WO2016106770A1 - 一种中碳硅锰系高耐磨空冷钢 - Google Patents

一种中碳硅锰系高耐磨空冷钢 Download PDF

Info

Publication number
WO2016106770A1
WO2016106770A1 PCT/CN2015/000937 CN2015000937W WO2016106770A1 WO 2016106770 A1 WO2016106770 A1 WO 2016106770A1 CN 2015000937 W CN2015000937 W CN 2015000937W WO 2016106770 A1 WO2016106770 A1 WO 2016106770A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium carbon
high wear
carbon silicon
silicon manganese
cooled steel
Prior art date
Application number
PCT/CN2015/000937
Other languages
English (en)
French (fr)
Inventor
文超
董雯
Original Assignee
中车戚墅堰机车车辆工艺研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车戚墅堰机车车辆工艺研究所有限公司 filed Critical 中车戚墅堰机车车辆工艺研究所有限公司
Publication of WO2016106770A1 publication Critical patent/WO2016106770A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the invention belongs to the technical field of alloy steel, and relates to a high wear-resistant alloy steel, in particular to a novel medium carbon silicon manganese high wear-resistant air-cooled steel.
  • bainitic steel which is directly used after hot forming (especially after welding) or which has undergone simple air cooling treatment has been applied in more and more cases and replaced tempering. Martensitic steel.
  • air-cooled bainitic steels such as Mn-B, Mn and Mo-B have been developed and applied, and many new advances have been made in the study of the microstructure and properties of these low-carbon air-cooled bainitic steels.
  • the hardness of these low-carbon air-cooled bainitic steels is basically below 45HRC, and 45HRC has become a critical point that is difficult to surpass.
  • Patent CN1210430C proposes a medium-low carbon manganese air-cooled bainitic steel with a granular bainite/granular structure, lower bainite/martensite or carbide-free bainite/martensitic complex.
  • the microstructure can reach a hardness of 45HRC or more under air-cooling conditions, but the impact is a non-notched impact specimen.
  • the unnotched impact toughness is greater than 70 J/cm2, the U-notch impact is insufficient.
  • the hardness of the workpiece is put forward higher (hardness ⁇ 49HRC), and the air-cooled alloy steel disclosed in this patent cannot achieve the matching of hardness and toughness under air cooling conditions.
  • the object of the present invention is to provide a medium carbon silicon manganese high wear-resistant air-cooled steel, further improve the hardness of the current air-cooled alloy steel, and maintain or exceed the existing toughness to improve the wear resistance.
  • One aspect of the present application provides a medium carbon silicon manganese high wear-resistant air-cooled steel, wherein each component and its mass percentage are as Lower: C 0.35% to 0.45%, Si 1.51% to 2.18%, Mn 1.52% to 1.99%, Cr 1.13% to 1.62%, Mo 0.15% to 0.29%; in addition, Al 0.02% to 0.07%, Nb 0.025% ⁇ 0.10%, and must meet 0.05% ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • Another aspect of the present application provides a method of preparing the above medium carbon silicon manganese high wear resistant air-cooled steel, which comprises the following steps:
  • the molten steel obtained by the smelting is subjected to hot working to obtain a product to be heat treated; then the product to be heat treated is austenitized and placed in air to be cooled to room temperature, and
  • the high wear-resistant air-cooled steel of the invention has a carbon content of 0.35% to 0.45%, and the carbon content can ensure that the high wear-resistant air-cooled steel described in the air-cooling condition has excellent hardness (hardness is above 49HRC), and has the same High toughness.
  • the addition of elements Si, Mn, Cr, Mo and suitable ratio selection can effectively improve the hardness and toughness of the high wear-resistant air-cooled steel, and expand the high wear-resistant air-cooled steel to obtain bainite or Bainite.
  • the ability of the bulk/martensitic multiphase structure allows the high wear resistant air-cooled steel to be used with thicker dimensional parts.
  • the addition of alloying elements Al and Nb and their suitable ratio selection can effectively inhibit austenite grain growth, refine grains and improve the high wear-resistant air-cooled steel during casting, forging, welding and heat treatment. Strength, ductility and toughness.
  • the mechanical performance index of the high wear-resistant air-cooled steel of the invention is as follows: R m ⁇ 1630Mpa, R p0. 2 ⁇ 1310 MPa, hardness ⁇ 49 HRC, ⁇ KU (room temperature) ⁇ 70 J/cm 2 , ⁇ KU (-40 ° C) ⁇ 50 J/cm 2 .
  • the high wear-resistant air-cooled steel of the invention is obtained by smelting, hot forming, austenitizing, air cooling and tempering, and has high strength performance, high toughness and excellent wear resistance index, and can satisfy ⁇ Requirements for the use of various wear parts such as chains, drill pipes, caries, coal picks, scrapers, linings, grinding balls, wear plates, shovel teeth, boring teeth, frogs, tooth plates, hammers, etc. It eliminates quenching treatment, prevents cracking, reduces deformation and subsequent processes of hot forming, and saves cost and resources.
  • Example 1 is a metallographic structure diagram of a medium carbon silicon manganese high wear-resistant air-cooled steel obtained in Example 1 of the present invention, wherein a bright gray portion is a martensite structure, and a dark cyan portion is a bainite structure;
  • Figure 2 is an enlarged view of the dark cyan portion of Figure 1.
  • a medium carbon silicon manganese high wear-resistant air-cooled steel characterized in that each component and its mass percentage are as follows: C 0.35% to 0.45%, Si 1.51% to 2.18%, Mn 1.52% to 1.99% , Cr 1.13% ⁇ 1.62%, Mo 0.15% ⁇ 0.29%; in addition, Al 0.02% ⁇ 0.07%, Nb 0.025% ⁇ 0.10%, and must meet 0.05% ⁇ Nb + Al ⁇ 0.15%; balance is iron and Inevitable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to any one of claims 1 to 3, wherein the mass percentage of Mn is 1.52% to 1.62% or 1.52% to 1.99% or 1.55% to 1.65% or 1.65% to 1.75% or 1.70% to 1.80% or 1.70% to 1.99% or 1.81% to 1.90% or 1.81% to 1.99% or 1.85% to 1.95%.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to any one of claims 1 to 4, wherein the mass percentage of Cr is 1.13% to 1.62% or 1.15% to 1.25% or 1.18% to 1.28% or 1.45% to 1.55% or 1.45% to 1.62% or 1.51% to 1.62% or 1.52% to 1.62%.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to any one of claims 1 to 5, wherein a mass percentage of Mo is 0.15% to 0.20% or 0.15% to 0.29% or 0.20% to 0.25% or 0.21% to 0.29% or 0.22% to 0.29%.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized for improving toughness, characterized in that each component and its mass percentage are as follows: C 0.35% to 0.39%, Si 1.61% to 2.18%, Mn 1.70% to 1.99%, Cr 1.45% to 1.62%, Mo 0.15% to 0.29%; further contains Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05% ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized for improving toughness, characterized in that each component and its mass percentage are as follows: C 0.35% to 0.39%, Si 1.71% to 1.81%, Mn 1.70% to 1.80%, Cr 1.51% to 1.62%, Mo 0.21% to 0.29%; further contains Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05%. ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized for improving toughness, characterized in that each component and its mass percentage are as follows: C 0.35% to 0.39%, Si 1.82% to 2.18%, Mn 1.81% to 1.99%, Cr 1.51% to 1.62%, Mo 0.21% to 0.29%; further contains Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05% ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized in order to reduce the cost of the alloy, characterized in that each component and its mass percentage are as follows: C 0.40% to 0.45% , Si 1.51% to 1.90%, Mn 1.52% to 1.99%, Cr 1.13% to 1.62%, Mo 0.15% to 0.29%; in addition, Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05 % ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized in order to reduce the alloy cost, wherein each component and its mass percentage are as follows: C 0.40% to 0.45% , Si 1.51% to 1.70%, Mn 1.81% to 1.90%, Cr 1.15% to 1.25%, Mo 0.15% to 0.20%; in addition, Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05 % ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized in order to reduce the cost of the alloy, characterized in that each component and its mass percentage are as follows: C 0.40% to 0.45% , Si 1.51% to 1.70%, Mn 1.52% to 1.62%, Cr 1.52% to 1.62%, Mo 0.21% to 0.29%; in addition, Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05 % ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized for improving toughness, characterized in that each component and its mass percentage are as follows: C 0.35% to 0.39% , Si 1.61% to 1.71%, Mn 1.70% to 1.80%, Cr 1.45% to 1.55%, Mo 0.15% to 0.20%; further contains Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05 % ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized for improving toughness, characterized in that each component and its mass percentage are as follows: C 0.35% to 0.39% , Si 2.08% to 2.18%, Mn 1.85% to 1.95%, Cr 1.45% to 1.55%, Mo 0.22% to 0.29%; in addition, Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must satisfy 0.05 % ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to the first aspect in order to reduce the alloy cost, Further, it can be optimized, characterized in that each component and its mass percentage are as follows: C 0.40% to 0.45%, Si 1.51% to 1.61%, Mn 1.55% to 1.65%, Cr 1.45% to 1.55%, Mo 0.20% to 0.25. %; further contains Al 0.02% ⁇ 0.07%, Nb 0.025% ⁇ 0.10%, and must meet 0.05% ⁇ Nb + Al ⁇ 0.15%; the balance is iron and inevitable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to claim 1 is further optimized in order to reduce the alloy cost, wherein each component and its mass percentage are as follows: C 0.40% to 0.45 %, Si 1.80% to 1.90%, Mn 1.65% to 1.75%, Cr 1.18% to 1.28%, Mo 0.15% to 0.20%; in addition, Al 0.02% to 0.07%, Nb 0.025% to 0.10%, and must be satisfied 0.05% ⁇ Nb + Al ⁇ 0.15%; the balance is iron and unavoidable impurities.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to any one of claims 1 to 16, characterized in that the mechanical performance index of the medium carbon silicon manganese high wear-resistant air-cooled steel is as follows: R m ⁇ 1630 Mpa, R p0.2 ⁇ 1310 MPa, hardness ⁇ 49 HRC, ⁇ KU (room temperature) ⁇ 70 J/cm 2 , ⁇ KU (-40 ° C) ⁇ 50 J/cm 2 .
  • the molten steel obtained by the smelting is subjected to hot working to obtain a product to be heat treated; then the heat treated product is austenitized and placed in air to be cooled to room temperature, and
  • the wear-resistant member is selected from the group consisting of a chain, a drill pipe, a caries, a coal pick, a scraper, a liner, a grinding ball, a wear plate, Shovel teeth, boring teeth, frogs, tooth plates and hammers.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel of the present invention is a bainite/martensitic duplex steel.
  • the inevitable impurities described in this application refer to impurities that cannot be completely smelted and removed in scrap steel or ore during smelting, such as P, S, As, Sn, Pb, Sb, Bi and other trace elements.
  • the content usually needs to be controlled to P ⁇ 0.025%, S ⁇ 0.025%, As ⁇ 0.01%, Sn ⁇ 0.01%, Pb ⁇ 0.01%, Sb ⁇ 0.01%, Bi ⁇ 0.01%, if these elements are too high, the product will be
  • the toughness properties in the process have certain adverse effects.
  • the smelting described in the method of the present invention can be carried out by using a conventional heating equipment such as a power frequency, an intermediate frequency furnace or an electric arc furnace which is commonly used in the art, and the main purpose is to obtain a desired composition and ratio, and to minimize steel. Other harmful elements in the reduction of impurities. Suitable hot forming (eg casting, forging or welding, etc.) can be carried out depending on the final product.
  • the heat treatment after hot working includes austenitizing, then air cooling to room temperature, and then tempering, preferably austenitizing at 890 ° C to 980 ° C, wherein the austenitizing heating and holding time is effective according to the product Depending on the thickness, it can generally be heated for 1 hour according to the thickness of 25 mm for the calculation of the holding time.
  • the product is cooled in the air, air cooled to room temperature, and then reheated to 160 ° C ⁇ 550 ° C heat preservation and tempering, wherein the tempering temperature is determined according to performance requirements, tempering heating and holding time according to the effective thickness of the product Generally, the heating time can be calculated by heating for 1.5 hours according to the effective thickness of 25 mm.
  • the determination of the effective thickness described in this application can be found in the Handbook of Heat Treatment, 3rd Edition, Volume 1, Process Fundamentals, Mechanical Industry Press, 2001, pp. 40-45.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel according to the present invention obtains bainite by using a multi-component composite adding technology such as Mn, Si, Cr, Mo, and a reasonable ratio, and supplementing Al, Nb to refine grains.
  • a multi-component composite adding technology such as Mn, Si, Cr, Mo, and a reasonable ratio
  • Al, Nb supplementing Al, Nb to refine grains.
  • Martensite multiphase structure with good toughness, it has high strength properties, high toughness index and excellent wear resistance, and eliminates quenching treatment, reduces deformation, prevents cracking, and saves Cost and resources.
  • the component contents are all based on their mass percentage.
  • Mechanical performance indicators are determined according to standard or general methods in the field. The impact sample was taken and polished, and 4% nitric acid was used for corrosion. The metallographic structure photograph was observed under a metallographic microscope.
  • the medium carbon silicon manganese high wear-resistant air-cooled steel of the present invention is prepared, and its components and mass percentages thereof are as follows: C 0.39%, Si 1.81%, Mn 1.70%, Cr 1.45%, Mo 0.29%, Al 0.03%, Nb 0.05%; the balance is iron and unavoidable impurities.
  • the preparation process of the medium carbon silicon manganese high wear-resistant air-cooled steel is as follows:
  • the components of the raw material steel and their contents are determined, and the raw material steel and other raw materials used for the compounding, such as various ore particles, are carried out according to the components required for the target carbon-silicon-manganese-based high wear-resistant air-cooled steel and the mass percentage thereof.
  • the mixture was mixed and smelted using an electric arc furnace, cast in a model, and forged into a square steel of 200 mm x 200 mm section.
  • the square steel is heat-treated, air-cooled after austenitizing, and then tempered.
  • the specific parameters are heating to 890 ° C ⁇ 980 ° C and holding for 8 hours to 9 hours, then air cooling to room temperature, and then reheating to 160 ° C ⁇ 550 ° C heat tempering 12 hours ⁇ 13 hours air cooling.
  • a series of medium carbon silicomanganese high wear-resistant air-cooled steels of the present invention were prepared by substantially the same preparation procedure as in Example 1. The specific components and contents are shown in Table 1. The mechanical properties of the obtained products were tested and the results are shown in Table 1.
  • Table 1 Composition and mechanical properties of medium carbon silicon manganese high wear-resistant air-cooled steel of Examples 1-20
  • the air-cooled steel was prepared in the same manner as described in Example 1, and the composition and mechanical properties of the obtained air-cooled steel are shown in Table 2 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

一种中碳硅锰系高耐磨空冷钢,其各组分及其质量百分比如下:C 0.35%~0.45%、Si 1.51%~2.18%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%; Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。该钢经由冶炼、热加工成形、奥氏体化、空冷和回火处理得到。

Description

一种中碳硅锰系高耐磨空冷钢 技术领域
本发明属于合金钢技术领域,涉及一种高耐磨合金钢,特别是涉及一种新型的中碳硅锰系高耐磨空冷钢。
背景技术
随着工程机械领域的发展,对于金属零部件的耐磨性提出了更高的要求。如何经济地提高金属零部件的耐磨性一直是人们关注的重点。众所周知,硬度对耐磨性的作用是不言而喻的,提高材料的硬度是提高耐磨性的一个最为重要的方法。然而,随着材料的硬度增加,其韧性性能的下降则会反过来影响材料的耐磨性。因此硬度和韧性的矛盾关系制约着耐磨性能的提高,尤其是硬度超过44HRC(抗拉强度大于1400MPa)时,冲击韧性下降很快。
另一方面,考虑到降低成本的要求,热加工成形后(尤其是焊接后)直接使用或者只经过简单空冷处理的贝氏体钢,已在越来越多的场合得到应用并取代了回火马氏体钢。近年来,Mn-B系、Mn系、Mo-B系等空冷贝氏体钢得到了开发和应用,且在这些中低碳空冷贝氏体钢组织和性能的研究方面取得了许多新的进展,然而这些中低碳空冷贝氏体钢硬度基本在45HRC以下,45HRC成为了一个很难超越的临界点。
专利CN1210430C提出了一种中低碳锰系空冷贝氏体钢,得到了一种粒状贝氏体/粒状组织、下贝氏体/马氏体或无碳化物贝氏体/马氏体复相组织,其在空冷条件下硬度能达到45HRC以上,但其冲击是无缺口冲击试样,虽然其无缺口冲击韧度大于70J/cm2,但U型缺口冲击不够。显然,随着工件使用的工况越来越恶劣,对工件硬度提出了更高的要求(硬度≥49HRC),该专利公开的空冷合金钢在空冷条件下无法实现硬度和韧性的匹配。
发明内容
本发明的目的在于提供一种中碳硅锰系高耐磨空冷钢,进一步提高目前空冷合金钢的硬度,并保持或超过现有的韧性,以提高耐磨性。
本申请的一个方面提供一种中碳硅锰系高耐磨空冷钢,其中各组分及其质量百分比如 下:C 0.35%~0.45%、Si 1.51%~2.18%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
本申请的另一方面提供制备上述中碳硅锰系高耐磨空冷钢的方法,其特征在于,包括以下步骤:
i)按照所需的组分及其质量百分比将各种原料混合并进行冶炼,得到具有所需要的组分及其合适的质量百分比的钢水;
ii)将冶炼所得到的钢水,进行热加工成形得到待热处理的产品;随后将待热处理的产品进行奥氏体化并放于空气中冷却至室温,和
iii)回火。
本发明的高耐磨空冷钢的含碳量为0.35%~0.45%,该含碳量能保证空冷条件下所述的高耐磨空冷钢具有优良的硬度(硬度在49HRC以上),同时具有较高的韧性。元素Si、Mn、Cr、Mo的加入及其合适的配比选择,可以有效的进一步提高所述高耐磨空冷钢的硬度和韧性,扩大所述高耐磨空冷钢获得贝氏体或贝氏体/马氏体复相组织的能力,使得所述高耐磨空冷钢能应用更厚尺寸零件的需求。合金元素Al和Nb的加入及其合适的配比选择,则能有效地抑制铸造、锻造、焊接和热处理过程中奥氏体晶粒长大,细化晶粒,提高所述高耐磨空冷钢的强度、塑性和韧性。
本发明与现有技术相比,主要是提高了耐磨钢的强度、硬度,而且同时提高了韧性性能,本发明的高耐磨空冷钢钢机械性能指标如下:Rm≥1630Mpa,Rp0.2≥1310MPa,硬度≥49HRC,αKU(室温)≥70J/cm2,αKU(-40℃)≥50J/cm2。本发明的高耐磨空冷钢经由冶炼、热加工成形、奥氏体化、空冷和回火处理得到,其具有较高的强度性能、较高的韧性和优良的耐磨性能指标,能满足耙链、钻杆、耙齿、煤截齿、刮板、衬板、磨球、耐磨板、铲齿、掘进齿、辙叉、齿板、锤头等各种耐磨件的使用要求,同时可免除淬火处理,防止开裂,减少了变形和热加工成形后续的工序,节约了成本和资源。
附图说明
下面结合附图对本发明进行说明,其中:
图1为本发明实施例1所得的中碳硅锰系高耐磨空冷钢的金相组织图,其中亮灰色部分为马氏体组织,暗青灰色部分为贝氏体组织;和
图2为图1中暗青灰色部分的放大图。
具体实施方式
本申请提供以下技术方案:
技术方案1.一种中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.35%~0.45%、Si 1.51%~2.18%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案2.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中C的质量百分比为0.35%~0.39%或0.40%~0.45%。
技术方案3.根据技术方案1或2所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Si的质量百分比为1.51%~1.61%或1.51%~1.70%或1.51%~1.90%或1.61%~1.71%或1.61%~2.18%或1.71%~1.81%或1.80%~1.90%或1.82%~2.18%或2.08%~2.18%。
技术方案4.根据技术方案1-3中任一项所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Mn的质量百分比为1.52%~1.62%或1.52%~1.99%或1.55%~1.65%或1.65%~1.75%或1.70%~1.80%或1.70%~1.99%或1.81%~1.90%或1.81%~1.99%或1.85%~1.95%。
技术方案5.根据技术方案1-4中任一项所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Cr的质量百分比为1.13%~1.62%或1.15%~1.25%或1.18%~1.28%或1.45%~1.55%或1.45%~1.62%或1.51%~1.62%或1.52%~1.62%。
技术方案6.根据技术方案1-5中任一项所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Mo的质量百分比为0.15%~0.20%或0.15%~0.29%或0.20%~0.25%或0.21%~0.29%或0.22%~0.29%。
技术方案7.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了提高韧性,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.61%~2.18%、Mn 1.70%~1.99%、Cr 1.45%~1.62%、Mo 0.15%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案8.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了提高韧性,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.71%~1.81%、Mn 1.70%~1.80%、Cr 1.51%~1.62%、Mo 0.21%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案9.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了提高韧性,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.82%~2.18%、Mn 1.81%~1.99%、Cr 1.51%~1.62%、Mo 0.21%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案10.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了降低合金成本,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.90%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案11.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了降低合金成本,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.70%、Mn 1.81%~1.90%、Cr 1.15%~1.25%、Mo 0.15%~0.20%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案12.根据技术方案1所述的中碳硅锰系高耐磨空冷钢,为了降低合金成本,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.70%、Mn 1.52%~1.62%、Cr 1.52%~1.62%、Mo 0.21%~0.29%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案13.根据技术方案1所述的的中碳硅锰系高耐磨空冷钢,为了提高韧性,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.61%~1.71%、Mn 1.70%~1.80%、Cr 1.45%~1.55%、Mo 0.15%~0.20%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案14.根据技术方案1所述的的中碳硅锰系高耐磨空冷钢,为了提高韧性,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 2.08%~2.18%、Mn 1.85%~1.95%、Cr 1.45%~1.55%、Mo 0.22%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案15.根据技术方案1所述的的中碳硅锰系高耐磨空冷钢,为了降低合金成本, 进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.61%、Mn 1.55%~1.65%、Cr 1.45%~1.55%、Mo 0.20%~0.25%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案16.根据技术方案1所述的的中碳硅锰系高耐磨空冷钢,为了降低合金成本,进一步可以优化,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.80%~1.90%、Mn 1.65%~1.75%、Cr 1.18%~1.28%、Mo 0.15%~0.20%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
技术方案17.根据技术方案1~16中任一项所述的中碳硅锰系高耐磨空冷钢,其特征在于,所述的中碳硅锰系高耐磨空冷钢机械性能指标如下:Rm≥1630Mpa,Rp0.2≥1310MPa,硬度≥49HRC,αKU(室温)≥70J/cm2,αKU(-40℃)≥50J/cm2
技术方案18.制备根据技术方案1-17中任一项所述的中碳硅锰系高耐磨空冷钢的方法,其特征在于,包括以下步骤:
i)按照所需的组分及其质量百分比将各种原料进行混合并进行冶炼,得到具有所需要的组分及其合适的质量百分比的钢水;
ii)将冶炼所得到的钢水,进行热加工成形得到待热理的产品;随后对待热理的产品进行奥氏体化并放于空气中冷却至室温,和
iii)回火。
技术方案19.根据技术方案18所述的方法,其特征在于,加热到890℃~980℃下进行奥氏体化并放于空气中冷却至室温后,再在160℃~550℃进行保温回火。
技术方案20.根据技术方案1-17中任一项所述的中碳硅锰系高耐磨空冷钢在制备耐磨件中的用途。
技术方案21.根据技术方案20所述的用途,其特征在于,所述耐磨件选自耙链、钻杆、耙齿、煤截齿、刮板、衬板、磨球、耐磨板、铲齿、掘进齿、辙叉、齿板和锤头。
本发明的中碳硅锰系高耐磨空冷钢为贝氏体/马氏体复相钢。
本申请中所述的不可避免的杂质是指冶炼过程中,在废钢、矿石中无法完全冶炼去除的杂质,比如:P、S、As、Sn、Pb、Sb、Bi等微量元素,这些元素的含量通常需要控制为P≤0.025%,S≤0.025%,As≤0.01%,Sn≤0.01%,Pb≤0.01%,Sb≤0.01%,Bi≤0.01%,如果这些元素过高,则会对产品中的韧性性能产生一定的不利影响。
本发明方法中所述的冶炼可以使用本领域中常用的加热设备例如工频、中频炉或电弧炉采用常规冶炼工艺进行,主要目的是为了得到所需的组分和配比,和尽量减少钢中的其他有害元素,减少杂质。可根据最终产品进行合适的热加工成形(例如铸造、锻造或焊接等)。在热加工成形后的热处理包括进行奥氏体化、然后空冷到室温,再回火,优选在890℃~980℃下进行奥氏体化,其中奥氏体化的加热保温时间根据产品的有效厚度而定,一般可按照25mm的厚度加热1小时进行保温时间的计算。保温结束后将产品放在空气中冷却,并空冷到室温,然后重新加热到160℃~550℃保温回火,其中回火温度根据性能要求而定,回火加热保温时间根据产品的有效厚度而定,一般可按照25mm的有效厚度加热1.5小时进行保温时间的计算。本申请中所述的有效厚度的确定可以参考《热处理手册》,第3版,第1卷,工艺基础,机械工业出版社,2001出版,第40-45页。
本发明所述的中碳硅锰系高耐磨空冷钢,通过以Mn、Si、Cr、Mo等多元复合添加技术和合理配比,并辅以Al、Nb细化晶粒,得到贝氏体/马氏体复相组织,具有良好的强韧性配合,其具有很高的强度性能、较高的韧性指标和优良的耐磨性能,并免除淬火处理,减少了变形,防止了开裂,节约了成本和资源。
下面结合实施例对本发明作进一步的说明。然而,本领域技术人员不难理解,本申请的实施例仅仅用于示例目的,而非对本申请请求保护的范围的限定。
以下实施例中,组分含量均以其质量百分含量计。机械性能指标均按本领域标准或通用的方法进行测定。取冲击试样,经过抛光、4%硝酸酒精腐蚀,可在金相显微镜下观察获得金相组织照片。
实施例1
制备本发明的中碳硅锰系高耐磨空冷钢,其各组分及其质量百分比如下:C 0.39%、Si 1.81%、Mn 1.70%、Cr 1.45%、Mo 0.29%、Al 0.03%、Nb 0.05%;余量为铁和不可避免的杂质。所述中碳硅锰系高耐磨空冷钢的制备过程如下:
首先测定原料钢的各组分及其含量,按照目标中碳硅锰系高耐磨空冷钢所需的组分及其质量百分比要求将原料钢与用于配料的其它原料例如各种矿石颗粒进行混合并使用电弧炉进行冶炼,在模型中铸造,并锻造成200mm×200mm截面的方钢。将方钢进行热处理,采用奥氏体化后空冷,再回火。具体参数为加热到890℃~980℃并保温8小时~9小时后进行空冷至室温,然后重新加热到160℃~550℃保温回火12小时~13小时出炉空冷。
对所制得的产品进行机械性能测试,结果显示于表1中。其金相组织图如图1中所示。
实施例2~20
采用与实施例1基本相同的制备过程制备本发明的一系列中碳硅锰系高耐磨空冷钢,具体组分及含量见表1。对所制得的产品进行机械性能测试,结果显示于表1中。
表1 实施例1-20的中碳硅锰系高耐磨空冷钢的组成及其机械性能
Figure PCTCN2015000937-appb-000001
Figure PCTCN2015000937-appb-000002
对比实施例1-4
按照与实施例1中所述相同的过程制备空冷钢,所得空冷钢的组成及其机械性能如下表2所示:
表2 空冷钢的组成及其机械性能
Figure PCTCN2015000937-appb-000003
虽然已经展示和讨论了本发明的一些方面,但是本领域的技术人员应该意识到,可以在不背离本发明原理和精神的条件下对上述方面进行改变,因此本发明的范围将由权利要求以及等同的内容所限定。

Claims (17)

  1. 一种中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.35%~0.45%、Si 1.51%~2.18%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  2. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中C的质量百分比为0.35%~0.39%或0.40%~0.45%。
  3. 根据权利要求1或2所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Si的质量百分比为1.51%~1.70%或1.71%~1.81%或1.82%~2.18%。
  4. 根据权利要求1或2所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Mn的质量百分比为1.52%~1.62%或1.65%~1.75%或1.70%~1.80%或1.81%~1.99%。
  5. 根据权利要求1或2所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Cr的质量百分比为1.15%~1.25%或1.45%~1.55%或1.52%~1.62%。
  6. 根据权利要求1或2所述的中碳硅锰系高耐磨空冷钢,其特征在于,其中Mo的质量百分比为0.15%~0.20%或0.21%~0.29%。
  7. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.61%~2.18%、Mn 1.70%~1.99%、Cr 1.45%~1.62%、Mo 0.15%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足005%≤Nb+Al≤015%;余量为铁和不可避免的杂质。
  8. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.35%~0.39%、Si 1.71%~1.81%、Mn 1.70%~1.80%、Cr 151%~1.62%、Mo 0.21%~0.29%;此外还含有Al 0.02%~007%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  9. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 035%~0.39%、Si 1.82%~2.18%、Mn 1.81%~1.99%、Cr 1.51%~1.62%、Mo 0.21%~0.29%;此外还含有Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  10. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 040%~0.45%、Si 1.51%~1.90%、Mn 1.52%~1.99%、Cr 1.13%~1.62%、Mo 0.15%~0.29%;此外还含Al 002%~0.07%、Nb 0.025%~0.10%,且须满足005%≤ Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  11. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.70%、Mn 1.81%~1.90%、Cr1.15%~1.25%、Mo 0.15%~0.20%;此外还含Al 0.02%~0.07%、Nb 0.025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  12. 根据权利要求1所述的中碳硅锰系高耐磨空冷钢,其特征在于,各组分及其质量百分比如下:C 0.40%~0.45%、Si 1.51%~1.70%、Mn 1.52%~1.62%、Cr 1.52%~1.62%、Mo 0.21%~0.29%;此外还含Al 0.02%~0.07%、Nb 0025%~0.10%,且须满足0.05%≤Nb+Al≤0.15%;余量为铁和不可避免的杂质。
  13. 根据权利要求1~12中任一项所述的中碳硅锰系高耐磨空冷钢,其特征在于,所述的中碳硅锰系高耐磨空冷钢机械性能指标如下:Rm≥1630Mpa,Rp0.2≥1310MPa,硬度≥49HRC,αKU(室温)≥70J/cm2,αKU(-40℃)≥50J/cm2
  14. 制备根据权利要求1-13中任一项所述的中碳硅锰系高耐磨空冷钢的方法,其特征在于,包括以下步骤:
    i)按照所需的组分及其质量百分比将原料混合并进行冶炼,得到具有所需要的组分及其合适的质量百分比的钢水;
    ii)将冶炼所得到钢水,进行热加工成形得到待热处理的产品;随后将待热处理的产品进行加热奥氏体化并放于空气中冷却至室温,和
    iii)回火。
  15. 根据权利要求14所述的方法,其特征在于,加热到890℃~980℃下进行奥氏体化并放于空气中冷却至室温后,再在160℃~550℃进行保温回火。
  16. 根据权利要求1-13中任一项所述的中碳硅锰系高耐磨空冷钢在制备耐磨件中的用途。
  17. 根据权利要求16所述的用途,其特征在于,所述耐磨件选自耙链、钻杆、耙齿、煤截齿、刮板、衬板、磨球、耐磨板、铲齿、掘进齿、辙叉、齿板和锤头。
PCT/CN2015/000937 2014-12-30 2015-12-29 一种中碳硅锰系高耐磨空冷钢 WO2016106770A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410849245.1A CN104561813B (zh) 2014-12-30 2014-12-30 一种中碳硅锰系高耐磨空冷钢
CN201410849245.1 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016106770A1 true WO2016106770A1 (zh) 2016-07-07

Family

ID=53078877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000937 WO2016106770A1 (zh) 2014-12-30 2015-12-29 一种中碳硅锰系高耐磨空冷钢

Country Status (2)

Country Link
CN (1) CN104561813B (zh)
WO (1) WO2016106770A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074622A (zh) * 2022-06-08 2022-09-20 中实(洛阳)新型材料有限公司 一种球磨机耐磨衬板材料及其生产工艺

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104561813B (zh) * 2014-12-30 2017-06-16 中车戚墅堰机车车辆工艺研究所有限公司 一种中碳硅锰系高耐磨空冷钢

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262468A (ja) * 2006-03-28 2007-10-11 Nippon Steel Corp 靭性と溶接性に優れた機械構造用高強度シームレス鋼管およびその製造方法
CN101586216A (zh) * 2009-06-25 2009-11-25 莱芜钢铁集团有限公司 一种超高强韧贝氏体钢及其制造方法
CN102534432A (zh) * 2012-01-10 2012-07-04 清华大学 贝氏体耐磨钢及钢管制造和回火方法
CN102936699A (zh) * 2012-10-23 2013-02-20 安徽荣达阀门有限公司 冷冲模用模具钢
CN104561813A (zh) * 2014-12-30 2015-04-29 南车戚墅堰机车车辆工艺研究所有限公司 一种中碳硅锰系高耐磨空冷钢

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194113C (zh) * 2003-04-30 2005-03-23 清华大学 锰-硅-硌系空冷粒状贝氏体与铁素体复相钢
CN1210430C (zh) * 2003-08-01 2005-07-13 清华大学 中低碳锰系空冷贝氏体钢
CN102021492B (zh) * 2009-09-15 2012-11-28 鞍钢股份有限公司 一种低碳低合金耐磨钢及其生产方法
CN103409689A (zh) * 2013-07-31 2013-11-27 内蒙古包钢钢联股份有限公司 一种稀土处理的铁路辙叉专用贝氏体/马氏体钢

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262468A (ja) * 2006-03-28 2007-10-11 Nippon Steel Corp 靭性と溶接性に優れた機械構造用高強度シームレス鋼管およびその製造方法
CN101586216A (zh) * 2009-06-25 2009-11-25 莱芜钢铁集团有限公司 一种超高强韧贝氏体钢及其制造方法
CN102534432A (zh) * 2012-01-10 2012-07-04 清华大学 贝氏体耐磨钢及钢管制造和回火方法
CN102936699A (zh) * 2012-10-23 2013-02-20 安徽荣达阀门有限公司 冷冲模用模具钢
CN104561813A (zh) * 2014-12-30 2015-04-29 南车戚墅堰机车车辆工艺研究所有限公司 一种中碳硅锰系高耐磨空冷钢

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115074622A (zh) * 2022-06-08 2022-09-20 中实(洛阳)新型材料有限公司 一种球磨机耐磨衬板材料及其生产工艺

Also Published As

Publication number Publication date
CN104561813B (zh) 2017-06-16
CN104561813A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
CN104831189B (zh) Hb600级非调质耐磨钢板及其制造方法
CN101497964B (zh) 高硬韧低合金耐磨钢及其应用
CN104357758B (zh) 一种超硬粒子增强型马氏体耐磨钢板及其制造方法
CN1293222C (zh) 一种高硬度高韧性易火焰切割的耐磨钢板及其制备方法
CN102021492B (zh) 一种低碳低合金耐磨钢及其生产方法
CN104480406A (zh) 一种低合金高强高韧钢板及其制造方法
AU2018412622A1 (en) Austenitic wear-resistant steel plate
US20150252457A1 (en) Method for producing molten steel having high wear resistance and steel having said characteristics
EP3358035A1 (en) Manufacturing method for multi-element alloyed, high-strength, high-wear-resistant steel and hot-rolled plate
CN102041458A (zh) 低合金耐磨钢及其制造方法
JP2005256169A (ja) 低温靱性に優れた耐摩耗鋼板およびその製造方法
CN104388821A (zh) TiC粒子增强型复相组织高塑性耐磨钢板及制造方法
CN102337455A (zh) 一种稀土处理的高韧性耐磨钢板
CN110499474A (zh) 耐高温400hb耐磨钢板及其生产方法
CN109609848A (zh) 高强韧抗疲劳纳米析出物增强马-奥复相钢及其制备方法
JP2016050350A (ja) 耐ピッチング性および耐摩耗性に優れる高強度高靱性機械構造用鋼製部品およびその製造方法
CN106893941B (zh) 一种低合金耐磨钢及其热处理方法
CN108193134A (zh) 一种碎煤机锤头用新型低合金钢及其热处理方法
CN108070780A (zh) 一种珠光体铬钼合金钢及其热处理方法
JP4645307B2 (ja) 低温靭性に優れた耐摩耗鋼およびその製造方法
WO2016106770A1 (zh) 一种中碳硅锰系高耐磨空冷钢
CN108118245A (zh) 一种耐磨齿板用新型低合金耐磨钢及其热处理方法
CN112048668A (zh) 一种高硬度盾构刀具用钢及其制造方法
CN102719766A (zh) 一种高强耐磨用钢及其生产方法
CN107604253A (zh) 一种高淬透性Mn‑Cr系列渗碳钢

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874463

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874463

Country of ref document: EP

Kind code of ref document: A1