WO2016105011A1 - 디스플레이 장치용 커버기판 - Google Patents
디스플레이 장치용 커버기판 Download PDFInfo
- Publication number
- WO2016105011A1 WO2016105011A1 PCT/KR2015/013703 KR2015013703W WO2016105011A1 WO 2016105011 A1 WO2016105011 A1 WO 2016105011A1 KR 2015013703 W KR2015013703 W KR 2015013703W WO 2016105011 A1 WO2016105011 A1 WO 2016105011A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- thin film
- display device
- substrate
- cover substrate
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B17/00—Layered products essentially comprising sheet glass, or glass, slag, or like fibres
- B32B17/06—Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
Definitions
- the present invention relates to a cover substrate for a display device, and more particularly, in order to reinforce a glass substrate, by relieving internal stress generated in a reinforcing layer formed on the substrate, the surface hardness can be increased.
- the present invention relates to a cover substrate for a display device that can prevent defects and scratches from causing cracks.
- glass materials are used in various industrial fields such as solar cell covers, thin film transistor-liquid crystal displays (TFT-LCDs), flat panel displays such as organic light emitting displays, and covers for various mobile electronic devices.
- TFT-LCDs thin film transistor-liquid crystal displays
- flat panel displays such as organic light emitting displays
- the thermal strengthening method is a technique for reinforcing glass by generating compressive stress on the glass surface by rapidly cooling the glass surface after heating the glass to a softening point, usually 600 to 800 ° C.
- the thermal reinforcement method is an easy and inexpensive method of reinforcing glass.
- the thickness of the glass is 2.5 mm or less, even if the glass surface is quenched, a sufficient compressive stress cannot be formed because a sufficient surface and internal temperature difference cannot be formed, and thus it is difficult to achieve the required level of strengthening. Accordingly, in the case of glass used in electronic equipment, thin glass having a thickness of about 1.0 mm or less is used in order to reduce weight. In this case, the thermal strengthening method cannot be used.
- Chemical strengthening is mainly used to strengthen thin glass.
- Chemical strengthening is a technique of heating a glass near the transition temperature, usually 350 ⁇ 450 °C, and then strengthen the glass by generating a compressive stress on the glass surface through ion exchange.
- Chemical strengthening for example, is carried out by immersing an alkali-containing glass such as Na + in a molten salt such as KNO 3 , by converting Na + ions present in the glass into larger ions such as K + ions. The compressive stress is generated on the glass surface.
- This chemical strengthening method is a method that can be used irrespective of the glass thickness, but there is a problem that is difficult to apply in the case of the glass not containing alkali ions.
- an alkali free thin glass is used, in which case a chemical strengthening method cannot be used.
- the glass strengthened by the chemical strengthening method is excellent in mechanical strength and has a property of not easily broken, but if a scratch or a point defect occurs, the glass is broken by crack propagation (crack propagation) occurs. That is, when the micro cracks are present in the tempered glass, stress is concentrated in the portion where the micro cracks are generated by the external impact, so that the cracks propagate, which eventually causes the glass to break.
- the present invention has been made to solve the problems of the prior art as described above, the object of the present invention is to relieve the internal stress generated in the reinforcing layer formed on the substrate, in order to reinforce the glass substrate, the surface It is possible to increase the hardness, and through this, to provide a cover substrate for a display device that can prevent the occurrence of defects and scratches that cause cracks.
- the substrate A reinforcing layer formed on the substrate and composed of alternating lamination of a tensile stress layer and a compressive stress layer; And a buffer layer formed between the base and the reinforcement layer.
- the reinforcement layer may be made of AlON or SiAlON.
- the tensile stress layer and the compressive stress layer may be divided according to the content of O and N of the AlON or the SiAlON.
- the tensile stress layer is divided into a region of the O content of less than 8 atomic% in the reinforcing layer
- the compressive stress layer is the content of the O 8 atomic% in the reinforcing layer It can be divided into the above areas.
- the tensile stress layer is divided into an area where the O content is 0 to 7 atomic% in the reinforcing layer, and the compressive stress layer is an area where the O content is 9 to 15 atomic% in the reinforcing layer. Can be distinguished.
- the reinforcement layer may be formed to a thickness of 200 ⁇ 2000nm.
- the buffer layer is formed of a refractive index matching layer consisting of an alternating stack of a first thin film having a first refractive index and a second thin film having a second refractive index, wherein the first thin film is formed at a lowermost end of the buffer layer in contact with the substrate.
- the second thin film may be formed at an uppermost end of the buffer layer in contact with the reinforcement layer.
- the first thin film and the second thin film may be alternately stacked at least once.
- the first thin film may be formed of a material having a relatively higher refractive index than the second thin film.
- the protective layer may be made of a material having the same refractive index as the material of the second thin film.
- a reinforcement layer formed of alternating lamination of a tensile stress layer and a compressive stress layer which is made of AlON and SiAlON, and is divided according to the content of O or N thereof, to reinforce the substrate of the glass material.
- the optical properties can be improved by providing a refractive index matching layer composed of a stack of a low refractive thin film and a high refractive thin film as a buffer layer formed between the reinforcing layer and the substrate.
- FIG. 1 is a schematic cross-sectional view showing a cover substrate for a display device according to an embodiment of the present invention.
- a cover substrate 100 for a display device includes a solar cell cover, a thin film transistor-liquid crystal display (TFT-LCD), and a plasma display panel. It is a substrate used for a flat panel display such as a plasma display panel, organic electro luminescent, and the like, and various mobile electronic device covers such as a smart phone and a tablet PC.
- the display apparatus substrate 100 is formed to include the substrate 110, the reinforcement layer 120, and the buffer layer 130.
- the substrate 110 serves to support the reinforcement layer 120 and the buffer layer 130.
- the substrate 110 is preferably made of a material having high transparency and heat resistance in order to be applied to a display device. At this time, it is preferable that visible light transmittance is 80% or more regarding transparency of the base material 110, and it is preferable that glass transition temperature is 50 degreeC or more regarding heat resistance.
- the substrate 110 may be made of borosilicate glass.
- the substrate 110 may be formed of a thin glass having a thickness of 2.0 mm or less.
- the cover substrate 100 for a display device according to an embodiment of the present invention reinforces the substrate 110 by forming a reinforcement layer 120 which is a separate thin film on the substrate 110 made of glass.
- the type of the base 110 is borosilicate-based glass, and the thickness of the base 110 is not particularly limited to 2.0 mm or less. That is, the substrate 110 may be formed of various kinds of glass and thickness.
- a strengthened layer 120 is formed on the substrate 110.
- the reinforcement layer 120 is composed of alternating stacks of a compressive stress layer 121 and a tensile stress layer 122.
- the reinforcement layer 120 is made of AlON or SiAlON.
- the compressive stress layer 121 and the tensile stress layer 122 constituting the reinforcing layer 120 is divided according to the content of O and N of AlON or SiAlON.
- the reinforcement layer 120 when the reinforcement layer 120 is made of AlON, mainly compressive stress is formed. At this time, in AlON, the compressive stress is formed as the proportion of O increases, and the tensile stress is formed as the proportion of O decreases, that is, the proportion of N increases. Accordingly, in the sputtering process using the Al target to form the reinforcement layer 120 made of AlON continuously, by adjusting the injection amount or partial pressure of the O and N gas, to distinguish the region where the compressive stress and tensile stress is formed, Stress compensation between each area is possible to ensure neutral stress characteristics. That is, when the reinforcement layer 120 is formed through the coating, if the injection amount or partial pressure of O and N gas is adjusted in the coating step, the internal stress generated in the reinforcement layer 120 may be alleviated.
- the tensile stress layer 122 when based on O, the tensile stress layer 122 is divided into a region in the reinforcing layer 120, the content of O is less than 8 atomic%, preferably 0 to 7 atomic%
- the compressive stress layer 121 is divided into regions having an O content of 8 atomic% or more, preferably 9 to 15 atomic%. At this time, when the content of O is 7-9 atomic%, it exhibits both characteristics of tensile stress and compression stress.
- the reinforcement layer 120 is a compressive stress layer 121, tensile stress layer 122, compressive stress layer 121, tensile stress layer 121 and compressive stress
- the layers 121 may be sequentially stacked.
- the reinforcement layer 120 may be formed to a thickness of 200 ⁇ 2000nm.
- the general reinforcement layer has a high internal stress of the thin film, and as the thickness of the thin film becomes thicker, the stress is more severe, and cracking and peeling are more likely, but the reinforcing layer 120 according to the embodiment of the present invention is as described above. Since the stress is alleviated through the laminated structure of the compressive and tensile stresses alternately, the thickness is not significantly limited.
- scratch resistance scratch resistance
- the reinforcement layer 120 is preferably thick within the above thickness range. It is preferably formed in thickness.
- a buffer layer 130 is formed between the substrate 110 and the reinforcement layer 120.
- the buffer layer 130 is an index matching layer formed by alternating stacking of the first thin film 131 having the first refractive index and the second thin film 132 having the second refractive index. Can be done.
- the first thin film 131 and the second thin film 132 may be alternately stacked at least once.
- the first thin film 131 and the second thin film 132 forming the buffer layer 130 may be formed. It is preferable to laminate
- the first thin film 131 forms a high refractive layer having a first refractive index. That is, the first thin film 131 may be formed of a material having a relatively higher refractive index than the second thin film 132. For example, the first thin film 131 may be formed of a material having a high refractive index such as Si 3 N 4 , AlON, SiAlON, AlN, or the like.
- the second thin film 132 forms a low refractive layer having a second refractive index. That is, the second thin film 132 may be made of a material having a relatively lower refractive index than the first thin film 131.
- the second thin film 132 may be made of SiO 2 or Al 2 O 3 .
- a lower refractive index layer is formed at the bottom of the buffer layer 130 in contact with the substrate 110.
- the first thin film 131 is formed, and the second thin film 132, which is a low refractive layer, is preferably formed at the top of the buffer layer 130 in contact with the reinforcement layer 120.
- the buffer layer 130 forms a stacked structure of a high refractive layer and a low refractive layer.
- the second thin film 132 which is a low refractive layer, is formed on the uppermost layer of the buffer layer 130 in contact with the reinforcement layer 120 to have a difference in refractive index between the reinforcement layer 120 made of AlON, which is a high refractive material.
- the reason why the buffer layer 130 is formed as the refractive index matching layer having the above structure is to solve the color shift generation problem due to AlON forming the reinforcement layer 120 formed thereon.
- AlON is evaluated as a hard and excellent material, but its optical characteristics change greatly depending on the angle, that is, it is unsuitable for use as a cover substrate material for display devices due to the color shift caused by the angle. Has been.
- the buffer layer 130 is formed as a refractive index matching layer formed by alternating stacking of the first thin film 131 and the second thin film 132 having different refractive indices under the reinforcement layer 120 made of AlON.
- the display substrate 100 for a display device may further include a protective layer 140.
- the protective layer 140 is formed on the reinforcement layer 120.
- the protective layer 140 serves as a capping layer to protect the reinforcement layer 120 and the buffer layer 130 formed under the external environment.
- the protective layer 140 may be formed of a material having the same refractive index as the second thin film 132 forming the buffer layer 130. That is, the protective layer 140 may be made of SiO 2 or Al 2 O 3 . Accordingly, in the embodiment of the present invention, the protective layer 140 forms a low refractive index layer having a refractive index difference with the reinforcing layer 120.
- the display substrate 100 for the display device according to the embodiment of the present invention is made of AlON and SiAlON, and the compressive stress layer 121 and tensile stress in which regions are divided according to their O or N content.
- the reinforcement layer 120 is formed by alternating stacking of the layers 122.
- the cover substrate 100 for the display device according to an embodiment of the present invention is to increase the internal stress generated in the reinforcement layer 120 formed on the substrate 110 in order to reinforce the glass substrate 110. It can be alleviated to increase the surface hardness, which in turn can prevent the occurrence of defects and scratches that cause cracks.
- the cover substrate 100 for a display device is a first thin film 131 is a high refractive index layer sequentially stacked on the substrate 110, a second thin film 132 is a low refractive layer, The high refractive index layer 120 and the low refractive layer protective layer 140 is formed of a laminated structure. Accordingly, the display substrate cover substrate 100 according to the embodiment of the present invention, the high refractive index layer and the low refractive index layer sequentially along the emission path of the light generated from the display device (not shown) disposed below the substrate 110 The laminated structure is repeatedly stacked. When the cover substrate 100 for a display device according to an embodiment of the present invention is applied to a display device, the optical property of the display device (not shown) may be further improved through the laminated structure having the refractive index difference as described above. do.
Landscapes
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
본 발명은 디스플레이 장치용 커버기판에 관한 것으로서 더욱 상세하게는 유리 재질의 기재를 강화시키기 위해, 기재 상에 형성되는 강화층에 발생되는 내부 응력을 완화시킴으로써, 표면 경도를 증가시킬 수 있고, 이를 통해, 크랙 발생의 원인이 되는 결함 및 스크래치 발생을 방지할 수 있는 디스플레이 장치용 커버기판에 관한 것이다. 이를 위해, 본 발명은, 기재; 상기 기재 상에 형성되고, 인장응력층과 압축응력층의 교대 적층으로 이루어진 강화층; 및 상기 기재와 상기 강화층 사이에 형성되는 버퍼층을 포함하는 것을 특징으로 하는 디스플레이 장치용 커버기판을 제공한다.
Description
본 발명은 디스플레이 장치용 커버기판에 관한 것으로서 더욱 상세하게는 유리 재질의 기재를 강화시키기 위해, 기재 상에 형성되는 강화층에 발생되는 내부 응력을 완화시킴으로써, 표면 경도를 증가시킬 수 있고, 이를 통해, 크랙 발생의 원인이 되는 결함 및 스크래치 발생을 방지할 수 있는 디스플레이 장치용 커버기판에 관한 것이다.
현재, 유리 소재는 태양전지 커버, 박막 액정표시장치(thin film transistor-liquid crystal display, TFT-LCD)나 유기발광표시장치 등과 같은 평판 디스플레이, 각종 모바일 전자 기기의 커버 등 다양한 산업분야에 사용되고 있다.
최근, 상기와 같은 전자 기기가 슬림화 및 콤팩트화되는 추세로 인해, 유리 소재에 대한 경량화 및 박형화 또한 요구되고 있으며, 이에 따른 구조적 취약성을 보완하기 위해, 유리에 대한 다양한 강화 방법이 연구되고 있다.
유리를 강화하는 가장 일반적인 방법으로는 열 강화법을 들 수 있다. 열 강화법은 유리를 연화점(softening point) 근처, 통상 600~800℃로 가열한 후 유리 표면을 급격히 냉각함으로써, 유리 표면에 압축응력(compressive stress)을 발생시켜 유리를 강화하는 기술이다. 열 강화법은 쉽고 값싸게 유리를 강화할 수 있는 방법으로, 고온으로 유지된 유리의 표면을 급격히 냉각시킬 경우, 서서히 냉각되는 유리 내부에 비해 원자간 거리가 더 긴 구조를 갖게 된다. 이러한 원자간 거리 차이에 의해 응력이 발생하게 되고, 결과적으로 유리 표면에 압축응력이 발생한다. 이렇게 형성된 표면 압축응력은 표면에서 발생하는 크랙의 성장을 억제하여, 유리가 강화되는 효과가 생긴다. 이때, 유리 표면과 유리 내부의 온도 차이가 클수록 큰 원자간 거리 차이에 의해 높은 압축응력이 발생하고 더 효과적인 강화가 가능하다. 하지만, 유리의 두께가 2.5㎜ 이하인 경우에는 유리 표면을 급냉하여도 충분한 표면과 내부의 온도 차이를 형성하지 못하기 때문에 충분한 압축응력을 형성할 수 없어, 요구되는 강화의 수준을 달성하기 어렵다. 이에 따라, 전자 기기 등에 사용되는 유리의 경우에는 무게를 줄이기 위해 대략 두께 1.0㎜ 이하의 박판유리를 사용하게 되는데, 이 경우 열강화법은 사용할 수 없다.
박판유리를 강화하는 방법으로는 주로 화학 강화법이 쓰인다. 화학 강화법은 유리를 전이온도 근처, 통상 350~450℃로 가열한 후, 이온 교환을 통해 유리 표면에 압축응력을 발생시켜 유리를 강화하는 기술이다. 화학 강화법은 예컨대, Na+와 같은 알칼리가 함유된 유리를 KNO3 등의 용융염에 침지하여 실시하는데, 유리에 존재하는 Na+이온이 그 보다 크기가 큰 이온, 예컨대, K+이온으로 바뀜으로써, 유리 표면에 압축응력이 발생하게 된다.
이러한 화학 강화법은 유리 두께에 상관없이 사용할 수 있는 방법이나, 알칼리 이온이 함유되지 않은 유리의 경우에는 적용하기 어려운 문제가 있다. 예를 들어, LCD 기판 유리의 경우, 알칼리 이온이 LCD 회로로 용출되는 것을 방지하기 위해, 무(無)알칼리 박판유리가 사용되는데, 이 경우 화학 강화법은 사용할 수 없다.
또한, 이러한 화학 강화법을 통해 강화된 유리는 기계적 강도가 우수하여 잘 깨지지 않는 성질을 가지고 있으나, 스크래치나 점 결함이 발생되는 경우, 크랙 전파(crack propagation)에 의해 유리가 깨지는 현상이 발생된다. 즉, 강화된 유리에 미세 크랙이 존재하게 되면, 외부 충격에 의해 미세 크랙이 발생된 부분에 응력이 집중되어, 크랙이 전파되고, 이는 결국, 유리의 깨짐을 초래하게 된다.
[선행기술문헌]
미국 공개특허공보 US2013/0101798(2013.04.25.)
본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유리 재질의 기재를 강화시키기 위해, 기재 상에 형성되는 강화층에 발생되는 내부 응력을 완화시킴으로써, 표면 경도를 증가시킬 수 있고, 이를 통해, 크랙 발생의 원인이 되는 결함 및 스크래치 발생을 방지할 수 있는 디스플레이 장치용 커버기판을 제공하는 것이다.
이를 위해, 본 발명은, 기재; 상기 기재 상에 형성되고, 인장응력층과 압축응력층의 교대 적층으로 이루어진 강화층; 및 상기 기재와 상기 강화층 사이에 형성되는 버퍼층을 포함하는 것을 특징으로 하는 디스플레이 장치용 커버기판을 제공한다.
여기서, 상기 강화층은 AlON 또는 SiAlON으로 이루어질 수 있다.
이때, 상기 인장응력층 및 상기 압축응력층은 상기 AlON 또는 상기 SiAlON의 O 및 N의 함량에 따라 구분될 수 있다.
또한, 상기 O를 기준으로 할 때, 상기 인장응력층은 상기 강화층에서 상기 O의 함량이 8원자% 미만인 영역으로 구분되고, 상기 압축응력층은 상기 강화층에서 상기 O의 함량이 8원자% 이상인 영역으로 구분될 수 있다.
바람직하게, 상기 인장응력층은 상기 강화층에서 상기 O의 함량이 0~7원자%인 영역으로 구분되고, 상기 압축응력층은 상기 강화층에서 상기 O의 함량이 9~15 원자%인 영역으로 구분될 수 있다.
아울러, 상기 강화층은 200~2000㎚ 두께로 형성될 수 있다.
또한, 상기 버퍼층은 제1 굴절률을 가진 제1 박막과 제2 굴절률을 가진 제2 박막의 교대 적층으로 이루어진 굴절률 정합층으로 형성되되, 상기 기재와 접하는 상기 버퍼층의 최하단으로는 상기 제1 박막이 형성되고, 상기 강화층과 접하는 상기 버퍼층의 최상단으로는 상기 제2 박막이 형성될 수 있다.
이때, 상기 제1 박막과 상기 제2 박막은 적어도 1회 교대 적층될 수 있다.
또한, 상기 제1 박막은 상기 제2 박막보다 굴절률이 상대적으로 높은 물질로 이루어질 수 있다.
그리고 상기 강화층 상에 형성되는 보호층을 더 포함할 수 있다.
이때, 상기 보호층은 상기 제2 박막을 이루는 물질과 굴절률이 동일한 물질로 이루어질 수 있다.
본 발명에 따르면, AlON 및 SiAlON으로 이루어지되, 이들의 O 또는 N의 함량에 따라 구분되는 인장응력층과 압축응력층의 교대 적층으로 형성되는 강화층을 구비함으로써, 유리 재질의 기재를 강화시키기 위해, 기재 상에 형성되는 강화층에 발생되는 내부 응력을 완화시켜 표면 경도를 증가시킬 수 있고, 이를 통해, 크랙 발생의 원인이 되는 결함 및 스크래치 발생을 방지할 수 있다.
또한, 본 발명에 따르면, 저굴절 박막과 고굴절 박막의 적층으로 이루어진 굴절률 정합층을 강화층과 기재 사이에 형성되는 버퍼층으로 구비함으로써, 광학적 특성을 향상시킬 수 있다.
도 1은 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판을 개략적으로 나타낸 단면 모식도.
이하에서는 첨부된 도면들을 참조하여 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판에 대해 상세히 설명한다.
아울러, 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다.
도 1에 도시한 바와 같이, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은, 태양전지 커버, 박막 액정표시장치(thin film transistor-liquid crystal display, TFT-LCD), 플라즈마 디스플레이 패널(plasma display panel), 유기 EL(organic electro luminescent) 등과 같은 평판 디스플레이, 스마트 폰, 테블릿 PC와 같은 각종 모바일 전자 기기 커버 등에 사용되는 기판이다. 이러한 디스플레이 장치용 기판(100)은 기재(110), 강화층(120) 및 버퍼층(130)을 포함하여 형성된다.
기재(110)는 강화층(120) 및 버퍼층(130)을 지지하는 역할을 한다. 이러한 기재(110)는 디스플레이 장치에 적용되기 위해, 고투명성과 내열성을 갖는 물질로 이루어지는 것이 바람직하다. 이때, 기재(110)의 투명성에 관해서는 가시광선 투과율이 80% 이상인 것이 바람직하고, 내열성에 관해서는 유리 전이온도가 50℃ 이상인 것이 바람직하다. 예를 들어, 기재(110)는 보로실리케이트계 유리로 이루어질 수 있다. 또한, 기재(110)는 두께 2.0㎜ 이하의 박판형 유리로 이루어질 수 있다. 여기서, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 유리 재질의 기재(110)에 별도의 박막인 강화층(120)을 형성시킴으로써, 기재(110)를 강화시킨다. 이와 같이, 기재(110) 상에 별도의 박막을 형성시키는 경우, 유리의 조성이나 두께에 영향을 받지 않는다. 그러므로, 본 발명의 실시 예에서는 기재(110)의 종류를 보로실리케이트계 유리로, 기재(110)의 두께를 2.0㎜ 이하로 특별히 한정하지 않는다. 즉, 기재(110)는 다양한 종류의 유리와 두께로 이루어질 수 있다.
강화층(strengthened layer)(120)은 기재(110) 상에 형성된다. 이러한 강화층(120)은 압축응력층(compressive stress layer)(121)과 인장응력층(tensile stress layer)(122)의 교대 적층으로 이루어진다.
본 발명의 실시 예에서, 강화층(120)은 AlON 또는 SiAlON으로 이루어진다. 이때, 강화층(120)을 이루는 압축응력층(121)과 인장응력층(122)은 AlON 또는 SiAlON의 O 및 N의 함량에 따라 구분된다.
예를 들어, 강화층(120)이 AlON으로 이루어진 경우, 주로 압축응력이 형성된다. 이때, AlON에서, O의 비율이 증가할수록 압축응력이 형성되고, O의 비율이 낮아질수록, 즉, N의 비율이 증가할수록 인장응력이 형성된다. 이에 따라, 연속적으로 AlON으로 이루어진 강화층(120)을 형성하는 Al 타겟을 사용하는 스퍼터링 공정에서, O와 N 가스의 주입량 혹은 분압을 조절하여, 압축응력과 인장응력이 형성되는 영역을 구분하면, 각 영역 간의 응력 보상(stress compensation)이 가능하여 중립적인 응력 특성 확보가 가능하다. 즉, 강화층(120)을 코팅을 통해 형성하는 경우 O와 N 가스의 주입량 혹은 분압을 코팅 단계별로 조절하게 되면, 강화층(120)에 발생되는 내부 응력을 완화시킬 수 있다.
본 발명의 실시 예에서는, O를 기준으로 할 때, 인장응력층(122)은 강화층(120)에서, O의 함량이 8원자% 미만, 바람직하게, 0~7원자%인 영역으로 구분되고, 압축응력층(121)은 강화층(120)에서, O의 함량이 8원자% 이상, 바람직하게 9~15원자%인 영역으로 구분된다. 이때, O의 함량이 7~9원자% 이면, 인장응력 및 압축응력 두 가지 특성을 모두 나타내게 된다.
한편, 도시한 바와 같이, 본 발명의 실시 예에 따른 강화층(120)은 압축응력층(121), 인장응력층(122), 압축응력층(121), 인장응력층(121) 및 압축응력층(121)이 차례로 적층된 구조로 이루어질 수 있다. 또한, 이러한 강화층(120)은 200~2000㎚ 두께로 형성될 수 있다. 이때, 일반적인 강화층은 박막의 내부 응력이 높아, 박막의 두께가 두꺼워질수록 응력이 심하여 크랙 및 박리(peeling) 발생 가능성이 높지만, 본 발명의 실시 예에 따른 강화층(120)은 상기와 같이 압축응력과 인장응력이 교대 적층된 구조를 통해 응력이 완화되므로, 두께에 크게 제약을 받지 않게 된다. 아울러, 강화층(120)의 두께에 따라, 내스크래치성(scratch resistance)이 달라질 수 있는데, 두께가 두꺼워질수록 내스크래치성이 향상되므로, 강화층(120)은 상기의 두께 범위 내에서 가급적 두꺼운 두께로 형성되는 것이 바람직하다.
버퍼층(buffer)(130)은 기재(110)와 강화층(120) 사이에 형성된다. 본 발명의 실시 예에서, 이러한 버퍼층(130)은 제1 굴절률을 가진 제1 박막(131)과 제2 굴절률을 가진 제2 박막(132)의 교대 적층으로 형성된 굴절률 정합층(index matching layer)로 이루어질 수 있다. 이때, 제1 박막(131)과 제2 박막(132)은 적어도 1회 교대 적층될 수 있는데, 생산성 등을 고려할 때, 버퍼층(130)을 이루는 제1 박막(131)과 제2 박막(132)은 예컨대, 4~6회 교대 적층되는 것이 바람직하다.
본 발명의 실시 예에서, 제1 박막(131)은 제1 굴절률을 갖는 고굴절층을 이루게 된다. 즉, 제1 박막(131)은 제2 박막(132)보다 굴절률이 상대적으로 높은 물질로 이루어질 수 있다. 예를 들어, 제1 박막(131)은 Si3N4, AlON, SiAlON, AlN 등과 같은 굴절률이 높은 물질로 이루어질 수 있다.
본 발명의 실시 예에서, 제2 박막(132)은 제2 굴절률을 갖는 저굴절층을 이루게 된다. 즉, 제2 박막(132)은 제1 박막(131)보다 굴절률이 상대적으로 낮은 물질로 이루어질 수 있다. 예를 들어, 제2 박막(132)은 SiO2나 Al2O3로 이루어질 수 있다.
여기서, 버퍼층(130)의 상, 하측에 각각 배치되는 기재(110)와 강화층(120) 간의 굴절률 차이를 나타내기 위해, 기재(110)와 접하는 버퍼층(130)의 최하단으로는 고굴절층인 제1 박막(131)이 형성되는 것이 바람직하고, 강화층(120)과 접하는 버퍼층(130)의 최상단으로는 저굴절층인 제2 박막(132)이 형성되는 것이 바람직하다.
상기와 같이, 버퍼층(130)은 고굴절층과 저굴절층의 적층 구조를 이루게 된다. 이때, 강화층(120)과 접하는 버퍼층(130)의 최상층으로는 고굴절 물질인 AlON으로 이루어지는 강화층(120)과의 굴절률 차이를 위해, 저굴절층인 제2 박막(132)이 형성되는 것이 바람직하다.
본 발명의 실시 예에서, 버퍼층(130)이 상기와 같은 구조의 굴절률 정합층으로 형성되는 이유는, 이의 상부에 형성되는 강화층(120)을 이루는 AlON으로 인한 컬러시프트 발생 문제를 해결하기 위함이다. 즉, AlON은 단단하면서도 투과율이 우수한 재료로 평가되나, 각도에 따른 광학 특성 변화가 커서, 다시 말해, 각도에 따라 컬러시프트(color shift) 발생으로 인해 디스플레이 장치의 커버기판 재료로 사용하기에는 부적합하게 인식되어 왔다.
이에, 본 발명의 실시 예에서는 AlON으로 이루어지는 강화층(120) 하부에 굴절률이 다른 제1 박막(131)과 제2 박막(132)의 교대 적층으로 이루어진 굴절률 정합층으로 형성되는 버퍼층(130)을 구비함으로써, AlON으로 인한 컬러시프트 발생을 방지 혹은 최소화시킬 수 있게 된다.
한편, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 보호층(protective layer)(140)을 더 포함하여 형성될 수 있다. 여기서, 보호층(140)은 강화층(120) 상에 형성된다. 이러한 보호층(140)은 하측에 형성되어 있는 강화층(120)과 버퍼층(130)을 외부 환경으로부터 보호하는 캡핑층(capping layer)으로 작용하게 된다.
이때, 보호층(140)은 버퍼층(130)을 이루는 제2 박막(132)과 굴절률이 동일한 물질로 이루어질 수 있다. 즉, 보호층(140)은 SiO2나 Al2O3로 이루어질 수 있다. 이에 따라, 본 발명의 실시 예에서, 보호층(140)은 강화층(120)과 굴절률 차이를 나타내는 저굴절층을 이루게 된다.
상술한 바와 같이, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 AlON 및 SiAlON으로 이루어지고, 이들의 O 또는 N의 함량에 따라 영역이 구분되는 압축응력층(121)과 인장응력층(122)의 교대 적층으로 형성되는 강화층(120)을 구비한다. 이를 통해, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 유리 재질의 기재(110)를 강화시키기 위해, 기재(110) 상에 형성되는 강화층(120)에 발생되는 내부 응력을 완화시켜 표면 경도(hardness)를 증가시킬 수 있고, 결국, 크랙 발생의 원인이 되는 결함 및 스크래치 발생을 방지할 수 있게 된다.
또한, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 기재(110) 상에 순차 반복적으로 적층되는 고굴절층인 제1 박막(131), 저굴절층인 제2 박막(132), 고굴절층인 강화층(120) 및 저굴절층인 보호층(140)의 적층 구조로 형성된다. 이에 따라, 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)은 기재(110) 하측에 배치되는 디스플레이 장치(미도시)로부터 발생되는 광의 방출 경로를 따라, 고굴절층과 저굴절층이 순차 반복적으로 적층된 적층 구조를 이루게 된다. 그리고 본 발명의 실시 예에 따른 디스플레이 장치용 커버기판(100)이 디스플레이 장치에 적용되는 경우, 상기와 같은 굴절률 차이를 갖는 적층 구조를 통해 디스플레이 장치(미도시)의 광학적 특성을 보다 향상시킬 수 있게 된다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나, 본 발명은 상기의 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 특허청구범위와 균등한 것들에 의해 정해져야 한다.
Claims (11)
- 기재;상기 기재 상에 형성되고, 인장응력층과 압축응력층의 교대 적층으로 이루어진 강화층; 및상기 기재와 상기 강화층 사이에 형성되는 버퍼층;을 포함하는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제1항에 있어서,상기 강화층은 AlON 또는 SiAlON으로 이루어진 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제2항에 있어서,상기 인장응력층 및 상기 압축응력층은 상기 AlON 또는 상기 SiAlON의 O 및 N의 함량에 따라 구분되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제3항에 있어서,상기 O를 기준으로 할 때, 상기 인장응력층은 상기 강화층에서 상기 O의 함량이 8원자% 미만인 영역으로 구분되고, 상기 압축응력층은 상기 강화층에서 상기 O의 함량이 8원자% 이상인 영역으로 구분되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제4항에 있어서,상기 인장응력층은 상기 강화층에서 상기 O의 함량이 0~7원자%인 영역으로 구분되고, 상기 압축응력층은 상기 강화층에서 상기 O의 함량이 9~15 원자%인 영역으로 구분되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제1항에 있어서,상기 강화층은 200~2000㎚ 두께로 형성되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제1항에 있어서,상기 버퍼층은 제1 굴절률을 가진 제1 박막과 제2 굴절률을 가진 제2 박막의 교대 적층으로 이루어진 굴절률 정합층으로 형성되되,상기 기재와 접하는 상기 버퍼층의 최하단으로는 상기 제1 박막이 형성되고, 상기 강화층과 접하는 상기 버퍼층의 최상단으로는 상기 제2 박막이 형성되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제7항에 있어서,상기 제1 박막과 상기 제2 박막은 적어도 1회 교대 적층되는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제7항에 있어서,상기 제1 박막은 상기 제2 박막보다 굴절률이 상대적으로 높은 물질로 이루어지는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제7항에 있어서,상기 강화층 상에 형성되는 보호층을 더 포함하는 것을 특징으로 하는 디스플레이 장치용 커버기판.
- 제10항에 있어서,상기 보호층은 상기 제2 박막을 이루는 물질과 굴절률이 동일한 물질로 이루어지는 것을 특징으로 하는 디스플레이 장치용 커버기판.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140185669A KR20160076036A (ko) | 2014-12-22 | 2014-12-22 | 디스플레이 장치용 커버기판 |
KR10-2014-0185669 | 2014-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016105011A1 true WO2016105011A1 (ko) | 2016-06-30 |
Family
ID=56150973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/013703 WO2016105011A1 (ko) | 2014-12-22 | 2015-12-15 | 디스플레이 장치용 커버기판 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20160076036A (ko) |
WO (1) | WO2016105011A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024113977A1 (zh) * | 2022-12-01 | 2024-06-06 | 荣耀终端有限公司 | 玻璃面板,显示屏和电子设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020026883A (ko) * | 2000-04-18 | 2002-04-12 | 게르하르트 암라인, 루드비히 비르스 | 강화 유리 바디 |
JP2010111516A (ja) * | 2007-01-24 | 2010-05-20 | Toyota Motor Corp | ストレス軽減ガラス |
WO2013065648A1 (ja) * | 2011-10-31 | 2013-05-10 | 旭硝子株式会社 | ガラス基板、ガラス基板の製造方法、およびカバーガラス |
KR20130108463A (ko) * | 2009-12-24 | 2013-10-02 | 아반스트레이트 가부시키가이샤 | 유리판 및 유리판의 제조 방법 |
KR20140092301A (ko) * | 2011-11-18 | 2014-07-23 | 아사히 가라스 가부시키가이샤 | 화학 강화용 유리 및 화학 강화 유리 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013027651A1 (ja) | 2011-08-23 | 2013-02-28 | Hoya株式会社 | 強化ガラス基板の製造方法および強化ガラス基板 |
-
2014
- 2014-12-22 KR KR1020140185669A patent/KR20160076036A/ko active Search and Examination
-
2015
- 2015-12-15 WO PCT/KR2015/013703 patent/WO2016105011A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020026883A (ko) * | 2000-04-18 | 2002-04-12 | 게르하르트 암라인, 루드비히 비르스 | 강화 유리 바디 |
JP2010111516A (ja) * | 2007-01-24 | 2010-05-20 | Toyota Motor Corp | ストレス軽減ガラス |
KR20130108463A (ko) * | 2009-12-24 | 2013-10-02 | 아반스트레이트 가부시키가이샤 | 유리판 및 유리판의 제조 방법 |
WO2013065648A1 (ja) * | 2011-10-31 | 2013-05-10 | 旭硝子株式会社 | ガラス基板、ガラス基板の製造方法、およびカバーガラス |
KR20140092301A (ko) * | 2011-11-18 | 2014-07-23 | 아사히 가라스 가부시키가이샤 | 화학 강화용 유리 및 화학 강화 유리 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024113977A1 (zh) * | 2022-12-01 | 2024-06-06 | 荣耀终端有限公司 | 玻璃面板,显示屏和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
KR20160076036A (ko) | 2016-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6136008B2 (ja) | 強化ガラス及び強化ガラス板 | |
CN102909918B (zh) | 双面镀膜玻璃及其制备方法 | |
EP3230222B1 (en) | Chemically temperable glass sheet | |
KR101238214B1 (ko) | 화학강화유리를 이용한 플렉시블 디스플레이 기판 | |
EP2452926B1 (en) | Glass sheet | |
KR101641981B1 (ko) | 강화 유리의 제조 방법 | |
JP5896338B2 (ja) | 強化用ガラスの製造方法及び強化ガラス板の製造方法 | |
EP1024953B1 (en) | Use of glass laminate as a substrate in semiconductor devices | |
KR101779033B1 (ko) | 무알칼리 유리 | |
US20130241841A1 (en) | Touch screen assemblies for electronic devices | |
KR101638488B1 (ko) | 고굴절률 유리 | |
US10071930B2 (en) | Sheet of glass and device including said sheet of glass | |
WO2008050500A1 (fr) | Plaque protectrice pour dispositif d'affichage d'équipement portable | |
US20150329418A1 (en) | Reinforced glass substrate and method for producing same | |
TW201434770A (zh) | 化學鋼化的柔性超薄玻璃 | |
US11897812B2 (en) | Alkali-free glass | |
US20150017412A1 (en) | Strengthened glass | |
JP2015042607A (ja) | 強化ガラス及び強化用ガラス | |
KR20110049524A (ko) | 화학강화유리를 이용한 플렉시블 디스플레이 기판 | |
CN114804621A (zh) | 可离子交换的硅酸盐玻璃 | |
WO2016105011A1 (ko) | 디스플레이 장치용 커버기판 | |
JP2007128054A (ja) | 携帯機器表示装置用保護板 | |
CN115244018A (zh) | 高性能强化玻璃 | |
KR101038329B1 (ko) | 플렉시블 디스플레이 기판 | |
US11161772B2 (en) | Thin multilayer laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15873538 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15873538 Country of ref document: EP Kind code of ref document: A1 |