WO2016106470A1 - 智能指向性全双工水声通信机及其通信方法 - Google Patents

智能指向性全双工水声通信机及其通信方法 Download PDF

Info

Publication number
WO2016106470A1
WO2016106470A1 PCT/CN2014/001187 CN2014001187W WO2016106470A1 WO 2016106470 A1 WO2016106470 A1 WO 2016106470A1 CN 2014001187 W CN2014001187 W CN 2014001187W WO 2016106470 A1 WO2016106470 A1 WO 2016106470A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
duplex
vector
directional
full
Prior art date
Application number
PCT/CN2014/001187
Other languages
English (en)
French (fr)
Inventor
乔钢
刘凇佐
周锋
马璐
孙宗鑫
尹艳玲
聂东虎
Original Assignee
哈尔滨工程大学
乔钢
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工程大学, 乔钢 filed Critical 哈尔滨工程大学
Priority to PCT/CN2014/001187 priority Critical patent/WO2016106470A1/zh
Publication of WO2016106470A1 publication Critical patent/WO2016106470A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Definitions

  • the invention relates to a underwater acoustic communication device, and to a communication method of a underwater acoustic communication device, in particular to an intelligent directivity full-duplex underwater acoustic communication device and a communication method thereof.
  • underwater waves are usually used as communication signal carriers for underwater communication purposes, namely underwater acoustic communication technology.
  • Hydroacoustic communication technology has important value in marine resource survey and marine science survey, and is one of the research hotspots in the field of marine technology in the world. From the beginning of the 19th century to the present, underwater acoustic communication technology has been extensively researched and developed. People gradually began to study underwater acoustic communication machines, and developed underwater acoustic communication modems covering different communication distances, different communication rates, and various uses.
  • a full-duplex hydroacoustic communication device capable of suppressing local emission interference is disclosed in the patent document of the publication No. CN101060349B.
  • the technical solution uses a receiving hydrophone to receive a mixed signal when transmitting a signal, the mixed signal including a locally transmitted communication.
  • the communication signal transmitted by the signal and another communication device at a distance suggests that an adaptive filter is used in the communication device to achieve local transmission signal interference suppression, but the amplitude of the transmitting transducer when transmitting the signal relative to the receiving hydrophone Larger, the mixed signal collected by the hydrophone will produce a limiting phenomenon, and thus the adaptive filtering module in the communication communication machine cannot be effectively used to realize the extraction of the communication signal transmitted by another communication machine, and it is difficult to effectively realize the correct solution of the signal. Reconcile full-duplex communication.
  • the intelligent directional full-duplex hydroacoustic communication machine of the invention comprises a transmitting transducer array, an electronic cabin and a vector hydrophone, wherein the electronic cabin comprises a watertight connector, a modem board, a power amplifier, a vector signal amplifier and Compass module
  • the palette is connected to the watertight connector, the power amplifier, the vector signal amplifier and the compass, the power amplifier is connected to the transmitting transducer array, the vector signal amplifier is connected to the vector hydrophone, and the electronic cabin is provided with other modules in the electronic cabin. Power supply module.
  • the intelligent directional full-duplex hydroacoustic communication machine of the present invention may further comprise:
  • the modem board comprises a DSP, an analog-to-digital converter A/D and a digital-to-analog converter D/A.
  • the DSP is used for implementing a communication operation, a directional emission operation of a transmitting transducer array, and a vector hydrophone orientation.
  • Receiving operation, A/D converts the vector analog signal amplified by the vector signal amplifier into a digital signal
  • the DSP collects the data to the DSP through A/D
  • the D/A is used to convert the digital signal generated by the DSP modulation into an analog signal.
  • the power amplifier adopts a multi-channel class D power amplifier, and the number of channels is the same as the number of elements of the transmitting transducer.
  • the transmitting transducer array adopts a planar transducer circular array composed of a plurality of omnidirectional transducer elements, and uses a delay beamforming method to achieve specific directivity, that is, when different transducer array elements output different times When the communication signal is delayed, the transmission of the communication signal in a specific direction is realized.
  • the vector hydrophone is a vector hydrophone that can measure a sound pressure signal and two vibration speed signals at the same point of the sound field, and adopts a joint processing method of sound pressure and vibration speed signals to realize receiving signals in a specific direction.
  • the electronic rotation is performed by the 8-word directivity of the hydrophone, the zero point points to the direction of the interference signal, and the 8 words point to the direction of the signal to be received.
  • the vector signal amplifier is a vector signal amplifier comprising an analog voltage signal amplifier and two charge amplifiers.
  • the communication method of the intelligent directional full-duplex hydroacoustic communication machine based on the present invention is:
  • An intelligent directional full-duplex hydroacoustic communication machine A is used to transmit signals, and another intelligent directional full-duplex hydroacoustic communication machine B is used to receive signals;
  • the compass, the modem board, the power amplifier and the transmitting transducer array are involved in the operation, and the DSP of the modulation and demodulation board in the intelligent directional full-duplex hydroacoustic communication machine A passes through a serial port.
  • the DSP of the modulation and demodulation board in the intelligent directional full-duplex hydroacoustic communication machine A passes through a serial port.
  • is the angle of the transmitting transducer array relative to the north direction in the intelligent directional full-duplex hydroacoustic communication machine A, and the intelligent directional full-duplex hydroacoustic communication machine B is relative to
  • the intelligent directional full-duplex hydroacoustic communication machine A has an angle value of ⁇ , and the intelligent directional full-duplex hydroacoustic communication machine A is a transmitting beam with respect to the ⁇ - ⁇ degree of the array, and each D/A signal is calculated by the angle.
  • the delay value, the DSP outputs each delayed digital signal to D/A, D/A then sends the generated analog signal into the power amplifier, and finally drives the transducer to generate directional emission of underwater acoustic communication. signal;
  • the compass, the modem board, the vector signal amplifier and the vector hydrophone are involved in the work.
  • the signal received by the vector hydrophone is output to the A/ on the modem board through the vector amplifier.
  • D DSP collects the vector signal into the DSP through A/D for processing, and the DSP on the modem board obtains the azimuth angle of the compass through the serial port. Since the vector hydrophone coordinates are the same as the compass coordinates, the vector hydrophone is relative to the compass.
  • the angle of the true north direction is ⁇
  • the intelligent directivity full-duplex hydroacoustic communication machine A is ⁇ with respect to the intelligent directivity full-duplex hydroacoustic communication machine B
  • the vector hydrophone receiving signal is guided by electronic rotation to Direction, where Degree, the directional reception of the intelligent directivity full-duplex hydroacoustic communication machine A signal is formed, and the interference of signals in other directions is suppressed.
  • the modulation and demodulation board adopts the time-delay beamforming technology to realize the directional transmission of the communication signal when the signal is transmitted, and adopts the sound pressure vibration speed joint processing method to realize the directional reception of the communication signal when the signal is received, and the signal transmission and reception can be simultaneously performed.
  • coordinate conversion is performed in conjunction with the angle of rotation of the underwater acoustic communication machine outputted in the water to form a directivity in a specific direction with respect to the earth coordinates.
  • the directional transmission and directional reception technology are adopted to suppress local interference and realize full-duplex underwater acoustic communication.
  • the intelligent directional full-duplex hydroacoustic communication machine transmits a signal in a specific direction, the effect of energy focusing is achieved, and the transmission efficiency is improved; when receiving a signal, interference other than a specific receiving direction can be suppressed, and a specific direction can be realized.
  • Signal reception First, it can effectively reduce system power consumption and improve processing gain; secondly, it can suppress local emission interference and realize full-duplex underwater acoustic communication; third is suitable for use in underwater acoustic communication networks, which can solve hidden terminals and exposed terminals. problem.
  • the intelligent directional full-duplex hydroacoustic communication machine and the communication method thereof adopt the transducer array to realize signal directional transmission, and the vector hydrophone is used for directional reception of signals, and the spatial directivity of the vector hydrophone can be very good.
  • the strong signal interference generated by the transmitting transducer is suppressed, thereby achieving full-duplex communication.
  • FIG. 1 is a schematic structural view of a smart directional full-duplex hydroacoustic communication machine
  • FIG. 2 is a hardware connection diagram of a smart directional full-duplex hydroacoustic communication machine
  • Figure 4 is a flow chart of directional transmit signal processing
  • Figure 5 is a flow chart of processing a directional receive vector signal
  • FIG. 6 is a schematic diagram of a communication network formed by a conventional non-directional underwater acoustic communication device
  • FIG. 7 is a schematic diagram of a communication network formed by a smart directional full-duplex hydroacoustic communication machine.
  • the intelligent directional full-duplex hydroacoustic communication machine of the present invention comprises a transmitting transducer array 3, an electronic cabin 2 and a vector hydrophone 1 connected in series.
  • the electronic cabin includes a power module, a watertight connector 4, a modem board, a power amplifier, a vector signal amplifier, a compass, and a power module.
  • the modem board is connected to the watertight connector, the power amplifier, the vector signal amplifier, the compass, the power amplifier is connected to the transmitting transducer array, the vector signal amplifier is connected to the vector hydrophone, and the power module is connected to all the units in the electronic cabin. .
  • the modem board comprises a DSP, an analog-to-digital converter A/D and a digital-to-analog converter D/A.
  • the DSP is used to implement a communication algorithm, a directional transmission algorithm of a transmitting transducer array, and a directional receiving algorithm of a vector hydrophone.
  • AD converts the vector analog signal amplified by the vector signal amplifier into a digital signal
  • the DSP collects the data to the DSP through A/D
  • the D/A is used to convert the digital signal generated by the DSP modulation into an analog signal.
  • the power amplifier uses a multi-channel class D power amplifier with high power conversion efficiency, and the number of channels is the same as that of the transmitting transducer.
  • the transmitting transducer array refers to a planar transducer circular array composed of a plurality of omnidirectional transducer elements, and adopts a time-lapse beamforming method to achieve specific directivity, that is, when different transducer array elements output different times When the communication signal is delayed, the transmission of the communication signal in a specific direction is realized.
  • the vector hydrophone refers to a vector hydrophone that can measure a sound pressure signal and two vibration speed signals at the same point of the sound field, and adopts a combination of sound pressure and vibration speed signals to realize receiving signals in a specific direction, and utilizes
  • the 8-word directivity of the hydrophone is electronically rotated, the zero point points to the direction of the interference signal, and the 8 words point to the direction of the signal to be received.
  • the vector signal amplifier refers to a vector signal amplifier comprising an analog voltage signal amplifier and two charge amplifiers for amplifying the received signal of the vector hydrophone.
  • the compass finger can measure the magnetic compass with respect to the angle of the true north direction for measuring the rotation angle of the underwater acoustic communication machine, and adjust the signal transmission and reception directions with reference to the angle in the modem board.
  • the watertight connector is an 8-pin connector, two of which are used as system power switches, and the other six cores are used as two RS232 interfaces, connected to the DSP on the modem board, and one is used as a serial communication interface between the communication unit and the PC.
  • the configuration of the modem communication algorithm parameters and the reading of the communication machine state data; and the serial communication interface of the communication device and the external sensor realizes the configuration of the sensor and the reading of the parameters.
  • the core processor DSP model on the modem board selects TMS320C6748, the D/A chip model selects DAC904E, the A/D chip model selects AD7643, the power amplifier adopts multi-channel class D power amplifier with high power conversion efficiency, and the transmitting transducer array has 8
  • the array element the vector hydrophone includes a sound pressure channel and two mutually orthogonal vibration velocity channels, the vector signal amplifier includes a sound pressure signal amplifier, two vibration signal amplifiers, and the compass uses a magnetic compass to provide directions. Benchmark, measuring the angle at which the phase water acoustic communication machine rotates.
  • the invention is particularly applicable to power limited underwater acoustic communication networks.
  • the method of the invention is based on a transmitting transducer array, adopting a delay beamforming technology to realize directional transmission of a communication signal, and adopting a single vector hydrophone sound pressure velocity signal joint processing to realize a letter
  • the directional reception combined with the rotation angle of the communication machine measured by the compass, realizes the directional transmission and reception of the communication signal with respect to the earth coordinate.
  • the following describes an example of how the underwater acoustic communication device of the present invention implements the directional transmission and the directional reception function.
  • the two underwater acoustic communication machines respectively name the communication machine A and the communication machine B.
  • the following description shows that the communication machine A is used to transmit signals, and the communication machine B is used to receive signals, and vice versa.
  • the modulation mode is OFDM technology, and the communication signal frame structure is shown in FIG. 3, and the communication signal frequency range is 6-10 kHz.
  • the transmitted data is the information of the underwater acoustic depth sensor SBE39TD collected by the underwater acoustic communication machine through the serial port.
  • the DSP on the modem board of the underwater acoustic communication machine A acquires the data of the SBE39TD through a serial port, and obtains the azimuth angle ⁇ of the compass through another serial port.
  • the signal processing flow in DSP is shown in Figure 4.
  • the encoding of the SBE39TD data and OFDM modulation are implemented in the DSP, and the other party calculates the delay value of each transmitted signal during beamforming according to the angle of the transmitted signal.
  • is the angle of the transmitting transducer array in the communication machine A with respect to the north direction. If the angle value of the communication machine B relative to the communication machine A is ⁇ , the communication device A needs to be relatively For the transmit beam of the ⁇ - ⁇ degree of the array, the delay value of each D/A signal is calculated by the angle, and the DSP outputs each delayed digital signal to D/A, respectively, and D/A will generate The analog signal is fed into the power amplifier, and finally the transducer is driven to produce a directional transmitted underwater acoustic communication signal.
  • the underwater acoustic communication signal When the underwater acoustic communication signal is directionally received, there are compasses, modems, vector signal amplifiers, and vector hydrophones.
  • the signal received by the vector hydrophone is output to the A/D on the modem board through the vector amplifier.
  • the DSP collects the vector signal into the DSP through A/D for processing, and the DSP on the modem board is obtained through the serial port.
  • the azimuth angle ⁇ of the compass Since the vector hydrophone coordinates are the same as the compass coordinates, the angle of the vector hydrophone relative to the true north direction is ⁇ , assuming that the angle value of the communicator A relative to the communicator B is ⁇ , and the vector hydrophone receiving signal is guided by electronic rotation.
  • To Direction, where Degree forming directional reception of the signal of the communication machine A, while suppressing interference of signals in other directions.
  • the communication signal demodulation process is shown in Figure 5.
  • the signal is passed.
  • the FM signal is coarsely synchronized and finely synchronized.
  • the so-called coarse synchronization is the timing result obtained by the local LFM and the received LFM.
  • the so-called fine synchronization generates a Doppler-affected local LFM and correlates with the received LFM to obtain a timing result.
  • Signal synchronization and timing are performed according to certain detection criteria.
  • the first LFM signal in the header portion is used for coarse synchronization
  • the middle single-frequency signal is used to measure the Doppler factor
  • the FFT and parabola fitting method is used to measure the single-frequency signal of known frequency to calculate the Doppler.
  • the compression factor, the second LFM is used for fine synchronization.
  • the channel estimation uses a pilot-based channel estimation method. According to the influence of the multi-path and time-varying effect of the underwater acoustic channel, the method of applying the block pilot, the comb pilot or the joint estimation of the two pilots is flexibly selected.
  • the specific algorithm of the channel estimation mainly selects the LS algorithm. Linear interpolation is selected for the comb pilot interpolation filter.
  • the sound pressure signal p and the vibration speed signals v x , v y collected by the vector hydrophone can be appropriately combined, and the single vector sensor can also form various directivity.
  • the combined directivity v c and v s of the vibration speed sensor are:
  • the data is decoded.
  • the convolutional code is decoded using a Viterbi decoder.
  • Viterbi decoding takes advantage of the special structure of the coding grid, which reduces the computational complexity.
  • the Viterbi algorithm considers the removal of the path on the trellis diagram that is unlikely to be the maximum likelihood selection object. For all states, such a routing operation will be performed, and the decoder continues to deepen on the trellis diagram, with minimal removal possibilities. The path to the decision.
  • This example illustrates the advantages of the intelligent directional hydroacoustic communication machine over the conventional non-directional underwater acoustic communication device and how the intelligent directional hydroacoustic communication device realizes full duplex communication by means of FIGS. 6 and 7.
  • FIG. 6 is a schematic diagram of a hydroacoustic communication network formed by an omnidirectional transmitting and receiving underwater acoustic communication device.
  • the communication devices A and B form an omnidirectional transmitting signal during communication, and the underwater acoustic communication device that does not need to participate in the communication at this time is required.
  • B and C cannot receive other communication machine signals, and cannot work normally at the same time.
  • Figure 7 is a schematic diagram of a communication network based on intelligent directional hydroacoustic communication machine.
  • the diagonal stripe pattern is a schematic diagram of emission directivity, and the square stripe pattern is reception directivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)

Abstract

本发明提供的是一种智能指向性全双工水声通信机及其通信方法。包括发射换能器阵、电子舱和矢量水听器,所述电子舱中包括水密接插件、调制解调板、功率放大器、矢量信号放大器和罗经模块,调制解调板分别与水密接插件、功率放大器、矢量信号放大器和罗经相连,功率放大器与发射换能器阵相连,矢量信号放大器与矢量水听器相连,电子舱中设置有为电子舱中的其它模块供电的电源模块。本发明采用换能器阵实现信号定向发射,提高了发射效率;采用矢量水听器实现信号定向接收,提高了信号接收增益;定向发射和接收算法在DSP中实现。矢量水听器的空间指向性可以很好的抑制本地发射换能器产生的强信号干扰,进而实现全双工通信。

Description

智能指向性全双工水声通信机及其通信方法 技术领域
本发明涉及的是一种水声通信装置,本发明也及一种水声通信装置的通信方法,具体地说是一种智能指向性全双工水声通信机及其通信方法。
背景技术
由于声波是水下信道中唯一可远距离传输的信号形式,因此通常以声波作为通信信号载体实现水下通信目的,即水声通信技术。水声通信技术在海洋资源调查、海洋科学考察等方面具有重要的价值,是国际上海洋技术领域的研究热点之一。从19世纪初到现在,水声通信技术得到了广泛的研究和发展。人们逐渐开始研究水声通信机,发展了覆盖不同通信距离、不同通信速率、多种用途的水声通信modem。
公开号为CN101060349B的专利文件中公开一种能够抑制本地发射干扰的全双工水声通信机,该技术方案在发射信号时,采用接收水听器接收混合信号,该混合信号包括本地发射的通信信号和另一个通信机在远处发送的通信信号,提出在通信机中采用自适应滤波器实现本地发射信号干扰抑制,但相对于接收水听器来说,当发射换能器发射信号时幅度较大,接收水听器采集到的混合信号会产生限幅的现象,进而无法有效的利用通信通信机中自适应滤波模块实现另一个通信机发射通信信号的提取,难以有效实现信号的正确解调和全双工通信。
发明内容
本发明的目的在于提供一种能够实现全双工水声通信,特别适合应用于功率受限的水声通信网络中的智能指向性全双工水声通信机。本发明的目的还在于提供一种基于智能指向性全双工水声通信机的通信方法。
本发明的智能指向性全双工水声通信机包括发射换能器阵、电子舱和矢量水听器,所述电子舱中包括水密接插件、调制解调板、功率放大器、矢量信号放大器和罗经模块,调制解 调板分别与水密接插件、功率放大器、矢量信号放大器和罗经相连,功率放大器与发射换能器阵相连,矢量信号放大器与矢量水听器相连,电子舱中设置有为电子舱中的其它模块供电的电源模块。
本发明的智能指向性全双工水声通信机还可以包括:
1、所述调制解调板包括DSP、模数转换器A/D和数模转换器D/A,DSP用于实现通信运算、发射换能器阵的定向发射运算和矢量水听器的定向接收运算,A/D将矢量信号放大器放大后的矢量模拟信号转化为数字信号,DSP通过A/D将数据采集到DSP,D/A用来将DSP调制产生的数字信号变为模拟信号。
2、所述功率放大器,采用多能道D类功率放大器,通道数与发射换能器阵元数相同。
3、所述发射换能器阵,采用多个全向换能器阵元组成的平面换能器圆阵,采用时延波束形成法实现特定指向性,即不同换能器阵元输出不同时延的通信信号时,实现通信信号在特定方向的发射。
4、所述矢量水听器,是可以在声场同点测得一路声压信号和两路振速信号的矢量水听器,采用声压和振速信号联合处理的方式实现接收特定方向的信号,利用水听器的8字指向性进行电子旋转,零点指向干扰信号方向,8字指向待接收信号方向。
5、所述矢量信号放大器,是含有一路模拟电压信号放大器和两路电荷放大器的矢量信号放大器。
基于本发明的智能指向性全双工水声通信机的通信方法为:
一个智能指向性全双工水声通信机A用来发射信号,另一个智能指向性全双工水声通信机B用来接收信号;
水声通信信号定向发射时,参与工作的有罗经、调制解调板、功率放大器和发射换能器阵,智能指向性全双工水声通信机A中调制解调板上的DSP通过一个串口获取外挂传感器采集的数据,通过另一个串口获得罗经的方位角度α在DSP中对外挂传感器采集的数据进 行编码、OFDM调制,同时根据发射信号的角度计算波束形成时每一路发射信号的时延值;
由于换能器阵坐标与罗经坐标相同,α即为智能指向性全双工水声通信机A中发射换能器阵相对于北向的角度,智能指向性全双工水声通信机B相对于智能指向性全双工水声通信机A角度值为β,智能指向性全双工水声通信机A成相对于基阵β-α度的发射波束,通过该角度计算每一路D/A信号的时延值,DSP将每一路时延后的数字信号分别输出到D/A,D/A再将产生的模拟信号送入到功率放大器中,最后驱动换能器产生定向发射的水声通信信号;
水声通信信号定向接收时,参与工作的有罗经、调制解调板、矢量信号放大器和矢量水听器,首先矢量水听器接收到的信号经过矢量放大器输出到调制解调板上的A/D,DSP通过A/D将矢量信号采集到DSP中进行处理,同时调制解调板上的DSP通过串口得到罗经的方位角度ε由于矢量水听器坐标与罗经坐标相同,矢量水听器相对于真北方向的角度为ε,智能指向性全双工水声通信机A相对于智能指向性全双工水声通信机B角度值为δ,将矢量水听器接收信号通过电子旋转引导到
Figure PCTCN2014001187-appb-000001
方向,其中
Figure PCTCN2014001187-appb-000002
度,形成对智能指向性全双工水声通信机A信号的定向接收,同时抑制其他方向信号的干扰。
调制解调板在信号发射时采用时延波束形成技术实现通信信号的定向发射,在信号接收时采用声压振速联合处理方法实现通信信号定向接收,信号的发射和接收可以同时进行。为实现相对大地方向的发射和接收指向性,结合罗经输出的水声通信机在水中旋转的角度,进行坐标转换,形成相对大地坐标的特定方向的指向性。采用定向发射和定向接收技术,抑制本地干扰,实现全双工水声通信。
由于智能指向性全双工水声通信机在发射信号时,实现特定方向的发射,达到能量聚焦的效果,提高了发射效率;接收信号时,可以抑制除特定接收方向外的干扰,实现特定方向信号的接收。第一,可以有效的降低系统功耗,提高处理增益;第二能够抑制本地发射干扰,实现全双工水声通信;第三适合应用于水声通信网络中,可以解决隐藏终端和暴露终端的问题。
本发明的智能指向性全双工水声通信机及其通信方法,采用换能器阵实现信号定向发射,采用矢量水听器实现信号定向接收,矢量水听器的空间指向性可以很好的抑制发射换能器产生的强信号干扰,进而实现全双工通信。
附图说明
图1是智能指向性全双工水声通信机结构示意图;
图2是智能指向性全双工水声通信机中硬件连接图;
图3通信信号帧结构;
图4是定向发射信号处理流程图;
图5是定向接收矢量信号处理流程图;
图6是传统无指向性水声通信机构成的通信网络示意图;
图7是智能指向性全双工水声通信机构成的通信网络示意图。
具体实施方式
下面结合附图,进一步说明本发明的特点和功能。
结合图1,本发明的智能指向性全双工水声通信机包括依次相连的发射换能器阵3、电子舱2和矢量水听器1三部分。结合图2,电子舱中包括电源模块、水密接插件4、调制解调板、功率放大器、矢量信号放大器、罗经和电源模块七部分。其中调制解调板分别与水密接插件、功率放大器、矢量信号放大器、罗经相连,功率放大器与发射换能器阵相连,矢量信号放大器与矢量水听器相连,电源模块与电子舱中所有单元相连。
所述调制解调板包括DSP、模数转换器A/D和数模转换器D/A,DSP用来实现通信算法、发射换能器阵的定向发射算法和矢量水听器的定向接收算法,AD将矢量信号放大器放大后的矢量模拟信号转化为数字信号,DSP通过A/D将数据采集到DSP,D/A用来将DSP调制产生的数字信号变为模拟信号。
所述功率放大器,采用具有高电源转换效率的多能道D类功率放大器,通道数与发射换能器阵元数相同。
所述发射换能器阵是指,采用多个全向换能器阵元组成的平面换能器圆阵,采用时延波束形成法实现特定指向性,即不同换能器阵元输出不同时延的通信信号时,实现通信信号在特定方向的发射。
所述矢量水听器是指,可以在声场同点测得一路声压信号和两路振速信号的矢量水听器,采用声压和振速信号联合处理的方式实现接收特定方向的信号,利用水听器的8字指向性进行电子旋转,零点指向干扰信号方向,8字指向待接收信号方向。
所述矢量信号放大器是指含有一路模拟电压信号放大器和两路电荷放大器的矢量信号放大器,用于矢量水听器接收信号的放大.
所述罗经指可以测定相对于正北方向角度的的磁罗经,用于测量水声通信机的旋转角度,在调制解调板中参考该角度调整信号发射和接收方向。
水密接插件为8芯接头,将其中2芯作为系统电源开关,另外6芯作为2个RS232接口,与调制解调板上的DSP相连,一个作为通信机与PC机的串行通信接口,实现modem通信算法参数的配置和通信机状态数据的读取;另一个作为通信机与外挂传感器的串行通信接口,实现对传感器的配置和参数的读取。
调制解调板上的核心处理器DSP型号选用TMS320C6748,D/A芯片型号选用DAC904E,A/D芯片型号选择AD7643,功放采用高电源转换效率的多通道D类功放,发射换能器阵有8个阵元,矢量水听器包括一路声压通道和两路相互正交的振速通道,矢量信号放大器包括一路声压信号放大器,两路振速信号放大器,罗经采用磁罗经,用来提供方向基准,测量相水声通信机旋转的角度。
本发明特别适用于功率受限的水声通信网络中。本发明的方法基于发射换能器阵,采用时延波束形成技术实现通信信号定向发射,采用单矢量水听器声压振速信号联合处理实现信 号定向接收,结合罗经测得的通信机旋转角度,实现通信信号相对于大地坐标的定向发射和接收。下面举例对本发明的水声通信机如何实现定向发射和定向接收功能进行说明。
两个水声通信机分别命名通信机A和通信机B,下面说明中通信机A用来发射信号,通信机B用来接收信号,反之亦然。调制方式为OFDM技术,通信信号帧结构如图3所示,通信信号频率范围6-10kHz。传输的数据为水声通信机通过串口采集外挂温度深度传感器SBE39TD的信息。
水声通信信号定向发射时,参与工作的有罗经、调制解调板、功率放大器、发射换能器阵。首先水声通信机A中调制解调板上的DSP通过一个串口获取SBE39TD的数据,通过另一个串口获得罗经的方位角度α。DSP中信号处理流程如图4所示,一方面,在DSP中实现对SBE39TD数据的编码、OFDM调制,另一方根据发射信号的角度计算波束形成时每一路发射信号的时延值。
由于换能器阵坐标与罗经坐标相同,α即为通信机A中发射换能器阵相对于北向的角度,假设通信机B相对于通信机A角度值为β,则通信机A需成相对于基阵β-α度的发射波束,通过该角度计算每一路D/A信号的时延值,DSP将每一路时延后的数字信号分别输出到D/A,D/A再将产生的模拟信号送入到功率放大器中,最后驱动换能器产生定向发射的水声通信信号。
水声通信信号定向接收时,参与工作的有罗经、调制解调板、矢量信号放大器、矢量水听器。首先矢量水听器接收到的信号经过矢量放大器输出到调制解调板上的A/D,DSP通过A/D将矢量信号采集到DSP中进行处理,同时调制解调板上的DSP通过串口得到罗经的方位角度ε。由于矢量水听器坐标与罗经坐标相同,矢量水听器相对于真北方向的角度为ε,假设通信机A相对于通信机B角度值为δ,将矢量水听器接收信号通过电子旋转引导到
Figure PCTCN2014001187-appb-000003
方向,其中
Figure PCTCN2014001187-appb-000004
度,形成对通信机A信号的定向接收,同时抑制其他方向信号的干扰。
通信信号解调流程如图5所示,首先进行信号通步,如图3帧头部分所示,采用两个线 性调频信号进行粗同步和细同步。所谓粗同步即用本地LFM与接收到的LFM相关得到的定时结果,所谓细同步即生成一个受多普勒影响的本地LFM与接收到的LFM做相关得到定时结果。根据一定的检测准则来进行信号同步与定时。帧头部分的第一个LFM信号用于粗同步,中间的单频信号用于测量多普勒因子,采用FFT和抛物线拟合的方法对已知频率的单频信号进行测频,计算多普勒压缩因子,第二个LFM用于细同步。
信道估计采用基于导频的信道估计方法。根据水声信道的多途及时变性影响的大小,灵活选择应用块状导频、梳状导频抑或两种导频联合估计的方法,信道估计具体算法主要选择LS算法。对于梳状导频内插滤波器选择线性插值。
对矢量水听器采集到的声压信号p和振速信号vx、vy进行适当的组合,单矢量传感器还可以形成多种指向性。经过电子旋转后,振速传感器的组合指向性vc和vs为:
Figure PCTCN2014001187-appb-000005
其中
Figure PCTCN2014001187-appb-000006
为上述方法计算出的引导方位,即指向水声通信机A的角度,若声压和振速信号按P+V进行组合,则:
Figure PCTCN2014001187-appb-000007
从式(2)可以看出,二者都为单边指向性,p+vc的指向性极大值点对准的是引导方位
Figure PCTCN2014001187-appb-000008
方向,其指向性零点对准的是
Figure PCTCN2014001187-appb-000009
方向;而p+vs的指向性可以看做是p+vc的指向性逆时针旋转90°后得到的。
当DSP接收到的符号够一帧的长度时,开始对数据进行解码。利用Viterbi译码器对卷积码进行译码。Viterbi译码利用了编码网格的特殊结构,从而降低了计算的复杂性。Viterbi算法考虑的是去除不可能成为最大似然选择对象的网格图上的路径,对所有状态都将进行这样的选路操作,译码器不断在网格图上深入,通过去除可能性最小的路径实现判决。
本实例说明通过图6和图7来说明智能指向性水声通信机相对于传统无指向性水声通信机的优势,以及智能指向性水声通信机如何实现全双工通信。
图6是全向发射接收水声通信机构成的水声通信网络示意图,图中通信机A和B在通信时,形成全向的发射信号,此时不需要参与到通信中的水声通信机B和C无法接收其它通信机信号,不能同时正常工作;图7是基于智能指向性水声通信机的通信网络示意图,图中斜条纹图案为发射指向性示意图,方格条纹图案为接收指向性示意图,通信机E与F通信时,通信机E形成指向于F的发射指向性,不影响通信机G接收信号,同时通信机F形成指向于E的接收指向性,此时即使通信机G发射信号,也不影响通信机F接收信号,反之通信机F向通信机E发射信号进行通信时也是一样的,并且由于矢量水听器可以抑制垂直方向的干扰,所以同一个通信机的发射信号并不影响矢量水听器信号的接收,进而可以实现全双工通信功能。

Claims (7)

  1. 一种智能指向性全双工水声通信机,其特征是:包括发射换能器阵、电子舱和矢量水听器,所述电子舱中包括水密接插件、调制解调板、功率放大器、矢量信号放大器和罗经模块,调制解调板分别与水密接插件、功率放大器、矢量信号放大器和罗经相连,功率放大器与发射换能器阵相连,矢量信号放大器与矢量水听器相连,电子舱中设置有为电子舱中的其它模块供电的电源模块。
  2. 根据权利要求1所述的智能指向性全双工水声通信机,其特征是:所述调制解调板包括DSP、模数转换器A/D和数模转换器D/A,DSP用于实现通信运算、发射换能器阵的定向发射运算和矢量水听器的定向接收运算,A/D将矢量信号放大器放大后的矢量模拟信号转化为数字信号,DSP通过A/D将数据采集到DSP,D/A用来将DSP调制产生的数字信号变为模拟信号。
  3. 根据权利要求1所述的智能指向性全双工水声通信机,其特征是:所述功率放大器,采用多能道D类功率放大器,通道数与发射换能器阵元数相同。
  4. 根据权利要求1所述的智能指向性全双工水声通信机,其特征是:所述发射换能器阵,采用多个全向换能器阵元组成的平面换能器圆阵,采用时延波束形成法实现特定指向性,即不同换能器阵元输出不同时延的通信信号时,实现通信信号在特定方向的发射。
  5. 根据权利要求1所述的智能指向性全双工水声通信机,其特征是:所述矢量水听器,是可以在声场同点测得一路声压信号和两路振速信号的矢量水听器,采用声压和振速信号联合处理的方式实现接收特定方向的信号,利用水听器的8字指向性进行电子旋转,零点指向干扰信号方向,8字指向待接收信号方向。
  6. 根据权利要求1所述的智能指向性全双工水声通信机,其特征是:所述矢量信号放大器,是含有一路模拟电压信号放大器和两路电荷放大器的矢量信号放大器。
  7. 一种基于权利要求1所述的智能指向性全双工水声通信机的通信方法,其特征是:
    一个智能指向性全双工水声通信机A用来发射信号,另一个智能指向性全双工水声通信 机B用采接收信号;
    水声通信信号定向发射时,参与工作的有罗经、调制解调板、功率放大器和发射换能器阵,智能指向性全双工水声通信机A中调制解调板上的DSP通过一个串口获取外挂传感器采集的数据,通过另一个串口获得罗经的方位角度α,在DSP中对外挂传感器采集的数据进行编码、OFDM调制,同时根据发射信号的角度计算波束形成时每一路发射信号的时延值;
    由于换能器阵坐标与罗经坐标相同,α即为智能指向性全双工水声通信机A中发射换能器阵相对于北向的角度,智能指向性全双工水声通信机B相对于智能指向性全双工水声通信机A角度值为β,智能指向性全双工水声通信机A成相对于基阵β-α度的发射波束,通过该角度计算每一路D/A信号的时延值,DSP将每一路时延后的数字信号分别输出到D/A,D/A再将产生的模拟信号送入到功率放大器中,最后驱动换能器产生定向发射的水声通信信号;
    水声通信信号定向接收时,参与工作的有罗经、调制解调板、矢量信号放大器和矢量水听器,首先矢量水听器接收到的信号经过矢量放大器输出到调制解调板上的A/D,DSP通过A/D将矢量信号采集到DSP中进行处理,同时调制解调板上的DSP通过串口得到罗经的方位角度ε,由于矢量水听器坐标与罗经坐标相同,矢量水听器相对于真北方向的角度为ε,智能指向性全双工水声通信机A相对于智能指向性全双工水声通信机B角度值为δ,将矢量水听器接收信号通过电子旋转引导到
    Figure PCTCN2014001187-appb-100001
    方向,其中
    Figure PCTCN2014001187-appb-100002
    度,形成对智能指向性全双工水声通信机A信号的定向接收,同时抑制其他方向信号的干扰。
PCT/CN2014/001187 2014-12-29 2014-12-29 智能指向性全双工水声通信机及其通信方法 WO2016106470A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/001187 WO2016106470A1 (zh) 2014-12-29 2014-12-29 智能指向性全双工水声通信机及其通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/001187 WO2016106470A1 (zh) 2014-12-29 2014-12-29 智能指向性全双工水声通信机及其通信方法

Publications (1)

Publication Number Publication Date
WO2016106470A1 true WO2016106470A1 (zh) 2016-07-07

Family

ID=56283760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001187 WO2016106470A1 (zh) 2014-12-29 2014-12-29 智能指向性全双工水声通信机及其通信方法

Country Status (1)

Country Link
WO (1) WO2016106470A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375197A (zh) * 2018-10-23 2019-02-22 哈尔滨工程大学 一种小尺寸矢量阵低频散射校正方法
CN110174638A (zh) * 2019-05-21 2019-08-27 中国船舶重工集团公司第七一九研究所 一种主被动水声示位信标系统
CN110618419A (zh) * 2019-09-10 2019-12-27 中国船舶重工集团公司第七一五研究所 一种小型高频收发一体化u型基阵装置
CN111273295A (zh) * 2020-02-21 2020-06-12 北京联合声信海洋技术有限公司 一种水下测高仪
CN111780852A (zh) * 2020-05-22 2020-10-16 中国船舶重工集团公司第七一五研究所 一种实时测量低频换能器深海性能的装置及方法
CN112003650A (zh) * 2020-08-31 2020-11-27 西北工业大学 基于智能移动终端的水声通信接收装置及通信方法
CN112558003A (zh) * 2020-11-14 2021-03-26 西北工业大学 一种基于矢量定向和测距的水声网络拓扑感知方法
CN113556648A (zh) * 2021-07-12 2021-10-26 浙江大学 一种基于多波束陷落波束偏转的宽容性声场定向调控方法
CN113624330A (zh) * 2021-07-12 2021-11-09 哈尔滨工程大学 一种水下目标辐射噪声测量组合体积阵及测量方法
CN114205004A (zh) * 2021-12-13 2022-03-18 天津大学 可兼容多种换能器的多模态的水下通信装置及方法
CN115001598A (zh) * 2022-04-29 2022-09-02 厦门大学 可远程遥控的水声信号发射装置
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116865876A (zh) * 2023-07-17 2023-10-10 哈尔滨工程大学 一种用于声呐浮标的双工超材料水下信号传输系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060349A (zh) * 2006-04-21 2007-10-24 中国科学院声学研究所 能够抑制本地发射干扰的全双工水声通信机
CN101335573A (zh) * 2008-08-04 2008-12-31 厦门大学 一种水声信号发射机宽带自适应匹配方法及其装置
CN101997616A (zh) * 2010-10-25 2011-03-30 中国船舶重工集团公司第七一五研究所 一种基于矢量阵mimo的高速水声通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101060349A (zh) * 2006-04-21 2007-10-24 中国科学院声学研究所 能够抑制本地发射干扰的全双工水声通信机
CN101335573A (zh) * 2008-08-04 2008-12-31 厦门大学 一种水声信号发射机宽带自适应匹配方法及其装置
CN101997616A (zh) * 2010-10-25 2011-03-30 中国船舶重工集团公司第七一五研究所 一种基于矢量阵mimo的高速水声通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, SONGZUO ET AL.: "Experimental Study of OFDM Underwater Acoustic Communication Using a Vector Hydrophone", JOURNAL OF HARBIN ENGINEERING UNIVERSITY, vol. 33, no. 8, 31 August 2012 (2012-08-31), pages 941 - 947 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109375197A (zh) * 2018-10-23 2019-02-22 哈尔滨工程大学 一种小尺寸矢量阵低频散射校正方法
CN110174638A (zh) * 2019-05-21 2019-08-27 中国船舶重工集团公司第七一九研究所 一种主被动水声示位信标系统
CN110174638B (zh) * 2019-05-21 2024-01-05 中国船舶重工集团公司第七一九研究所 一种主被动水声示位信标系统
CN110618419A (zh) * 2019-09-10 2019-12-27 中国船舶重工集团公司第七一五研究所 一种小型高频收发一体化u型基阵装置
CN111273295A (zh) * 2020-02-21 2020-06-12 北京联合声信海洋技术有限公司 一种水下测高仪
CN111780852B (zh) * 2020-05-22 2022-04-08 中国船舶重工集团公司第七一五研究所 一种实时测量低频换能器深海性能的装置及方法
CN111780852A (zh) * 2020-05-22 2020-10-16 中国船舶重工集团公司第七一五研究所 一种实时测量低频换能器深海性能的装置及方法
CN112003650A (zh) * 2020-08-31 2020-11-27 西北工业大学 基于智能移动终端的水声通信接收装置及通信方法
CN112558003B (zh) * 2020-11-14 2023-07-04 西北工业大学 一种基于矢量定向和测距的水声网络拓扑感知方法
CN112558003A (zh) * 2020-11-14 2021-03-26 西北工业大学 一种基于矢量定向和测距的水声网络拓扑感知方法
CN113624330A (zh) * 2021-07-12 2021-11-09 哈尔滨工程大学 一种水下目标辐射噪声测量组合体积阵及测量方法
CN113556648A (zh) * 2021-07-12 2021-10-26 浙江大学 一种基于多波束陷落波束偏转的宽容性声场定向调控方法
CN113624330B (zh) * 2021-07-12 2023-11-17 哈尔滨工程大学 一种水下目标辐射噪声测量组合体积阵及测量方法
CN114205004A (zh) * 2021-12-13 2022-03-18 天津大学 可兼容多种换能器的多模态的水下通信装置及方法
CN114205004B (zh) * 2021-12-13 2024-01-19 天津大学 可兼容多种换能器的多模态的水下通信装置及方法
CN115001598A (zh) * 2022-04-29 2022-09-02 厦门大学 可远程遥控的水声信号发射装置
CN116400408A (zh) * 2023-06-09 2023-07-07 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116400408B (zh) * 2023-06-09 2023-08-18 厦门大学 具有在线数据传输和水下定位功能的智能海底地震仪
CN116865876A (zh) * 2023-07-17 2023-10-10 哈尔滨工程大学 一种用于声呐浮标的双工超材料水下信号传输系统
CN116865876B (zh) * 2023-07-17 2023-12-19 哈尔滨工程大学 一种用于声呐浮标的双工超材料水下信号传输系统

Similar Documents

Publication Publication Date Title
WO2016106470A1 (zh) 智能指向性全双工水声通信机及其通信方法
US9444556B1 (en) Underwater acoustic array, communication and location system
US9503202B2 (en) Underwater acoustic array, communication and location system
Song et al. Experimental demonstration of underwater acoustic communication by vector sensors
CN109991567B (zh) 一种水下滑翔机四面体阵三维被动测向方法
CN205139359U (zh) 一种基于fpga麦克风阵列室内声源定位系统
US20170026135A1 (en) Underwater acoustic array, communication and location system
CN109405954B (zh) 一种基于矢量水听器阵列的uuv移动水声通信技术
Ren et al. A novel multiple sparse source localization using triangular pyramid microphone array
CN108549052A (zh) 一种时频-空域联合加权的圆谐域伪声强声源定位方法
CN109597021A (zh) 一种波达方向估计方法及装置
CN101471734A (zh) 一种多发多收声定位网络系统及其定位方法
Tang et al. A modulation method of parametric array for underwater acoustic communication
RU2158430C2 (ru) Способ определения пеленга на источник излучения и устройство для его осуществления
CN109884580A (zh) 水下一维doa估计方法和装置
KR102167652B1 (ko) 수중환경 모니터링 시스템
CN109460604B (zh) 一种电磁波极化快速判决方法
CN108964737A (zh) 一种基于圆阵列的超指向性水下通信接收机及通信方法
CN111049555A (zh) 基于协同式mimo探通一体化的水下设备簇
CN109932683A (zh) 一种基于仿生技术的小尺度阵列测向方法
Bozzi et al. Acoustic vector sensor underwater communications in the Makai experiment
Lim et al. Design of a multimode piezoelectric spherical vector sensor for a cardioid beam pattern
CN113504504B (zh) 一种水下高精度一维doa估计方法
CN211318725U (zh) 一种带有指向性麦克风的声源定位装置
Xiong et al. A Novel Efficient Passive Spatial Orientation Detection Method of UMT Enabled by ISB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14909283

Country of ref document: EP

Kind code of ref document: A1