CN108964737A - 一种基于圆阵列的超指向性水下通信接收机及通信方法 - Google Patents

一种基于圆阵列的超指向性水下通信接收机及通信方法 Download PDF

Info

Publication number
CN108964737A
CN108964737A CN201810710507.4A CN201810710507A CN108964737A CN 108964737 A CN108964737 A CN 108964737A CN 201810710507 A CN201810710507 A CN 201810710507A CN 108964737 A CN108964737 A CN 108964737A
Authority
CN
China
Prior art keywords
circular array
hydrophone
signal
directive property
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810710507.4A
Other languages
English (en)
Inventor
涂晴莹
黄善和
周晗昀
任佳
万相恒
卢伟伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201810710507.4A priority Critical patent/CN108964737A/zh
Publication of CN108964737A publication Critical patent/CN108964737A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/02Transmission systems in which the medium consists of the earth or a large mass of water thereon, e.g. earth telegraphy

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开一种基于圆阵列的超指向性水下通信接收机及通信方法,包括电源供电模块、水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块;电源供电模块为水下通信接收机提供工作电压,水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块依次电连接。通过本发明有效的实现了水下移动目标的定位以及通过超指向性反卷积波束成形算法,在保证一定误码率的情况下,实现水下多个移动目标同时发送信号的功能,提高信息传输的速率,为海洋探测信息的传输提供有力的技术支撑。

Description

一种基于圆阵列的超指向性水下通信接收机及通信方法
技术领域
本发明属于水声通信技术领域,确切的说是一种基于圆阵列的超指向性水下通信接收机及通信方法。
背景技术
随着海洋事业的发展,对海洋资源与海洋环境的深入探索,海洋信息技术所扮演的角色越来越凸显,其中海洋调查技术手段也在不断的发展,在海洋探测研究、海洋工程、海洋矿产资源、海洋考古等方面都离不开水下定位与水下通信技术,具有水下定位与水下通信功能的接收机因此具有广泛的用途,这对维护国家领土主权与国家权益具有重要意义。
现阶段,相对于成熟的无线电技术,水声通信领域依然面临诸多的难题,水下尤其是深海中传输信道存在时变多径,多普勒频移等复杂的问题,加上水下信号传输的带宽资源有限,在保证一定误码率情况下,要实现水下信息传输速率的提升成为限制水声通信发展的关键因素。传统的通信接收机多采用多输入多输出(MIMO)线阵列的方式来提高通信数据传输速率,降低误码率。这样的方式能够提高的数据传输速率有限,如果要实现通信速率更大的提升,布置起来相对困难,所需阵元数较多,尺寸较大。
现有的超指向性波束成形方法主要分为两种:第一种,在满足约束条件的情况下使阵列输出的噪声功率达到最小,主要有最小方差无失真响应波束成形(MVDR)算法、白噪声增益约束法、对角加载法等;第二种,基于波束图超指向性波束成形方法,主要有波束图直接优化和期望波束拟合两种。这两种方法计算复杂度高,鲁棒性差。
发明内容
为克服上述现有技术的不足,本发明提供了一种基于圆阵列的超指向性水下通信接收机及其通信方法,有效地实现了水下高精准的定位和较高的通信速率。
本发明所采用的技术方案是:一种基于圆阵列的超指向性水下通信接收机,包括电源供电模块、水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块;电源供电模块为水下通信接收机提供工作电压,水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块依次电连接。
进一步的,所述的水声信号接收电路由依次相连的低噪声放大器、仪表放大器、混频器、低通滤波器以及A/D转换器组成,A/D转换器与数据处理模块相连,低噪声放大器与水听器圆阵列相连。
进一步的,所述电源模块提供正负15V和正负5V电压。
进一步的,所述水听器圆阵列是由均匀分布的6个水听器组成的圆形阵列。
进一步的,所述水听器是全向的水听器。
进一步的,所述水听器的最佳工作频率为15kHz。
本发明的另一目的是提供一种基于圆阵列的超指向性水下通信接收机的通信方法,该方法包括如下步骤:
水听器圆阵列接收水下移动目标发射的信号,水声信号接收电路将接收到的信号依次进行去噪、可调增益放大、混频、低通滤波以及A/D转化后输入到数据处理模块,数据处理模块采用反卷积波束成形算法得到水下移动目标发射的信号和水下移动目标的方向再对信号解调,解调为基带信号,然后使用信道估计与自适应信道均衡算法恢复出原始的基带信号,对基带信号解码得到水下移动目标发射的数字信息并通过ZigBee无线发送模块转发。
进一步的,所述数据处理模块采用反卷积波束成形算法得到移动目标发射的信号和水下移动目标的方向具体如下:
将水听器圆阵列看作一个信道,r(y)=s(x)*h(y|x)+n(y),x、y分别表示输入信号与输出信号的相位,r(y)是水听器圆阵列的输出信号,s(x)是水听器圆阵列的输入信号,h(y|x)为信道的冲激响应,水听器圆阵列的波束模式相当于信道的冲激响应,n(y)为水听器圆阵列噪声;反卷积波束成形算法首先对接收到的信号进行常规波束形成(conventionalbeamforming,简称CBF),并代入已知的阵列波束模式,也就是h(y|x),利用R‐L算法对CBF的输出波束功率进行反卷积运算,以此来分析目标功率谱的角分布情况,根据输出功率角分布估计目标方向;
使用R‐L算法来求解反卷积,R‐L算法是一种迭代算法,公式给出如下:
其中i表示迭代次数,s(i)(x)为第i次迭代还原出来的信号,s(i)(x)迭代收敛后可得到下列等式,并能求出满足下列等式唯一解;
这里的h(y|x)就是信道的冲激响应,也称为点扩散函数,同样具有平移不变的特性,即h(y|x)=h(y-x);将波束模式当做点扩散函数来处理,用CBF中波束成形能量函数B(θ)取代r(y),其中θ表示波束的指向角,CBF中的波束模式函数取代h(y-x),取代s(x),表示声源相对圆阵列的方向角,使用R‐L算法对CBF的波束功率进行反卷积迭代,最后得到恢复出来的信号s(x),也就是通过求出函数的极值点得到所要的
进一步的,所述自适应信道均衡算法为自适应迭代最小二乘法。
相对于现有技术,本发明的有益效果如下:本发明提出的接收机接受阵列尺寸小,指向性强,阵列增益大,能获得较高的信噪比,提高通信的传输速率。超指向性反卷积波束成形算法可以很好得还原信号,经过反卷积的输出波束具有更窄的主瓣宽度和更低的旁瓣电平,同时这种方法还保留了优秀的鲁棒性,计算复杂度更低。
附图说明
图1是本发明结构框图;
图2是本发明数据处理模块处理的流程图。
具体实施方式
下面结合具体实施例及附图对本发明做进一步详细说明,但本发明不局限于此。
如图1所示,本发明提供一种基于圆阵列的超指向性水下通信接收机,包括电源供电模块、水听器圆阵列、水声信号接收电路、数据处理模块(MCU)、ZigBee无线发送模块;电源供电模块为水下通信接收机提供工作电压,水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块依次电连接。所述水听器圆阵列是由均匀分布的6个水听器组成的圆形阵列,所述水听器是全向的水听器,水听器的最佳工作频率为15kHz。所述的水声信号接收电路由依次相连的低噪声放大器(INA128)、仪表放大器(VCA810)、混频器、低通滤波器以及A/D转换器组成,A/D转换器与数据处理模块相连,低噪声放大器与水听器圆阵列相连。低噪声放大器用于放大微弱信号,放大器自身的噪声非常小,以提高输出的信噪比。选用的电源供电模块采用TSP5430降压模块降压为正负15V给混频器供电,输出的正负15V电压继续使用降压模块降到正负5V给放大器和低通滤波器供电。所述数据处理模块(MCU)采用FPGA,但不限于此。
使用时,将电源供电模块、水声信号接收电路以及数据处理模块密封在水密舱内,水听器圆阵列固定在水密舱外表面,水听器圆阵列通过水密接口与水密舱内的水声信号接收电路电连接,在水密舱下挂配重;将ZigBee无线发送模块固定在主浮体上,主浮体漂浮与海面上,ZigBee无线发送模块通过水密接口与水密舱内的数据处理模块电连接,从而将数据处理模块处理后的数据通过ZigBee无线发送模块发送到母船的上位机上。同时为了采集深海的温度和盐度的变化,也可将深海温盐深仪(CTD)固定在水密舱和配重之间。
本发明提供的一种基于圆阵列的超指向性水下通信接收机的工作原理如下:
水下移动目标发射一个调制后的信号,调制后的信号经过水声信道后,水听器圆阵列接收水下移动目标发射的信号,水声信号接收电路将接收到的信号依次进行去噪、可调增益放大、混频、低通滤波以及A/D转化后输入到数据处理模块;如图2所示,数据处理模块采用反卷积波束成形算法得到水下移动目标发射的信号和水下移动目标的方向再对信号解调,解调为基带信号,然后使用信道估计与自适应信道均衡算法恢复出原始的基带信号,对基带信号解码得到水下移动目标发射的数字信息并通过ZigBee无线发送模块转发。
具体的方案是,所述数据处理模块采用反卷积波束成形算法得到移动目标发射的信号和水下移动目标的方向具体如下:
将水听器圆阵列看作一个信道,r(y)=s(x)*h(y|x)+n(y),x、y分别表示输入信号与输出信号的相位,r(y)是水听器圆阵列的输出信号,s(x)是水听器圆阵列的输入信号,h(y|x)为信道的冲激响应,水听器圆阵列的波束模式相当于信道的冲激响应,n(y)为水听器圆阵列噪声;反卷积波束成形算法首先对接收到的信号进行常规波束形成,并代入已知的阵列波束模式,也就是h(y|x),利用Richardson‐Lucy(R‐L)算法对常规波束形成(CBF)的输出波束功率进行反卷积运算,以此来分析目标功率谱的角分布情况,根据输出功率角分布估计目标方向;
使用R‐L算法来求解反卷积,R‐L算法是一种迭代算法,公式给出如下:
其中i表示迭代次数,s(i)(x)为第i次迭代还原出来的信号,s(i)(x)迭代收敛后可得到下列等式,并能求出满足下列等式唯一解;
这里的h(y|x)就是信道的冲激响应,也称为点扩散函数,同样具有平移不变的特性,即h(y|x)=h(y-x);将波束模式当做点扩散函数来处理,用常规波束形成(CBF)中波束成形能量函数B(θ)取代r(y),其中θ表示波束的指向角,CBF中的波束模式函数取代h(y-x),取代s(x),表示声源相对圆阵列的方向角,使用R‐L算法对CBF的波束功率进行反卷积迭代,最后得到我们恢复出来的信号通过求出函数的极值点得到我们所要的也就是声源相对圆阵列的方向角。
具体的方案是,所述自适应信道均衡算法可以采用自适应迭代最小二乘法。
本发明通过自适应均衡算法克服水声信道码间串扰,得到水下移动目标发射的信号及信号内包含的数字信息,通过ZigBee无线发送模块转发接收的信息到最近的母船上位机,实现了目标的精确定位以及移动目标探测信息的传输。

Claims (9)

1.一种基于圆阵列的超指向性水下通信接收机,其特征在于,包括电源供电模块、水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块等;电源供电模块为水下通信接收机提供工作电压,水听器圆阵列、水声信号接收电路、数据处理模块、ZigBee无线发送模块依次电连接。
2.根据权利要求1所述的一种基于圆阵列的超指向性水下通信接收机,其特征在于,所述的水声信号接收电路由依次相连的低噪声放大器、仪表放大器、混频器、低通滤波器以及A/D转换器组成,A/D转换器与数据处理模块相连,低噪声放大器与水听器圆阵列相连。
3.根据权利要求1所述的一种基于圆阵列的超指向性水下通信接收机,其特征在于,所述电源模块提供正负15V和正负5V电压。
4.根据权利要求1所述的一种基于圆阵列的超指向性水下通信接收机,其特征在于,所述水听器圆阵列是由均匀分布的6个水听器组成的圆形阵列。
5.根据权利要求4所述的一种基于圆阵列的超指向性水下通信接收机,其特征在于,所述水听器是全向的水听器。
6.根据权利要求5所述的一种基于圆阵列的超指向性水下通信接收机,其特征在于,所述水听器的最佳工作频率为15kHz。
7.一种基于圆阵列的超指向性水下通信接收机的通信方法,其特征在于,该方法包括如下步骤:
水听器圆阵列接收水下移动目标发射的信号,水声信号接收电路将接收到的信号依次进行去噪、可调增益放大、混频、低通滤波以及A/D转化后输入到数据处理模块,数据处理模块采用反卷积波束成形算法得到水下移动目标发射的信号和水下移动目标的方向再对信号解调,解调为基带信号,然后使用信道估计与自适应信道均衡算法恢复出原始的基带信号,对基带信号解码得到水下移动目标发射的数字信息并通过ZigBee无线发送模块转发。
8.根据权利要求7所述的一种基于圆阵列的超指向性水下通信接收机的通信方法,其特征在于,所述数据处理模块采用反卷积波束成形算法得到移动目标发射的信号和水下移动目标的方向具体如下:
将水听器圆阵列看作一个信道,r(y)=s(x)*h(y|x)+n(y),x、y分别表示输入信号与输出信号的相位,r(y)是水听器圆阵列的输出信号,s(x)是水听器圆阵列的输入信号,h(y|x)为信道的冲激响应,水听器圆阵列的波束模式相当于信道的冲激响应,n(y)为水听器圆阵列噪声;反卷积波束成形算法首先对接收到的信号进行CBF,并代入已知的阵列波束模式,也就是h(y|x),利用R‐L算法对CBF的输出波束功率进行反卷积运算,以此来分析目标功率谱的角分布情况,根据输出功率角分布估计目标方向;
使用R‐L算法来求解反卷积,R‐L算法是一种迭代算法,公式给出如下:
其中i表示迭代次数,s(i)(x)为第i次迭代还原出来的信号,s(i)(x)迭代收敛后可得到下列等式,并能求出满足下列等式唯一解;
这里的h(y|x)就是信道的冲激响应,也称为点扩散函数,同样具有平移不变的特性,即h(y|x)=h(y-x);将波束模式当做点扩散函数来处理,用CBF中波束成形能量函数B(θ)取代r(y),其中θ表示波束的指向角,CBF中的波束模式函数取代h(y-x),取代s(x),表示声源相对圆阵列的方向角,使用R‐L算法对CBF的波束功率进行反卷积迭代,最后得到恢复出来的信号s(x),也就是通过求出函数的极值点得到所要的
9.根据权利要求7所述的一种基于圆阵列的超指向性水下通信接收机的通信方法,其特征在于,所述自适应信道均衡算法为自适应迭代最小二乘法。
CN201810710507.4A 2018-07-02 2018-07-02 一种基于圆阵列的超指向性水下通信接收机及通信方法 Pending CN108964737A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710507.4A CN108964737A (zh) 2018-07-02 2018-07-02 一种基于圆阵列的超指向性水下通信接收机及通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710507.4A CN108964737A (zh) 2018-07-02 2018-07-02 一种基于圆阵列的超指向性水下通信接收机及通信方法

Publications (1)

Publication Number Publication Date
CN108964737A true CN108964737A (zh) 2018-12-07

Family

ID=64484834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710507.4A Pending CN108964737A (zh) 2018-07-02 2018-07-02 一种基于圆阵列的超指向性水下通信接收机及通信方法

Country Status (1)

Country Link
CN (1) CN108964737A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109058A (zh) * 2019-05-05 2019-08-09 中国航发湖南动力机械研究所 一种平面阵列反卷积声源识别方法
CN111487580A (zh) * 2020-05-09 2020-08-04 中国船舶科学研究中心 一种多功能声信标和深海长基线阵型校准方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872020A (zh) * 2010-06-18 2010-10-27 华南理工大学 基于频谱变换的水下运动目标定位导航方法和装置
US20140269201A1 (en) * 2013-03-12 2014-09-18 Zhiqiang Liu Method for mobile underwater acoustic communications
CN104777453A (zh) * 2015-04-23 2015-07-15 西北工业大学 舰船线谱噪声源定位的波束域时频分析方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872020A (zh) * 2010-06-18 2010-10-27 华南理工大学 基于频谱变换的水下运动目标定位导航方法和装置
US20140269201A1 (en) * 2013-03-12 2014-09-18 Zhiqiang Liu Method for mobile underwater acoustic communications
CN104777453A (zh) * 2015-04-23 2015-07-15 西北工业大学 舰船线谱噪声源定位的波束域时频分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭乔鹤: "《基于双线阵的船噪声信号被动检测技术研究》", 《CNKI硕士论文》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110109058A (zh) * 2019-05-05 2019-08-09 中国航发湖南动力机械研究所 一种平面阵列反卷积声源识别方法
CN110109058B (zh) * 2019-05-05 2021-04-06 中国航发湖南动力机械研究所 一种平面阵列反卷积声源识别方法
CN111487580A (zh) * 2020-05-09 2020-08-04 中国船舶科学研究中心 一种多功能声信标和深海长基线阵型校准方法

Similar Documents

Publication Publication Date Title
US20100062802A1 (en) Method device and system for receiving a communication signal
CN103944848B (zh) 基于线性调频的水声抗多普勒多载波调制解调方法和装置
CN1801684A (zh) 用于多天线系统的低复杂度检波器
CN110071893B (zh) 基于信号空间分集的正交空间调制系统的工作方法
CN112311520A (zh) 一种全双工方向调制无线网络构建方法
CN108964737A (zh) 一种基于圆阵列的超指向性水下通信接收机及通信方法
CN109167649B (zh) 一种gsm-mbm系统低复杂度检测方法
Bejjani et al. Multicarrier coherent communications for the underwater acoustic channel
CN114696849B (zh) 消除人工噪声的信号接收方法
CN110808764A (zh) 大规模mimo中继系统中一种联合信息估计方法
CN102594767A (zh) 通信系统中信号的极化和幅度结合的三维调制方法
CN114172597B (zh) 一种基于可重构智能表面的非迭代参数联合估计方法
CN113890630B (zh) 一种广域分布式水声协作分集通信系统
Khan et al. Antenna beam-forming for a 60 Ghz transceiver system
Xie et al. Broadcasting directional modulation based on random frequency diverse array
Yin et al. Space-division multiple access for CDMA multiuser underwater acoustic communications
CN110113281B (zh) 一种mimo通信中多进制fsk非相干检测实现空分复用的方法
Huang et al. Progressive MIMO-OFDM reception over time-varying underwater acoustic channels
CN113466796B (zh) 一种基于相干相位调制广播模式的雷达通信一体化方法
CN116015536A (zh) 一种非相干反射调制的方法
CN103442435B (zh) 水声3d传感器网络中一种提高定位覆盖范围的方法
CN107453821B (zh) 一种基于阵列定向的声隐蔽通信方法
CN108809376B (zh) 一种用于增强型空间调制系统的发射天线选择方法
Dong et al. Quadrature joint transmitter-receiver spatial modulation
Xu et al. Influence of Transmitting Directivity on Underwater Acoustic Communication System

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181207