WO2016104280A1 - 偏光光照射装置 - Google Patents

偏光光照射装置 Download PDF

Info

Publication number
WO2016104280A1
WO2016104280A1 PCT/JP2015/085201 JP2015085201W WO2016104280A1 WO 2016104280 A1 WO2016104280 A1 WO 2016104280A1 JP 2015085201 W JP2015085201 W JP 2015085201W WO 2016104280 A1 WO2016104280 A1 WO 2016104280A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
irradiation region
polarized light
holding
light irradiation
Prior art date
Application number
PCT/JP2015/085201
Other languages
English (en)
French (fr)
Inventor
和重 橋本
敏成 新井
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2016104280A1 publication Critical patent/WO2016104280A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a polarized light irradiation apparatus.
  • a photo-alignment process is known in which a photosensitive resin film is formed on the substrate and the film is irradiated with polarized light.
  • this photo-alignment treatment it is necessary to uniformly irradiate the film on the substrate with polarized light.
  • the entire width direction of the substrate can be irradiated with polarized light.
  • a polarized light irradiation apparatus is used that uses a light source unit that is long in one direction and scans and exposes the entire substrate while moving the substrate in a direction that intersects the longitudinal direction of the light source unit.
  • This polarized light irradiation apparatus includes a stage on which a substrate is placed and moved in a uniaxial direction, and a stage moving mechanism that moves the stage (see Patent Document 1 below).
  • the substrate can be continuously supplied from one side to the polarized light irradiation region of the light source unit, efficient processing becomes possible.
  • the substrate needs to pass through the polarized light irradiation area while maintaining the relationship between the direction (the direction of the pattern formed on the substrate) and the polarization axis of the polarized light to be radiated. There is a need for a means for transferring a substrate that satisfies the above.
  • the present invention is an example of a problem to deal with such a problem. That is, in a polarized light irradiation apparatus that irradiates a substrate with polarized light and performs photo-alignment processing, etc., by continuously supplying the substrate from one direction to the polarized light irradiation region, the substrate is carried in, the polarized light irradiation, the substrate It is an object of the present invention to improve the processing efficiency by carrying out the one-way unloading and to ensure high processing accuracy by maintaining the direction of the substrate with high accuracy.
  • a polarized light irradiation apparatus has the following configuration.
  • a light source unit that irradiates a set irradiation region with polarized light; and a stage that moves the substrate along a uniaxial direction so as to pass through the irradiation region.
  • a plurality of substrate holders that hold the substrate direction constant and release the substrate held on the other side in one axial direction of the irradiation region, and the substrate holder is configured such that one substrate holder holds one substrate.
  • the present invention having such a feature supplies the substrate continuously from one direction to the polarized light irradiation region, thereby bringing in the substrate, irradiating the polarized light, Unloading can be performed in one way to improve processing efficiency. At that time, the direction of the substrate can be maintained with high accuracy to ensure high processing accuracy.
  • FIG. 1 is an explanatory diagram (operation explanatory diagram, (a) to (g) showing an operation process) showing a polarized light irradiation apparatus according to an embodiment of the present invention.
  • FIG. 1 is an explanatory diagram (operation explanatory diagram, (a) to (g) showing an operation process) showing a polarized light irradiation apparatus according to an embodiment of the present invention.
  • 1 is an explanatory diagram (operation explanatory diagram, (a) to (g) showing an operation process) showing a polarized light irradiation apparatus according to an embodiment of the present invention. It is explanatory drawing of a board
  • the polarized light irradiation apparatus 1 includes a light source unit 2 and a stage 3.
  • the light source unit 2 irradiates the set irradiation region 2S with polarized light, and includes a light source and a polarizer as will be described later.
  • Stage 3 moves substrate W that irradiates polarized light along a uniaxial direction (X-axis direction) so as to pass irradiation region 2S.
  • the moving direction of the substrate is the X-axis direction
  • the direction orthogonal to the X-axis direction on the horizontal plane is the Y-axis direction
  • the vertical direction orthogonal to the XY axis is the Z-axis direction.
  • the substrate W is a substrate of a liquid crystal panel on which an alignment film is formed, and a photosensitive alignment material (polymer material) is formed on the substrate W.
  • the stage 3 keeps the direction of the substrate W constant on one side in the uniaxial direction (X-axis direction) of the irradiation region 2S, and releases the holding of the substrate W on the other side in the uniaxial direction (X-axis direction) of the irradiation region 2S.
  • a plurality of substrate holding units 30 are provided.
  • the substrate holding unit 30 is moved along the uniaxial direction (X-axis direction) by the holding unit moving means 31 having an appropriate form, and while maintaining the state of holding the substrate W, one side of the irradiation region 2S in the X-axis direction. Move from one side to the other.
  • One example of the holding unit moving means 31 shown in FIG. 1 is to attach the substrate holding unit 30 to an endless moving body and continuously reciprocate the substrate holding unit 30.
  • Stage 3 is provided with substrate support means 4 as required.
  • the substrate support means 4 supports the height of the substrate W at a constant level while the polarized light is irradiated, and can be constituted by a guide body, a roller conveyor, an air levitation device, etc., on which the substrate W can slide. it can.
  • the stage 3 is provided with a rotation adjusting means for adjusting the direction of the substrate W at least on one side (X-axis direction) of the irradiation region 2S (not shown).
  • the rotation adjusting means performs rotation adjustment for adjusting the direction of the substrate W to the set direction with respect to the polarization axis direction of the polarized light to be irradiated, and the substrate holding unit 30 includes the rotation adjusting means. You can also.
  • the polarized light irradiation apparatus 1 has a substrate carry-in position P1 on one side in the uniaxial direction (X-axis direction) of the irradiation region 2S in the stage 3, and a substrate carry-out position P2 on the other side in the uniaxial direction (X-axis direction) in the irradiation region 2S.
  • the substrate holding unit 30 adjusts the direction of the substrate W to the set direction so that the direction of the substrate W is always constant during movement at the substrate loading position P1.
  • the substrate W is held.
  • the substrate W moves while maintaining the state held by the substrate holding unit 30, and the substrate W is irradiated with polarized light by passing through the irradiation region 2S.
  • the substrate holding unit 30 releases the holding of the substrate W.
  • a plurality of substrate holding units 30 are provided, and another substrate holding unit 30 holds another substrate W (W2) before one substrate holding unit 30 releases the holding of one substrate W (W1). .
  • the substrate W is continuously supplied to the irradiation region 2S from one direction, and the substrate W can be carried in, the substrate W can be irradiated with the polarized light, and the substrate W can be carried out in one way.
  • FIG. 2 shows another embodiment of the polarized light irradiation apparatus 1 and its operation example.
  • the polarized light irradiation device 1 includes holding bodies 30A and 30B as the substrate holding unit 30 and scanning axes 31A and 31B as the holding unit moving unit 31.
  • the scanning shafts 31A and 31B are drive shafts that reciprocate the holding bodies 30A and 30B independently along one axis direction.
  • an example is shown in which two scanning axes 31A and 31B are provided and the holding bodies 30A and 30B move independently on the respective axes.
  • the number of scanning axes is three or more, and on each axis.
  • the holding body may move independently.
  • a fixed shaft 32 extends at the center of the stage 3.
  • the holding bodies 30A and 30B have a function of rotating and adjusting the direction of the substrate W and a function of holding the direction of the substrate W constant.
  • the holding body 30A holds the substrate W1 and rotates and adjusts the direction of the substrate W1 in the set direction. Thereafter, the holding body 30A moves from one side to the other side in the X-axis direction of the irradiation region by the scanning axis 31A so that the substrate W1 passes through the irradiation region of the light source unit 2 (see FIG. 2B). .
  • the other holding body 30B holds the other substrate W2 (see FIG. 2C).
  • the holding body 30B holds the substrate W2 and rotates and adjusts the direction of the substrate W2 in the set direction, and then scans the substrate W2 so as to pass through the irradiation region of the light source unit 2, similarly to the holding body 30A.
  • the axis 31B moves from one side to the other side in the X-axis direction of the irradiation region (see FIG. 2D).
  • the holding body 30A holding the substrate W1 that has been irradiated with polarized light reaches the substrate carry-out position P2
  • the holding body 30A returns the direction of the substrate W1 to a direction in which it can be easily carried out, and releases the holding of the substrate W1.
  • the substrate W1 is unloaded from the substrate unloading position P2 by a substrate unloading means (not shown) provided separately.
  • the holding body 30B moves the held substrate W2, and irradiation processing of polarized light is performed on the substrate W2 (see FIG. 2E).
  • the holding body 30A When the holding body 30A releases the holding of the substrate W1, it is returned to the opposite side of the irradiation region (substrate loading position side) by reverse driving of the scanning shaft 31A. In the meantime, the polarized light irradiation process is continuously performed on the substrate W2 held by the holder 30B. At this time, the returned holder 30A is retracted to a position where it does not interfere with the moving substrate W2 (FIG. 2 (f)). When a new substrate W3 is loaded into the substrate loading position P1, the holding body 30A that has returned to the substrate loading position P1 holds the substrate W3, and then the above-described operation is repeated (see FIG. 2G).
  • FIG. 3 shows another embodiment of the polarized light irradiation apparatus 1 and an operation example thereof.
  • the same parts as those described above are denoted by the same reference numerals, and redundant description is omitted.
  • the above-described holding bodies 30A and 30B are not shown, the scanning shafts 31A and 31B are provided with holding bodies 30A and 30B.
  • the polarized light irradiation device 1 includes rotation adjusting bodies 32A and 32B separately from the holding bodies 30A and 30B.
  • the rotation adjusting bodies 32A and 32B are provided at the substrate carry-in position P1 and the substrate carry-out position P2, respectively, and are attached to a fixed shaft 32 that extends along the X-axis direction at the center of the stage 3.
  • the rotation adjustment bodies 32A and 32B fixed to the substrate carry-in position P1 and the substrate carry-out position P2 rotate and adjust the direction of the loaded substrate W or the unloaded substrate W.
  • the rotation adjusting body 32A holds the substrate W that has entered the substrate carry-in position P1, performs rotation adjustment, and then opens after the substrate W is held by the holding body 30A or 30B.
  • the rotation adjusting body 32B holds the substrate W that has entered the substrate carry-out position P2, and performs rotation adjustment after the holding body 30A or 30B is opened. According to the rotation adjusting bodies 32A and 32B, rotation adjustment with the center of the substrate W held can be performed.
  • the operations other than the rotation adjustment of the substrate W can be described with reference to FIGS. 2A to 2G and the operations of FIGS. 3A to 3G.
  • FIG. 4 shows a configuration example of the substrate holders (holding bodies 30A and 30B) in FIGS. 2 and 3 (the same parts as those described above are denoted by the same reference numerals, and redundant description is omitted).
  • the holding bodies 30A and 30B that move along the X-axis direction by the scanning axes 31A and 31B are provided with elevating means that move up and down in the Z-axis direction.
  • the illustrated holding body 30A shows a state in which the substrate W is lifted up
  • the illustrated holding body 30B shows a state in which the holding of the substrate W is released and lowered to a position where it does not interfere with the substrate W. Yes.
  • the holding body 30A When the substrate W is held and moved toward the substrate carry-out position, the holding body 30A is in the state shown in the figure, and when the substrate W is released and then returned to the substrate carry-in position, the holder shown in the figure is obtained. It will be in the state of 30B.
  • FIG. 5 shows a configuration example of the light source unit 2 in the polarized light irradiation apparatus 1 according to the embodiment of the present invention.
  • the light source unit 2 extends along the Y-axis direction, a long light source can be used along the Y-axis direction, and a short light source having a length in the X-axis direction as shown in the drawing. 20, a plurality of units including the light source 20 can be arranged in the Y-axis direction.
  • a polarizer 21 (if necessary, a filter 22) is provided in each unit, and appropriate adjustment is performed so that the polarization axis of the polarizer 21 is in the same direction.
  • polarizer 21 for example, a wire grid polarizer provided with a fine grid made of linear electric conductors on a transparent substrate can be used.
  • chromium, aluminum, titanium oxide, or the like can be used as the electrical conductor here.
  • the polarized light irradiation apparatus 1 supplies the substrate W continuously from one direction to the irradiation region of the polarized light, thereby bringing in the substrate W, irradiating the polarized light,
  • the substrate can be carried out in one way, and the processing efficiency can be improved.
  • the direction of the substrate W can be maintained with high accuracy and high processing accuracy can be ensured.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)

Abstract

光配向処理などを行う偏光光照射装置において、偏光光照射領域に一方向から連続的に基板を供給することで、基板の搬入、偏光光照射、基板の搬出をワンウェイで行い、処理効率の向上を図り、その際、基板の方向を精度良く保って高い処理精度を確保する。偏光光照射装置1は、設定された照射領域2Sに偏光光を照射する光源ユニット2と、照射領域2Sを通過するように、基板Wを一軸方向に沿って移動させるステージ3とを備え、ステージ3は、照射領域2Sの一軸方向一方側で基板Wの方向を一定に保持して照射領域2Sの一軸方向他方側で基板Wの保持を開放する複数の基板保持部30を備え、基板保持部30は、一つの基板保持部30が一つの基板W1の保持を開放する前に、他の基板保持部30が他の基板W2を保持する。

Description

偏光光照射装置
 本発明は、偏光光照射装置に関するものである。
 液晶パネルなどの基板に配向膜を形成する処理技術として、基板に感光性樹脂の膜を形成し、その膜に偏光光を照射する光配向処理が知られている。この光配向処理には、基板上の膜に対して偏光光を均一に照射することが必要になるが、基板の大面積化に対応するために、基板の幅方向全体に偏光光を照射できる一方向に長い光源ユニットを用い、基板を光源ユニットの長手方向に交差する方向に移動させながら基板全体を走査露光する偏光光照射装置が使用されている。この偏光光照射装置は、基板を載置して一軸方向に移動するステージと、ステージを移動させるステージ移動機構を備えている(下記特許文献1参照)。
特許第5105567号公報
 このような偏光光照射装置において、一つのステージで処理を行うと、光源ユニットのステージ移動方向両側で基板の搬入と搬出を交互に行う必要があり、基板のハンドリングが煩雑になる問題がある。また、ステージへの基板の搬入・搬出時間が偏光光の照射時間に対して追加されることになるので、効率的な処理を行うことができない問題がある。
 これに対して、光源ユニットの偏光光照射領域に一方側から連続的に基板を供給できれば、効率的な処理が可能になるが、配向膜などを形成するための偏光光照射装置では、基板の方向(基板に形成されたパターンの方向)と照射する偏光光の偏光軸との関係を一定に維持した状態で、基板が偏光光照射領域を通過する必要があり、そのような要求を高い精度で満たす基板の移送手段が求められている。
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、基板に偏光光を照射して、光配向処理などを行う偏光光照射装置において、偏光光照射領域に一方向から連続的に基板を供給することで、基板の搬入、偏光光照射、基板の搬出をワンウェイで行い、処理効率の向上を図ること、その際、基板の方向を精度良く保って高い処理精度を確保すること、などが本発明の目的である。
 このような目的を達成するために、本発明による偏光光照射装置は、以下の構成を具備するものである。
 設定された照射領域に偏光光を照射する光源ユニットと、前記照射領域を通過するように、基板を一軸方向に沿って移動させるステージとを備え、前記ステージは、前記照射領域の一軸方向一方側で基板の方向を一定に保持して前記照射領域の一軸方向他方側で基板の保持を開放する複数の基板保持部を備え、前記基板保持部は、一つの基板保持部が一つの基板の保持を開放する前に、他の基板保持部が他の基板を保持することを特徴とする偏光光照射装置。
 このような特徴を有する本発明は、光配向処理などを行う偏光光照射装置において、偏光光照射領域に一方向から連続的に基板を供給することで、基板の搬入、偏光光照射、基板の搬出をワンウェイで行い、処理効率の向上を図ることができ、その際、基板の方向を精度良く保って高い処理精度を確保することができる。
本発明の実施形態に係る偏光光照射装置を示した説明図((a)が平面視の説明図であり、(b)が側面視の説明図)である。 本発明の実施形態に係る偏光光照射装置を示した説明図(動作説明図、(a)~(g)は動作過程を示す)である。 本発明の実施形態に係る偏光光照射装置を示した説明図(動作説明図、(a)~(g)は動作過程を示す)である。 基板保持部の説明図である。 本発明の実施形態に用いられる光源ユニットの説明図((a)平面視の説明図であり、(b)が側面視の説明図)である。
 以下、図面を参照して本発明の実施形態を説明する。図1において、偏光光照射装置1は、光源ユニット2とステージ3を備える。光源ユニット2は、設定された照射領域2Sに偏光光を照射するもので、後述するように光源及び偏光子を備えている。
 ステージ3は、偏光光を照射する基板Wを、照射領域2Sを通過するように、一軸方向(X軸方向)に沿って移動させる。以下、図においては、基板の移動方向をX軸方向、水平面上でX軸方向と直交する方向をY軸方向、X-Y軸に直交する上下方向をZ軸方向とする。基板Wは、配向膜が形成される液晶パネルの基板であり、基板Wには感光性の配向材料(高分子材料)が成膜されている。
 ステージ3は、照射領域2Sの一軸方向(X軸方向)一方側で基板Wの方向を一定に保持して、照射領域2Sの一軸方向(X軸方向)他方側で基板Wの保持を開放する複数の基板保持部30を備えている。基板保持部30は、適宜の形態を有する保持部移動手段31によって、一軸方向(X軸方向)に沿って移動し、基板Wを保持した状態を維持しながら、照射領域2SのX軸方向一方側から他方側に向けて移動する。図1に示した保持部移動手段31の一例は、エンドレスの移動体に基板保持部30を装着して、連続して基板保持部30を往復移動させるものである。
 ステージ3は、必要に応じて、基板支持手段4を備える。基板支持手段4は、偏光光が照射される間、基板Wの高さを一定に支持するものであり、基板Wが摺動自在なガイド体、ローラーコンベヤ、エア浮上器などによって構成することができる。また、ステージ3は、照射領域2Sの少なくとも一軸方向(X軸方向)一方側に、基板Wの方向を回転調整する回転調整手段を設けている(図示省略)。回転調整手段は、照射する偏光光の偏光軸方向に対して基板Wの方向を設定された方向に合わせるための回転調整を行うものであり、基板保持部30が回転調整手段を備える構成にすることもできる。
 偏光光照射装置1は、ステージ3における照射領域2Sの一軸方向(X軸方向)一方側に基板搬入位置P1を設け、照射領域2Sの一軸方向(X軸方向)他方側に基板搬出位置P2を設けている。基板搬入位置P1に基板Wが搬入されると、基板Wの方向を設定された方向に合わせ、基板保持部30は、基板Wの方向が移動中常に一定になるように、基板搬入位置P1で基板Wを保持する。基板Wは、基板保持部30で保持された状態を保って移動し、照射領域2Sを通過することで基板Wに偏光光が照射される。基板Wが照射領域2Sの一軸方向(X軸方向)他方側に移動され、基板搬出位置P2に到達すると、基板保持部30は基板Wの保持を開放する。
 基板保持部30は複数設けられており、一つの基板保持部30が一つの基板W(W1)の保持を開放する前に、他の基板保持部30が他の基板W(W2)を保持する。これによって、基板Wは照射領域2Sに一方向から連続的に供給され、基板Wの搬入,基板Wへの偏光光の照射,基板Wの搬出をワンウェイで行うことができる。
 図2は、偏光光照射装置1の他の形態例及びその動作例を示している。前述した説明と同一部位には同一符号を付して重複説明を省略する。この形態例では、偏光光照射装置1は、基板保持部30として、保持体30A,30Bを備えており、保持部移動手段31として、走査軸31A,31Bを備えている。走査軸31A,31Bは、保持体30A,30Bを一軸方向に沿って独立して往復移動させる駆動軸である。ここでは、走査軸31A,31Bを2軸設け、それぞれの軸上で保持体30A,30Bが独立して移動する例を示しているが、走査軸を3軸以上にして、それぞれの軸上で保持体が独立移動するものであってもよい。なお、ステージ3の中心には固定軸32が延設されている。
 この形態例では、保持体30A,30Bが、基板Wの方向を回転調整する機能と基板Wの方向を一定に保持する機能を備えている。図2(a)において、基板搬入位置P1に基板W1が搬入されると、保持体30Aが基板W1を保持して基板W1の方向を設定された方向に回転調整する。その後、保持体30Aは、基板W1が光源ユニット2の照射領域を通過するように、走査軸31Aによって照射領域のX軸方向一方側から他方側に向けて移動する(図2(b)参照)。
 そして、一つの保持体30Aが保持する基板W1が光源ユニット2の照射領域を通過し終わる前に、他の保持体30Bが他の基板W2を保持する(図2(c)参照)。保持体30Bは、保持体30Aと同様に、基板W2を保持して基板W2の方向を設定された方向に回転調整し、その後、基板W2が光源ユニット2の照射領域を通過するように、走査軸31Bによって照射領域のX軸方向一方側から他方側に向けて移動する(図2(d)参照)。
 偏光光照射が終了した基板W1を保持した保持体30Aが基板搬出位置P2に到達すると、保持体30Aは、基板W1の方向を搬出し易い方向に戻し、基板W1の保持を開放する。基板W1は別途設けられる基板搬出手段(図示省略)によって基板搬出位置P2から搬出される。その搬出工程中に、保持体30Bは保持した基板W2を移動させて、基板W2に対する偏光光の照射処理が行われている(図2(e)参照)。
 保持体30Aは基板W1の保持を開放すると、走査軸31Aの逆駆動によって照射領域の逆側(基板搬入位置側)に戻される。その間、保持体30Bが保持した基板W2に対する偏光光照射処理は引き続き行われている。その際、戻される保持体30Aは、移動中の基板W2に干渉しない位置に退避している(図2(f))。基板搬入位置P1に新たな基板W3が搬入されると、基板搬入位置P1まで戻った保持体30Aが基板W3を保持し、その後、前述した動作が繰り返される(図2(g)参照)。
 図3は、偏光光照射装置1の他の形態例及びその動作例を示している。前述した説明と同一部位には同一符号を付して重複説明を省略する。また、前述した保持体30A,30Bを図示省略しているが、走査軸31A,31Bには保持体30A,30Bが備えられている。
 この形態例では、偏光光照射装置1は、保持体30A,30Bとは別に、回転調整体32A,32Bを備えている。回転調整体32A,32Bは、基板搬入位置P1と基板搬出位置P2にそれぞれ設けられ、ステージ3の中心にX軸方向に沿って延設される固定軸32に取り付けられている。この形態例では、基板搬入位置P1と基板搬出位置P2に固定された回転調整体32A,32Bによって、搬入された基板W或いは搬出される基板Wの方向が回転調整される。回転調整体32Aは、基板搬入位置P1に入った基板Wを保持して、回転調整を行い、その後基板Wが保持体30A又は30Bに保持された後に開放する。回転調整体32Bは、基板搬出位置P2に入った基板Wを保持して、保持体30A又は30Bが開放した後、回転調整を行う。この回転調整体32A,32Bによると、基板Wの中心を保持した回転調整が可能になる。基板Wの回転調整以外の動作は、図2(a)~(g)における説明で、図3(a)~(g)の動作を説明することができる。
 図4は、図2及び図3における基板保持部(保持体30A,30B)の構成例を示している(前述した説明と同一部位には同一符号を付して重複説明を省略する。)。走査軸31A,31BによってX軸方向に沿って移動する保持体30A,30Bは、Z軸方向に上下動する昇降手段を備えている。図示の保持体30Aは、上昇して基板Wを保持した状態を示しており、図示の保持体30Bは、基板Wの保持を開放して、基板Wに干渉しない位置に下降した状態を示している。基板Wを保持して基板搬出位置に向けて移動する際には、図示の保持体30Aの状態になり、基板Wの保持を開放した後、基板搬入位置に戻る際には、図示の保持体30Bの状態になる。
 図5は、本発明の実施形態に係る偏光光照射装置1における光源ユニット2の構成例を示している。光源ユニット2は、Y軸方向に沿って延設されるが、Y軸方向に沿って長尺な光源を用いることができると共に、図示のように、X軸方向に長さを有する短尺の光源20を用いて、この光源20を備えるユニットを複数個Y軸方向に並べて構成することもできる。この場合、各ユニットには、偏光子21(必要に応じて、フィルタ22)が配備され、偏光子21の偏光軸が同方向になるように適宜の調整がなされる。偏光子21としては、例えば、透明基板上に直線状の電気導体からなる微細な格子を設けたワイヤーグリッド偏光子などを用いることができる。ここでの電気導体としては、例えば、クロム、アルミニウム、酸化チタンなどを採用することができる。
 以上説明したように、本発明の実施形態に係る偏光光照射装置1は、偏光光の照射領域に一方向から連続的に基板Wを供給することで、基板Wの搬入、偏光光の照射、基板の搬出をワンウェイで行い、処理効率の向上を図ることができる。その際、基板Wは基板保持部30によって保持されるので、基板Wの方向を精度良く保って高い処理精度を確保することができる。
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。
1:偏光光照射装置,2:光源ユニット,2S:照射領域,
3:ステージ,30:基板保持部,30A,30B:保持体,
31:保持部移動手段,31A,31B:走査軸,
32:固定軸,32A,32B:回転調整体,
4:基板支持手段,
P1:基板搬入位置,P2:基板搬出位置,
W,W1,W2,W3:基板

Claims (6)

  1.  設定された照射領域に偏光光を照射する光源ユニットと、前記照射領域を通過するように、基板を一軸方向に沿って移動させるステージとを備え、
     前記ステージは、前記照射領域の一軸方向一方側で基板の方向を一定に保持して前記照射領域の一軸方向他方側で基板の保持を開放する複数の基板保持部を備え、
     前記基板保持部は、一つの基板保持部が一つの基板の保持を開放する前に、他の基板保持部が他の基板を保持することを特徴とする偏光光照射装置。
  2.  前記基板保持部は、前記照射領域の一軸方向一方側に設けた基板搬入位置で基板を保持し、前記照射領域の一軸方向他方側に設けた基板搬出位置で基板の保持を開放することを特徴とする請求項1記載の偏光光照射装置。
  3.  前記基板保持部は、一軸方向に沿った複数の軸上をそれぞれ独立して移動する複数の保持体を備え、一つの保持体が保持する基板が前記照射領域を通過し終わる前に、他の保持体が他の基板を保持することを特徴とする請求項1又は2記載の偏光光照射装置。
  4.  前記保持体は、前記照射領域の一軸方向他方側で基板の保持を開放した後、移動する基板に干渉しない位置に退避して前記照射領域の一軸方向一方側に戻ることを特徴とする請求項3記載の偏光光照射装置。
  5.  前記基板保持部は、保持する基板の方向を回転調整する回転調整手段を備えることを特徴とする請求項1~4のいずれか1項に記載の偏光光照射装置。
  6.  前記照射領域の一軸方向一方側に、基板の方向を回転調整する回転調整手段を設けることを特徴とする請求項1~4のいずれか1項に記載の偏光光照射装置。
PCT/JP2015/085201 2014-12-22 2015-12-16 偏光光照射装置 WO2016104280A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-259461 2014-12-22
JP2014259461A JP6484851B2 (ja) 2014-12-22 2014-12-22 偏光光照射装置

Publications (1)

Publication Number Publication Date
WO2016104280A1 true WO2016104280A1 (ja) 2016-06-30

Family

ID=56150305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085201 WO2016104280A1 (ja) 2014-12-22 2015-12-16 偏光光照射装置

Country Status (2)

Country Link
JP (1) JP6484851B2 (ja)
WO (1) WO2016104280A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228516A (ja) * 2012-04-25 2013-11-07 Iwasaki Electric Co Ltd 偏光紫外線照射装置
JP5344105B1 (ja) * 2013-03-08 2013-11-20 ウシオ電機株式会社 光配向用偏光光照射装置及び光配向用偏光光照射方法
JP5734494B1 (ja) * 2014-05-29 2015-06-17 株式会社飯沼ゲージ製作所 光配向処理装置
US20150194231A1 (en) * 2014-01-09 2015-07-09 Samsung Display Co., Ltd. Exposure apparatus and exposure method using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013228516A (ja) * 2012-04-25 2013-11-07 Iwasaki Electric Co Ltd 偏光紫外線照射装置
JP5344105B1 (ja) * 2013-03-08 2013-11-20 ウシオ電機株式会社 光配向用偏光光照射装置及び光配向用偏光光照射方法
US20150194231A1 (en) * 2014-01-09 2015-07-09 Samsung Display Co., Ltd. Exposure apparatus and exposure method using the same
JP5734494B1 (ja) * 2014-05-29 2015-06-17 株式会社飯沼ゲージ製作所 光配向処理装置

Also Published As

Publication number Publication date
JP6484851B2 (ja) 2019-03-20
JP2016118719A (ja) 2016-06-30

Similar Documents

Publication Publication Date Title
TWI602007B (zh) Polarization polarized light irradiation device
US9733523B2 (en) Exposure apparatus and exposure method using the same
TWI553385B (zh) 光配向處理裝置
KR101818800B1 (ko) 광 배향용 편광광 조사 장치 및 광 배향용 편광광 조사 방법
JP2011048239A (ja) 両面露光装置
TW201629598A (zh) 光照射裝置及光照射方法
CN205539851U (zh) 光照射装置
TWI521258B (zh) 光配向照射裝置
WO2016104280A1 (ja) 偏光光照射装置
CN205450515U (zh) 曝光装置
JP2009031808A (ja) 露光装置
JP5799304B2 (ja) 露光ユニット及びそれを用いた露光方法
JP2017044917A (ja) 光配向処理装置
JP4929516B2 (ja) 配向処理装置
KR20120064020A (ko) 노광장치 및 노광방법
JP2012113095A (ja) 露光装置及び露光方法
TWI499871B (zh) Exposure apparatus and exposure method
CN102819195B (zh) 曝光装置和曝光方法、以及曝光单元及使用该单元的曝光方法
JP5066770B2 (ja) 液晶表示装置の製造方法
JP2016118718A (ja) 偏光光照射装置
JP2008084847A (ja) ディスプレイパネル用排気ホール加工装置
KR101509401B1 (ko) 양면 자외선 경화장치
JP2012247482A (ja) プリアライメント装置及びプリアライメント方法
JP6124201B2 (ja) 光配向用偏光光照射方法
JP2023008001A (ja) 偏光光照射装置、これを備える露光装置、および偏光光照射方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872849

Country of ref document: EP

Kind code of ref document: A1