中LTE无线通讯系统的示意图;
图2为本发明实施例1提供的无线通信网络中数据传输方法的流程示意图;
图3为本发明实施例2提供的无线通信网络中数据传输方法的流程示意图;
图4为本发明实施例3提供的无线通信网络中数据传输方法的流程示意图
图5为本发明实施例4提供的无线通信网络中数据传输方法的流程示意图
图6为本发明实施例5提供的无线通信网络中数据传输方法的流程示意图;
图7为本发明实施例6提供的无线通信网络中数据传输方法的流程示意图;
图8为本发明实施例6提供的网络示意图;
图9为本发明实施例提供的无线通信网络中数据传输方法的流程示意图;
图10为本发明实施例提供的无线通信网络中数据传输方法的流程示意图;
图11为本发明实施例提供的无线通信网络中数据传输装置的结构示意图;
图12为本发明实施例提供的无线通信网络中数据传输装置的结构示意图。
本发明的实施方式
下面将结合附图对本发明的实施方式作详细描述。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
首先,以LTE无线通讯系统架构中终端至基站间的数据传输优化为例进行说明:
图1为相关技术中LTE无线通讯系统的示意图。图1所示接入网由用户终端和基站eNB(evolved NodeB)构成,接入网的用户面数据链路连接至核心网的服务网关SGW(Serving GateWay)。
用户终端的类型可以是多种多样的,例如运行物联网应用的手机,或者传感器,或者任何具备物联网功能的终端。
在下述实施例中,以4种终端举例:
-终端1:智能家居中的红外移动物体感应器,功能是感应红外感应器范围内是否出现移动物体,产生的输出数据为枚举类型:0和1,0代表无移动物体,1代表有移动物体,输出数据产生周期为1秒;
-终端2:智能工业中的压力感应表,功能是感应压力数值,并向工厂 的总控后台上报感应值。上报的数据格式为2部分组成:第1部分是压力感应表的代号,该部分数据在不被用户更改的情况下是固定不变的;第2部分是压力感应表感应到的压力值,该部分数据是动态变化的,输出数据产生周期为2秒;用户在接收到数据后可监测每个代号的压力感应表的压力值的动态变化。
-终端3:便携式健康监护仪,可实时监控佩戴者的心率,将数据发送至医院健康中心后台,还可以在心率异常的情况下向医院健康中心后台发送告警指示。心率的监测有2种,一种是实时监测值,其上报周期为15秒,一种是每小时均值等级,其上报周期为1小时,其值域为[极低,低,正常,高,极高]5个等级。实时心率监测值上报的数据格式为[佩戴者代号,心率实时监控值],每小时均值心率监测值上报的数据格式为[佩戴者代号,心率每小时均值等级]。佩戴者可以自己选择或者和医院协商选择采用哪种监测方式。
-终端4:小型合金冶炼锅炉温度传感器,分100个温区,当采用不同的合金配方和工艺时,需要对温度进行不同的曲线调节,不同工艺有不同的温度控制曲线,如果过程中某个时间的温度偏离了预定曲线,则会导致合金生产质量不达标,在本例子中,可以假设某合金的冶炼周期为1小时,温度传感器每5分钟上报一次温度监控值,要求的温度控制曲线为[50,50,60,70,80,80,80,80,80,50,25,5],所述数字为温区值。
下面对每个终端的可优化数据进行说明。
第一种终端(红外移动物体感应器)的可优化数据有2种,分不同的场合,0和1均有较大的重复概率。例如在家庭使用时,由于屋中人的移动频度低,因此0的重复概率极大;在公共场合使用时,由于移动人数量大,因此1的重复概率较高。
第二种终端(压力感应表)的可优化数据是输出数据中的第1部分,即压力感应表的代号。
第三种终端(便携式健康监护仪)的可优化数据是佩戴者代号、心率每小时均值等级。
第4种终端(小型合金冶炼锅炉温度传感器)的可优化数据是温度监控值,当冶炼工艺控制稳定时,温度值呈周期数列的表现形式。
下面对本发明实施例提供的方案进行说明:
一、数据规律的获取方式:
(1)发送端节点的数据规律是通过如下方式得到的,包括:
对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,
从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,
接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
其中,所述接收应用层发送的参数信息,包括:
接收本地应用层发送的参数信息;或者,
接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
(2)接收端节点的数据规律是通过如下方式得到的,包括:
对接收到的数据包进行检测和统计,得到所述数据规律;或者,
从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,
接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
其中,接收应用层发送的参数信息,包括:
接收本地应用层发送的参数信息;或者,
接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
二、数据规律的判定方式。
发送端节点和接收端节点在判定数据规律的方式的实现基本相同。
所述数据规律包括重复规律或数据变化规律。
(1)所述重复规律是通过如下方式得到的:
若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
其中重复概率的统计方法包括:预设时间段内的重复次数之和;或者连续重复次数之和。
(2)所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
所述数值变化规律由发送端节点或接收端节点事先预设;或者,
所述数值变化规律由发送端节点和接收端节点根据需要增加;
其中,识别满足数值变化规律的数据为第二类型的可优化数据。
三、收发规则
需要说明的是,下述收发规则可以由发送端节点确定,也可以由接收端节点确定。
下面对收发规则的内容进行说明:
所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
其中,所述第一收发规则包括:
发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据对应的内容;或者,
发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
其中,所述第二收发规则包括:
若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;
其中,所述第三收发规则包括:
发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,
发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
对于发送端节点,所述第一收发规则和/或第三收发规则,还包括:
在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;
所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
确定具有所述数据规律的数据对应的可优化数据的类型;
根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
四、信息互通
(1)对于发送端节点而言,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:
向接收端节点发送如下至少一个信息,包括:
具有数据规律的数据的后续发送方式和对应的接收方式;
具有数据规律的数据的描述信息。
当发送端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
(2)对于接收端节点而言,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:
向发送端节点发送如下至少一个信息,包括:
具有数据规律的数据的后续发送方式和对应的接收方式;
具有数据规律的数据的描述信息。
当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据 的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
需要说明的是,无论发送端节点还是接收端节点,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选的,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
数据传输优化的机制如下:
-终端应用层对产生的数据进行统计
第一种终端(红外移动物体感应器)的统计结果如下表:
Figure PCTCN2015084836-appb-000001
可优化数据属于多次重复,为第一类型的可优化数据,共有2种,可采用第二收发规则。
第二种终端(压力感应表)的统计结果如下表:
可优化数据内容 业务数据源的数据发送周期
压力感应表的代号 2秒
可优化数据属于多次重复,为第一类型的可优化数据,共有1种,可采用第一收发规则。
第三种终端(便携式健康监护仪)的统计结果如下表:
Figure PCTCN2015084836-appb-000002
可优化数据属于多次重复,为第一类型的可优化数据,共有1种(佩戴者代号),可采用第一收发规则;
第4种终端的的统计结果如下表:
可优化数据内容 50,50,60,70,80,80,80,80,80,50,25,5
业务数据源的数据发送周期 5分钟
可优化数据符合周期数列的数据规律,为第二类型的可优化数据,可采用第三收发规则。
当统计结果中有多个可优化数据时,节点1可为每个可优化数据分配临时替代码。
下面以上述几种终端为例,描述一下几种可行的实施例:
实施例1:
图2为本发明实施例1提供的无线通信网络中数据传输方法的流程示意图。方法如图2所示:
-智能家居中的红外移动物体感应器,功能是感应红外感应器范围内是否出现移动物体,产生的输出数据为枚举类型:N和Y,N代表无移动物体, Y代表有移动物体,输出数据产生周期为1秒;
步骤201:终端统计自己的发送数据,因为红外移动物体感应器的输出具有单一和较大的重复概率,因此其2种输出值可全部纳入可优化数据,均属于第一类型的可优化数据,结果如下:
Figure PCTCN2015084836-appb-000003
步骤202:终端将自己的可优化数据信息发送给基站,可优化数据信息包括:可优化数据内容、可优化数据的类型为第一类型,可优化数据对应的业务数据源的数据发送周期均为1秒,
步骤203:终端根据自己的可优化数据类型判断选择哪种优化数据发送规则,由于可优化数据种类很少,而且数据Y多在白天产生,数据N多在深夜产生,2种数据重叠概率不大,因此第一收发规则和第二收发规则均可以采用,在本例中,终端和基站约定选择优化数据发送规则2,终端将分配的临时替代码告知给基站;
临时替代码 可优化数据内容
0 N
1 Y
步骤204:基站为终端配置发送临时替代码的专用数据信道;
步骤205:终端感应,周期性向基站发送感应输出数据,输出数据用临时替代码来代替,即数据N用0代替,数据Y用1代替;
步骤206:基站收到替代码后,用该临时替代码对应的可优化数据替换掉临时替代码,即N替换掉0,Y替换掉1,这样基站就以最小的空口资源占用率成功接收到了终端发送的真实的感应数据。
实施例2:
-智能工业中的压力感应表,功能是感应压力数值,并向工厂的总控后台上报感应值。上报的数据格式为2部分组成:第1部分是压力感应表的代号,该部分数据在不被用户更改的情况下是固定不变的;第2部分是压力感应表感应到的压力值,该部分数据是动态变化的,输出数据产生周期为2秒;用户在接收到数据后可监测每个代号的压力感应表的压力值的动态变化。压力感应表的可优化数据是输出数据中的第1部分,即压力感应表的代号。
图3为本发明实施例2提供的无线通信网络中数据传输方法的流程示意图。方法如图3所示:步骤301:终端统计自己的发送数据,统计发现的可优化数据如下,属于第一类型的可优化数据;
可优化数据内容 业务数据源的数据发送周期
压力感应表的代号 2秒
步骤302:终端根据自己的可优化数据类型判断选择哪种优化数据发送规则,由于可优化数据只有1种,因此终端和基站约定选择第一收发规则;
步骤303:终端将自己的可优化数据信息发送给基站,可优化数据信息包括:可优化数据内容、可优化数据的类型为第一类型,可优化数据对应的业务数据源的数据发送周期为2秒,可优化数据在当前数据包中所处的位置为数据的起始位置;
步骤304:终端感应压力值,周期性向基站发送感应输出数据;
步骤305:终端不发送压力感应表的代号,只发送数据格式的第二部分,即感应到的压力值;
步骤306:基站收到终端发送的压力值后,默认认为终端发送了数据格式的第1部分,即压力感应表的代号。
实施例3:
-便携式健康监护仪,可实时监控佩戴者的心率,将数据发送至医院健康中心后台,还可以在心率异常的情况下向医院健康中心后台发送告警指示。心率的监测有2种,一种是实时监测值,其上报周期为15秒,一种是每 小时均值等级,其上报周期为1小时,其值域为[极低,低,正常,高,极高]5个等级。实时心率监测值上报的数据格式为[佩戴者代号,心率实时监控值],每小时均值心率监测值上报的数据格式为[佩戴者代号,心率每小时均值等级]。佩戴者可以自己选择或者和医院协商选择采用哪种监测方式。
图4为本发明实施例3提供的无线通信网络中数据传输方法的流程示意图。方法如图4所示:
步骤401:终端统计自己的发送数据,统计发现的可优化数据来自2个数据源,如下,均属于第一类型的可优化数据,:
Figure PCTCN2015084836-appb-000004
步骤402:终端和基站约定采用哪种优化数据发送规则,由于“实时心率监测”的可优化数据种类只有1个,适合选择优化数据发送规则1;而“每小时均值心率监测”的可优化数据符合枚举类型,且种类较多有5个,适合选择第二收发规则;因此终端和基站通过专用信令约定:针对业务数据源“实时心率监测”采用第一收发规则;针对业务数据源“每小时均值心率监测”采用优化数据发送规则2;同时约定业务数据源“每小时均值心率监测”的临时替代码,例如就采用可优化数据序号作为替代码([佩戴者代号,极低]替代码为2,[佩戴者代号,低]替代码为3,以此类推);基站为终端配置一个专用数据信道用于传输替代码,或者为终端配置一个专用上行链路控制信道用于传输替代码;
步骤403:终端将自己的可优化数据信息发送给基站,可优化数据信息包括:可优化数据内容(佩戴者代号、每小时均值心率监测的5个枚举值)、可优化数据的类型为第一类型,可优化数据对应的业务数据源的数据发送周期(实时心率监测为15秒,每小时均值心率监测为3600秒)、可优化数据在当前数据包中所处的位置为数据的起始位置(佩戴者代号位于实时心率监测数据的起始位置);
步骤404:终端对人体进行监测,周期性向基站发送监测输出数据;
步骤405:当到达“实时心率监测”的发送周期时,终端不发送数据格式的第1部分(佩戴者代号),只发送数据格式的第二部分,即感应到的心率值;当到达“每小时均值心率监测”的发送周期时,终端根据自己产生的数据向基站发送对应的替代码;
步骤406:基站收到终端发送的“实时心率监测”的监测值后,默认认为终端发送了“实时心率监测”数据格式的第1部分,即佩戴者代号;基站收到终端发送的“每小时均值心率监测”的替代码后,默认收到了替代码所对应的可优化数据;
步骤407:基站从可优化数据信息中提取出“佩戴者代号”,与收到的终端发送的“实时心率监测”的监测值结合组成完整的数据格式;基站将收到的“每小时均值心率监测”的替代码转换为对应的数据,形成完整的数据格式。
实施例4:
小型合金冶炼锅炉温度传感器,分100个温区,当采用不同的合金配方和工艺时,需要对温度进行不同的曲线调节,不同工艺有不同的温度控制曲线,如果过程中某个时间的温度偏离了预定曲线,则会导致合金生产质量不达标,在本例子中,可以假设某合金的冶炼周期为1小时,温度传感器每5分钟上报一次温度监控值,要求的温度控制曲线为[50,50,60,70,80,80,80,80,80,50,25,5],所述数字为温区值。其可优化数据是温度监控值,当冶炼工艺控制稳定时,温度值呈周期数列的表现形式。
图5为本发明实施例4提供的无线通信网络中数据传输方法的流程示意 图。方法如图5所示:
步骤501:终端统计自己的发送数据,如下:
Figure PCTCN2015084836-appb-000005
可优化数据符合周期数列的数据规律,每12个数据周期循环1次,属于第二类型的可优化数据,
步骤502:终端根据自己的可优化数据类型判断选择哪种优化数据发送规则,因为属于第二类型的可优化数据,因此终端与基站约定采用第三收发规则;
步骤503:终端将自己的可优化数据信息发送给基站,可优化数据信息包括:可优化数据内容、可优化数据的类型为第二类型,可优化数据对应的业务数据源的数据发送周期为5分钟;可优化数据对应的数据规律(符合“周期数列”,下一个数据包是周期数列中的第K个);
步骤504:终端感应温度值,周期性产生感应输出数据;
步骤505:当到达温度监控值的发送周期时,终端不发送数据;
步骤506:基站在数据发送周期到达后的预设时间段内(假设预设时间段是10秒)没有收到终端发送的任何数据,则基站认为温度感应器感应到的温度值符合标准曲线,基站根据可优化数据信息所示的数据规律推算出当前温度感应器应该产生了什么温度值。
实施例5:LTE无线通讯系统架构中基站至终端间的下行链路数据传输优化
假设与实施例1具有相同场景和网络架构(见图1),与实施例1类似,当基站有可优化数据业务发送给终端时,可将基站作为发送端节点,终端作为接收端节点。
方案思路和实施例1相同。
-智能工业中的压力控制器来自后台的控制命令,该控制命令的数据格式为[压力控制器代号、压力目标值],发送周期为2秒;
图6为本发明实施例5提供的无线通信网络中数据传输方法的流程示意图。方法如图6所示:
步骤601:基站统计自己的发送数据,统计发现数据的第一部分“压力控制器代号”多次重复,属于第一类型的可优化数据;
步骤602:基站根据自己的可优化数据类型判断选择哪种优化数据发送规则,由于可优化数据只有1种,因此终端和基站约定选择第一收发规则;
步骤603:基站将自己的可优化数据信息发送给终端,可优化数据信息包括:可优化数据内容、可优化数据的类型为第一类型,可优化数据对应的业务数据源的数据发送周期为2秒,可优化数据在当前数据包中所处的位置为数据的起始位置;
步骤604:基站产生压力控制指令,周期性向终端发送指令,基站不发送压力控制器代号,只发送数据格式的第二部分,即压力目标值;
步骤605:终端收到基站发送的指令后,默认认为基站发送了数据格式的第1部分,即压力控制器代号,终端从可优化数据信息中提取出压力控制器代号,补充到指令中,构成完整的指令;
实施例6:LTE无线通讯系统架构中终端至SGW间的数据传输优化
图7为本发明实施例6提供的无线通信网络中数据传输方法的流程示意图。方法如图7所示。
在LTE的系统网络架构中,终端的用户面数据和控制面数据需经过SGW,因此可以将终端与SGW一起构成数据压缩场景中的发送端节点和接收端节点。
图8为本发明实施例6提供的网络的示意图。如图8所示,终端到SGW的链路是由两条链路(终端至基站,基站至SGW)级联组成,其中,终端至基站是无线链路,基站至SGW是有线链路。
终端为便携式健康监护仪,只开启“实时心率监测”功能,每15秒产生一 次数据,病人位于医院病房,数据固定上报给医院的健康监护后台,因为通讯链路的端到端都是固定的,因此在通讯过程中,双方传输协议接口不变,双方IP地址不会变化,又因为是小数据,单次发送就可以发送完整个数据,因此无需链路层进行数据包重新分段,因此终端发送的数据包中,控制面数据是固定不变的,用户面数据则是实时变化的。
流程如下,见图7:
步骤701:终端统计自己的发送数据,统计发现的数据包格式如下,其中控制面头和控制面数据尾多次重复,属于第一类型的可优化数据
控制面数据头 实时心率监测值 控制面数据尾
步骤702:终端根据自己的可优化数据类型判断选择哪种优化数据发送规则,由于可优化数据只有1种,因此终端和SGW约定选择第一收发规则;
步骤703:终端将自己的可优化数据信息发送给SGW,可优化数据信息包括:可优化数据内容(控制面头和控制面数据尾)、可优化数据的类型为第一类型,可优化数据对应的业务数据源的数据发送周期为15秒,可优化数据在当前数据包中所处的位置为数据的起始位置和结尾位置;
步骤704:终端感应实时心率监测值,周期性向SGW发送感应输出数据;
步骤705:终端只发送数据格式的中间部分,即感应到的实时心率监测值,而不发送控制面数据;
步骤706:SGW收到终端发送的实时心率监测值后,默认认为终端发送了数据格式中的控制面部分,SGW从可优化数据信息提取出控制面数据与实时心率监测值一起构成完整的数据包;
实施例7:
与上述实施例不同的是,数据包中数据的规律不但可以由发送端节点还获取,还可以由接收端节点获取。说明如下:
对接收到的数据包进行检测和统计,得到接收到的数据包中数据的规律;或者,
从发送端节点接收统计结果,从统计结果中获取接收到的数据包中数据的规律;或者,
接收应用层发送的参数信息,根据所述参数信息获取接收到的数据包中数据的规律。
在上述方式中,接收应用层发送的参数信息,包括:
接收本地应用层发送的参数信息;例如:若接收端节点是感应器或者其他机器类型终端,那么所述终端的生产商可以在应用层中预设这种终端所产生的数据可能符合的数据规律,或者在应用层中设置对数据进行统计的功能模块来统计其所产生的数据所符合的数据规律,由应用层将所述数据规律发送给终端的底层(例如NAS非接入层或者AS接入层);若接收端节点是接入网节点或者核心网节点,那么可以由应用商在机器类型终端所对应的机器类型服务器中预设这种终端所产生的数据可能符合的数据规律,接入网节点或者核心网节点从机器类型服务器中获取所述数据规律。
或者,
接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
在接收端节点得到数据包中数据的规律后,可以将该规律告知发送端节点,以便确定具有该规律的数据后续的发送方式。
实施例8
与上述实施例不同的是,本实施例中具有该规律的数据后续的发送方式是由接收端节点确定的,说明如下:
确定具有所述数据规律的数据后续的发送方式;
向发送端节点发送具有所述数据规律的数据后续的发送方式。
其中,所述确定具有所述数据规律的数据后续的发送方式,包括:
所述第一类型的可优化数据和第二类型的可优化数据的后续的发送方式包括:第一发送规则;
其中,所述第一发送规则包括:
无需向接收端申请发送所述第一类型的可优化数据和/或第二类型的可优化数据的上行资源,也无需在已有的上行资源上发送所述第一类型的可优化数据和/或第二类型的可优化数据;或者,只需向接收端发送待传输数据中除所述第一类型的可优化数据和/或第二类型的可优化数据的以外的剩余部分;
所述第一类型的可优化数据的后续的发送方式还包括:第二发送规则;
其中,所述第二发送规则包括:为每个第一类型的可优化数据分配唯一对应的临时替代码,并利用所述临时替代码传输所述第一类型的可优化数据;或者,如果所述待传输的数据包中部分数据是第一类型的可优化数据,则利用所述临时替代码替代所述待传输数据的数据包中的部分数据,并将完成替换操作后的数据包发送出去。
其中,所述第一发送规则还包括:
在只需向接收端发送待传输数据中除所述第一类型的可优化数据以外的剩余部分的同时,发送端节点告知接收端节点当前数据中含有所述第一类型的可优化数据以及所述第一类型的可优化数据在数据包中所处的位置;
所述告知方式包括:发送端通过专用信令、或者通过MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
所述接收端节点还向所述发送端节点发送具有所述数据规律的数据的描述信息。
其中,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
可选的,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
实施例9
从以上实施例可以看到,本发明实施例所述的方法并不限制发送端节点和接收端节点的类型,也不限制节点之间的链路类型,无线链路和有线链路均可采用。
除了前述实施例所举例的LTE系统外,相关技术的无线通讯系统例如UMTS,TD-SCDMA,CDMA2000均可以采用前述实施例的流程,区别仅在于节点的名称和类型的差异。
基于上述实施例,可以得出如下方法流程:
图9为本发明实施例提供的无线通信网络中数据传输方法的流程示意图。图9所示方法实施例,包括:
步骤901、获取传输的数据包中数据的数据规律;
步骤902、确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
步骤903、按照确定的发送方式,发送具有所述数据规律的数据。
本发明实施例提供的方法,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线资源的使用效率。
图10为本发明实施例提供的无线通信网络中数据传输方法的流程示意图。图10所示方法实施例,包括:
步骤1001、获取接收到的数据包中数据的数据规律;
步骤1002、确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
步骤1003、按照确定的接收方式,解析并还原具有所述数据规律的数据。
本发明实施例提供的方法,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线 资源的使用效率。
图11为本发明实施例提供的无线通信网络中数据传输装置的结构示意图。图11所示装置,包括:
第一获取模块1101,设置为:获取传输的数据包中数据的数据规律;
第一确定模块1102,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
第一发送模块1103,设置为:按照确定的发送方式,发送具有所述数据规律的数据。
其中,所述第一确定模块确定的所述数据规律是通过如下方式得到的,包括:
对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,
从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,
接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
其中,所述第一确定模块是设置为:
接收本地应用层发送的参数信息;或者,
接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
其中,所述数据规律包括重复规律或数值变化规律。
其中,所述重复规律是通过如下方式得到的:
若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连 续重复次数之和。
其中,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
所述数值变化规律由发送端节点或接收端节点事先预设;或者,
所述数值变化规律由发送端节点和接收端节点根据需要增加;
其中,识别满足数值变化规律的数据为第二类型的可优化数据。
其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
其中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
其中,所述第二收发规则包括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉临时替代码;
其中,所述第三收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
其中,所述第一收发规则和/或第三收发规则,还包括:
在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;
所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
其中,所述临时替代码由所述待传输数据包的发送端节点或者接收端节点定义,或者,由所述发送端节点和所述接收端节点共同协商确定。
其中,所述临时替代码的发送装置包括:
通过控制信道发送;或者,
通过专用数据信道发送,其中所述专用数据信道是接收端节点为发送端节点配置的专用于发送替代码的数据信道;或者,
通过共享数据信道发送,所述共享数据信道是非专用的数据信道,用以传输任意用户面数据,仅当发送端节点有传输替代码要求时,临时为发送端节点配置的共享数据信道中的资源。
其中,所述第一确定模块包括:
第一确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;
第二确定单元,设置为:根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式得到的,包括:
发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数 据后续的发送方式和对应的接收方式。
其中,所述装置还包括:
第二发送模块,设置为:向接收端节点发送如下至少一个信息,包括:
具有数据规律的数据的后续发送方式和对应的接收方式;
具有数据规律的数据的描述信息。
其中,所述装置还包括:
第三发送模块,设置为:当发送端节点为核心网节点时,将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
其中,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
本发明实施例提供的装置,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线资源的使用效率。
图12为本发明实施例提供的无线通信网络中数据传输装置的结构示意图。图12所示装置,包括:
第二获取模块1201,设置为:获取接收到的数据包中数据的数据规律;
第二确定模块1202,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
处理模块1203,设置为:按照确定的接收方式,解析并还原具有所述数据规律的数据。
其中,所述数据规律是通过如下方式得到的,包括:
对接收到的数据包进行检测和统计,得到所述数据规律;或者,
从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,
接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
其中,所述第二确定模块是设置为:
接收本地应用层发送的参数信息;或者,
接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
其中,所述数据规律包括重复规律或数值变化规律。
其中,所述重复规律是通过如下方式得到的:
若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连续重复次数之和。
其中,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
所述数据规律由发送端节点或接收端节点事先预设;或者,
所述数据规律由发送端节点和接收端节点根据需要增加;
其中,识别满足数值变化规律的数据为第二类型的可优化数据。
其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
其中,所述第一收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有所述数据规律的数据对应的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了所述数据规 律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
其中,所述第二收发规则包括:若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;
其中,所述第三收发规则包括:发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将得到的计算结果填充到发送端节点发送的数据包中。
其中,所述第二确定模块包括:
第三确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;
第四确定单元,设置为:根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式的确定的,包括:
接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
其中,所述装置还包括:
第四发送模块,设置为:向发送端节点发送如下至少一个信息,包括:
具有数据规律的数据的后续发送方式和对应的接收方式;
具有数据规律的数据的描述信息。
其中,具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
其中,所述装置还包括:
第五发送模块,设置为:当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
本发明实施例提供的装置,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线资源的使用效率。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。上述实施例中的各装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置 上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的各装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
本发明提供的实施例,获取数据规律,通过确定具有数据规律的数据的收发方式,达到减少小数据的发送次数的目的,提升小数据传输对无线资源的使用效率。

Claims (63)

  1. 一种无线通信网络中数据传输方法,包括:
    获取传输的数据包中数据的数据规律;
    确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
    按照确定的发送方式,发送具有所述数据规律的数据。
  2. 根据权利要求1所述的方法,其中,所述数据规律是通过如下方式得到的,包括:
    对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,
    从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,
    接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
  3. 根据权利要求2所述的方法,其中,所述接收应用层发送的参数信息,包括:
    接收本地应用层发送的参数信息;或者,
    接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
  4. 根据权利要求1所述的方法,其中,所述数据规律包括重复规律或数值变化规律。
  5. 根据权利要求4所述的方法,其中,所述重复规律是通过如下方式得到的:
    若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
    其中重复概率的统计方法包括:预设时间段内的重复次数之和;或者连 续重复次数之和。
  6. 根据权利要求5所述的方法,其中,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
    所述数值变化规律由发送端节点或接收端节点事先预设;或者,
    所述数值变化规律由发送端节点和接收端节点根据需要增加;
    其中,识别满足数值变化规律的数据为第二类型的可优化数据。
  7. 根据权利要求6所述的方法,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
    其中,所述第一收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有数据规律的数据对应的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
    其中,所述第二收发规则包括:
    若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉临时替代码;
    其中,所述第三收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
  8. 根据权利要求7所述的方法,其中,所述第一收发规则和/或第三收发规则,还包括:
    在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;
    所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
  9. 根据权利要求7所述的方法,其中,所述临时替代码由所述待传输数据包的发送端节点或者接收端节点定义,或者,由所述发送端节点和所述接收端节点共同协商确定。
  10. 根据权利要求9所述的方法,其中,所述临时替代码的发送方法包括:
    通过控制信道发送;或者,
    通过专用数据信道发送,其中所述专用数据信道是接收端节点为发送端节点配置的专用于发送替代码的数据信道;或者,
    通过共享数据信道发送,所述共享数据信道是非专用的数据信道,用以传输任意用户面数据,仅当发送端节点有传输替代码要求时,临时为发送端节点配置的共享数据信道中的资源。
  11. 根据权利要求7所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
    确定具有所述数据规律的数据对应的可优化数据的类型;
    根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
  12. 根据权利要求11所述的方法,其中,所述第一类型的可优化数据 对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
  13. 根据权利要求1所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
    发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
    发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
  14. 根据权利要求1所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:
    向接收端节点发送如下至少一个信息,包括:
    具有数据规律的数据的后续发送方式和对应的接收方式;
    具有数据规律的数据的描述信息。
  15. 根据权利要求14所述的方法,所述方法还包括:
    当发送端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
  16. 根据权利要求14或15所述的方法,其中:
    具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
  17. 根据权利要求16所述的方法,其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
  18. 一种无线通信网络中数据传输方法,包括:
    获取接收到的数据包中数据的数据规律;
    确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
    按照确定的接收方式,解析并还原具有所述数据规律的数据。
  19. 根据权利要求18所述的方法,其中,所述数据规律是通过如下方式得到的,包括:
    对接收到的数据包进行检测和统计,得到所述数据规律;或者,
    从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,
    接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
  20. 根据权利要求19所述的方法,其中,接收应用层发送的参数信息,包括:
    接收本地应用层发送的参数信息;或者,
    接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
  21. 根据权利要求18所述的方法,其中,所述数据规律包括重复规律或数值变化规律。
  22. 根据权利要求21所述的方法,其中,所述重复规律是通过如下方式得到的:
    若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
    其中重复概率的统计方法包括:预设时间段内的重复次数之和;或者连续重复次数之和。
  23. 根据权利要求22所述的方法,其中,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
    所述数值变化规律由发送端节点或接收端节点事先预设;或者,
    所述数值变化规律由发送端节点和接收端节点根据需要增加;
    其中,识别满足数值变化规律的数据为第二类型的可优化数据。
  24. 根据权利要求23所述的方法,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
    其中,所述第一收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有所述数据规律的数据对应的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
    其中,所述第二收发规则包括:
    若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;
    其中,所述第三收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将得到的计算结果填充到发送端节点发送的数据包中。
  25. 根据权利要求24所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
    确定具有所述数据规律的数据对应的可优化数据的类型;
    根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
  26. 根据权利要求25所述的方法,其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
  27. 根据权利要求18所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:
    接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
    接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
  28. 根据权利要求18所述的方法,其中,所述确定具有所述数据规律的数据后续的发送方式和对应的接收方式之后,还包括:
    向发送端节点发送如下至少一个信息,包括:
    具有数据规律的数据的后续发送方式和对应的接收方式;
    具有数据规律的数据的描述信息。
  29. 根据权利要求28所述的方法,其中:
    具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
  30. 根据权利要求29所述的方法,其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
  31. 根据权利要求18所述的方法,所述方法还包括:
    当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据 的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
  32. 一种无线通信网络中数据传输装置,包括:
    第一获取模块,设置为:获取传输的数据包中数据的数据规律;
    第一确定模块,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
    第一发送模块,设置为:按照确定的发送方式,发送具有所述数据规律的数据。
  33. 根据权利要求32所述的装置,其中,所述第一确定模块确定的所述数据规律是通过如下方式得到的,包括:
    对过去生成的待传输数据包进行检测和统计,得到所述数据规律;或者,
    从接收端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述接收端节点发送的统计结果是对所述接收端节点已接收的数据包进行统计得到的;或者,
    接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
  34. 根据权利要求33所述的装置,其中,所述第一确定模块是设置为:
    接收本地应用层发送的参数信息;或者,
    接收所述接收端节点发送的参数信息,其中所述参数信息是所述接收端节点从所述应用层获取的。
  35. 根据权利要求32所述的装置,其中,所述数据规律包括重复规律或数值变化规律。
  36. 根据权利要求35所述的装置,其中,所述重复规律是通过如下方式得到的:
    若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值 条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
    其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连续重复次数之和。
  37. 根据权利要求35所述的装置,其中,所述数值变化规律包括等差数列规律、等比数列规律、周期数列规律、指数数列规律;
    所述数值变化规律由发送端节点或接收端节点事先预设;或者,
    所述数值变化规律由发送端节点和接收端节点根据需要增加;
    其中,识别满足数值变化规律的数据为第二类型的可优化数据。
  38. 根据权利要求37所述的装置,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
    其中,所述第一收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有数据规律的数据对应的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
    其中,所述第二收发规则包括:
    若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉临时替代码;
    其中,所述第三收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节 点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内容,并将计算得到内容的填充到发送端节点发送的数据包中。
  39. 根据权利要求38所述的装置,其中,所述第一收发规则和/或第三收发规则,还包括:
    在只需向接收端节点发送待传输数据包中除所述具有数据规律的数据以外的剩余部分的同时,告知接收端节点当前数据中含有所述具有数据规律的数据以及所述具有数据规律的数据在数据包中所处的位置;
    所述告知方式包括:通过专用信令、或者通过媒体接入控制层MAC控制头告知,或者在发送的数据中附带一个指示用以告知。
  40. 根据权利要求38所述的装置,其中,所述临时替代码由所述待传输数据包的发送端节点或者接收端节点定义,或者,由所述发送端节点和所述接收端节点共同协商确定。
  41. 根据权利要求40所述的装置,其中,所述临时替代码的发送装置包括:
    通过控制信道发送;或者,
    通过专用数据信道发送,其中所述专用数据信道是接收端节点为发送端节点配置的专用于发送替代码的数据信道;或者,
    通过共享数据信道发送,所述共享数据信道是非专用的数据信道,用以传输任意用户面数据,仅当发送端节点有传输替代码要求时,临时为发送端节点配置的共享数据信道中的资源。
  42. 根据权利要求38所述的装置,其中,所述第一确定模块包括:
    第一确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;
    第二确定单元,设置为:根据所述可优化数据的类型,确定具有所述数 据规律的数据后续的发送方式和对应的接收方式。
  43. 根据权利要求42所述的装置,其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
  44. 根据权利要求32所述的装置,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式得到的,包括:
    发送端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
    发送端节点从接收端节点接收所述接收端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
  45. 根据权利要求32所述的装置,其中,所述装置还包括:
    第二发送模块,设置为:向接收端节点发送如下至少一个信息,包括:
    具有数据规律的数据的后续发送方式和对应的接收方式;
    具有数据规律的数据的描述信息。
  46. 根据权利要求45所述的装置,其中,所述装置还包括:
    第三发送模块,设置为:当发送端节点为核心网节点时,将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和接收端节点建立连接的接入网节点。
  47. 根据权利要求45或46所述的装置,其中:
    具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
  48. 根据权利要求47所述的装置,其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
  49. 一种无线通信网络中数据传输装置,包括:
    第二获取模块,设置为:获取接收到的数据包中数据的数据规律;
    第二确定模块,设置为:确定具有所述数据规律的数据后续的发送方式和对应的接收方式;
    处理模块,设置为:按照确定的接收方式,解析并还原具有所述数据规律的数据。
  50. 根据权利要求49所述的装置,其中,所述数据规律是通过如下方式得到的,包括:
    对接收到的数据包进行检测和统计,得到所述数据规律;或者,
    从发送端节点接收统计结果,从统计结果中获取所述数据规律,其中,所述发送端节点发送的统计结果是所述发送端节点对传输的数据包进行统计得到的;或者,
    接收应用层发送的参数信息,根据所述参数信息获取所述数据规律。
  51. 根据权利要求50所述的装置,其中,所述第二确定模块是设置为:
    接收本地应用层发送的参数信息;或者,
    接收所述发送端节点发送的参数信息,其中所述参数信息是所述发送端节点从应用层获取的。
  52. 根据权利要求49所述的装置,其中,所述数据规律包括重复规律或数值变化规律。
  53. 根据权利要求52所述的装置,其中,所述重复规律是通过如下方式得到的:
    若所述数据包或者数据包的一部分数据的重复概率达到预设的阈值,则判定所述数据包或者数据包的一部分数据符合重复规律,识别满足所述阈值条件的数据包或者数据包的一部分数据为第一类型的可优化数据;
    其中重复概率的统计装置包括:预设时间段内的重复次数之和;或者连续重复次数之和。
  54. 根据权利要求53所述的装置,其中,所述数值变化规律包括等差 数列规律、等比数列规律、周期数列规律、指数数列规律;
    所述数值变化规律由发送端节点或接收端节点事先预设;或者,
    所述数值变化规律由发送端节点和接收端节点根据需要增加;
    其中,识别满足数值变化规律的数据为第二类型的可优化数据。
  55. 根据权利要求54所述的装置,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式,包括:第一收发规则、第二收发规则和第三收发规则中的至少一个;
    其中,所述第一收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取具有所述数据规律的数据对应的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了所述数据规律的数据以外剩余的部分;接收端节点获取所述具有所述数据规律的数据对应的内容并将得到的内容填充到发送端节点发送的数据包中;
    其中,所述第二收发规则包括:
    若待传输数据包是所述具有数据规律的数据或者待传输数据包的一部分是所述具有数据规律的数据,则发送端节点为每种具有数据规律的数据分配唯一对应的临时替代码,用对应的临时替代码替换掉所述具有数据规律的数据,并发送给接收端节点;接收端节点利用所述临时替代码对应的内容替换掉发送端节点发送的数据包中的临时替代码;
    其中,所述第三收发规则包括:
    发送端节点无需向接收端节点申请发送所述具有数据规律的数据的上行资源,也无需在已有的上行资源上发送所述具有数据规律的数据;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包的内容;或者,
    发送端节点只需向接收端节点发送待传输数据中除了具有所述数据规律的数据以外剩余的部分;接收端节点获取所述具有数据规律的数据所符合的数据规律,并根据该数据规律计算得到所述发送端节点发送的数据包中的内 容,并将得到的计算结果填充到发送端节点发送的数据包中。
  56. 根据权利要求55所述的装置,其中,所述第二确定模块包括:
    第三确定单元,设置为:确定具有所述数据规律的数据对应的可优化数据的类型;
    第四确定单元,设置为:根据所述可优化数据的类型,确定具有所述数据规律的数据后续的发送方式和对应的接收方式。
  57. 根据权利要求56所述的装置,其中,所述第一类型的可优化数据对应的发送方式和对应的接收方式采用第一收发规则和/或第二收发规则;所述第二类型的可优化数据对应的发送方式和对应的接收方式采用第三收发规则。
  58. 根据权利要求49所述的装置,其中,所述具有所述数据规律的数据后续的发送方式和对应的接收方式是通过如下方式的确定的,包括:
    接收端节点确定所述数据规律的数据后续的发送方式和对应的接收方式;或者,
    接收端节点从发送端节点接收所述发送端节点确定的所述数据规律的数据后续的发送方式和对应的接收方式。
  59. 根据权利要求49所述的装置,所述装置还包括:
    第四发送模块,设置为:向发送端节点发送如下至少一个信息,包括:
    具有数据规律的数据的后续发送方式和对应的接收方式;
    具有数据规律的数据的描述信息。
  60. 根据权利要求59所述的装置,其中:
    具有所述数据规律的数据的描述信息包括:可优化数据的内容、可优化数据的类型或者第二类型的可优化数据所符合的数据规律。
  61. 根据权利要求60所述的装置,其中,具有所述数据规律的数据的描述信息还包括如下至少一种:在当前数据包中所处的位置、第二类型的可优化数据在所符合的数据规律的数列中所处的偏置位置offset、业务数据源、业务数据源的数据发送周期、业务类型和设备类型。
  62. 根据权利要求49所述的装置,所述装置还包括:
    第五发送模块,设置为:当接收端节点为核心网节点时,核心网节点将具有所述数据规律的数据的后续发送方式和对应的接收方式以及具有所述数据规律的数据的描述信息发送给和发送端节点建立连接的接入网节点。
  63. 一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行权利要求1-31任一项的方法。
PCT/CN2015/084836 2014-12-30 2015-07-22 一种无线通信网络中数据传输方法和装置 WO2016107153A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,030 US10887777B2 (en) 2014-12-30 2015-07-22 Method and device for data transmission in wireless communication network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410843614.6 2014-12-30
CN201410843614.6A CN105812087B (zh) 2014-12-30 2014-12-30 一种无线通信网络中数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2016107153A1 true WO2016107153A1 (zh) 2016-07-07

Family

ID=56284108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084836 WO2016107153A1 (zh) 2014-12-30 2015-07-22 一种无线通信网络中数据传输方法和装置

Country Status (3)

Country Link
US (1) US10887777B2 (zh)
CN (1) CN105812087B (zh)
WO (1) WO2016107153A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105813201B (zh) * 2014-12-30 2019-04-09 中兴通讯股份有限公司 一种无线通信网络中的数据传输方法及装置
CN107846471A (zh) * 2017-11-17 2018-03-27 杭州电魂网络科技股份有限公司 数据下发方法及装置
CN113593126A (zh) * 2021-08-04 2021-11-02 特瓦特能源科技有限公司 一种充电桩大数据传输系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027126A1 (en) * 2010-08-02 2012-02-02 Samsung Electronics Co. Ltd. Apparatus and method for constellation rearrangement in broadband wireless access system
CN102624605A (zh) * 2011-04-01 2012-08-01 北京小米科技有限责任公司 一种传送数据的方法
CN103209062A (zh) * 2013-03-15 2013-07-17 北京创毅讯联科技股份有限公司 机器类型通信信息处理方法、终端、基站与通信系统
CN103701865A (zh) * 2013-12-06 2014-04-02 中国科学院深圳先进技术研究院 一种数据传输的方法及系统
CN103841616A (zh) * 2013-12-16 2014-06-04 华为技术有限公司 一种应用数据包处理方法、装置及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1411700B8 (en) * 1999-08-06 2006-08-30 Matsushita Electric Industrial Co., Ltd. Data transmission method, data transmission apparatus, and data reception apparatus
EP1315356B1 (en) * 2001-11-24 2008-10-22 Lg Electronics Inc. Method for transmitting packet data in compressed form in a communication system
SE0400582D0 (sv) * 2004-03-05 2004-03-05 Forskarpatent I Uppsala Ab Method for in-line process control of the CIGS process
CN100591053C (zh) * 2007-10-25 2010-02-17 华为技术有限公司 一种报文传输方法及网络节点装置
US8270352B2 (en) * 2008-04-09 2012-09-18 Wi-Lan Inc. Reduction of transmission overhead in a wireless communication system
US8879514B2 (en) * 2012-09-14 2014-11-04 Qualcomm Incorporated Apparatus and method for detection of a dedicated control channel (DCCH)
US9866804B2 (en) * 2014-04-09 2018-01-09 Lg Electronics Inc. Broadcast signal transmission apparatus, broadcast signal reception apparatus, broadcast signal transmission method, and broadcast signal reception method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120027126A1 (en) * 2010-08-02 2012-02-02 Samsung Electronics Co. Ltd. Apparatus and method for constellation rearrangement in broadband wireless access system
CN102624605A (zh) * 2011-04-01 2012-08-01 北京小米科技有限责任公司 一种传送数据的方法
CN103209062A (zh) * 2013-03-15 2013-07-17 北京创毅讯联科技股份有限公司 机器类型通信信息处理方法、终端、基站与通信系统
CN103701865A (zh) * 2013-12-06 2014-04-02 中国科学院深圳先进技术研究院 一种数据传输的方法及系统
CN103841616A (zh) * 2013-12-16 2014-06-04 华为技术有限公司 一种应用数据包处理方法、装置及系统

Also Published As

Publication number Publication date
CN105812087B (zh) 2019-09-24
CN105812087A (zh) 2016-07-27
US10887777B2 (en) 2021-01-05
US20170359738A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
US10721681B2 (en) System and method for dynamically configurable air interfaces
US20210185117A1 (en) Resource management in a big data environment
JP6746616B2 (ja) マシン型通信方法、端末及び基地局
US8704656B2 (en) Improvements to body area networks
KR101373916B1 (ko) 무선 센서 네트워크에 대한 개선
US9736884B2 (en) Improvements to short-range wireless networks
CN110572481A (zh) 基于LoRa通信的智能化机电设备数据交互方法与系统
US20130073746A1 (en) Apparatus And Method For Operating M2M Devices
US10178684B2 (en) Device and method for scheduling machine-to-machine communication system
KR20110125665A (ko) 신체 영역 네트워크에 대한 개선
WO2012072035A1 (zh) 告警信息传输方法、无线传感器节点设备、网关节点设备
WO2016107153A1 (zh) 一种无线通信网络中数据传输方法和装置
CN108024211B (zh) 一种设备唤醒方法和设备
EP4057714A1 (en) Time sensitive communication support information updating method and device in mobile communication system
CN102271326A (zh) 机器类通信设备能力的上报、获取方法及装置
CN105119693A (zh) 在非授权频谱中设置mcs的方法及装置
US10412604B2 (en) Method and device for data transmission in wireless communication network
Pattamasiriwat et al. Distributed Region-Based Monitoring in Low-Power Listening Wireless Sensor Networks
CN109982420B (zh) 一种基于监测行为规则的无线传感器网络休眠调度方法
Nasser et al. Multiple Base station and Packet Priority-based clustering scheme in Internet of Things
Kamimura et al. Determination of Adjacent Nodes for Power‐Efficient Wireless Sensor Networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874842

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541030

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874842

Country of ref document: EP

Kind code of ref document: A1