WO2016106810A1 - 具有触控功能的面板及其触控位置检测方法 - Google Patents

具有触控功能的面板及其触控位置检测方法 Download PDF

Info

Publication number
WO2016106810A1
WO2016106810A1 PCT/CN2015/070413 CN2015070413W WO2016106810A1 WO 2016106810 A1 WO2016106810 A1 WO 2016106810A1 CN 2015070413 W CN2015070413 W CN 2015070413W WO 2016106810 A1 WO2016106810 A1 WO 2016106810A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
touch
area
substrate
electrodes
Prior art date
Application number
PCT/CN2015/070413
Other languages
English (en)
French (fr)
Inventor
邱杰
林永伦
付如海
叶成亮
张君恺
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/433,652 priority Critical patent/US20160188106A1/en
Publication of WO2016106810A1 publication Critical patent/WO2016106810A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes

Definitions

  • the present invention relates to the field of touch and display technologies, and in particular, to a panel with a touch function and a touch position detecting method thereof.
  • the touch technology is more diversified, and the more common ones are self-capacitance and mutual-capacitance touch screens.
  • the self-capacitance touch is sensitive and precise, the traditional self-capacitance technology cannot be due to double-layer ghost points or intermediate touch points in a single layer area.
  • the problem of walking away has led to the use of mutual-capacitance touch technology in touch panels in current display panels, but there are corresponding problems in mutual capacitance, such as complex structure and vulnerability to interference.
  • the technical problem to be solved by the present invention is to provide a panel with a touch function and a touch position detecting method thereof, which can avoid the occurrence of touch ghost points and can make the structure of the sensing electrodes simpler.
  • a technical solution adopted by the present invention is to provide a panel having a touch function, wherein the panel includes a substrate and a plurality of first electrodes and a plurality of second electrodes disposed on the substrate.
  • the first electrode and the second electrode are alternately arranged in the horizontal direction and the vertical direction on the effective touch area of the substrate, so that the real-time touch area when the touch object touches includes the first area and the first electrode contacting
  • the second electrode is in contact with the second region, and the area of the first region and the second region are not equal.
  • the panel further includes a touch detection module.
  • the touch detection module is connected to the first electrode and the second electrode, and the touch detection module passes the detection.
  • the amount of change in capacitance between the first electrode and the adjacent second electrode determines the lateral coordinate of the real-time touch region, and detects the amount of change in capacitance between the first electrode, the second electrode, and the touch object, respectively. Determining a longitudinal coordinate of the real-time touch area, wherein the shapes of the first electrode and the second electrode are complementary, and one first electrode and the corresponding one of the second electrodes form a touch junction , Real-time touch the touch area is located on the node.
  • the shape of the first electrode is a right-angled triangle
  • the shape of the second electrode is a right-angled trapezoid
  • a first electrode and a corresponding second electrode form a rectangular touch node, and the rectangular touch node matrix is arranged. In the effective touch area.
  • the shape of the first electrode and the second electrode are both right triangles, and a first electrode and a corresponding second electrode form a rectangular touch node, and the rectangular touch node matrix is arranged in an effective touch. region.
  • another technical solution adopted by the present invention is to provide a panel having a touch function, the panel comprising a substrate and a plurality of first electrodes and a plurality of second electrodes disposed on the substrate, first The electrode and the second electrode are alternately arranged in the horizontal and vertical directions on the effective touch area of the substrate, so that the real-time touch area when the touch object touches includes the first area and the second contact with the first electrode.
  • the panel further includes a touch detection module, the touch detection module is connected to the first electrode and the second electrode, and the touch detection module passes the first detection Determining the lateral coordinate of the real-time touch area by the capacitance between the electrode and the adjacent second electrode, and determining the longitudinal coordinate of the real-time touch area by detecting the capacitance between the first electrode, the second electrode and the touch object respectively .
  • the first electrode and the second electrode are complementary in shape, and one first electrode and the corresponding one of the second electrodes form a touch node, and the real-time touch area is located on the touch node.
  • the shape of the first electrode is a right-angled triangle
  • the shape of the second electrode is a right-angled trapezoid
  • a first electrode and a corresponding second electrode form a rectangular touch node, and the rectangular touch node matrix is arranged. In the effective touch area.
  • the shape of the first electrode and the second electrode are both right triangles, and a first electrode and a corresponding second electrode form a rectangular touch node, and the rectangular touch node matrix is arranged in an effective touch. region.
  • the substrate is a CF substrate
  • the panel further includes a pixel unit arranged in a matrix on the substrate and a black matrix disposed between the adjacent two pixel units, wherein the first electrode and the second electrode are touched by the area corresponding to the black matrix.
  • the layer is formed.
  • the substrate is a CF substrate
  • the panel further includes a pixel unit arranged in a matrix on the substrate and a black matrix disposed between the adjacent two pixel units, wherein the first electrode and the second electrode are touched by the area corresponding to the black matrix.
  • the layer is formed.
  • the substrate is a CF substrate
  • the panel further includes a pixel unit arranged in a matrix on the substrate and a black matrix disposed between the adjacent two pixel units, wherein the first electrode and the second electrode are touched by the area corresponding to the black matrix.
  • the layer is formed.
  • the substrate is a CF substrate
  • the panel further includes a pixel unit arranged in a matrix on the substrate and a black matrix disposed between the adjacent two pixel units, wherein the first electrode and the second electrode are touched by the area corresponding to the black matrix.
  • the layer is formed.
  • the touch layer is disposed on the substrate, and the black matrix is disposed on the touch layer.
  • the black matrix is disposed on the substrate, and the touch layer is disposed on the black matrix.
  • the substrate is a TFT array substrate.
  • the substrate is a TFT array substrate.
  • the substrate is a TFT array substrate.
  • the substrate is a TFT array substrate.
  • a touch position detecting method for a panel having a touch function wherein the panel includes a substrate and a plurality of first electrodes disposed on the substrate. And the plurality of second electrodes, the first electrode and the second electrode are alternately arranged in the horizontal direction and the vertical direction on the effective touch area of the substrate, so that the real-time touch area when the touch object touches includes the first electrode And contacting the first area and the second area in contact with the second electrode, and the areas of the first area and the second area are not equal, the panel further includes a touch detection module, and the touch detection module is connected to the first electrode and the second electrode
  • the touch position detecting method includes: detecting a capacitance between the first electrode and the adjacent second electrode to obtain a lateral coordinate of the real-time touch area; respectively detecting a capacitance between the first electrode, the second electrode, and the touch object To obtain the vertical coordinates of the real-time touch area.
  • the step of detecting a capacitance between the first electrode and the adjacent second electrode to obtain the lateral coordinate of the real-time touch area includes: detecting a change amount of the capacitance between the first electrode and the adjacent second electrode to obtain The horizontal coordinate of the real-time touch area; respectively detecting the capacitance between the first electrode, the second electrode and the touch object to obtain the longitudinal coordinate of the real-time touch area includes: detecting the first electrode, the second electrode and the touch respectively The amount of change in capacitance between the objects; obtaining a difference in the amount of change in capacitance between the first electrode and the second electrode and the touch object to determine a longitudinal coordinate of the real-time touch area.
  • the invention has the beneficial effects that the first electrode and the second electrode are arranged alternately in the horizontal and vertical directions on the effective touch area of the substrate in order to make the touch object touch.
  • the time-controlled real-time touch area includes a first area in contact with the first electrode and a second area in contact with the second electrode, and the areas of the first area and the second area are not equal, and then the first electrode is detected and adjacent
  • the capacitance between the second electrodes determines the lateral coordinate of the real-time touch area, and the longitudinal coordinate of the real-time touch area is determined by detecting the capacitance between the first electrode, the second electrode and the touch object, respectively, thereby avoiding The touch ghost point appears and the structure of the sensing electrode can be made simpler.
  • FIG. 1 is a schematic structural view of a panel with a touch function according to a preferred embodiment of the present invention
  • Figure 1a is a schematic view showing another complementary shape of the first electrode and the second electrode of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a panel having a touch function according to a preferred embodiment of the present invention
  • 2a is a schematic structural view showing another situation of the positional relationship between the touch layer and the black matrix of the present invention
  • FIG. 3 is a flow chart of a touch position detecting method of a panel with a touch function according to a preferred embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a panel with a touch function according to a preferred embodiment of the present invention.
  • the panel having a touch function includes a substrate 10 and a plurality of first electrodes RX and a plurality of second electrodes TX disposed on the substrate 10.
  • the first electrode RX and the second electrode TX are alternately arranged in the horizontal direction and the vertical direction on the effective touch area A of the substrate 10, so that the real-time touch area B when the touch object touches includes the first electrode RX.
  • the first area B1 and the second area B2 are in contact with the second electrode TX, and the areas of the first area B1 and the second area B2 are not equal.
  • the panel further includes a touch detection module (not shown), and the touch detection module Connected to the first electrode RX and the second electrode TX, the touch detection module determines the lateral coordinate of the real-time touch region B by detecting the capacitance between the first electrode RX and the adjacent second electrode TX, and respectively detects The capacitance between the one electrode RX, the second electrode TX and the touch object determines the longitudinal coordinate of the real-time touch area B.
  • a touch detection module (not shown)
  • the touch detection module Connected to the first electrode RX and the second electrode TX, the touch detection module determines the lateral coordinate of the real-time touch region B by detecting the capacitance between the first electrode RX and the adjacent second electrode TX, and respectively detects The capacitance between the one electrode RX, the second electrode TX and the touch object determines the longitudinal coordinate of the real-time touch area B.
  • the touch detection module detects the amount of change in capacitance between the first electrode RX and the adjacent second electrode TX to obtain the lateral coordinate of the real-time touch region B.
  • the touch object is a finger
  • the coupling capacitance between the first electrode RX and the second electrode TX changes, and the amount of change in the coupling capacitance between the first electrode RX and the second electrode TX is detected.
  • the lateral coordinate of the real-time touch area B is detected.
  • the touch detection module detects a change amount of the capacitance between the first electrode RX, the second electrode TX, and the touch object, and acquires a change amount of the capacitance between the first electrode RX, the second electrode TX, and the touch object.
  • the difference is determined to determine the longitudinal coordinate of the real-time touch area B.
  • the touch object is a finger
  • the real-time touch area B when the finger is pressed includes the first area B1 that is in contact with the first electrode RX and the second area B2 that is in contact with the second electrode TX, since the areas of B1 and B2 are not equal. Therefore, the amount of change in capacitance between the first electrode RX and the finger and the amount of change in capacitance between the second electrode TX and the finger are not equal, and the real-time touch region B is determined by obtaining the difference between the two. In other embodiments, the ratio of the two may be obtained to determine the longitudinal coordinate of the real-time touch area B. .
  • the first electrode RX and the second electrode TX are complementary in shape, and one first electrode RX and a corresponding one of the second electrodes TX form a touch node 13 , and the real-time touch region B is located on the touch node 13 . .
  • the shape of the first electrode RX and the second electrode TX are both right triangles, and one first electrode RX and the corresponding one of the second electrodes TX form a rectangular touch node 13 and a rectangular touch node 13
  • the matrix is arranged in the effective touch area A.
  • the shapes of the first electrode RX and the second electrode TX are all isosceles right triangles, and one first electrode RX and a corresponding one of the second electrodes TX form a square touch node 13.
  • FIG. 1a is a schematic diagram of another complementary shape of the first electrode and the second electrode of the present invention.
  • the shape of the first electrode RX is a right-angled triangle
  • the shape of the second electrode TX is a right-angled trapezoid
  • a first electrode RX and a corresponding one of the second electrodes TX form a rectangular touch node 13 and a rectangle
  • the matrix of touch nodes 13 is arranged in the effective touch area A.
  • FIG. 2 is a schematic cross-sectional view of a panel with a touch function according to a preferred embodiment of the present invention.
  • the substrate 10 is a CF substrate 10
  • the panel further includes a pixel unit 11 arranged in a matrix on the substrate 10 and a black matrix 12 disposed between adjacent two pixel units, the first electrode RX and the first
  • the two electrodes TX are formed by a touch layer 14 (not shown in FIG. 1, not shown in FIG. 2) disposed in a region corresponding to the black matrix 12.
  • the touch layer 14 is disposed on the substrate 10, and the black matrix 12 is disposed on the touch layer 14. Please refer to FIG. 2a.
  • FIG. 2a FIG.
  • FIG. 2a is a schematic structural view showing another situation of the upper and lower positions of the touch layer and the black matrix of the present invention.
  • the black matrix 12 may be disposed on the substrate 10, and the touch layer 14 may be disposed on the black matrix 12.
  • the touch layer 14 of the region corresponding to the black matrix 12 forms the first electrode RX.
  • the touch layer 14 of the region corresponding to the black matrix 12 is formed. Second electrode TX.
  • the substrate 10 may also be a TFT array substrate, that is, the touch layer is disposed on the TFT array substrate, and the touch layer is also disposed on a corresponding region of the black matrix 12 on the CF substrate, that is, the CF substrate and the TFT.
  • the array substrate is paired, the area corresponding to the upper and lower sides of the black matrix 12 is used.
  • FIG. 3 is a flowchart of a touch position detecting method of a panel with a touch function according to a preferred embodiment of the present invention.
  • the method is implemented by using the touch panel, and the touch position detecting method of the touch panel includes the following steps:
  • Step S11 Detect a capacitance between the first electrode and an adjacent second electrode to obtain a lateral coordinate of the real-time touch area.
  • the touch detection module detects the amount of change in capacitance between the first electrode RX and the adjacent second electrode TX to obtain the lateral coordinate of the real-time touch region B.
  • the touch object is a finger
  • the coupling capacitance between the first electrode RX and the second electrode TX changes, and the amount of change in the coupling capacitance between the first electrode RX and the second electrode TX is detected.
  • the lateral coordinate of the real-time touch area B is detected.
  • Step S12 respectively detecting the capacitance between the first electrode, the second electrode and the touch object to obtain the longitudinal coordinate of the real-time touch area.
  • the touch detection module detects the amount of change in capacitance between the first electrode RX, the second electrode TX, and the touch object, and acquires between the first electrode RX, the second electrode TX, and the touch object.
  • the difference in the amount of change in capacitance determines the longitudinal coordinate of the real-time touch area B.
  • the touch object is a finger
  • the real-time touch area B when the finger is pressed includes the first area B1 that is in contact with the first electrode RX and the second area B2 that is in contact with the second electrode TX, since the areas of B1 and B2 are not equal.
  • the real-time touch region B is determined by obtaining the difference between the two.
  • the ratio of the two may be obtained to determine the longitudinal coordinate of the real-time touch area B.
  • the vertical coordinate and the horizontal coordinate of the real-time touch area B may also be detected simultaneously, and the detection of the vertical coordinate may also be before the horizontal coordinate, that is, step S11 and step S12 may be simultaneously performed. Going forward, or step S12 may be before step S11.
  • the first and second electrodes are arranged alternately in the horizontal and vertical directions on the effective touch area of the substrate, so that the real-time touch area when the touch object touches includes the first contact with the first electrode. a region and a second region in contact with the second electrode, and the areas of the first region and the second region are not equal, and then determining the real-time touch region by detecting a capacitance between the first electrode and the adjacent second electrode.
  • the lateral coordinate is determined
  • the longitudinal coordinate of the real-time touch area is determined by detecting the capacitance between the first electrode and the second electrode and the touch object, thereby avoiding the occurrence of the touch ghost point and enabling the structure of the sensing electrode to be more simple.

Abstract

提供了一种具有触控功能的面板及其触控位置检测方法,该面板包括基板(10)和设置在基板(10)上的多个第一电极(RX)和多个第二电极(TX),第一电极(RX)和第二电极(TX)在基板(10)的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域(B)包括与第一电极(RX)接触的第一区域(B1)和与第二电极(TX)接触的第二区域(B2),且第一区域(B1)和第二区域(B2)的面积不相等;面板还包括触控检测模块,触控检测模块与第一电极(RX)和第二电极(TX)连接。

Description

具有触控功能的面板及其触控位置检测方法
【技术领域】
本发明涉及触控和显示技术领域,特别是涉及一种具有触控功能的面板及其触控位置检测方法。
【背景技术】
目前,触控技术比较多元化,较为常见的为自电容和互电容触摸屏,虽然自电容触控灵敏,精准,但是传统的自电容技术由于存在双层鬼点或者单层区域内中间触摸点无法走开的问题,导致目前显示面板中触控技术主要采用互电容触控技术,但互电容也存在相应的问题,比如结构复杂,易受干扰等。
因此,需要提供一种具有触控功能的面板及其触控位置检测方法。
【发明内容】
本发明主要解决的技术问题是提供一种具有触控功能的面板及其触控位置检测方法,能够避免出现触控鬼点,且能够使得感应电极的结构更为简单。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种具有触控功能的面板,其特征在于,面板包括基板和设置在基板上的多个第一电极和多个第二电极,第一电极和第二电极在基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与第一电极接触的第一区域和与第二电极接触的第二区域,且第一区域和第二区域的面积不相等,面板还包括触控检测模块,触控检测模块与第一电极和第二电极连接,触控检测模块通过检测第一电极与相邻的第二电极之间的电容的变化量来确定实时触控区域的横向坐标,且通过分别检测第一电极、第二电极与触控物之间的电容的变化量的差值来确定实时触控区域的纵向坐标,其中第一电极和第二电极的形状互补,且一个第一电极与对应的一个第二电极构成一个触控结点,实时触控区域位于触控结点上。
其中,第一电极的形状为直角三角形,第二电极的形状为直角梯形,且一个第一电极与对应的一个第二电极构成一个矩形的触控结点,矩形的触控结点矩阵排布于有效触控区域。
其中,第一电极和第二电极的形状均为直角三角形,且一个第一电极与对应的一个第二电极构成一个矩形的触控结点,矩形的触控结点矩阵排布于有效触控区域。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种具有触控功能的面板,该面板包括基板和设置在基板上的多个第一电极和多个第二电极,第一电极和第二电极在基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与第一电极接触的第一区域和与第二电极接触的第二区域,且第一区域和第二区域的面积不相等,面板还包括触控检测模块,触控检测模块与第一电极和第二电极连接,触控检测模块通过检测第一电极与相邻的第二电极之间的电容来确定实时触控区域的横向坐标,且通过分别检测第一电极、第二电极与触控物之间的电容来确定实时触控区域的纵向坐标。
其中,第一电极和第二电极的形状互补,且一个第一电极与对应的一个第二电极构成一个触控结点,实时触控区域位于触控结点上。
其中,第一电极的形状为直角三角形,第二电极的形状为直角梯形,且一个第一电极与对应的一个第二电极构成一个矩形的触控结点,矩形的触控结点矩阵排布于有效触控区域。
其中,第一电极和第二电极的形状均为直角三角形,且一个第一电极与对应的一个第二电极构成一个矩形的触控结点,矩形的触控结点矩阵排布于有效触控区域。
其中,基板为CF基板,面板还包括矩阵排列在基板上的像素单元和设置在相邻两像素单元之间的黑色矩阵,第一电极和第二电极由设置在黑色矩阵所对应区域的触控层形成。
其中,基板为CF基板,面板还包括矩阵排列在基板上的像素单元和设置在相邻两像素单元之间的黑色矩阵,第一电极和第二电极由设置在黑色矩阵所对应区域的触控层形成。
其中,基板为CF基板,面板还包括矩阵排列在基板上的像素单元和设置在相邻两像素单元之间的黑色矩阵,第一电极和第二电极由设置在黑色矩阵所对应区域的触控层形成。
其中,基板为CF基板,面板还包括矩阵排列在基板上的像素单元和设置在相邻两像素单元之间的黑色矩阵,第一电极和第二电极由设置在黑色矩阵所对应区域的触控层形成。
其中,触控层设置在基板上,黑色矩阵设置在触控层上。
其中,黑色矩阵设置在基板上,触控层设置在黑色矩阵上。
其中,基板为TFT阵列基板。
其中,基板为TFT阵列基板。
其中,基板为TFT阵列基板。
其中,基板为TFT阵列基板。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种具有触控功能的面板的触控位置检测方法,其特征在于,面板包括基板和设置在基板上的多个第一电极和多个第二电极,第一电极和第二电极在基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与第一电极接触的第一区域和与第二电极接触的第二区域,且第一区域和第二区域的面积不相等,面板还包括触控检测模块,触控检测模块与第一电极和第二电极连接,触控位置检测方法包括:检测第一电极与相邻的第二电极之间的电容以获取实时触控区域的横向坐标;分别检测第一电极、第二电极与触控物之间的电容以获取实时触控区域的纵向坐标。
其中,检测第一电极与相邻的第二电极之间的电容以获取实时触控区域的横向坐标的步骤包括:检测第一电极与相邻的第二电极之间的电容的变化量以获取实时触控区域的横向坐标;分别检测第一电极、第二电极与触控物之间的电容以获取实时触控区域的纵向坐标的步骤包括:分别检测第一电极、第二电极与触控物之间的电容的变化量;获取第一电极、第二电极与触控物之间的电容的变化量的差值,以确定实时触控区域的纵向坐标。
本发明的有益效果是:区别于现有技术的情况,本发明通过设置第一电极和第二电极在基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与第一电极接触的第一区域和与第二电极接触的第二区域,且第一区域和第二区域的面积不相等,然后通过检测第一电极与相邻的第二电极之间的电容来确定实时触控区域的横向坐标,且通过分别检测第一电极、第二电极与触控物之间的电容来确定实时触控区域的纵向坐标,从而能够避免出现触控鬼点,且能够使得感应电极的结构更为简单。
【附图说明】
图1是本发明优选实施例的具有触控功能的面板的结构示意图;
图1a是本发明第一电极和第二电极的另一种互补形状的示意图;
图2是本发明优选实施例的具有触控功能的面板的截面示意图;
图2a是本发明触控层与黑色矩阵上下位置关系另一种情况的结构示意图;
图3是本发明优选实施例的具有触控功能的面板的触控位置检测方法的流程图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细的说明。
参阅图1,图1是本发明优选实施例的具有触控功能的面板的结构示意图。在本实施例中,具有触控功能的面板包括基板10和设置在基板10上的多个第一电极RX和多个第二电极TX。
第一电极RX和第二电极TX在基板10的有效触控区域A上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域B包括与第一电极RX接触的第一区域B1和与第二电极TX接触的第二区域B2,且第一区域B1和第二区域B2的面积不相等,面板还包括触控检测模块(图未示),触控检测模块与第一电极RX和第二电极TX连接,触控检测模块通过检测第一电极RX与相邻的第二电极TX之间的电容来确定实时触控区域B的横向坐标,且通过分别检测第一电极RX、第二电极TX与触控物之间的电容来确定实时触控区域B的纵向坐标。
例如,触控检测模块检测第一电极RX与相邻的第二电极TX之间的电容的变化量以获取实时触控区域B的横向坐标。例如触控物为手指,手指按下时,第一电极RX与第二电极TX之间的耦合电容会发生变化,通过检测第一电极RX与第二电极TX之间的耦合电容的变化量来检测实时触控区域B的横向坐标。例如,触控检测模块分别检测第一电极RX、第二电极TX与触控物之间的电容的变化量;获取第一电极RX、第二电极TX与触控物之间的电容的变化量的差值,以确定实时触控区域B的纵向坐标。例如触控物为手指,手指按下时的实时触控区域B包括与第一电极RX接触的第一区域B1和与第二电极TX接触的第二区域B2,由于B1和B2的面积不相等,因此第一电极RX与手指之间的电容的变化量以及第二电极TX与手指之间的电容的变化量,这二者不相等,通过获取二者的差值,确定实时触控区域B的纵向坐标,在其他实施例中,也可以是获取二者的比值来确定实时触控区域B的纵向坐标。。
优选地,第一电极RX和第二电极TX的形状互补,且一个第一电极RX与对应的一个第二电极TX构成一个触控结点13,实时触控区域B位于触控结点13上。
优选地,第一电极RX和第二电极TX的形状均为直角三角形,且一个第一电极RX与对应的一个第二电极TX构成一个矩形的触控结点13,矩形的触控结点13矩阵排布于有效触控区域A。更为优选地,第一电极RX和第二电极TX的形状均为等腰直角三角形,且一个第一电极RX与对应的一个第二电极TX构成一个正方形的触控结点13。当然在其他实施例中,请参阅图1a,图1a是本发明第一电极和第二电极的另一种互补形状的示意图。这种情况下,第一电极RX的形状为直角三角形,第二电极TX的形状为直角梯形,且一个第一电极RX与对应的一个第二电极TX构成一个矩形的触控结点13,矩形的触控结点13矩阵排布于有效触控区域A。
请结合图1进一步参阅图2,图2是本发明优选实施例的具有触控功能的面板的截面示意图。优选地,在本实施例中,基板10为CF基板10,面板还包括矩阵排列在基板10上的像素单元11和设置在相邻两像素单元之间的黑色矩阵12,第一电极RX和第二电极TX由设置在黑色矩阵12所对应区域的触控层14(图1中未示出,请参见图2)形成。优选地,触控层14设置在基板10上,黑色矩阵12设置在触控层14上。请进一步参阅图2a,图2a是本发明触控层与黑色矩阵上下位置关系另一种情况的结构示意图。如图2a所示,在其他实施例中,也可以是黑色矩阵12设置在基板10上,触控层14设置在黑色矩阵12上。第一电极RX对应的区域中,黑色矩阵12所对应区域的触控层14形成第一电极RX,同理,第二电极TX对应的区域中,黑色矩阵12所对应区域的触控层14形成第二电极TX。
在其他实施例中,基板10也可以是TFT阵列基板,即触控层设置在TFT阵列基板上,且触控层也设置在与CF基板上的黑色矩阵12的对应区域,即CF基板与TFT阵列基板对组时,与黑色矩阵12上下对应的区域。
请参阅图3,图3是本发明优选实施例的具有触控功能的面板的触控位置检测方法的流程图。在本实施例中,该方法采用上述具有触控功能的面板实现,具有触控功能的面板的触控位置检测方法包括以下步骤:
步骤S11:检测第一电极与相邻的第二电极之间的电容以获取实时触控区域的横向坐标。
在步骤S11中,例如,触控检测模块检测第一电极RX与相邻的第二电极TX之间的电容的变化量以获取实时触控区域B的横向坐标。例如触控物为手指,手指按下时,第一电极RX与第二电极TX之间的耦合电容会发生变化,通过检测第一电极RX与第二电极TX之间的耦合电容的变化量来检测实时触控区域B的横向坐标。
步骤S12:分别检测第一电极、第二电极与触控物之间的电容以获取实时触控区域的纵向坐标。
在步骤S12中,例如,触控检测模块分别检测第一电极RX、第二电极TX与触控物之间的电容的变化量;获取第一电极RX、第二电极TX与触控物之间的电容的变化量的差值,以确定实时触控区域B的纵向坐标。例如触控物为手指,手指按下时的实时触控区域B包括与第一电极RX接触的第一区域B1和与第二电极TX接触的第二区域B2,由于B1和B2的面积不相等,因此第一电极RX与手指之间的电容的变化量以及第二电极TX与手指之间的电容的变化量,这二者不相等,通过获取二者的差值,确定实时触控区域B的纵向坐标,在其他实施例中,也可以是获取二者的比值来确定实时触控区域B的纵向坐标。
可以理解的是,在其他实施例中,实时触控区域B的纵向坐标和横向坐标也可以是同时检测,纵向坐标的检测也可以在横向坐标之前,也就是说,步骤S11和步骤S12可以同时进行,或者步骤S12可以在步骤S11之前。
本发明通过设置第一电极和第二电极在基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与第一电极接触的第一区域和与第二电极接触的第二区域,且第一区域和第二区域的面积不相等,然后通过检测第一电极与相邻的第二电极之间的电容来确定实时触控区域的横向坐标,且通过分别检测第一电极、第二电极与触控物之间的电容来确定实时触控区域的纵向坐标,从而能够避免出现触控鬼点,且能够使得感应电极的结构更为简单。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种具有触控功能的面板,其中,所述面板包括基板和设置在所述基板上的多个第一电极和多个第二电极,第一电极和第二电极在所述基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与所述第一电极接触的第一区域和与所述第二电极接触的第二区域,且所述第一区域和所述第二区域的面积不相等,所述面板还包括触控检测模块,所述触控检测模块与所述第一电极和所述第二电极连接,所述触控检测模块通过检测所述第一电极与相邻的所述第二电极之间的电容的变化量来确定所述实时触控区域的横向坐标,且通过分别检测所述第一电极、所述第二电极与所述触控物之间的电容的变化量的差值来确定所述实时触控区域的纵向坐标,其中所述第一电极和所述第二电极的形状互补,且一个所述第一电极与对应的一个所述第二电极构成一个触控结点,所述实时触控区域位于所述触控结点上。
  2. 根据权利要求1所述的面板,其中,所述第一电极的形状为直角三角形,所述第二电极的形状为直角梯形,且一个所述第一电极与对应的一个所述第二电极构成一个矩形的触控结点,所述矩形的触控结点矩阵排布于所述有效触控区域。
  3. 根据权利要求1所述的面板,其中,所述第一电极和所述第二电极的形状均为直角三角形,且一个所述第一电极与对应的一个所述第二电极构成一个矩形的触控结点,所述矩形的触控结点矩阵排布于所述有效触控区域。
  4. 一种具有触控功能的面板,其中,所述面板包括基板和设置在所述基板上的多个第一电极和多个第二电极,第一电极和第二电极在所述基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与所述第一电极接触的第一区域和与所述第二电极接触的第二区域,且所述第一区域和所述第二区域的面积不相等,所述面板还包括触控检测模块,所述触控检测模块与所述第一电极和所述第二电极连接,所述触控检测模块通过检测所述第一电极与相邻的所述第二电极之间的电容来确定所述实时触控区域的横向坐标,且通过分别检测所述第一电极、所述第二电极与所述触控物之间的电容来确定所述实时触控区域的纵向坐标。
  5. 根据权利要求4所述的面板,其中,所述第一电极和所述第二电极的形状互补,且一个所述第一电极与对应的一个所述第二电极构成一个触控结点,所述实时触控区域位于所述触控结点上。
  6. 根据权利要求5所述的面板,其中,所述第一电极的形状为直角三角形,所述第二电极的形状为直角梯形,且一个所述第一电极与对应的一个所述第二电极构成一个矩形的触控结点,所述矩形的触控结点矩阵排布于所述有效触控区域。
  7. 根据权利要求5所述的面板,其中,所述第一电极和所述第二电极的形状均为直角三角形,且一个所述第一电极与对应的一个所述第二电极构成一个矩形的触控结点,所述矩形的触控结点矩阵排布于所述有效触控区域。
  8. 根据权利要求4所述的面板,其中,所述基板为CF基板,所述面板还包括矩阵排列在所述基板上的像素单元和设置在相邻两所述像素单元之间的黑色矩阵,所述第一电极和所述第二电极由设置在所述黑色矩阵所对应区域的触控层形成。
  9. 根据权利要求5所述的面板,其中,所述基板为CF基板,所述面板还包括矩阵排列在所述基板上的像素单元和设置在相邻两所述像素单元之间的黑色矩阵,所述第一电极和所述第二电极由设置在所述黑色矩阵所对应区域的触控层形成。
  10. 根据权利要求6所述的面板,其中,所述基板为CF基板,所述面板还包括矩阵排列在所述基板上的像素单元和设置在相邻两所述像素单元之间的黑色矩阵,所述第一电极和所述第二电极由设置在所述黑色矩阵所对应区域的触控层形成。
  11. 根据权利要求7所述的面板,其中,所述基板为CF基板,所述面板还包括矩阵排列在所述基板上的像素单元和设置在相邻两所述像素单元之间的黑色矩阵,所述第一电极和所述第二电极由设置在所述黑色矩阵所对应区域的触控层形成。
  12. 根据权利要求8所述的面板,其中,所述触控层设置在所述基板上,所述黑色矩阵设置在所述触控层上。
  13. 根据权利要求8所述的面板,其中,所述黑色矩阵设置在所述基板上,所述触控层设置在所述黑色矩阵上。
  14. 根据权利要求4所述的面板,其中,所述基板为TFT阵列基板。
  15. 根据权利要求5所述的面板,其中,所述基板为TFT阵列基板。
  16. 根据权利要求6所述的面板,其中,所述基板为TFT阵列基板。
  17. 根据权利要求7所述的面板,其中,所述基板为TFT阵列基板。
  18. 一种具有触控功能的面板的触控位置检测方法,其中,所述面板包括基板和设置在基板上的多个第一电极和多个第二电极,所述第一电极和所述第二电极在所述基板的有效触控区域上沿着横向和纵向依次交替的设置,以使得触控物触控时的实时触控区域包括与所述第一电极接触的第一区域和与所述第二电极接触的第二区域,且所述第一区域和所述第二区域的面积不相等,所述面板还包括触控检测模块,所述触控检测模块与所述第一电极和所述第二电极连接,所述触控位置检测方法包括:
    检测所述第一电极与相邻的所述第二电极之间的电容以获取所述实时触控区域的横向坐标;
    分别检测所述第一电极、所述第二电极与所述触控物之间的电容以获取所述实时触控区域的纵向坐标。
  19. 根据权利要求18所述的触控位置检测方法,其中,所述检测所述第一电极与相邻的所述第二电极之间的电容以获取所述实时触控区域的横向坐标的步骤包括:
    检测所述第一电极与相邻的所述第二电极之间的电容的变化量以获取所述实时触控区域的横向坐标;
    所述分别检测所述第一电极、所述第二电极与所述触控物之间的电容以获取所述实时触控区域的纵向坐标的步骤包括:
    分别检测所述第一电极、所述第二电极与所述触控物之间的电容的变化量;
    获取所述第一电极、所述第二电极与所述触控物之间的电容的变化量的差值,以确定所述实时触控区域的纵向坐标。
PCT/CN2015/070413 2014-12-29 2015-01-09 具有触控功能的面板及其触控位置检测方法 WO2016106810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/433,652 US20160188106A1 (en) 2014-12-29 2015-01-09 Touch-sensitive panel and method of detecting touch location thereon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410843138.8 2014-12-29
CN201410843138.8A CN104571760B (zh) 2014-12-29 2014-12-29 具有触控功能的面板及其触控位置检测方法

Publications (1)

Publication Number Publication Date
WO2016106810A1 true WO2016106810A1 (zh) 2016-07-07

Family

ID=53087984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070413 WO2016106810A1 (zh) 2014-12-29 2015-01-09 具有触控功能的面板及其触控位置检测方法

Country Status (2)

Country Link
CN (1) CN104571760B (zh)
WO (1) WO2016106810A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113342216A (zh) * 2021-06-29 2021-09-03 昆山龙腾光电股份有限公司 一种触摸屏及触摸屏触控方法
WO2022217624A1 (zh) * 2021-04-12 2022-10-20 武汉华星光电半导体显示技术有限公司 触控显示面板及显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112703471A (zh) * 2018-11-23 2021-04-23 深圳市柔宇科技股份有限公司 触控面板及其控制方法、触控装置
CN112577643B (zh) * 2020-12-11 2022-08-05 武汉大学 一种实现三轴测力的大量程电容式柔性传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
US20110109566A1 (en) * 2009-11-12 2011-05-12 Innocom Technology (Shenzhen) Co., Ltd. Touch panel with pdlc film and touch-sensitive display device using same
CN102135835A (zh) * 2010-07-26 2011-07-27 友达光电股份有限公司 触控感测装置
CN102156565A (zh) * 2010-12-31 2011-08-17 深圳超多维光电子有限公司 显示设备、方法和裸眼立体显示装置
CN103500747A (zh) * 2013-09-30 2014-01-08 京东方科技集团股份有限公司 阵列基板、阵列基板驱动方法和显示装置
US20140022495A1 (en) * 2012-07-23 2014-01-23 Tianjin Funayuanchuang Technology Co.,Ltd. Liquid crystal display module
CN103955309A (zh) * 2014-04-14 2014-07-30 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8619054B2 (en) * 2006-05-31 2013-12-31 Atmel Corporation Two dimensional position sensor
TWI446253B (zh) * 2011-04-08 2014-07-21 Elan Microelectronics Corp Single - layer sensing layer of two - dimensional capacitive touchpad
US20130081869A1 (en) * 2011-09-30 2013-04-04 Jae Hong Kim Touch sensing apparatus and method of manufacturing the same
CN103365503B (zh) * 2012-04-05 2016-05-18 嘉善凯诺电子有限公司 相互电容型触控装置与其操作方法
CN103677468B (zh) * 2013-11-20 2017-04-12 敦泰科技有限公司 单层电容式触摸屏及相应的触控装置、方法、电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110109566A1 (en) * 2009-11-12 2011-05-12 Innocom Technology (Shenzhen) Co., Ltd. Touch panel with pdlc film and touch-sensitive display device using same
CN101840293A (zh) * 2010-01-21 2010-09-22 宸鸿科技(厦门)有限公司 投射电容式触控面板的扫描方法
CN102135835A (zh) * 2010-07-26 2011-07-27 友达光电股份有限公司 触控感测装置
CN102156565A (zh) * 2010-12-31 2011-08-17 深圳超多维光电子有限公司 显示设备、方法和裸眼立体显示装置
US20140022495A1 (en) * 2012-07-23 2014-01-23 Tianjin Funayuanchuang Technology Co.,Ltd. Liquid crystal display module
CN103500747A (zh) * 2013-09-30 2014-01-08 京东方科技集团股份有限公司 阵列基板、阵列基板驱动方法和显示装置
CN103955309A (zh) * 2014-04-14 2014-07-30 京东方科技集团股份有限公司 显示面板及其驱动方法、显示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022217624A1 (zh) * 2021-04-12 2022-10-20 武汉华星光电半导体显示技术有限公司 触控显示面板及显示装置
US11914826B2 (en) 2021-04-12 2024-02-27 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Touch display panel and display device
CN113342216A (zh) * 2021-06-29 2021-09-03 昆山龙腾光电股份有限公司 一种触摸屏及触摸屏触控方法
CN113342216B (zh) * 2021-06-29 2024-03-12 昆山龙腾光电股份有限公司 一种触摸屏及触摸屏触控方法

Also Published As

Publication number Publication date
CN104571760A (zh) 2015-04-29
CN104571760B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
WO2011095102A1 (zh) 一种电容式触摸传感器、触摸检测装置及触控终端
EP2811379B1 (en) Touch liquid crystal display device
WO2015123854A1 (zh) 触控面板及显示装置
WO2016065800A1 (zh) 触摸屏及其制造方法和显示面板
WO2017024599A1 (zh) 一种具有触控功能的阵列基板及显示装置
US9927832B2 (en) Input device having a reduced border region
WO2016019600A1 (zh) 触摸显示屏及其触控面板
WO2016123821A1 (zh) 电容式感应元件、触摸屏及电子设备
WO2016082231A1 (zh) 触控面板以及触摸式显示装置
WO2015154361A1 (zh) 触摸屏及显示装置
CN104536633B (zh) 阵列基板及其制作方法、显示装置
WO2015135225A1 (zh) 一种触摸显示装置及其制作方法
CN104956297A (zh) 具含银的透明导电层的投影电容式触控面板
WO2016106810A1 (zh) 具有触控功能的面板及其触控位置检测方法
WO2015085721A1 (zh) 触控装置及其驱动方法
WO2015135289A1 (zh) 内嵌式触摸屏及显示装置
WO2012176966A1 (en) Touch sensor panel
WO2016095327A1 (zh) 显示器及具有触控功能的面板
WO2016161688A1 (zh) 一种触摸屏及移动终端
WO2017124607A1 (zh) 触摸面板以及其制造方法
WO2017004846A1 (zh) 具有触控功能的液晶显示器及其导电层结构
CN205318347U (zh) 一种触控显示面板
WO2018120287A1 (zh) 一种基于oled的内置式触控显示面板
WO2018209766A1 (zh) 一种触控显示面板
WO2014168368A1 (ko) 정전용량 방식 터치패널

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14433652

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874503

Country of ref document: EP

Kind code of ref document: A1