WO2016106773A1 - 一种蜂窝式结构化催化剂制备异丙苯的方法 - Google Patents

一种蜂窝式结构化催化剂制备异丙苯的方法 Download PDF

Info

Publication number
WO2016106773A1
WO2016106773A1 PCT/CN2015/070037 CN2015070037W WO2016106773A1 WO 2016106773 A1 WO2016106773 A1 WO 2016106773A1 CN 2015070037 W CN2015070037 W CN 2015070037W WO 2016106773 A1 WO2016106773 A1 WO 2016106773A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
propylene
structured catalyst
molecular sieve
reaction
Prior art date
Application number
PCT/CN2015/070037
Other languages
English (en)
French (fr)
Inventor
陈标华
雷志刚
代成娜
李英霞
黄崇品
李建伟
张傑
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Priority to PCT/CN2015/070037 priority Critical patent/WO2016106773A1/zh
Publication of WO2016106773A1 publication Critical patent/WO2016106773A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/085Isopropylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a preparation method of cumene, in particular to a method for preparing cumene by alkylation reaction of benzene and propylene on a honeycomb structured catalyst.
  • Isopropyl benzene also known as cumene
  • cumene is an important organic chemical raw material and chemical intermediate product. It is widely used and is an important intermediate for the production of phenol, acetone and a-methyl styrene. At present, more than 90% of the world's phenol is produced by the cumene method.
  • Catalysts for the alkylation of benzene with propylene to synthesize cumene are mainly acidic catalysts, including solid phosphoric acid, aluminum chloride, molecular sieves, ionic liquids and supported heteropolyacid catalysts.
  • molecular sieve catalysts have high catalytic activity and product selection. Highly property-friendly, environmentally friendly, non-corrosive, recyclable and long-lived, it is currently widely used in industrial production.
  • the reactors for the alkylation of benzene with propylene to synthesize cumene are mainly fixed bed reactors, fixed bed catalytic distillation columns and suspended bed catalytic distillation columns, of which the most industrially used are fixed bed reactors filled with bulk solid catalyst particles.
  • the disadvantages are: 1 high benzene ratio, large reaction product circulation, high energy consumption in the subsequent separation process; 2 high content of heavy components in the circulating material, affecting catalyst life and selectivity and yield of target products; 3 conventional fixing
  • the bed reactor was filled with ⁇ 2.5mm shaped molecular sieve catalyst particles. From the analysis of the deactivated molecular sieve catalyst, it was found that when the catalyst was deactivated, the activity of the internal catalyst was not lost, indicating that the catalyst was only externally deactivated, resulting in catalyst utilization efficiency. low.
  • honeycomb structured catalysts have been widely used in chemical processes as a new type of monolithic catalysts. Their structural features are: coating a porous coating on the wall of a honeycomb structured carrier channel, and carrying a reactive activity on the coating. Components such as molecular sieves and the like.
  • the honeycomb structured catalyst can provide a uniform and regular straight channel reaction domain for the reactants, and has significant advantages compared with the conventional particulate catalyst: 1 low pressure drop; 2 high bed specific surface area; 3 reaction can be carried out under high space velocity conditions Effectively reduce the influence of external diffusion; 4 general catalyst coating is relatively thin, which is beneficial to reduce internal diffusion resistance, thereby improving the effective utilization of the catalyst; 5 with integrated or modular structure, easy assembly and disassembly; 6 easy process amplification. At present, it is mainly used for automobile exhaust gas treatment and SCR technology for desulfurization and denitrification. Recent studies have shown that such catalysts are also fully applicable to gas-liquid up/down, cocurrent/countercurrent heterogeneous catalytic reactions. Importantly, this novel structured catalyst has the advantages of low pressure drop, low energy consumption, excellent mass transfer heat transfer performance, high internal diffusion effective factor, and easy amplification compared to conventional particulate catalysts.
  • honeycomb structured catalyst for preparing cumene and how to fully exert the reaction/separation coupling advantage of the honeycomb structured catalyst and the reactor is still one of the problems to be solved in the art.
  • an object of the present invention is to provide a method for preparing cumene from a honeycomb structured catalyst.
  • the method utilizes the regular channel structure, low pressure drop, high catalyst utilization rate and cumene selectivity of the honeycomb structured catalyst to prepare cumene more efficiently.
  • the present invention provides a honeycomb structured catalyst for preparing cumene comprising the steps of: loading a honeycomb structured catalyst into a constant temperature zone of a fixed bed reactor or a bubble point reactor In the zone, benzene and propylene are introduced into the fixed bed reactor or the bubble point reactor to carry out alkylation reaction of benzene and propylene on the honeycomb structured catalyst to prepare cumene, and the molar ratio of feed benzene to propylene
  • the reaction temperature is from 140 to 170 ° C
  • the reaction pressure of the fixed bed reactor is 2.8-3.2 MPa
  • the reaction pressure of the bubble point reactor is 0.2-0.7 MPa
  • the mass space velocity (WHSV) of propylene is 4.0-15.0 h. –1 .
  • the method is used to prepare cumene. When the propylene conversion rate reaches 100%, the cumene selectivity is higher than 85%.
  • the catalyst-free honeycomb cordierite and quartz wool may be filled at both ends of the honeycomb structured catalyst to be fixed in a constant temperature zone of the fixed bed reactor.
  • the bubble point reactor employed may be a reactor for the alkylation of benzene with propylene in the prior art, such as the bubble point reactor disclosed in CN101811928A and related reaction apparatus.
  • the flash temperature at the point of use of the bubble point reactor is from 110 to 160 °C.
  • the invention combines the honeycomb structured catalyst with the bubble point reactor to effectively realize the reaction/separation coupling, and partially vaporizes the unreacted benzene by using the heat of reaction in the flashing section, thereby realizing the coupling utilization of heat and reducing the energy of the separation section. Consumption, forming a coupled process of structured catalyst and bubble point reactor coupling process.
  • the honeycomb structured catalyst is prepared by the following method:
  • the cordierite is cut, then placed in a nitric acid solution, heated at 70-90 ° C for 2-6 h for acid treatment, washed with water until neutral, dried, calcined, and used;
  • the silica sol having a mass concentration of 10-40%, the calcined ⁇ molecular sieve catalyst and the deionized water are used to prepare a silica having a mass content of 5% and a molecular sieve to water mass ratio of 1:2.
  • the solution is stirred for 2-4 h to obtain a molecular sieve-silica sol solution, which is ready for use;
  • the pretreated cordierite honeycomb carrier obtained in the step (1) is completely immersed in the molecular sieve obtained in the step (2). - in a silica gel solution, each immersion time is 5-10 min, then the impregnated cordierite honeycomb is taken out, the molecular sieve solution in the tunnel is purged, then dried, and the impregnation, purging and drying are repeated multiple times until the desired The amount of the coating is applied, and finally, after calcination, the honeycomb structured catalyst is obtained.
  • the nitric acid solution used in the step (1) is a nitric acid solution having a mass concentration of 10-30%.
  • the drying in the step (1) is dried at 100-120 ° C for 10-12 h, and the calcination is heated to 550 at a rate of 3 ° C/min. °C, then calcined at 550 ° C for 5 hours.
  • the ⁇ -molecular sieve raw powder catalyst used in the step (2) has a silica-alumina ratio of 20 to 30 in the process of preparing the honeycomb structured catalyst.
  • the calcination of the ⁇ molecular sieve raw powder catalyst in the step (2) is carried out at 550 ° C for 5 hours.
  • the drying of the impregnated cordierite honeycomb in the step (3) is dried at 100-120 ° C for 10 hours, and the calcination is at 550 ° C. Baked for 5 hours.
  • the invention adopts a honeycomb structured catalyst to replace the existing bulk solid particle catalyst, and prepares cumene from benzene and propylene, has low pressure drop, low energy consumption, excellent mass transfer heat transfer performance, high internal diffusion effective factor, easy amplification, etc.
  • the method provided by the invention can strengthen the reaction process, solve the problem that the reaction product circulation amount is large, the energy consumption of the separation process is high, the heavy component content of the circulating material affects the catalyst life, the selectivity and the yield of the target product, and the catalyst utilization efficiency are low, and the invention can effectively Improve the market competitiveness of cumene products.
  • the honeycomb structured catalyst proposed in the present invention can achieve a more efficient catalytic effect than the structured packing catalyst because of the high mass transfer specific surface area, lower pressure drop and in-situ separation reaction coupling performance without the catalyst binding member. .
  • FIG. 1 is a schematic view showing the apparatus for alkylation of benzene with propylene of Example 1.
  • Nitrogen bottle 2. Cylinder regulator, 3. Mass flow meter, 4. Globe valve, 5. Pressure gauge, 6. Benzene tank, 7. Double plunger micro pump, 8. Check valve, 9. Propylene Tank, 10. Mixer, 11. Three-way valve, 12. Fixed bed reactor, 13. Constant temperature zone, 14. Temperature control instrument, 15. Thermocouple, 16. Back pressure valve, 17. Sampler.
  • This embodiment provides a method for preparing cumene from a honeycomb structured catalyst.
  • the method adopts the device shown in Fig. 1, which comprises: nitrogen bottle 1, cylinder regulator 2, mass flow meter 3, shut-off valve 4, pressure gauge 5, benzene tank 6, double plunger micro pump 7, single Valve 8, propylene tank 9, mixer 10, three-way valve 11, fixed bed reactor 12, constant temperature zone 13, temperature control instrument 14, thermocouple 15, back pressure valve 16, sampler 17, and several lines, etc.;
  • the fixed bed reactor 12 is a stainless steel reaction tube with an inner diameter of 20 mm and a height of 750 mm, wherein the section constant temperature zone 13 is filled with a honeycomb structured catalyst, and both ends are filled with uncoated catalyst honeycomb cordierite and quartz cotton to fix it.
  • a temperature control device 14 is disposed outside the fixed bed reactor 12; a thermocouple 15 is disposed in the temperature control device 14 and the constant temperature zone 13; the bottom of the fixed bed reactor 12 passes
  • the pipeline is connected to the three-way valve 11, and the top pipeline is provided with a back pressure valve 16 and a sampler 17; the nitrogen cylinder 1 is connected to the three-way valve 11 through a pipeline, and a cylinder regulator 2 and a mass flowmeter are arranged on the pipeline. 3.
  • a shut-off valve 4 and a pressure gauge 5; the benzene tank 6 is connected to a feed port of the mixer 10 through a pipeline.
  • a double plunger micro pump 7, a check valve 8, a shutoff valve 4 and a pressure gauge 5 are arranged on the pipeline;
  • the propylene tank 9 pipeline is connected to another feed port of the three mixer 10, and is arranged on the pipeline
  • a double plunger micro pump 7, a check valve 8, a shutoff valve 4, and a pressure gauge 5 are arranged on the pipeline;
  • the discharge port of the mixer 10 is connected to the three-way valve 11 through a line.
  • honeycomb structured catalyst used in the process is prepared by the following method:
  • the cordierite was cut, then acid-treated in a 15 wt% nitric acid solution in a constant temperature water bath at 80 ° C for 4 h, washed with deionized water until neutral, then dried in an oven at 100 ° C for 12 h, and finally in a muffle furnace.
  • the temperature was raised to 550 ° C at a rate of 3 ° C / min, and then calcined at 550 ° C for 5 hours, to be used;
  • the ⁇ -molecular sieve raw powder catalyst with a ratio of silicon to aluminum of 30 is calcined at 550 ° C for 5 h, and then accurately weigh 30 wt% of silica sol, calcined ⁇ zeolite catalyst and deionized water, and the silica content is 5 %, a solution of molecular sieve and water mass ratio of 1:2, placed on a magnetic stirrer and stirred for 2 h to obtain a molecular sieve-silica sol solution, to be used;
  • the pretreated cordierite honeycomb carrier obtained in the step (1) is completely immersed in the molecular sieve-silica gel solution obtained in the step (2), each immersion time is 5 min, and then the impregnated cordierite honeycomb is taken out, and the pores are purged.
  • Molecular sieve solution to prevent plugging and then dried in an oven at 100 ° C for 10 hours, repeated impregnation, purging, drying The drying was repeated several times until the desired coating amount was reached, and finally calcined at 550 ° C for 5 hours in a muffle furnace to obtain the honeycomb structured catalyst.
  • Example 1 The apparatus of Example 1, the honeycomb structured catalyst and the method were used to prepare cumene, and the benzene and propylene were alkylated from the bottom of the fixed bed reactor into the reactor at a constant temperature range, wherein the feed benzene molar ratio was 4.0.
  • the reaction temperature is 160 ° C
  • the reaction pressure is 3.0 MPa
  • the feed propylene mass space velocity is 4.0 h -1
  • the propylene conversion rate is 100%
  • the obtained cumene product selectivity 85.5%
  • the unit height bed lamination drop is calculated. It is 183.5Pa ⁇ m -1 .
  • the structured packing catalyst (the structured packing catalyst in CN101811928A, as described below) and the particulate catalyst (Chengna Dai, Zhigang Lei, Jie Zhang, Yingxia Li, Biaohua Chen. Monolith catalysts for the alkylation of benzene with propylene. Chemical Engineering Science, 2013, 100, 342-351, the following are also the same: cumene selectivity: 87.8% and 74.9%, respectively; pressure drop is 258.5 and 2873.3 Pa ⁇ m -1 , respectively .
  • Example 1 The apparatus of Example 1, the honeycomb structured catalyst and the method were used to prepare cumene, and the benzene and propylene were alkylated from the bottom of the fixed bed reactor into the reactor at a constant temperature range, wherein the feed benzene molar ratio was 4.0.
  • the reaction temperature is 160 ° C
  • the reaction pressure is 3.0 MPa
  • the feed propylene mass space velocity is 10.0 h -1
  • the propylene conversion rate is 100%
  • the obtained cumene product selectivity is 91.7%
  • the unit height bed lamination drop is calculated. It is 441.7Pa ⁇ m -1 .
  • the selectivity of the structured packing catalyst and the particulate catalyst cumene were 84.5% and 74.2%, respectively; the pressure drops were 665.0 and 7568.8 Pa ⁇ m -1 , respectively .
  • Example 1 The apparatus of Example 1, the honeycomb structured catalyst and the method were used to prepare cumene, and the benzene and propylene were alkylated from the bottom of the fixed bed reactor into the reactor at a constant temperature range, wherein the feed benzene molar ratio was 4.0.
  • the reaction temperature is 160 ° C
  • the reaction pressure is 3.0 MPa
  • the feed propylene mass space velocity is 15.0 h -1
  • the propylene conversion rate is 100%
  • the obtained cumene product selectivity is 91.3%
  • the unit height bed lamination drop is calculated. It is 688.5Pa ⁇ m -1 .
  • the selectivity of the structured packing catalyst and the particulate catalyst cumene were: 81.2% and 71.6%, respectively; the pressure drops were 1005.0 and 11200.0 Pa ⁇ m -1 , respectively .
  • the consumption of the structured packing catalyst is lower than that of the particulate catalyst in the separation section, and the total condenser and reboiler consumption of the unit product are reduced by 11.8% and 12.6%, respectively, while the honeycomb structured catalyst is used as the total condenser of the unit catalyst.
  • the reboiler consumption was reduced by 18.2% and 19.5%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

提供了一种蜂窝式结构化催化剂制备异丙苯的方法。该方法包括以下步骤:将蜂窝式结构化催化剂装填于固定床反应器的恒温区或泡点反应器的反应区中,向该固定床反应器或泡点反应器中通入苯与丙烯,使苯与丙烯在蜂窝式结构化催化剂上进行烷基化反应以制备异丙苯,进料苯与丙烯摩尔比为2.0-6.0,反应温度为140-170℃,固定床反应器反应压力为2.8-3.2MPa,泡点反应器反应压力为0.2-0.7MPa,丙烯的质量空速为4.0–15.0h –1。丙烯转化率达到100%时,异丙苯选择性高于85%。该蜂窝式结构化催化剂具有低压降、低能耗、优良的传质传热性能、内扩散有效因子高、易于放大等优点。该蜂窝式结构化催化剂与泡点反应器联合使用,可形成结构化催化剂与泡点反应器耦合过程强化技术。

Description

一种蜂窝式结构化催化剂制备异丙苯的方法 技术领域
本发明涉及一种异丙苯的制备方法,尤其涉及一种苯与丙烯在蜂窝式结构化催化剂上烷基化反应制备异丙苯的方法。
背景技术
异丙苯(isopropyl benzene),又称枯烯(cumene),是一种重要的有机化工原料和化工中间产品,用途十分广泛,是生产苯酚、丙酮和a-甲基苯乙烯的重要中间体,目前世界上90%以上的苯酚是采用异丙苯法生产。
苯与丙烯烷基化反应合成异丙苯所用催化剂主要为酸性催化剂,包括固体磷酸、氯化铝、分子筛、离子液体和负载型杂多酸催化剂等,其中分子筛催化剂由于其催化活性高、产物选择性高、环境友好无腐蚀、可再生及寿命长的特性,目前广泛应用于工业生产中。苯与丙烯烷基化合成异丙苯的反应器主要有:固定床反应器、固定床催化蒸馏塔和悬浮床催化蒸馏塔,其中工业应用最多的是装填散装固体催化剂颗粒的固定床反应器。但其缺点是:①苯烯比高,反应产物循环量大,造成后续分离过程能耗高;②循环物料重组分含量多,影响催化剂寿命以及目标产物的选择性和收率;③传统的固定床反应器内装填Φ2.5mm的成型分子筛催化剂颗粒,从失活分子筛催化剂的分析中发现,当催化剂失活时,内部催化剂的活性并未丧失,说明催化剂仅是外部失活,造成催化剂利用效率低。
近些年,蜂窝式结构化催化剂作为一类新型的整体式催化剂广泛应用于化工过程中,其结构特征在于:在蜂窝式结构载体通道壁面涂敷多孔性涂层,涂层上担载反应活性组分如分子筛等。蜂窝式结构化催化剂能够为反应物提供均匀、有规则的直通道反应域,与传统颗粒催化剂相比,具有显著的优点:①低压降;②高床层比表面积;③反应可在大空速条件进行,有效减少外扩散的影响;④一般催化剂涂层比较薄,有利于降低内扩散阻力,从而提高催化剂的有效利用率;⑤具有集成或模块化结构,组装和拆卸简便;⑥易于过程放大等。目前主要用于汽车尾气处理、SCR技术脱硫脱硝等。近年来的研究表明,这类催化剂也完全适用于气液上行/下行、并流/逆流多相催化反应。重要的是,较之常规的颗粒催化剂,这种新型结构化催化剂具有低压降、低能耗、优良的传质传热性能、内扩散有效因子高、易于放大等突出优点。
因此,如何将蜂窝式结构化催化剂用于制备异丙苯以及如何充分发挥蜂窝式结构化催化剂与反应器反应/分离耦合优势,仍是本领域亟待解决的问题之一。
发明内容
为解决上述技术问题,本发明的目的在于提供一种蜂窝式结构化催化剂制备异丙苯的方法。该方法利用蜂窝式结构化催化剂所具有的规则的通道结构、低压降、高催化剂利用率及异丙苯选择性等特点,能够更高效地制备得到异丙苯。
为达到上述目的,本发明提供了一种蜂窝式结构化催化剂制备异丙苯的方法,其包括以下步骤:将蜂窝式结构化催化剂装填于固定床反应器的恒温区或泡点反应器的反应区中,向该固定床反应器或泡点反应器中通入苯与丙烯,使苯与丙烯在蜂窝式结构化催化剂上进行烷基化反应以制备异丙苯,进料苯与丙烯摩尔比为2.0-6.0,反应温度为140-170℃,固定床反应器反应压力为2.8-3.2MPa,泡点反应器反应压力为0.2-0.7MPa,丙烯的质量空速(WHSV)为4.0-15.0h–1。采用该方法制备异丙苯,当丙烯转化率达到100%时,异丙苯选择性高于85%。
在上述的方法中,优选地,可以在蜂窝式结构化催化剂的两端填充未涂敷催化剂的蜂窝堇青石和石英棉,以使其固定于固定床反应器的恒温区中。
在上述的方法中,所采用的泡点反应器可以为现有技术中的苯与丙烯泡点烷基化反应的反应器,例如CN101811928A中公开的泡点反应器及相关的反应仪器。本申请将CN101811928A的全文引用于此作为参考。优选地,采用泡点反应器时的闪蒸温度为110-160℃。
本发明将蜂窝式结构化催化剂与泡点反应器联合使用,能够有效实现反应/分离耦合,在闪蒸区段利用反应热部分汽化未反应的苯,从而实现热量的耦合利用,降低分离工段能耗,形成结构化催化剂与泡点反应器耦合过程强化技术。
在上述的方法中,优选地,所述蜂窝式结构化催化剂是通过以下方法制备得到的:
(1)堇青石蜂窝载体预处理:
对堇青石进行切割,然后置于硝酸溶液中,在70-90℃下加热2-6h进行酸处理,水洗至中性后,经干燥、焙烧,待用;
(2)分子筛-硅胶溶液的制备:
将β分子筛原粉催化剂焙烧后,采用质量浓度10-40%的硅溶胶、焙烧后的β分子筛催化剂和去离子水配制二氧化硅质量含量为5%、分子筛与水质量比为1:2的溶液并搅拌2-4h,得到分子筛–硅溶胶溶液,待用;
(3)催化剂涂敷:
将步骤(1)得到的预处理后的堇青石蜂窝载体完全浸渍于步骤(2)得到的分子筛 -硅胶溶液中,每次浸渍时间为5-10min,然后将浸渍后的堇青石蜂窝取出,吹扫孔道中的分子筛溶液,然后进行干燥,重复多次浸渍、吹扫和干燥,直到达到所需的涂敷量为止,最后经焙烧后,得到所述的蜂窝式结构化催化剂。
在上述的方法中,优选地,在制备蜂窝式结构化催化剂的过程中,步骤(1)中所采用的硝酸溶液为质量浓度10-30%的硝酸溶液。
在上述的方法中,优选地,在制备蜂窝式结构化催化剂的过程中,步骤(1)中的干燥是100-120℃下干燥10-12h,焙烧是以3℃/min的速率升温至550℃,然后在550℃下焙烧5小时。
在上述的方法中,优选地,在制备蜂窝式结构化催化剂的过程中,步骤(2)中所采用的β分子筛原粉催化剂的硅铝比为20-30。
在上述的方法中,优选地,在制备蜂窝式结构化催化剂的过程中,步骤(2)中对β分子筛原粉催化剂的焙烧是在550℃下焙烧5小时。
在上述的方法中,优选地,在制备蜂窝式结构化催化剂的过程中,步骤(3)中对浸渍后的堇青石蜂窝的干燥是在100-120℃下干燥10小时,焙烧是在550℃下焙烧5小时。
本发明采用蜂窝式结构化催化剂替代现有的散装固体颗粒催化剂,以苯与丙烯制备异丙苯,具有低压降、低能耗、优良的传质传热性能、内扩散有效因子高、易于放大等突出优点。本发明提供的方法能够强化反应过程,解决反应产物循环量大使分离过程能耗高、循环物料重组分含量多影响催化剂寿命以及目标产物的选择性和收率、催化剂利用效率低等问题,能够有效提高异丙苯产品的市场竞争力。本发明中提出的蜂窝式结构化催化剂与规整填料催化剂相比,由于无催化剂捆抱构件,具有高传质比表面积、更低压降和原位分离反应耦合性能,因而能够达到更高效的催化效果。
附图说明
图1为实施例1的苯与丙烯烷基化反应的装置示意图。
主要组件符号说明:
1.氮气瓶,2.气瓶调节器,3.质量流量计,4.截止阀,5.压力计,6.苯罐,7.双柱塞微量泵,8.单向阀,9.丙烯罐,10.混合器,11.三通阀,12.固定床反应器,13.恒温区,14.控温仪器,15.热电偶,16.背压阀,17.取样器。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术 方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供一种蜂窝式结构化催化剂制备异丙苯的方法。
该方法采用如图1所示的装置,该装置包括:氮气瓶1、气瓶调节器2、质量流量计3、截止阀4、压力计5、苯罐6、双柱塞微量泵7、单向阀8、丙烯罐9、混合器10、三通阀11、固定床反应器12、恒温区13、控温仪器14、.热电偶15、背压阀16、取样器17以及数管线等;其中,固定床反应器12为内径20mm、高750mm的不锈钢反应管,其中段恒温区13装填有蜂窝式结构化催化剂,两端填充未涂敷催化剂的蜂窝堇青石和石英棉,以使其固定于固定床反应器12的恒温区13中;固定床反应器12外设置有控温仪器14;在控温仪器14中及恒温区13中设有热电偶15;固定床反应器12的底部通过管线连接于三通阀11,顶部管线上设有背压阀16和取样器17;氮气瓶1通过管线连接于三通阀11,并于该管线上设有气瓶调节器2、质量流量计3、截止阀4和压力计5;苯罐6通过管线连接于混合器10的一进料口,并于该管线上设有双柱塞微量泵7、单向阀8、截止阀4和压力计5;丙烯罐9管线连接于三混合器10的另一进料口,并于该管线上设有双柱塞微量泵7、单向阀8、截止阀4和压力计5;混合器10的出料口通过管线连接于三通阀11。
该方法所采用的蜂窝式结构化催化剂是通过以下方法制备得到的:
(1)堇青石蜂窝载体预处理:
对堇青石进行切割,然后在15wt%的硝酸溶液中、在80℃的恒温水浴中加热4h进行酸处理,用去离子水洗至中性,然后于100℃烘箱中干燥12h,最后在马弗炉中以3℃/min的速率升温至550℃,然后在550℃下焙烧5小时,待用;
(2)分子筛-硅胶溶液的制备:
将硅铝比为30的β分子筛原粉催化剂在550℃下焙烧5h,然后精确称量30wt%的硅溶胶、焙烧后的β分子筛催化剂和去离子水充分混合,配制二氧化硅质量含量为5%、分子筛与水质量比为1:2的溶液,放于磁力搅拌器上搅拌2h,得到分子筛–硅溶胶溶液,待用;
(3)催化剂涂敷:
将步骤(1)得到的预处理后的堇青石蜂窝载体完全浸渍于步骤(2)得到的分子筛-硅胶溶液中,每次浸渍时间为5min,然后将浸渍后的堇青石蜂窝取出,吹扫孔道中的分子筛溶液,防止堵孔现象,接着置于100℃烘箱中干燥10小时,重复浸渍、吹扫、干 燥多次,直到达到所需的涂敷量为止,最后在马弗炉中在550℃下焙烧5小时,得到所述的蜂窝式结构化催化剂。
本实施例的蜂窝式结构化催化剂制备异丙苯的方法包括以下步骤:
在进行反应前,向固定床反应器中通入氮气进行程序升温(反应器内温度在90分钟内从室温升高至260℃,在260℃保持4小时,然后自然冷却至40℃以下)对蜂窝式结构化催化剂还原预处理;通入苯排除固定床反应器中的惰性气体氮气,当固定床反应器内没有明显的气泡时开始缓慢背压至反应压力,程序升温至反应温度,然后通入丙烯进行烷基化反应;其中进料苯与丙烯摩尔比为4.0,反应温度为160℃,反应压力为3.0MPa,丙烯的质量空速(WHSV)为4.0–15.0h–1。反应开始后,每两个小时取样一次,通过GC 3900气相色谱对样品进行分析。
实施例2
采用实施例1的装置、蜂窝式结构化催化剂以及方法制备异丙苯,苯与丙烯从固定床反应器底部进入反应器在恒温区进行烷基化反应,其中进料苯烯摩尔比为4.0,反应温度为160℃,反应压力为3.0MPa,进料丙烯质量空速为4.0h-1,丙烯转化率达到100%,所得异丙苯产品选择性为85.5%,计算得到单位高度床层压降为183.5Pa·m-1。相同质量流量时,规整填料催化剂(CN101811928A中的规整填料催化剂,下述亦然)和颗粒催化剂(Chengna Dai,Zhigang Lei,Jie Zhang,Yingxia Li,Biaohua Chen.Monolith catalysts for the alkylation of benzene with propylene.Chemical Engineering Science,2013,100,342-351,下述亦然)异丙苯的选择性分别为:87.8%和74.9%;压降分别为258.5和2873.3Pa·m-1
实施例3
采用实施例1的装置、蜂窝式结构化催化剂以及方法制备异丙苯,苯与丙烯从固定床反应器底部进入反应器在恒温区进行烷基化反应,其中进料苯烯摩尔比为4.0,反应温度为160℃,反应压力为3.0MPa,进料丙烯质量空速为10.0h-1,丙烯转化率达到100%,所得异丙苯产品选择性为91.7%,计算得到单位高度床层压降为441.7Pa·m-1。相同质量流量时,规整填料催化剂和颗粒催化剂异丙苯的选择性分别为:84.5%和74.2%;压降分别为665.0和7568.8Pa·m-1
实施例4
采用实施例1的装置、蜂窝式结构化催化剂以及方法制备异丙苯,苯与丙烯从固定床反应器底部进入反应器在恒温区进行烷基化反应,其中进料苯烯摩尔比为4.0,反应温度为160℃,反应压力为3.0MPa,进料丙烯质量空速为15.0h-1,丙烯转化率达到100%, 所得异丙苯产品选择性为91.3%,计算得到单位高度床层压降为688.5Pa·m-1。相同质量流量时,规整填料催化剂和颗粒催化剂异丙苯的选择性分别为:81.2%和71.6%;压降分别为1005.0和11200.0Pa·m-1
实施例5
采用实施例1的蜂窝式结构化催化剂、CN101811928A中的泡点反应器及其他相关仪器所组成的装置(如CN101811928A中的图1所示)以及CN101811928A中的方法制备异丙苯,苯与丙烯从泡点反应器底部进入反应器在反应区进行烷基化反应,反应产物进入后续分离工段进行纯化,其中进料苯烯摩尔比为4.0,反应温度为160℃,反应压力为0.3MPa,进料丙烯质量空速为15.0h-1,闪蒸温度为120℃。得到相同产品纯度的情况下,采用规整填料催化剂比颗粒催化剂在分离工段单位产品总冷凝器和再沸器消耗分别降低11.8%和12.6%,而采用蜂窝结构化催化剂比颗粒催化剂单位产品总冷凝器和再沸器消耗分别降低18.2%和19.5%。

Claims (7)

  1. 一种蜂窝式结构化催化剂制备异丙苯的方法,其包括以下步骤:将蜂窝式结构化催化剂装填于固定床反应器的恒温区或泡点反应器的反应区中,向该固定床反应器或泡点反应器中通入苯与丙烯,使苯与丙烯在蜂窝式结构化催化剂上进行烷基化反应以制备异丙苯,进料苯与丙烯摩尔比为2.0-6.0,反应温度为140-170℃,固定床反应器反应压力为2.8-3.2MPa,泡点反应器反应压力为0.2-0.7MPa,丙烯的质量空速为4.0–15.0h–1
  2. 根据权利要求1所述的方法,其中,所述蜂窝式结构化催化剂是通过以下方法制备得到的:
    (1)堇青石蜂窝载体预处理:
    对堇青石进行切割,然后置于硝酸溶液中,在70-90℃下加热2-6h进行酸处理,水洗至中性后,经干燥、焙烧,待用;
    (2)分子筛-硅胶溶液的制备:
    将β分子筛原粉催化剂焙烧后,采用质量浓度10-40%的硅溶胶、焙烧后的β分子筛催化剂和去离子水配制二氧化硅质量含量为5%、分子筛与水质量比为1:2的溶液并搅拌2-4h,得到分子筛–硅溶胶溶液,待用;
    (3)催化剂涂敷:
    将步骤(1)得到的预处理后的堇青石蜂窝载体完全浸渍于步骤(2)得到的分子筛-硅胶溶液中,每次浸渍时间为5-10min,然后将浸渍后的堇青石蜂窝取出,吹扫孔道中的分子筛溶液,然后进行干燥,重复多次浸渍、吹扫和干燥,直到达到所需的涂敷量为止,最后经焙烧后,得到所述的蜂窝式结构化催化剂。
  3. 根据权利要求2所述的方法,其中,步骤(1)中所采用的硝酸溶液为质量浓度10-30%的硝酸溶液。
  4. 根据权利要求2所述的方法,其中,步骤(1)中的干燥是100-120℃下干燥10-12h,焙烧是以3℃/min的速率升温至550℃,然后在550℃下焙烧5小时。
  5. 根据权利要求2所述的方法,其中,步骤(2)中所采用的β分子筛原粉催化剂的硅铝比为20-30。
  6. 根据权利要求2所述的方法,其中,步骤(2)中对β分子筛原粉催化剂的焙烧是在550℃下焙烧5小时。
  7. 根据权利要求2所述的方法,其中,步骤(3)中对浸渍后的堇青石蜂窝的干燥是在100-120℃下干燥10小时,焙烧是在550℃下焙烧5小时。
PCT/CN2015/070037 2015-01-04 2015-01-04 一种蜂窝式结构化催化剂制备异丙苯的方法 WO2016106773A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070037 WO2016106773A1 (zh) 2015-01-04 2015-01-04 一种蜂窝式结构化催化剂制备异丙苯的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/070037 WO2016106773A1 (zh) 2015-01-04 2015-01-04 一种蜂窝式结构化催化剂制备异丙苯的方法

Publications (1)

Publication Number Publication Date
WO2016106773A1 true WO2016106773A1 (zh) 2016-07-07

Family

ID=56284034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070037 WO2016106773A1 (zh) 2015-01-04 2015-01-04 一种蜂窝式结构化催化剂制备异丙苯的方法

Country Status (1)

Country Link
WO (1) WO2016106773A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877559A (zh) * 2021-09-30 2022-01-04 中国石油化工股份有限公司 用于异丙苯氧化制CHP的纳米MgO催化剂制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057945A2 (en) * 2004-11-23 2006-06-01 Merck & Co., Inc. 2,3,4,6-substituted pyridyl derivative compounds useful as beta-secretase inhibitors for the treatment of alzheimer's disease
CN101111461A (zh) * 2004-12-01 2008-01-23 Abb路慕斯全球股份有限公司 利用改进的β沸石催化剂进行苯烷基化和多烷基化芳烃的烷基转移的方法
CN101811928A (zh) * 2010-03-26 2010-08-25 北京化工大学 一种异丙苯的制备方法
CN102921454A (zh) * 2012-06-28 2013-02-13 北京化工大学 用于n2o直接催化分解的整体式bea分子筛催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057945A2 (en) * 2004-11-23 2006-06-01 Merck & Co., Inc. 2,3,4,6-substituted pyridyl derivative compounds useful as beta-secretase inhibitors for the treatment of alzheimer's disease
CN101111461A (zh) * 2004-12-01 2008-01-23 Abb路慕斯全球股份有限公司 利用改进的β沸石催化剂进行苯烷基化和多烷基化芳烃的烷基转移的方法
CN101811928A (zh) * 2010-03-26 2010-08-25 北京化工大学 一种异丙苯的制备方法
CN102921454A (zh) * 2012-06-28 2013-02-13 北京化工大学 用于n2o直接催化分解的整体式bea分子筛催化剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113877559A (zh) * 2021-09-30 2022-01-04 中国石油化工股份有限公司 用于异丙苯氧化制CHP的纳米MgO催化剂制备方法及应用

Similar Documents

Publication Publication Date Title
Xue et al. Direct conversion of bio-ethanol to propylene in high yield over the composite of In 2 O 3 and zeolite beta
CN105195132A (zh) 二异丁烯选择性脱氢芳构化制对二甲苯催化剂及其制备方法、对二甲苯的制备方法
JP6909225B2 (ja) オリゴシランの製造方法
CN103272633A (zh) 将醇醚转化为高含量对二甲苯的芳烃的催化剂及其制备方法与反应工艺
WO2024021397A1 (zh) 一种适用于制备煤基直链烷基苯的方法
CN108698954A (zh) 在不存在氢气的情况下的液相二甲苯异构化
CN102744098A (zh) 重芳烃加氢裂解增产btx芳烃和三甲苯的催化剂
CN102935379A (zh) 一种mcm-22分子筛催化剂的制备方法
CN101352690B (zh) 一种稀乙烯与苯烷基化制乙苯分子筛催化剂的制法及用途
Zhou et al. A high propylene productivity over B2O3/SiO2@ honeycomb cordierite catalyst for oxidative dehydrogenation of propane
WO2008041561A1 (fr) Procédé de production de propylène
CN100374203C (zh) 一种用于甲醇制备二甲醚的均温型催化剂及用法
WO2016106773A1 (zh) 一种蜂窝式结构化催化剂制备异丙苯的方法
WO2006109848A1 (ja) 3級アミンの製造方法
CN102746101A (zh) 一种CoAPO-11分子筛催化萘的烷基化反应制备2,6-二甲基萘的方法
Ren et al. H-MCM-22 zeolitic catalysts modified by chemical liquid deposition for shape-selective disproportionation of toluene
CN203976664U (zh) 一种用于不纯低碳烯烃烷基化反应的系统
CN106423163A (zh) 整体式催化剂及其制备方法与应用
CN108097286A (zh) 一种制备丙烯酸和丙烯酸甲酯的催化剂
CN105036153A (zh) 一种sapo-34分子筛改性的方法
CN106563492B (zh) 一种氧化钛改性微孔分子筛择形催化剂在合成对二甲苯中的应用
JP6634910B2 (ja) 反応器およびそれを用いたアルコールの連続製造方法
CN102909057B (zh) 一种含euo型分子筛的催化剂及其制备方法和应用
CN112619686B (zh) 负载型非贵金属脱氢催化剂及其制备方法和应用
CN1772381A (zh) 用于焦化苯气相乙基化制乙苯的耐硫工业催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874466

Country of ref document: EP

Kind code of ref document: A1