WO2016104793A1 - 変倍光学系、光学装置、および変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、および変倍光学系の製造方法 Download PDF

Info

Publication number
WO2016104793A1
WO2016104793A1 PCT/JP2015/086419 JP2015086419W WO2016104793A1 WO 2016104793 A1 WO2016104793 A1 WO 2016104793A1 JP 2015086419 W JP2015086419 W JP 2015086419W WO 2016104793 A1 WO2016104793 A1 WO 2016104793A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens group
lens
refractive power
group
distance
Prior art date
Application number
PCT/JP2015/086419
Other languages
English (en)
French (fr)
Inventor
幸介 町田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2016566574A priority Critical patent/JP6489133B2/ja
Publication of WO2016104793A1 publication Critical patent/WO2016104793A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/20Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having an additional movable lens or lens group for varying the objective focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Definitions

  • the present invention relates to a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.
  • This application claims priority based on the Japan patent application 2014-266039 for which it applied on December 26, 2014, and uses the content here.
  • a variable magnification optical system has a first lens group having a positive refractive power disposed closest to the object side, and a negative refractive power disposed on the image side from the first lens group.
  • a negative lens group a positive lens group including at least one lens disposed on the image side of the negative lens group and disposed on the image side of the aperture stop, and having a positive refractive power; and the negative lens group;
  • a focusing group disposed between the positive lens group and the zoom lens, the first lens group moves relative to the image plane during zooming, and the distance between the first lens group and the negative lens group Changes, the distance between the negative lens group and the positive lens group changes, and the distance between the focusing group and the lens arranged at the position facing the object side of the focusing group changes during focusing.
  • Kigo Asegun consists of one lens component, the lens component closest to the image plane side of the positive lens group has a negative refractive power, to satisfy the following condition. 0.30 ⁇ (r2 + r1) / (r2-r1) ⁇ 0.85
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • a first lens group having a positive refractive power in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a first lens group having a positive refractive power.
  • Three lens groups and a fourth lens group having a positive refractive power and during zooming, the distance between the first lens group and the second lens group changes, and the second lens group and the second lens group The distance between the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, the third lens group is moved during focusing, and the third lens group is Provided is a variable magnification optical system that includes two lens components, the lens component closest to the image plane has negative refractive power, and satisfies the following conditional expression.
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • Another aspect of the present invention provides an optical device including the above-described variable magnification optical system.
  • a variable magnification optical system manufacturing method includes a first lens group having a positive refractive power disposed closest to the object side, and a negative lens disposed closer to the image side than the first lens group.
  • a positive lens group having a positive refractive power including a negative lens group having a refractive power of at least one lens disposed on the image side of the negative lens group and disposed on the image side of the stop, and
  • a variable power optical system manufacturing method including a negative lens group and a focusing group disposed between the positive lens group, and the first lens group moves relative to the image plane during zooming.
  • the first lens group and the negative lens group are arranged such that the distance between the first lens group and the negative lens group is changed, and the distance between the negative lens group and the positive lens group is changed.
  • the distance between the lens arranged at the position facing the object side changes, and the focusing group and the focusing group
  • the focusing group is composed of one lens component, and the lens component closest to the image plane of the positive lens group is negatively refracted.
  • the following conditional expression is satisfied. 0.30 ⁇ (r2 + r1) / (r2-r1) ⁇ 0.85
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • a first lens group having a positive refractive power in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a first lens group having a positive refractive power.
  • a variable magnification optical system manufacturing method having three lens groups and a fourth lens group having a positive refractive power, wherein the third lens group is composed of one lens component, and the lens component closest to the image plane Is configured to have a negative refractive power, and is configured to satisfy the following conditional expression.
  • a method of manufacturing a variable magnification optical system configured as described above is provided. 0.30 ⁇ (r2 + r1) / (r2-r1) ⁇ 0.85
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 when focusing on an object at infinity, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Respectively.
  • FIG. 4A is a diagram illustrating various aberrations of the zoom optical system according to the first example when focusing on a short-distance object, where FIG. Respectively.
  • FIG. 4 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 1 when focusing on an object at infinity, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Respectively.
  • FIG. 4A is a diagram illustrating various aberrations of the zoom optical system according to the first example when focusing on a short-
  • FIG. 7 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 when focusing on an object at infinity, where (a) is a wide-angle end state, (b) is an intermediate focal length state, and (c) is a telephoto end state. Respectively.
  • FIG. 6 is a diagram illustrating various aberrations of the variable magnification optical system according to Example 2 when focusing on a short-distance object; Respectively. It is sectional drawing which shows the outline of an example of the optical apparatus provided with the variable magnification optical system. It is a figure which shows the outline of an example of the manufacturing method of a variable magnification optical system.
  • variable magnification optical system an optical apparatus, and a method for manufacturing the variable magnification optical system will be described.
  • the variable magnification optical system will be described.
  • variable magnification optical system includes a first lens group having a positive refractive power disposed closest to the object side, and a negative lens having a negative refractive power disposed closer to the image side than the first lens group.
  • a positive lens group having at least one lens disposed on the image side from the negative lens group and disposed on the image side from the aperture stop, and having a positive refractive power; the negative lens group and the positive lens group A focusing group disposed between the first lens group and the negative lens group during zooming, and the distance between the first lens group and the negative lens group changes. Then, the distance between the negative lens group and the positive lens group changes.
  • the distance between the focusing group and the lens arranged at the position facing the object side of the focusing group changes, and the position facing the focusing group and the image side of the focusing group
  • the distance between the lens and the lens arranged in the lens changes, and the focusing group is composed of one lens component.
  • the focusing group can be reduced in weight.
  • the lens component means a cemented lens formed by joining two or more lenses or a single lens.
  • the lens component closest to the image plane in the positive lens group has a negative refractive power. With this configuration, negative refractive power can be provided in the positive lens group, and coma aberration and field curvature can be favorably corrected.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • the third lens group moves during focusing, and the third lens group is composed of one lens component.
  • the focusing group (focusing lens group) can be reduced in weight.
  • the lens component means a cemented lens formed by joining two or more lenses or a single lens.
  • the lens component closest to the image plane has a negative refractive power.
  • negative refracting power can be provided in the fourth lens group, and coma and field curvature can be favorably corrected.
  • variable magnification optical system satisfies the following conditional expression (1).
  • (1) 0.30 ⁇ (r2 + r1) / (r2-r1) ⁇ 0.85
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • Conditional expression (1) is a conditional expression for defining the shape of the lens component having the negative refractive power closest to the image plane side. By satisfying conditional expression (1), various aberrations including coma can be corrected well.
  • conditional expression (1) When the corresponding value of the conditional expression exceeds the upper limit value, the refractive power of the object side surface of the lens component closest to the image plane side, that is, the concave refractive power becomes strong, and the correction of coma aberration becomes excessive.
  • the upper limit of conditional expression (1) it is preferable to set the upper limit of conditional expression (1) to 0.75. In order to further secure the effect, it is preferable that the upper limit value of conditional expression (1) is 0.72.
  • conditional expression (1) when the corresponding value of conditional expression (1) is lower than the lower limit value, the refractive power of the object side surface of the lens component closest to the image plane side, that is, the concave refractive power, becomes weak, and various aberrations including coma aberrations. Correction becomes difficult.
  • the lower limit value of conditional expression (1) be 0.45.
  • the lens component closest to the image plane is a single negative lens. With such a configuration, it is possible to further reduce the number of lenses while satisfactorily correcting coma and curvature of field.
  • the zoom optical system preferably allows the first lens group to move to the object side during zooming from the wide-angle end state to the telephoto end state.
  • the total lens length in the wide-angle end state can be shortened, and the variable magnification optical system can be reduced in size.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And a fourth lens group having positive refracting power, and at the time of zooming from the wide-angle end state to the telephoto end state, the first lens group and the second lens group Preferably, the distance is changed, the distance between the second lens group and the third lens group is changed, and the distance between the third lens group and the fourth lens group is increased. With such a configuration, it is possible to achieve good aberration correction at the time of zooming.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power and a second lens group having a negative refractive power, During zooming, it is preferable that the distance between the first lens group and the second lens group changes and the following conditional expression (2) is satisfied.
  • (2) 3.5 ⁇ f1 / ( ⁇ f2) ⁇ 6.5
  • f1 Focal length of the first lens group
  • f2 Focal length of the second lens group (negative lens group)
  • Conditional expression (2) is a conditional expression for defining a ratio between the focal length of the first lens group and the focal length of the second lens group.
  • conditional expression (2) If the corresponding value of conditional expression (2) exceeds the upper limit value, the refractive power of the second lens group becomes strong, and it becomes difficult to correct various aberrations including spherical aberration. In order to secure the effect, it is preferable to set the upper limit value of conditional expression (2) to 5.8. In order to further secure the effect, it is preferable that the upper limit value of conditional expression (2) is 5.5.
  • conditional expression (2) when the corresponding value of the conditional expression (2) is below the lower limit value, the refractive power of the first lens group becomes strong, and it becomes difficult to correct various aberrations including spherical aberration.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And a fourth lens group having a positive refractive power, and the distance between the first lens group and the second lens group changes during zooming, and the second lens It is preferable that the distance between the third lens group and the third lens group changes, the distance between the third lens group and the fourth lens group changes, and the following conditional expression (3) is satisfied. (3) 1.7 ⁇ f4 / f3 ⁇ 2.4 However, f4: focal length of the fourth lens group (positive lens group) f3: focal length of the third lens group (focusing group)
  • Conditional expression (3) is a conditional expression for defining the ratio between the focal length of the fourth lens group and the focal length of the third lens group.
  • conditional expression (3) If the corresponding value of conditional expression (3) exceeds the upper limit, the refractive power of the third lens group becomes stronger, and various aberrations such as spherical aberration when focusing from an object at infinity to a near object are corrected. Difficult to do.
  • conditional expression (3) when the corresponding value of the conditional expression (3) is below the lower limit value, the refractive power of the fourth lens group becomes strong, and it becomes difficult to correct various aberrations including coma.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power.
  • variable magnification optical system includes, in order from the object side along the optical axis, a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive refractive power. And a fourth lens group having a positive refractive power, and the distance between the first lens group and the second lens group changes during zooming, and the second lens The distance between the third lens group and the third lens group is changed, the distance between the third lens group and the fourth lens group is changed, and the fourth lens group is negative with respect to the front group having a positive refractive power.
  • It consists of a rear group having refractive power, and the distance between the front group and the rear group is the largest air distance in the fourth lens group, and the rear group is composed of two single lenses. It is preferably possible. With this configuration, coma and field curvature can be corrected well.
  • the front group preferably has a cemented lens. With such a configuration, spherical aberration and chromatic aberration can be effectively corrected.
  • the front group includes a cemented lens
  • the cemented lens includes a lens component having a positive refractive power and a lens component having a negative refractive power, and satisfies the following conditional expression (4): It is preferably possible to do this. (4) 0.70 ⁇ n1 / n2 ⁇ 0.95
  • n1 Refractive index of the lens component having positive refractive power
  • n2 Refractive index of the lens component having negative refractive power
  • Conditional expression (4) defines the ratio of the refractive indices of the lens component having positive refractive power and the lens component having negative refractive power that constitute the cemented lens of the front group of the fourth lens group. This is a conditional expression. By satisfying conditional expression (4), spherical aberration can be corrected well.
  • conditional expression (4) When the corresponding value of the conditional expression (4) exceeds the upper limit value, the concave refractive power at the joint surface between the lens component having a positive refractive power and the lens component having a negative refractive power becomes weak, and the spherical aberration is corrected. It becomes difficult.
  • conditional expression (4) when the corresponding value of conditional expression (4) is below the lower limit, the concave refractive power at the cemented surface between the lens component having positive refractive power and the lens component having negative refractive power becomes strong, and spherical aberration is reduced. The correction becomes excessive.
  • variable magnification optical system includes the front group having a cemented lens, and the cemented lens includes a lens component having a positive refractive power and a lens component having a negative refractive power. It is preferably possible to satisfy equation (5). (5) 1.7 ⁇ 1 / ⁇ 2 ⁇ 3.2 However, ⁇ 1: Abbe number of the lens component having positive refractive power ⁇ 2: Abbe number of the lens component having negative refractive power
  • Conditional expression (5) defines the ratio of the Abbe numbers of the lens component having a positive refractive power and the lens component having a negative refractive power constituting the cemented lens of the front group of the fourth lens group. This is a conditional expression. By satisfying conditional expression (5), chromatic aberration can be corrected satisfactorily.
  • conditional expression (5) When the corresponding value of the conditional expression (5) exceeds the upper limit value, the Abbe number of the lens component having negative refractive power becomes small, and the correction of chromatic aberration becomes excessive. In order to secure the effect, it is preferable to set the upper limit of conditional expression (5) to 3.0. In order to further secure the effect, it is preferable to set the upper limit value of conditional expression (5) to 2.9.
  • conditional expression (5) if the corresponding value of the conditional expression (5) is below the lower limit value, the Abbe number of the lens component having negative refractive power increases, and it becomes difficult to correct chromatic aberration.
  • variable magnification optical system satisfies the following conditional expression (6).
  • (6) 0.5 ⁇ L4a / L4 ⁇ 0.9
  • L4a distance of the largest air gap in the fourth lens group
  • L4 distance from the most object side surface to the most image side surface of the fourth lens group
  • Conditional expression (6) is a conditional expression for defining the ratio between the distance of the largest air gap in the fourth lens group and the total thickness of the fourth lens group.
  • conditional expression (6) If the corresponding value of conditional expression (6) exceeds the upper limit value, the enlargement of the variable-magnification optical system will be caused, and the lens barrel will be enlarged accordingly. Furthermore, it becomes difficult to correct spherical aberration. In order to secure the effect, it is preferable to set the upper limit of conditional expression (6) to 0.86. In order to further secure the effect, it is preferable to set the upper limit value of conditional expression (6) to 0.82.
  • conditional expression (6) when the corresponding value of conditional expression (6) is below the lower limit, it becomes difficult to correct various aberrations including coma. In order to secure the effect, it is preferable to set the lower limit of conditional expression (6) to 0.55. In order to further secure the effect, it is preferable to set the lower limit value of conditional expression (6) to 0.60.
  • the optical device includes the variable magnification optical system having the above-described configuration.
  • the focusing lens group is reduced in weight, and an optical device having high silence during autofocusing can be realized.
  • a method for manufacturing a variable magnification optical system includes a first lens group having a positive refractive power arranged closest to the object side, and a negative refractive power arranged on the image side from the first lens group.
  • a variable power optical system having a focusing group disposed between the first lens group and the positive lens group, wherein the first lens group moves with respect to an image plane during zooming, The distance between the lens group and the negative lens group is changed, and the distance between the negative lens group and the positive lens group is changed so as to face the object side of the focusing group and the focusing group at the time of focusing.
  • a variable magnification optical system manufacturing method that satisfies the following conditional expression (1).
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • a method of manufacturing a variable magnification optical system includes a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a positive lens in order from the object side along the optical axis.
  • the lens component on the surface side is configured to have a negative refractive power, and is configured to satisfy the following conditional expression (1).
  • the first lens When zooming from the wide-angle end state to the telephoto end state, the first lens The distance between the second lens group and the second lens group changes, the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group changes. Configured so that the third lens group moves when focusing from an object at infinity to a near object. It is intended to formed.
  • r2 radius of curvature of the surface closest to the image plane of the lens component closest to the image plane
  • r1 radius of curvature of the surface closest to the object side of the lens component closest to the image plane
  • variable magnification optical system can reduce the weight of the focusing lens group, and can manufacture a variable magnification optical system with high quietness during autofocus.
  • FIG. 1 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the first example.
  • the variable magnification optical system according to this example includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. It includes a group G2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a biconvex positive lens L11, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side. This is a positive lens.
  • the second lens group G2 includes, in order from the object side along the optical axis, a cemented negative lens of a biconcave negative lens L21 and a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. It consists of.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a front group G4F having a positive refractive power, an aperture stop S, and a rear group G4R.
  • the front group G4F includes, in order from the object side along the optical axis, a cemented positive lens including a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the rear group G4R includes, in order from the object side along the optical axis, a biconvex positive lens L43 and a biconcave negative lens L44.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the zoom optical system increases the distance between the first lens group G1 and the second lens group G2 when zooming from the wide-angle end state to the telephoto end state.
  • the first lens group G1 and the second lens group G2 are arranged so that the distance between the second lens group G2 and the third lens group G3 decreases and the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the third lens group G3 and the fourth lens group G4 move along the optical axis with respect to the image plane I. Specifically, the first lens group moves toward the object side, the second lens group moves once toward the image side, then moves toward the object side, the third lens group G3 moves toward the object side, and the fourth lens group G4. Moves to the object side.
  • the aperture stop S moves together with the fourth lens group G4 during zooming from the wide-angle end state to the telephoto end state.
  • focusing from an object at infinity to a near object is performed by moving the third lens group G3 to the image plane side.
  • Table 1 below lists values of specifications of the variable magnification optical system according to the present example.
  • f indicates the focal length
  • BF indicates the back focus (the distance on the optical axis between the lens surface closest to the image side and the image plane I).
  • the surface number is the order of the optical surfaces counted from the object side
  • r is the radius of curvature
  • d is the surface spacing (the space between the nth surface (n is an integer) and the (n + 1) th surface)
  • nd is The refractive index for d-line (wavelength 587.6 nm) and ⁇ d indicate the Abbe number for d-line (wavelength 587.6 nm), respectively.
  • the object plane indicates the object plane
  • the variable indicates the variable plane spacing
  • the stop S indicates the aperture stop S
  • the image plane indicates the image plane I.
  • the radius of curvature r ⁇ indicates a plane.
  • the description of the refractive index of air nd 1.00000 is omitted.
  • FNO is the F number
  • 2 ⁇ is the angle of view (unit is “°”)
  • Ymax is the maximum image height
  • TL is the total length of the variable magnification optical system (image from the first surface when focusing on an object at infinity)
  • the distance on the optical axis to the surface I) and dn (n is an integer) indicate variable surface intervals between the nth surface and the (n + 1) th surface.
  • W is the wide-angle end state
  • M is the intermediate focal length state
  • T is the telephoto end state
  • infinity is when focusing on an object at infinity
  • short distance indicates when focusing on a near object.
  • [Lens Group Data] indicates the start surface and focal length of each lens group.
  • [Conditional Expression Corresponding Value] shows the corresponding value of each conditional expression of the variable magnification optical system according to the present example.
  • the focal length f, the radius of curvature r, and other length units listed in Table 1 are generally “mm”.
  • the optical system is not limited to this because an equivalent optical performance can be obtained even when proportionally enlarged or proportionally reduced.
  • symbol of Table 1 described above shall be similarly used also in the table
  • FIGS. 3A and 3B are graphs showing various aberrations of the variable magnification optical system according to the first example when an object at infinity is focused.
  • FIG. 2A shows a wide-angle end state
  • FIG. 2B shows an intermediate focal length state
  • FIG. Indicates the telephoto end state.
  • FIGS. 3A and 3B are graphs showing various aberrations of the zoom optical system according to the first example when focusing on a short distance object.
  • FIG. 3A shows a wide-angle end state
  • FIG. 3B shows an intermediate focal length state
  • FIG. Indicates the telephoto end state.
  • FNO indicates an F number
  • NA indicates a numerical aperture
  • Y indicates an image height
  • those not described are d-line
  • the aberration curve at is shown.
  • the spherical aberration diagram shows the F-number or numerical aperture corresponding to the maximum aperture
  • the astigmatism diagram and the distortion diagram show the maximum image height
  • the coma diagram shows the value of each image height. .
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane.
  • variable magnification optical system according to the first example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state, Furthermore, it can be seen that the imaging performance is excellent even when focusing on a short-distance object.
  • FIG. 4 is a cross-sectional view showing a lens configuration of a variable magnification optical system according to the second example.
  • the variable magnification optical system according to this example includes a first lens group G1 having a positive refractive power and a second lens having a negative refractive power in order from the object side along the optical axis. It includes a group G2, a third lens group G3 having a positive refractive power, and a fourth lens group G4 having a positive refractive power.
  • the first lens group G1 includes, in order from the object side along the optical axis, a biconvex positive lens L11, a negative meniscus lens L12 having a convex surface on the object side, and a positive meniscus lens L13 having a convex surface on the object side. This is a positive lens.
  • the second lens group G2 includes, in order from the object side along the optical axis, a cemented negative lens of a biconcave negative lens L21 and a positive meniscus lens L22 having a convex surface facing the object side, and a biconcave negative lens L23. It consists of.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the fourth lens group G4 includes, in order from the object side along the optical axis, a front group G4F having a positive refractive power, an aperture stop S, and a rear group G4R.
  • the front group G4F includes, in order from the object side along the optical axis, a cemented positive lens including a biconvex positive lens L41 and a negative meniscus lens L42 having a concave surface facing the object side.
  • the rear group G4R includes, in order from the object side along the optical axis, a biconvex positive lens L43 and a biconcave negative lens L44.
  • an image sensor (not shown) composed of a CCD, a CMOS, or the like is disposed on the image plane I.
  • the zoom optical system increases the distance between the first lens group G1 and the second lens group G2 when zooming from the wide-angle end state to the telephoto end state.
  • the first lens group G1 and the second lens group G2 are arranged so that the distance between the second lens group G2 and the third lens group G3 decreases and the distance between the third lens group G3 and the fourth lens group G4 increases.
  • the third lens group G3 and the fourth lens group G4 move along the optical axis with respect to the image plane I. Specifically, the first lens group moves toward the object side, the second lens group moves once toward the image side, then moves toward the object side, the third lens group G3 moves toward the object side, and the fourth lens group G4. Moves to the object side.
  • the aperture stop S moves together with the fourth lens group G4 during zooming from the wide-angle end state to the telephoto end state.
  • focusing from an object at infinity to a near object is performed by moving the third lens group G3 to the image plane side.
  • Table 2 below lists values of specifications of the variable magnification optical system according to the present example.
  • FIG. 5A and 5B are graphs showing various aberrations when the variable magnification optical system according to Example 2 is focused on an object at infinity.
  • FIG. 5A shows a wide-angle end state
  • FIG. 5B shows an intermediate focal length state
  • 6A and 6B are graphs showing various aberrations of the zoom optical system according to the second example when focusing on a short distance object.
  • FIG. 6A shows a wide-angle end state
  • FIG. 6B shows an intermediate focal length state
  • variable magnification optical system according to the second example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state. Furthermore, it can be seen that the imaging performance is excellent even when focusing on a short-distance object.
  • the focusing lens group can be sufficiently reduced in weight. As a result, it is possible to realize a variable magnification optical system with high quietness during autofocus. In addition, since the focusing lens group can be reduced in weight, a large motor or actuator for moving the focusing lens group at high speed is not necessary, and high-speed autofocusing can be realized without increasing the size of the lens barrel. . Furthermore, a variable power optical system with high optical performance that satisfactorily suppresses aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and aberration fluctuations during focusing from an object at infinity to a close object. Can be realized. In addition, each said Example has shown a specific example, and this embodiment is not limited to these. The following contents can be appropriately adopted as long as the optical performance of the variable magnification optical system is not impaired.
  • variable magnification optical system Although a four-group configuration is shown as a numerical example of the variable magnification optical system, the present embodiment is not limited to this, and a variable magnification optical system of another group configuration (for example, five groups, six groups, etc.) is configured. You can also. Specifically, a configuration in which a lens or a lens group is added on the most object side or the most image side of the zoom optical system may be used.
  • the lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.
  • the third lens group G3 that is a focusing group is configured by a single lens, but the third lens group G3 may be configured by a cemented lens. Good.
  • the focusing group (focusing lens group) is also suitable for driving by an autofocus motor, for example, an ultrasonic motor.
  • the lens surface of the lens constituting the variable magnification optical system may be a spherical surface, a flat surface, or an aspherical surface.
  • the lens surface is a spherical surface or a flat surface, lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in lens processing and assembly adjustment can be prevented. Further, even when the image plane is deviated, there is little deterioration in drawing performance.
  • the lens surface is aspherical, any of aspherical surface by grinding, glass mold aspherical surface in which glass is molded into an aspherical shape, or composite aspherical surface in which resin provided on the glass surface is formed in an aspherical shape Good.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • GRIN lens gradient index lens
  • the aperture stop is disposed in the fourth lens group, but may be disposed on the most object side of the fourth lens group. Moreover, it is good also as a structure which substitutes the role with a lens frame, without providing a member as an aperture stop.
  • an antireflection film having a high transmittance in a wide wavelength range may be provided on the lens surface of the lens constituting the variable magnification optical system.
  • FIG. 7 is a diagram illustrating a configuration of an example of a camera including a variable magnification optical system.
  • the camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first embodiment as the photographing lens 2.
  • the digital single-lens reflex camera 1 shown in FIG. 7 light from an object (subject) (not shown) is collected by the photographing lens 2 and imaged on the focusing plate 5 via the quick return mirror 3.
  • the light imaged on the collecting plate 5 is reflected a plurality of times in the pentaprism 7 and guided to the eyepiece lens 9.
  • the photographer can observe the object (subject) image as an erect image through the eyepiece 9.
  • the quick return mirror 3 is retracted out of the optical path, and the light of the object (subject) collected by the photographing lens 2 forms a subject image on the image sensor 11. Thereby, the light from the object is picked up by the image pickup device 11 and stored in a memory (not shown) as an object image. In this way, the photographer can photograph an object with the camera 1.
  • variable magnification optical system according to the first example mounted on the camera 1 as the photographing lens 2 is a variable magnification optical system in which the focusing group (focusing lens group) is sufficiently lightened. Therefore, the camera 1 is a camera with high silence during autofocus. In addition, since the camera 1 can reduce the weight of the focusing lens group, it is possible to increase the speed of autofocus without increasing the size of the lens barrel. Further, the camera 1 can realize high optical performance that satisfactorily suppresses the aberration fluctuation at the time of zooming from the wide-angle end state to the telephoto end state and the aberration fluctuation at the time of focusing from an object at infinity to a short distance object. it can.
  • the camera 1 may hold
  • FIG. The camera 1 may be a camera that does not have a quick return mirror or the like.
  • FIG. 8 is a diagram showing an outline of an example of a manufacturing method of the variable magnification optical system.
  • the zoom optical system manufacturing method includes a first lens group having a positive refractive power arranged closest to the object side, and a negative refraction arranged closer to the image side than the first lens group.
  • a positive lens having a positive refractive power including a negative lens group having power (second lens group) and at least one lens disposed closer to the image side than the negative lens group and closer to the image side than the stop
  • a variable power optical system having a group (fourth lens group) and a focusing group (third lens group) disposed between the negative lens group and the positive lens group, Steps S1 to S5 are included.
  • Step S2 The lens component closest to the image plane in the positive lens group is configured to have a negative refractive power.
  • Step S3 Configure so as to satisfy the following conditional expression (1). (1) 0.30 ⁇ (r2 + r1) / (r2-r1) ⁇ 0.85 However, r2: radius of curvature of the image surface side surface of the lens component closest to the image surface side r1: radius of curvature of the object side surface of the lens component closest to the image surface side
  • Step S4 During zooming, the first lens group It moves relative to the image plane so that the distance between the first lens group and the negative lens group changes, and the distance between the negative lens group and the positive lens group changes.
  • Step S5 At the time of focusing, the distance between the focusing group and the lens disposed at the position facing the object side of the focusing group is changed, and the focusing group and the image side of the focusing group are opposed to each other. It arrange
  • the optical system manufacturing method includes, in order from the object side along the optical axis, a first lens group having a positive refractive power and a second lens group having a negative refractive power, A method for manufacturing a variable magnification optical system having a third lens group having a positive refractive power and a fourth lens group having a positive refractive power, and includes the following steps S1 to S5.
  • Step S1 The third lens group is composed of one lens component.
  • Step S2 The lens component closest to the image plane is configured to have a negative refractive power.
  • Step S3 Configure so as to satisfy the following conditional expression (1).
  • Step S4 the first lens group at the time of zooming And the second lens group, the distance between the second lens group and the third lens group changes, and the distance between the third lens group and the fourth lens group changes. Constitute. Step S5: The third lens group is configured to move during focusing.
  • variable magnification optical system it is possible to manufacture a variable magnification optical system in which the focusing group (focusing lens group) is sufficiently lightened. As a result, it is possible to realize a variable magnification optical system with high quietness during autofocus. In addition, since the focusing group can be reduced in weight, it is possible to increase the speed of autofocus without increasing the size of the lens barrel. Furthermore, a variable power optical system with high optical performance that satisfactorily suppresses aberration fluctuations during zooming from the wide-angle end state to the telephoto end state and aberration fluctuations during focusing from an object at infinity to a close object. Can be realized.
  • G1 First lens group G2 Second lens group (negative lens group) G3 Third lens group (focusing group) G4 4th lens group (positive lens group) G4F Front group G4R Rear group S Aperture stop I Image plane 1 Optical device 2 Fishing lens 3 Quick return mirror 5 Focusing plate 7 Penta prism 9 Eyepiece 11 Image sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Abstract

 変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群(G1)と、第1レンズ群より像側に配置された負の屈折力を有する負レンズ群(G2)と、負レンズ群より像側に配置され、かつ、開口絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群(G4)と、負レンズ群と正レンズ群との間に配置された合焦群(G3)と、を有し、変倍に際し、第1レンズ群が像面に対して移動し、第1レンズ群と負レンズ群の間隔が変化し、負レンズ群と正レンズ群の間隔が変化し、合焦に際し、合焦群と合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、合焦群と合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、合焦群は一つのレンズ成分で構成され、正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、所定の条件式を満足する。

Description

変倍光学系、光学装置、および変倍光学系の製造方法
 本発明は、写真用カメラや電子スチルカメラ、ビデオカメラ等に適した変倍光学系と、変倍光学系を有する光学装置、および変倍光学系の製造方法に関する。
 本願は、2014年12月26日に出願された日本国特許出願2014-266039号に基づき優先権を主張し、その内容をここに援用する。
 従来、写真用カメラや電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。
特開平4-293007号公報
 しかしながら、従来の変倍光学系にあっては、合焦群(合焦レンズ群)の軽量化が不十分であった。
 本発明の一態様に係る変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、開口絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群は一つのレンズ成分で構成され、前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、以下の条件式を満足する。
  0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 本発明の別の一態様は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、合焦の際、前記第3レンズ群が移動し、前記第3レンズ群は一つのレンズ成分で構成され、最も像面側のレンズ成分は負の屈折力を有し、以下の条件式を満足する変倍光学系を提供する。
  0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 本発明の別の一態様は、上記変倍光学系を備えた光学装置を提供する。
 本発明の別の一態様に係る変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、前記合焦群は一つのレンズ成分で構成され、前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、以下の条件式を満足する。
  0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 本発明の別の一態様は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群を一つのレンズ成分で構成し、最も像面側のレンズ成分を負の屈折力を有するように構成し、以下の条件式を満足するように構成し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように構成し、合焦の際、前記第3レンズ群が移動するように構成する変倍光学系の製造方法を提供する。
  0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
第1実施例に係る変倍光学系の構成を示す断面図である。 第1実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。 第1実施例に係る変倍光学系の近距離物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。 第2実施例に係る変倍光学系の構成を示す断面図である。 第2実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。 第2実施例に係る変倍光学系の近距離物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。 変倍光学系を備えた光学装置の一例の概略を示す断面図である。 変倍光学系の製造方法の一例の概略を示す図である。
 以下、変倍光学系、光学装置、および変倍光学系の製造方法について説明する。まず、変倍光学系について説明する。
 一実施形態において、変倍光学系は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、開口絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化する。この構成により、広角端状態から望遠端状態への変倍を実現し、変倍時の良好な収差補正を図ることができる。また、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群は一つのレンズ成分で構成される。この構成により、合焦群を軽量化することができる。なお、レンズ成分とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。また、変倍光学系は、前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有する。この構成により、正レンズ群内で負の屈折力を持たせることができ、コマ収差、像面湾曲を良好に補正することができる。
 代替実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化する。この構成により、広角端状態から望遠端状態への変倍を実現し、変倍時の良好な収差補正を図ることができる。
 代替実施形態において、変倍光学系は、合焦の際、前記第3レンズ群が移動し、前記第3レンズ群は一つのレンズ成分で構成されている。この構成により、合焦群(合焦レンズ群)を軽量化することができる。なお、レンズ成分とは、2枚以上のレンズを接合してなる接合レンズ、或いは単レンズをいう。
 代替実施形態において、変倍光学系は、最も像面側のレンズ成分は負の屈折力を有している。この構成により、第4レンズ群内で負の屈折力を持たせることができ、コマ収差、像面湾曲を良好に補正することができる。
 これらの実施形態において、変倍光学系は、以下の条件式(1)を満足している。
 (1)0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 条件式(1)は、最も像面側にある負の屈折力を有するレンズ成分の形状を規定するための条件式である。条件式(1)を満足することにより、コマ収差をはじめとする諸収差を良好に補正することができる。
 条件式の対応値が上限値を上回ると、最も像面側のレンズ成分の物体側の面の屈折力、すなわち凹の屈折力が強くなり、コマ収差の補正が過大となる。なお、効果を確実にするために、条件式(1)の上限値を0.75にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(1)の上限値を0.72にすることが好ましくは可能である。
 一方、条件式(1)の対応値が下限値を下回ると、最も像面側のレンズ成分の物体側の面の屈折力、すなわち凹の屈折力が弱くなり、コマ収差をはじめとする諸収差の補正が困難となる。なお、効果を確実にするために、条件式(1)の下限値を0.40にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(1)の下限値を0.45にすることが好ましくは可能である。
 これらの実施形態において、変倍光学系は、前記最も像面側のレンズ成分は、一枚の負レンズであることが好ましくは可能である。このような構成により、コマ収差、像面湾曲を良好に補正しつつ、さらにレンズの数を減らすことができる。
 これらの実施形態において、変倍光学系は、広角端状態から望遠端状態への変倍の際、前記第1レンズ群が物体側へ移動することが好ましくは可能である。このような構成により、広角端状態でのレンズ全長の短縮ができ、変倍光学系の小型化を実現することができる。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、広角端状態から望遠端状態への変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が増大することが好ましくは可能である。このような構成により、変倍時の良好な収差補正を図ることができる。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、を有し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、以下の条件式(2)を満足することが好ましくは可能である。
 (2)3.5 < f1/(-f2) < 6.5
 ただし、
 f1:前記第1レンズ群の焦点距離
 f2:前記第2レンズ群(負レンズ群)の焦点距離
 条件式(2)は、第1レンズ群の焦点距離と第2レンズ群の焦点距離との比を規定するための条件式である。条件式(2)を満足することにより、広角端状態から望遠端状態への変倍の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(2)の対応値が上限値を上回ると、第2レンズ群の屈折力が強くなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、効果を確実にするために、条件式(2)の上限値を5.8にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(2)の上限値を5.5にすることが好ましくは可能である。
 一方、条件式(2)の対応値が下限値を下回ると、第1レンズ群の屈折力が強くなり、球面収差をはじめとする諸収差を補正することが困難となる。なお、効果を確実にするために、条件式(2)の下限値を3.7にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(2)の下限値を4.1にすることが好ましくは可能である。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、以下の条件式(3)を満足することが好ましくは可能である。
 (3)1.7 < f4/f3 < 2.4
 ただし、
 f4:前記第4レンズ群(正レンズ群)の焦点距離
 f3:前記第3レンズ群(合焦群)の焦点距離
 条件式(3)は、第4レンズ群の焦点距離と第3レンズ群の焦点距離との比を規定するための条件式である。条件式(3)を満足することにより、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差の変動を抑えることができる。
 条件式(3)の対応値が上限値を上回ると、第3レンズ群の屈折力が強くなり、無限遠物体から近距離物体への合焦の際の球面収差をはじめとする諸収差を補正することが困難となる。なお、効果を確実にするために、条件式(3)の上限値を2.3にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(3)の上限値を2.25にすることが好ましくは可能である。
 一方、条件式(3)の対応値が下限値を下回ると、第4レンズ群の屈折力が強くなり、コマ収差をはじめとする諸収差を補正することが困難となる。なお、効果を確実にするために、条件式(3)の下限値を1.8にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(3)の下限値を1.85にすることが好ましくは可能である。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、広角端状態から望遠端状態への変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が縮小することが好ましくは可能である。このような構成により、4倍程度以上の変倍比を確保することができる。
 これらの実施形態において、変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、前記第4レンズ群は、正の屈折力を有する前群と負の屈折力を有する後群とからなり、前記前群と前記後群との間隔は前記第4レンズ群内の空気間隔で最も大きな空気間隔であり、前記後群は、二つの単レンズで構成されていることが好ましくは可能である。この構成により、コマ収差、像面湾曲を良好に補正することができる。
 これらの実施形態において、前記前群は接合レンズを有することが好ましくは可能である。このような構成により、球面収差と色収差を効果的に補正することができる。
 これらの実施形態において、前記前群は接合レンズを有し、前記接合レンズは正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とからなり、以下の条件式(4)を満足することが好ましくは可能である。
 (4)0.70 < n1/n2 < 0.95
 ただし、
 n1:前記正の屈折力を有するレンズ成分の屈折率
 n2:前記負の屈折力を有するレンズ成分の屈折率
 条件式(4)は、第4レンズ群の前群が有する接合レンズを構成している正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とのそれぞれの屈折率の比を規定するための条件式である。条件式(4)を満足することにより、球面収差を良好に補正することができる。
 条件式(4)の対応値が上限値を上回ると、正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分との接合面における凹の屈折力が弱くなり、球面収差を補正することが困難となる。なお、効果を確実にするために、条件式(4)の上限値を0.90にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(4)の上限値を0.88にすることが好ましくは可能である。
 一方、条件式(4)の対応値が下限値を下回ると、正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分との接合面における凹の屈折力が強くなり、球面収差の補正が過大となる。なお、効果を確実にするために、条件式(4)の下限値を0.75にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(4)の下限値を0.78にすることが好ましくは可能である。
 これらの実施形態において、変倍光学系は、前記前群は接合レンズを有し、前記接合レンズは正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とからなり、以下の条件式(5)を満足することが好ましくは可能である。
 (5)1.7 < ν1/ν2 < 3.2
 ただし、
 ν1:前記正の屈折力を有するレンズ成分のアッベ数
 ν2:前記負の屈折力を有するレンズ成分のアッベ数
 条件式(5)は、第4レンズ群の前群が有する接合レンズを構成している正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とのそれぞれのアッベ数の比を規定するための条件式である。条件式(5)を満足することにより、色収差を良好に補正することができる。
 条件式(5)の対応値が上限値を上回ると、負の屈折力を有するレンズ成分のアッベ数が小さくなり、色収差の補正が過大となる。なお、効果を確実にするために、条件式(5)の上限値を3.0にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(5)の上限値を2.9にすることが好ましくは可能である。
 一方、条件式(5)の対応値が下限値を下回ると、負の屈折力を有するレンズ成分のアッベ数が大きくなり、色収差の補正が困難となる。なお、効果を確実にするために、条件式(5)の下限値を1.9にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(5)の下限値を2.0にすることが好ましくは可能である。
 これらの実施形態において、変倍光学系は、以下の条件式(6)を満足することが好ましくは可能である。
 (6)0.5 < L4a/L4 < 0.9
 ただし、
 L4a:前記第4レンズ群内の前記最も大きな空気間隔の距離
 L4:前記第4レンズ群の最も物体側の面から最も像側の面までの距離
 条件式(6)は、第4レンズ群内の最も大きな空気間隔の距離と第4レンズ群の総厚との比を規定するための条件式である。条件式(6)を満足することにより、変倍光学系の大型化およびこれに伴う鏡筒の大型化を招くことなく、球面収差、コマ収差を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、変倍光学系の大型化を招き、これに伴い鏡筒が大型化してしまう。さらに球面収差を補正することが困難となる。なお、効果を確実にするために、条件式(6)の上限値を0.86にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(6)の上限値を0.82にすることが好ましくは可能である。
 一方、条件式(6)の対応値が下限値を下回ると、コマ収差をはじめとする諸収差を補正することが困難となる。なお、効果を確実にするために、条件式(6)の下限値を0.55にすることが好ましくは可能である。また、効果をさらに確実にするために、条件式(6)の下限値を0.60にすることが好ましくは可能である。
 一実施形態において、光学装置は、上述した構成の変倍光学系を備えている。これにより、合焦レンズ群が軽量化され、オートフォーカス時の静粛性の高い光学装置を実現することができる。
 一実施形態において、変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、前記負レンズ群より像側に配置され、かつ、絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、前記合焦群は一つのレンズ成分で構成され、前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、以下の条件式(1)を満足する変倍光学系の製造方法である。
 (1) 0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 代替実施形態において、変倍光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第3レンズ群を一つのレンズ成分で構成し、最も像面側のレンズ成分を負の屈折力を有するように構成し、以下の条件式(1)を満足するように構成し、広角端状態から望遠端状態への変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように構成し、無限遠物体から近距離物体への合焦の際、前記第3レンズ群が移動するように構成するものである。
  (1)0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
 これらの変倍光学系の製造方法により、合焦レンズ群が軽量化され、オートフォーカス時の静粛性の高い変倍光学系を製造することができる。
(数値実施例)
 以下、数値実施例に係る変倍光学系を添付図面に基づいて説明する。
 (第1実施例)
 図1は、第1実施例に係る変倍光学系のレンズ構成を示す断面図である。
 図1に示すように、本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、両凹形状の負レンズL23とからなる。
 第3レンズ群G3は、両凸形状の正レンズL31からなる。
 第4レンズ群G4は、光軸に沿って物体側から順に、正の屈折力を有する前群G4Fと、開口絞りSと、後群G4Rとからなる。
 前群G4Fは、光軸に沿って物体側から順に、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズからなる。
 後群G4Rは、光軸に沿って物体側から順に、両凸形状の正レンズL43と、両凹形状の負レンズL44とからなる。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
 以上の構成のもと、本実施例に係る変倍光学系は、広角端状態から望遠端状態への変倍の際、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大するように、第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とは像面Iに対して光軸に沿って移動する。詳細には、第1レンズ群は物体側へ移動し、第2レンズ群は一旦像側へ移動した後物体側へ移動し、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は物体側へ移動する。開口絞りSは、広角端状態から望遠端状態への変倍の際、第4レンズ群G4と共に移動する。
 また、本実施例に係る変倍光学系は、第3レンズ群G3を像面側へ移動させることにより、無限遠物体から近距離物体への合焦が行われる。
 以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
 表1において、fは焦点距離、BFはバックフォーカス(最も像側のレンズ面と像面Iとの光軸上の距離)を示す。
 [面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第(n+1)面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。また、物面は物体面、可変は可変の面間隔、絞りSは開口絞りS、像面は像面Iをそれぞれ示している。なお、曲率半径r=∞は平面を示している。空気の屈折率nd=1.000000の記載は省略している。
 [各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Ymaxは最大像高、TLは変倍光学系の全長(無限遠物体合焦時の第1面から像面Iまでの光軸上の距離)、dn(nは整数)は第n面と第(n+1)面との可変の面間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、無限遠は無限遠物体への合焦時、近距離は近距離物体への合焦時をそれぞれ示す。
 [レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
 [条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
 ここで、表1に掲載されている焦点距離f、曲率半径r、その他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
 なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
 (表1)第1実施例
 [面データ]
 面番号   r         d        nd       νd
 物面     ∞
  1)    79.181      5.916     1.51680     63.88
  2)  -865.935      0.515
  3)   123.870      1.500     1.62004     36.40
  4)    37.628      8.227     1.51680     63.88
  5)   402.325      (可変)
  6)  -104.719      1.000     1.69680     55.52
  7)    19.124      4.140     1.80518     25.45
  8)    65.634      2.236
  9)   -50.951      1.000     1.80610     40.97
 10)   160.536      (可変)
 11)   102.843      3.727     1.51680     63.88
 12)   -48.859      (可変)
 13)    38.795      5.043     1.48749     70.31
 14)   -39.042      1.000     1.80518     25.45
 15)  -165.709      1.620
 16) (絞り) ∞     46.334
 17)   103.400      3.400     1.67270     32.19
 18)   -36.557      1.727
 19)   -27.830      1.000     1.77250     49.62
 20)   154.941      (BF)
 像面     ∞
 
 [各種データ]
変倍比 4.12
         W       M       T
f     71.4    105.0    294.0
FNO  4.71     4.72     6.40
2ω   22.78    15.28     5.44
Ymax  14.25    14.25    14.25
TL  167.33   188.29   221.32
BF   38.51    38.72    64.52
 
         W       M       T       W       M       T
       無限遠   無限遠   無限遠   近距離   近距離   近距離
d5      3.117   26.926   51.633    3.117   26.626   51.633
d10    28.867   23.778    2.000   29.628   24.882    3.428 
d12     8.442   10.483   14.781    7.681    9.378   13.353
 
 [レンズ群データ]
群  始面      f
G1    1    122.444
G2    6    -28.587
G3   11     64.633
G4   13    141.232
 
 [各条件式対応値]
 (1)(r2+r1)/(r2-r1) = 0.695
 (2)f1/(-f2)               = 4.283
 (3)f4/f3                     = 2.185
 (4)n1/n2                     = 0.824
 (5)ν1/ν2                     = 2.763
 (6)L4a/L4                   = 0.798
 
 図2は、第1実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。
 図3は、第1実施例に係る変倍光学系の近距離物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。
 各収差図において、FNOはFナンバーを、NAは開口数を、Yは像高をそれぞれ示している。また、図中のdはd線(波長λ=587.6nm)での収差曲線を示し、gはg線(波長λ=435.8nm)での収差曲線を示し、記載のないものはd線での収差曲線を示す。球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示している。非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。なお、以下に示す各実施例の諸収差図においても、本実施例と同様の符号を用いる。
 各収差図から明らかなように、第1実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。
 (第2実施例)
 図4は、第2実施例に係る変倍光学系のレンズ構成を示す断面図である。
 図4に示すように、本実施例に係る変倍光学系は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群G1と、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。
 第1レンズ群G1は、光軸に沿って物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合正レンズとからなる。
 第2レンズ群G2は、光軸に沿って物体側から順に、両凹形状の負レンズL21と物体側に凸面を向けた正メニスカスレンズL22との接合負レンズと、両凹形状の負レンズL23とからなる。
 第3レンズ群G3は、両凸形状の正レンズL31からなる。
 第4レンズ群G4は、光軸に沿って物体側から順に、正の屈折力を有する前群G4Fと、開口絞りSと、後群G4Rとからなる。
 前群G4Fは、光軸に沿って物体側から順に、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42との接合正レンズからなる。
 後群G4Rは、光軸に沿って物体側から順に、両凸形状の正レンズL43と、両凹形状の負レンズL44とからなる。
 像面I上には、CCDやCMOS等から構成された撮像素子(図示省略)が配置されている。
 以上の構成のもと、本実施例に係る変倍光学系は、広角端状態から望遠端状態への変倍の際、第1レンズ群G1と第2レンズ群G2との間隔が増大し、第2レンズ群G2と第3レンズ群G3との間隔が減少し、第3レンズ群G3と第4レンズ群G4との間隔が増大するように、第1レンズ群G1と第2レンズ群G2と第3レンズ群G3と第4レンズ群G4とは像面Iに対して光軸に沿って移動する。詳細には、第1レンズ群は物体側へ移動し、第2レンズ群は一旦像側へ移動した後物体側へ移動し、第3レンズ群G3は物体側へ移動し、第4レンズ群G4は物体側へ移動する。開口絞りSは、広角端状態から望遠端状態への変倍の際、第4レンズ群G4と共に移動する。
 また、本実施例に係る変倍光学系は、第3レンズ群G3を像面側へ移動させることにより、無限遠物体から近距離物体への合焦が行われる。
 以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
 (表2)第2実施例
 [面データ]
 面番号   r         d        nd       νd
 物面     ∞
  1)    88.000      5.386     1.51680     63.88
  2)  -470.597      0.200
  3)   116.000      1.500     1.62004     36.40
  4)    38.400      7.368     1.51680     63.88
  5)   262.431     (可変)
  6)  -115.000      1.000     1.69680     55.52
  7)    18.736      4.257     1.80518     25.45
  8)    75.513      2.005
  9)   -53.736      1.000     1.80100     34.92
 10)   122.000     (可変)
 11)    92.248      3.551     1.51680     63.88
 12)   -55.188     (可変)
 13)    37.517      5.015     1.49700     81.73
 14)   -37.517      1.000     1.72825     28.38
 15)  -271.936      4.500
 16) (絞り) ∞     40.717
 17)   110.794      3.336     1.68893     31.16
 18)   -32.526      1.096
 19)   -25.909      1.000     1.77250     49.62
 20)   130.000     (BF)
 像面     ∞
 
 [各種データ]
変倍比 4.24
         W      M      T
f     69.3   104.5   294.0
FNO  4.69    4.75    6.46
2ω   23.44   15.28    5.44
Ymax  14.25   14.25   14.25
TL  166.54  189.91  221.32
BF   38.53   39.04   64.52
 
         W       M       T       W       M       T
       無限遠   無限遠   無限遠   近距離   近距離   近距離
d5      3.600   29.972   55.757    3.600   29.972   55.757
d10    31.403   25.592    2.000   32.262   26.852    3.608 
d12    10.077   12.375   16.114    9.218   11.115   14.506
 
 [レンズ群データ]
群  始面       f
G1    1     128.797
G2    6     -30.221
G3   11      67.368
G4   13     143.638
 
 [各条件式対応値]
 (1)(r2+r1)/(r2-r1) = 0.668
 (2)f1/(-f2)               = 4.262
 (3)f4/f3                     = 2.117
 (4)n1/n2                     = 0.866
 (5)ν1/ν2                     = 2.880
 (6)L4a/L4                   = 0.798
 
 図5は、第2実施例に係る変倍光学系の無限遠物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。
 図6は、第2実施例に係る変倍光学系の近距離物体合焦時の諸収差図であり、(a)は広角端状態を、(b)は中間焦点距離状態を、(c)は望遠端状態をそれぞれ示している。
 各収差図から明らかなように、第2実施例に係る変倍光学系は、広角端状態から望遠端状態に亘って諸収差が良好に補正され、優れた結像性能を有しており、さらに近距離物体合焦時にも優れた結像性能を有していることがわかる。
 以上説明したように、上記各実施例によれば、合焦レンズ群を充分に軽量化できる。その結果、オートフォーカス時の静粛性の高い変倍光学系を実現することができる。また、合焦レンズ群を軽量化できるので、合焦レンズ群を高速で動かすための大きなモータやアクチュエータが必要ではなくなり、鏡筒を大型化することなくオートフォーカスの高速化を実現することができる。さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた高い光学性能を備えた変倍光学系を実現することができる。
 なお、上記各実施例は一具体例を示しているものであり、本実施形態はこれらに限定されるものではない。以下の内容は、変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 変倍光学系の数値実施例として4群構成のものを示したが、本実施形態はこれに限られず、その他の群構成(例えば、5群、6群等)の変倍光学系を構成することもできる。具体的には、変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 上記各実施例においては、合焦群(合焦レンズ群)である第3レンズ群G3が単レンズで構成されている例を示したが、第3レンズ群G3は接合レンズで構成されてもよい。
 また、変倍光学系において、合焦群(合焦レンズ群)は、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
 また、変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができる。また、像面がずれた場合でも描写性能の劣化が少ない。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
 また、変倍光学系において開口絞りは第4レンズ群中に配置されているが、第4レンズ群の最も物体側に配置されても良い。また、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
 また、変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。
 次に、変倍光学系を備えたカメラの一例を図7に基づいて説明する。
 図7は、変倍光学系を備えたカメラの一例の構成を示す図である。
 図7に示すようにカメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。
 図7に示すデジタル一眼レフカメラ1において、図示しない物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して集点板5に結像される。そして、集点板5に結像された光は、ペンタプリズム7中で複数回反射されて接眼レンズ9へと導かれる。これにより、撮影者は、物体(被写体)像を接眼レンズ9を介して正立像として観察することができる。
 撮影者によって図示しないレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、撮影レンズ2で集光された物体(被写体)の光は撮像素子11上に被写体像を形成する。これにより、物体からの光は、撮像素子11により撮像され、物体画像としてメモリ(図示省略)に記憶される。このようにして、撮影者はカメラ1による物体の撮影を行うことができる。
 ここで、カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、合焦群(合焦レンズ群)を充分に軽量化した変倍光学系である。したがってカメラ1は、オートフォーカス時の静粛性の高いカメラである。またカメラ1は、合焦レンズ群を軽量化できるので、鏡筒を大型化することなくオートフォーカスの高速化を実現することができる。カメラ1はさらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた高い光学性能を実現することができる。なお、上記第2実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、カメラ1は、撮影レンズ2を着脱可能に保持するものでも良く、撮影レンズ2と一体に成形されるものでも良い。また、カメラ1は、クイックリターンミラー等を有さないカメラでも良い。
 次に、変倍光学系の製造方法の一例について説明する。図8は、変倍光学系の製造方法の一例の概略を示す図である。
 図8に示す例において、変倍光学系の製造方法は、最も物体側に配置された正の屈折力を有する第1レンズ群と、前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群(第2レンズ群)と、前記負レンズ群より像側に配置され、かつ、絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群(第4レンズ群)と、前記負レンズ群と前記正レンズ群との間に配置された合焦群(第3レンズ群)と、を有する変倍光学系の製造方法であって、以下の各ステップS1~S5を含むものである。
 ステップS1:合焦群を一つのレンズ成分で構成する。
 ステップS2:前記正レンズ群の最も像面側のレンズ成分を負の屈折力を有するように構成する。
 ステップS3:以下の条件式(1)を満足するように構成する。
 (1)0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の物体側の面の曲率半径
 ステップS4:変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置する。
 ステップS5:合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置する。
 あるいは、図8に示す例において、光学系の製造方法は、光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下の各ステップS1~S5を含むものである。
 ステップS1:第3レンズ群を一つのレンズ成分で構成する。
 ステップS2:最も像面側のレンズ成分を負の屈折力を有するように構成する。
 ステップS3:以下の条件式(1)を満足するように構成する。
 (1)0.30 < (r2+r1)/(r2-r1) < 0.85
 ただし、
 r2:前記最も像面側のレンズ成分の像面側の面の曲率半径
 r1:前記最も像面側のレンズ成分の物体側の面の曲率半径
 ステップS4:変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように構成する。
 ステップS5:合焦の際、前記第3レンズ群が移動するように構成する。
 以上の変倍光学系の製造方法によれば、合焦群(合焦レンズ群)を充分に軽量化した変倍光学系を製造することができる。その結果、オートフォーカス時の静粛性の高い変倍光学系を実現することができる。また、合焦群を軽量化できるので、鏡筒を大型化することなくオートフォーカスの高速化を実現することができる。さらに、広角端状態から望遠端状態への変倍時の収差変動、ならびに無限遠物体から近距離物体への合焦時の収差変動を良好に抑えた高い光学性能を備えた変倍光学系を実現することができる。
G1 第1レンズ群
G2 第2レンズ群(負レンズ群)
G3 第3レンズ群(合焦群)
G4 第4レンズ群(正レンズ群)
G4F 前群
G4R 後群
S 開口絞り
I 像面
1 光学装置
2 撮影レンズ
3 クイックリターンミラー
5 集点板
7 ペンタプリズム
9 接眼レンズ
11 撮像素子。

Claims (15)

  1.  最も物体側に配置された正の屈折力を有する第1レンズ群と、
     前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、
     前記負レンズ群より像側に配置され、かつ、開口絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、
     前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有し、
     変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化し、
     合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化し、
     前記合焦群は一つのレンズ成分で構成され、
     前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、
     以下の条件式を満足する変倍光学系。
      0.30 < (r2+r1)/(r2-r1) < 0.85
     ただし、
     r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
     r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
  2.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     合焦の際、前記第3レンズ群が移動し、
     前記第3レンズ群は一つのレンズ成分で構成され、
     最も像面側のレンズ成分は負の屈折力を有し、
     以下の条件式を満足する変倍光学系。
      0.30 < (r2+r1)/(r2-r1) < 0.85
     ただし、
     r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
     r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
  3.  前記最も像面側のレンズ成分は、一枚の負レンズである請求項1または2に記載の変倍光学系。
  4.  広角端状態から望遠端状態への変倍の際、前記第1レンズ群が物体側へ移動する請求項1から3の何れか一項に記載の変倍光学系。
  5.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     広角端状態から望遠端状態への変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が増大する請求項1から4の何れか一項に記載の変倍光学系。
  6.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、を有し、
     変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、
     以下の条件式を満足する請求項1から5の何れか一項に記載の変倍光学系。
      3.5 < f1/(-f2) < 6.5
     ただし、
     f1:前記第1レンズ群の焦点距離
     f2:前記第2レンズ群の焦点距離
  7.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     以下の条件式を満足する請求項1から6の何れか一項に記載の変倍光学系。
      1.7 < f4/f3 < 2.4
     ただし、
     f4:前記第4レンズ群の焦点距離
     f3:前記第3レンズ群の焦点距離
  8.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、を有し、
     広角端状態から望遠端状態への変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が増大し、前記第2レンズ群と前記第3レンズ群との間隔が減少する請求項1から7の何れか一項に記載の変倍光学系。
  9.  光軸に沿って物体側から順に、正の屈折力を有する第1レンズ群と、負の屈折力を有する第2レンズ群と、正の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
     変倍の際、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
     前記第4レンズ群は、正の屈折力を有する前群と負の屈折力を有する後群とからなり、前記前群と前記後群との間隔は前記第4レンズ群内の空気間隔で最も大きな空気間隔であり、前記後群は、二つの単レンズで構成されている請求項1から8の何れか一項に記載の変倍光学系。
  10.  前記前群は、接合レンズを有する請求項9に記載の変倍光学系。
  11.  前記前群は接合レンズを有し、前記接合レンズは正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とからなり、以下の条件式を満足する請求項9または10に記載の変倍光学系。
      0.70 < n1/n2 < 0.95
     ただし、
     n1:前記正の屈折力を有するレンズ成分の屈折率
     n2:前記負の屈折力を有するレンズ成分の屈折率
  12.  前記前群は接合レンズを有し、前記接合レンズは正の屈折力を有するレンズ成分と負の屈折力を有するレンズ成分とからなり、以下の条件式を満足する請求項9から11の何れか一項に記載の変倍光学系。
      1.7 < ν1/ν2 < 3.2
     ただし、
     ν1:前記正の屈折力を有するレンズ成分のアッベ数
     ν2:前記負の屈折力を有するレンズ成分のアッベ数
  13.  以下の条件式を満足する請求項9から12の何れか一項に記載の変倍光学系。
      0.5 < L4a/L4 < 0.9
     ただし、
     L4a:前記第4レンズ群内の前記最も大きな空気間隔の距離
     L4:前記第4レンズ群の最も物体側の面から最も像側の面までの距離
  14.  請求項1から13のいずれか一項に記載の変倍光学系を有する光学装置。
  15.  最も物体側に配置された正の屈折力を有する第1レンズ群と、
     前記第1レンズ群より像側に配置された負の屈折力を有する負レンズ群と、
     前記負レンズ群より像側に配置され、かつ、絞りより像側に配置されたレンズを少なくとも1つ含み、正の屈折力を有する正レンズ群と、
     前記負レンズ群と前記正レンズ群との間に配置された合焦群と、を有する変倍光学系の製造方法であって、
     変倍に際し、前記第1レンズ群が像面に対して移動し、前記第1レンズ群と前記負レンズ群の間隔が変化し、前記負レンズ群と前記正レンズ群の間隔が変化するように配置し、
     合焦に際し、前記合焦群と前記合焦群の物体側に対向する位置に配置されたレンズとの間隔が変化し、前記合焦群と前記合焦群の像側に対向する位置に配置されたレンズとの間隔が変化するように配置し、
     前記合焦群は一つのレンズ成分で構成され、
     前記正レンズ群の最も像面側のレンズ成分は負の屈折力を有し、
     以下の条件式を満足する変倍光学系の製造方法。
      0.30 < (r2+r1)/(r2-r1) < 0.85
     ただし、
     r2:前記最も像面側のレンズ成分の最も像面側の面の曲率半径
     r1:前記最も像面側のレンズ成分の最も物体側の面の曲率半径
PCT/JP2015/086419 2014-12-26 2015-12-25 変倍光学系、光学装置、および変倍光学系の製造方法 WO2016104793A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016566574A JP6489133B2 (ja) 2014-12-26 2015-12-25 変倍光学系、および光学装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266039 2014-12-26
JP2014-266039 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016104793A1 true WO2016104793A1 (ja) 2016-06-30

Family

ID=56150803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086419 WO2016104793A1 (ja) 2014-12-26 2015-12-25 変倍光学系、光学装置、および変倍光学系の製造方法

Country Status (2)

Country Link
JP (1) JP6489133B2 (ja)
WO (1) WO2016104793A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047760A1 (ja) * 2015-09-18 2017-03-23 株式会社ニコン 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288991A (ja) * 1992-04-10 1993-11-05 Canon Inc リヤーフォーカス式のズームレンズ
JP2003202500A (ja) * 2002-01-08 2003-07-18 Minolta Co Ltd 撮像装置
WO2013146758A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP2014085497A (ja) * 2012-10-23 2014-05-12 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015043040A (ja) * 2013-08-26 2015-03-05 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05288991A (ja) * 1992-04-10 1993-11-05 Canon Inc リヤーフォーカス式のズームレンズ
JP2003202500A (ja) * 2002-01-08 2003-07-18 Minolta Co Ltd 撮像装置
WO2013146758A1 (ja) * 2012-03-30 2013-10-03 株式会社ニコン 変倍光学系、光学装置、および変倍光学系の製造方法
JP2014085497A (ja) * 2012-10-23 2014-05-12 Nikon Corp 変倍光学系、光学装置、変倍光学系の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047760A1 (ja) * 2015-09-18 2017-03-23 株式会社ニコン 変倍光学系、光学装置、撮像装置、変倍光学系の製造方法
JPWO2017047760A1 (ja) * 2015-09-18 2018-07-12 株式会社ニコン 変倍光学系、光学装置、撮像装置
US10816782B2 (en) 2015-09-18 2020-10-27 Nikon Corporation Variable magnification optical system, optical apparatus, imaging apparatus and method for manufacturing variable magnification optical system

Also Published As

Publication number Publication date
JP6489133B2 (ja) 2019-03-27
JPWO2016104793A1 (ja) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6269861B2 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP6539939B2 (ja) 撮影レンズ、及び光学機器
JP5126668B2 (ja) 撮影レンズ、これを搭載する光学装置および像ブレ補正方法
JP2016161644A (ja) 撮影レンズ、撮影レンズを備えた光学機器、撮影レンズの製造方法
JP5904014B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JPWO2016104747A1 (ja) 変倍光学系、光学装置、及び、変倍光学系の製造方法
JP6331286B2 (ja) 撮影レンズ、及び光学機器
JP6344044B2 (ja) 光学系、光学装置
JP6702337B2 (ja) 変倍光学系および光学機器
JP6331673B2 (ja) 光学系、光学装置
CN109983385B (zh) 变倍光学系统以及使用了该变倍光学系统的光学设备和摄像设备
JP5958018B2 (ja) ズームレンズ、撮像装置
JP6642572B2 (ja) 変倍光学系、光学装置
JP6661893B2 (ja) 変倍光学系、光学装置
JP6361088B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JP5790106B2 (ja) 光学系、光学装置、光学系の製造方法
JP5200564B2 (ja) インナーフォーカス式の光学系、撮像装置、合焦方法
JP6489133B2 (ja) 変倍光学系、および光学装置
JP5867294B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JP5904015B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JP6911869B2 (ja) 変倍光学系、これを用いた光学機器および撮像機器
JP6264914B2 (ja) 光学系、光学装置
JP6186830B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JP6255704B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法
JP5904013B2 (ja) 撮影レンズ、光学機器、および撮影レンズの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016566574

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873361

Country of ref document: EP

Kind code of ref document: A1