WO2016103601A1 - Shaft sealing device and compressor using same - Google Patents

Shaft sealing device and compressor using same Download PDF

Info

Publication number
WO2016103601A1
WO2016103601A1 PCT/JP2015/006087 JP2015006087W WO2016103601A1 WO 2016103601 A1 WO2016103601 A1 WO 2016103601A1 JP 2015006087 W JP2015006087 W JP 2015006087W WO 2016103601 A1 WO2016103601 A1 WO 2016103601A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
ring
seal
housing
opening
Prior art date
Application number
PCT/JP2015/006087
Other languages
French (fr)
Japanese (ja)
Inventor
秋山 訓孝
亨 大隈
卓瞳 高橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016103601A1 publication Critical patent/WO2016103601A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3204Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings with at least one lip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/38Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member sealed by a packing

Definitions

  • the present disclosure relates to a shaft seal device and a compressor using the shaft seal device.
  • General compressors have a compression mechanism that generates fluid pressure in the fluid in the housing by rotating the shaft.
  • Such a compressor includes a shaft seal device that prevents fluid from leaking out of the housing through a gap between the housing and the shaft.
  • a shaft seal device for the purpose of improving durability, there is a shaft seal device provided with a fixed ring, a rotating ring, a packing (O-ring), and a spring (for example, see Patent Document 1).
  • the stationary ring is fixed to the shaft hole, has an annular shape, and has a stationary-side seal end face on the working part side of the stationary ring.
  • the rotating ring is fixed to a shaft located in the housing, and has a rotating side seal end face that forms an annular shape and is in sliding contact with the fixed side sealing end face on the passive portion side of the rotating ring.
  • the packing is fixed to the shaft and forms an annular shape to seal a gap between the shaft and the rotating ring.
  • the spring is fixed to the shaft and presses the rotating ring in the axial direction out of the housing.
  • the ambient pressure of the shaft seal device always fluctuates greatly during operation.
  • the refrigerant repeatedly enters and exits the packing that seals the gap between the shaft and the rotating ring by the pressure of the carbon dioxide refrigerant during operation.
  • the refrigerant gas that has penetrated into the packing in a high-pressure environment repeats a process of expanding inside the packing during decompression or the like, and a foaming phenomenon occurs in which a crack or the like occurs in the packing.
  • the shaft seal device of such a compressor is required to have excellent foam resistance.
  • the molecular weight of carbon dioxide is lower than that of chlorofluorocarbon. For this reason, in such a compressor, the permeability is very high, and carbon dioxide tends to leak out of the housing through the packing that seals the gap between the shaft and the rotating ring. In order to prevent such a phenomenon from occurring, the shaft seal device of such a compressor is also required to have excellent carbon dioxide permeation resistance.
  • the compressor mounted on the vehicle air conditioner may be used at a very low temperature. For this reason, such a shaft seal device of a compressor is also required to ensure airtightness even at extremely low temperatures.
  • such a shaft seal device of a compressor is required to be excellent in heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance.
  • the compressor described in Patent Document 1 is configured to seal the contact surface (seal part) between the shaft and the rotating ring by packing (O-ring).
  • packing is generally made of a rubber material.
  • packing is made of rubber material, it is difficult to satisfy the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic temperature resistance. Difficult to maintain.
  • the present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a shaft seal device capable of maintaining the sealing performance of the seal surface for a longer period of time and a compressor using the same.
  • the shaft seal device of the present disclosure is used for a compressor that compresses a refrigerant of carbon dioxide.
  • the shaft seal device includes a rotating ring and a fixed ring.
  • the rotating ring is fixed to a shaft located inside the housing that houses the refrigerant.
  • the fixed ring is fixed to a shaft hole formed in the housing, and rotatably supports a shaft inserted through the shaft hole.
  • At least one of the sealing surface of the housing and the stationary ring and the sealing surface of the shaft and the rotating ring is provided with an annular sealing member having an opening and having protrusions formed on both sides in the radial direction of the opening. ing.
  • the seal member is disposed such that the opening portion opens toward the refrigerant side inside the housing, and the protrusion portion is pressed against the seal surface by elasticity.
  • the seal member a resin that satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic temperature resistance can be used.
  • a resin seal member can satisfy, for example, four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance, and cryogenic resistance that cannot be satisfied by a rubber material, and further elastic deformation. Since the protrusions formed on both outer sides of the opening can be pressed against the sealing surface, the sealing performance of the sealing surface can be maintained for a longer period of time.
  • the compressor of the present disclosure uses the above-described shaft seal device for sealing around the shaft.
  • the compressor according to the present embodiment changes the stroke of the reciprocating piston by changing the inclination angle of the swash plate arranged to be inclined with respect to the center line of the drive shaft, thereby reducing the discharge capacity of the compressor.
  • the swash plate compressor 51 is changed.
  • the swash plate compressor 51 is a compressor that compresses a refrigerant of carbon dioxide.
  • the swash plate compressor 51 is applied to an air conditioner such as an automobile.
  • the swash plate compressor 51 has a bottomed cylindrical front housing 53.
  • a cylinder block 55 is provided at the opening of the bottomed cylindrical front housing 53 so as to close the opening.
  • a rear housing 57 is provided in the cylinder block 55.
  • Radial bearings 59 and 61 are provided at the center of the bottom wall 53a of the front housing 53 and the center of the cylinder block 55, respectively.
  • a shaft 63 is pivotally supported between the radial bearings 59 and 61.
  • the front housing 53, the cylinder block 55, and the rear housing 57 constitute a housing that stores the refrigerant.
  • a shaft seal device 20 called a mechanical seal is provided on the bottom wall 53a of the front housing 53 on the front side (the left side in the drawing) from the radial bearing 59.
  • the shaft seal device 20 prevents the refrigerant from leaking out of the front housing 53 through the gap between the front housing 53 and the shaft 63.
  • the shaft seal device 20 will be described in detail later.
  • a disk-shaped lug plate 73 fixed to the shaft 63 is provided on the bottom wall 53 a of the front housing 53.
  • a thrust bearing 75 is interposed between the lug plate 73 and the bottom wall 53a, and receives an axial load due to a piston compression reaction force.
  • a swash plate 77 is provided between the lug plate 73 of the shaft 63 and the cylinder block 55 so as to be rotatable with respect to the axial direction of the shaft 63.
  • the swash plate 77 and the lug plate 73 are coupled so as to be tiltable by a link mechanism 79 provided on the lug plate 73 and a pin 81 provided on the swash plate 77, and the rotation of the lug plate 73 is inclined. Transmit to the plate 77.
  • cylinder bores 83 are formed at equal intervals in the circumferential direction.
  • the cylinder bore 83 is disposed parallel to the axis of the shaft 63, and a piston 85 is inserted therein so as to be able to reciprocate.
  • This piston 85 is provided with a spherical bearing 87.
  • the spherical bearing 87 is engaged with a pair of shoes 89 holding the outer peripheral portion of the swash plate 77 so as to be slidable in the circumferential direction.
  • a valve plate 91 is interposed between the cylinder block 55 and the rear housing 57.
  • a suction valve 93 is provided between the valve plate 91 and the cylinder block 55 to seal the suction port.
  • a suction chamber 95 and a discharge chamber 97 are provided inside the rear housing 57.
  • a discharge valve 99 and a retainer 101 that regulates the valve lift amount are fastened to the valve plate 91 by bolts or the like.
  • the rear housing 57 is provided with a control valve 103, which introduces a control gas into the swash plate chamber 71 to adjust the inclination angle of the swash plate and set the discharge capacity.
  • a passage for introducing control gas from the control valve 103 to the swash plate chamber 71 is formed in the cylinder block 55, the rear housing 57, the valve plate 91, etc., but is not shown here.
  • the shaft seal device 20 seals the periphery of the shaft 63.
  • the shaft seal device 20 is a balanced shaft seal device.
  • the shaft seal device 20 is provided in a shaft hole 53 b formed in the center portion of the bottom wall 53 a of the front housing 53.
  • the shaft seal device 20 includes a fixed ring 21, a rotating ring 22, a spring 27, and a bracket 28.
  • the fixed ring 21 is made of, for example, silicon carbide, and is fixed to the shaft hole 53b.
  • the shaft hole 53 b is formed in the front housing 53.
  • the fixed ring 21 rotatably supports the shaft 63 inserted through the shaft hole 53b.
  • the shaft 63 passes through the front housing 53 via the shaft hole 53b.
  • One end of the shaft 63 is located outside the front housing 53.
  • the fixed ring 21 has an annular shape, and has a fixed-side seal end face 21 a on the side adjacent to the rotating ring 22 (right side in the figure).
  • the rotary ring 22 is made of carbon, for example, and is fixed to a shaft 63 located inside the front housing 53.
  • the rotating ring 22 has an annular shape, and has a rotating side seal end face 22a on the side adjacent to the fixed ring 21 (left side in the figure).
  • the rotating ring 22 rotates integrally with the shaft 63.
  • the spring 27 is, for example, a coil spring, and is fixed to the shaft 63 via the bracket 28. Further, the spring 27 urges the rotary ring 22 in the axial direction toward the front side (left side in the drawing) of the front housing 53.
  • the bracket 28 forms the seating surface of the spring 27.
  • the bracket 28 is fixed to the shaft 63 and rotates integrally with the shaft 63 and the rotary ring 22.
  • U-rings 23 corresponding to sealing members are respectively provided on the contact surface (seal surface) of the shaft hole 53b of the housing of the fixed ring 21 and the front housing 53 and the contact surface (seal surface) of the rotary ring 22 and the shaft 63. Is provided.
  • a U-ring insertion groove 210 is formed on the outer peripheral surface of the stationary ring 21.
  • a flexible resin U-ring 23 is disposed in the U-ring insertion groove 210.
  • the U ring 23 seals the contact surface (seal surface) between the stationary ring 21 and the shaft hole 53 b of the front housing 53.
  • a U-ring insertion groove 220 is formed on the inner peripheral surface of the rotary ring 22. Also in the U-ring insertion groove 220, a flexible resin U-ring 23 is arranged. The contact surface (seal surface) between the rotating ring 22 and the shaft 63 is sealed by the U ring 23. The configuration and material of each U-ring 23 are the same.
  • FIG. 3 is a cross-sectional view of the contact surface between the rotating ring 22 and the shaft 63.
  • FIG. 4 is a view showing a cross section of the U-ring 23 of the shaft seal device according to the present embodiment.
  • the U-ring 23 is an annular seal member, and has a U-shape from an outer seal wall portion and an inner seal wall portion that face each other in the radial direction in a cross section, and a seal bottom portion that connects both seal wall portions.
  • the seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion.
  • an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
  • a protrusion 23a and a protrusion 23b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 23a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 23b is provided on the radially inner side of the open end of the inner seal wall.
  • the protrusion 23a and the protrusion 23b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 23a protrudes radially outward from the outer seal wall, and the protrusion 23b protrudes radially inward from the inner seal wall.
  • the U ring 23 is made of PTFE (polytetrafluoroethylene) which is a fluorocarbon resin.
  • the U-ring 23 is arranged so that the opening opens toward the refrigerant side inside the housing. That is, the U-ring 23 is provided so that the opening portion opens toward the side opposite to one end of the shaft 63 located outside the front housing 53.
  • the U-ring 23 has a dimensional structure in which the protrusions 23a and 23b are pressed against the seal surface by elasticity. That is, as shown in FIG. 5, when the pressure P of the refrigerant inside the housing increases, the U-ring 23 is elastically deformed to expand the opening, and the shaft 63 rotates with the protrusions 23a and 23b.
  • the force F that holds down the ring 22 works. Thereby, the protrusions 23a and 23b seal the contact surface (seal surface) between the rotating ring 22 and the shaft 63 with a strong force.
  • an annular metal spring member 230 is provided at the opening of the U-ring 23. This spring member 230 pushes and widens the opening of the U-ring 23. By the spring member 230, the protrusion 23a and the protrusion 23b of the U-ring 23 are more strongly pressed against the seal surface.
  • the spring member 230 in the present embodiment has a W-shaped cross section.
  • the spring member 230 expands the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 23a and the protrusion 23b are pressed against the seal surface.
  • the spring 27 allows the rotation ring 22 to move in the axial direction of the shaft 63, so that the fixed-side seal end surface 21 a of the fixed ring 21 and the rotation-side seal of the rotation ring 22 are allowed. The seal of the end face 22a is maintained.
  • the shaft seal device 20 satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance. Is required.
  • the two U rings 23 provided in the shaft seal device 20 of the present embodiment are each made of PTFE (polytetrafluoroethylene) which is a fluorocarbon resin.
  • PTFE polytetrafluoroethylene
  • FIG. 6 various characteristics comparison between various rubber materials and PTFE which is resin will be described.
  • EPDM ethylene propylene rubber
  • HNBR nitrile rubber
  • VMQ silicone rubber
  • FKM fluoro rubber
  • the two U-rings 23 provided in the shaft seal device 20 of the present embodiment are made of PTFE (polytetrafluoroethylene) which is a flexible resin.
  • PTFE polytetrafluoroethylene
  • PTFE satisfies four requirements of heat resistance, carbon dioxide permeation resistance, foam resistance and cryogenic temperature.
  • the shaft seal device 20 is provided with the U-ring 23 on each of the seal surface of the housing and the stationary ring 21 and the seal surface of the shaft 63 and the rotary ring 22.
  • the U-ring 23 is disposed so that the opening portion opens toward the refrigerant side inside the housing, and the protrusions 23a and 23b formed on both sides in the radial direction of the opening portion are pressed against the sealing surface by elasticity.
  • a resin that satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance can be used.
  • Such a resin U-ring 23 can satisfy, for example, four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance that cannot be satisfied by a rubber material. Further, the U-ring 23 is elastically deformed, so that the protrusions 23a and 23b are pressed against the seal surface. Thereby, the sealing performance of a sealing surface can be maintained over a long period of time.
  • the rotary ring 22 biased by the spring 27 may move in the axial direction of the shaft 63 together with the shaft 63.
  • PTFE polytetrafluoroethylene
  • the U-ring 23 has a spring member 230 that pushes the opening of the U-ring 23, and the protrusions 23a and 23b are pressed against the seal surface by the spring member 230, so that the pressure of the refrigerant inside the housing is low. Even in this case, the sealing property can be ensured.
  • the U-ring 23 in the first embodiment has a spring member 230 having a W-shaped cross section.
  • the U-ring 24 in this embodiment has two annular plate-like spring members 240 and 241 having different diameters.
  • the U-ring 24 is an annular seal member, and has a U-shape including an outer seal wall portion and an inner seal wall portion that are opposed in the radial direction in a cross section, and a seal bottom portion that couples both seal wall portions.
  • the seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion.
  • an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
  • a protrusion 24a and a protrusion 24b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 24a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 24b is provided on the radially inner side of the open end of the inner seal wall.
  • the protrusion 24a and the protrusion 24b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 24a protrudes radially outward from the outer seal wall, and the protrusion 24b protrudes radially inward from the inner seal wall.
  • the spring members 240 and 241 are each composed of a thin metal plate formed in an annular shape, and are elastically deformed.
  • the spring member 240 is disposed on the wall surface on the opposite side of the protruding portion 24a in the outer seal wall portion of the U-ring 24.
  • the spring member 240 is slightly larger than the outer seal wall portion (the outer peripheral side surface of the opening) of the U ring 24 before being placed on the wall surface of the U ring 24.
  • the diameter of the spring member 240 is slightly larger than the diameter of the opening of the U-ring 24 in a state before being arranged at the opening of the U-ring 24. Therefore, when arranged in the opening of the U-ring 24, a force acts radially outward as shown in FIG.
  • the spring member 241 is disposed on the wall surface on the opposite side of the projecting portion 24b in the inner seal wall portion of the U ring 24.
  • the spring member 241 is slightly smaller than the inner seal wall portion (the inner peripheral side surface of the opening) of the U ring 24 before being disposed on the wall surface of the U ring 24.
  • the diameter of the spring member 241 is slightly smaller than the diameter of the opening of the U-ring 24 in a state before being arranged at the opening of the U-ring 24. Therefore, when arranged at the opening of the U-ring 24, a force acts radially inward as shown in FIG.
  • These spring members 240 and 241 open the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 24a and the protrusion 24b are pressed against the seal surface.
  • Such U-rings 24 are provided on the contact surface (seal surface) of the shaft hole 53b of the stationary ring 21 and the front housing 53, and on the contact surface (seal surface) of the rotary ring 22 and the shaft 63, respectively.
  • the U-ring 24 including the spring members 240 and 241 formed of a metal thin plate in an annular shape as in the present embodiment can be reduced in cost because of its simple configuration. Miniaturization is also possible.
  • this embodiment is embodiment based on 1st Embodiment, it is also possible to combine this embodiment with either of the above-mentioned 1st Embodiment.
  • the spring member 230 of the U-ring 23 in the first embodiment is W-shaped in cross section.
  • the spring member 250 of the U ring 25 in the present embodiment has a U shape in cross section.
  • the U-ring 25 is an annular seal member, and has a U shape from an outer seal wall portion and an inner seal wall portion that are opposed in the radial direction in a cross section, and a seal bottom portion that couples both seal wall portions.
  • the seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion.
  • an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
  • a protrusion 25a and a protrusion 25b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 25a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 25b is provided on the radially inner side of the open end of the inner seal wall.
  • the protrusion 25a and the protrusion 25b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 25a protrudes radially outward from the outer seal wall, and the protrusion 25b protrudes radially inward from the inner seal wall.
  • the spring member 250 is formed by forming a thin metal plate into an annular shape, and has a U-shape in cross section. When the spring member 250 is disposed at the opening of the U-ring 24, a force acts in the direction of opening the opening of the spring member 250 as shown in FIG.
  • the spring member 250 expands the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 25a and the protrusion 25b are pressed against the seal surface.
  • Such U-rings 25 are provided on the contact surface (seal surface) of the shaft hole 53b of the stationary ring 21 and the front housing 53, and on the contact surface (seal surface) of the rotary ring 22 and the shaft 63, respectively.
  • the U-ring 25 including the spring member 250 having a U-shaped cross section as in the present embodiment has a simple configuration, the cost can be reduced, and the shaft seal device 20 can be downsized. Is possible.
  • this embodiment is embodiment based on 1st Embodiment, it is also possible to combine this embodiment with either of the above-mentioned 1st Embodiment.
  • the compressor of the present disclosure has been described by taking a swash plate compressor using carbon dioxide as a refrigerant as an example, but can be applied to various compressors other than the swash plate compressor. .
  • the balance type shaft seal device has been described as an example.
  • the present invention is not limited to such a type shaft seal device.
  • an unbalanced shaft seal device may be used. It can also be applied.
  • the U-rings 23, 24, and 25 have a U-shaped cross section, but may have a V-shaped cross section, for example.
  • spring members 230, 240, 241, and 250 are provided at the openings of the U-rings 23, 24, and 25. However, it is not always necessary to provide such a spring member.
  • the U-rings 23, 24, and 25 are made of PTFE (polytetrafluoroethylene).
  • PTFE polytetrafluoroethylene
  • the U-ring 23 of the first embodiment includes a spring member 230 having a W-shaped cross section
  • the U-ring 25 of the second embodiment includes a spring member 250 having a U-shaped cross section
  • the U-ring may be provided with a spring member having a V-shaped cross section.
  • U rings 23, 24, and 25 are provided on both the seal surfaces of the front housing 53 and the stationary ring 21 and the seal surfaces of the shaft 63 and the rotating ring 22.
  • the U rings 23, 24, and 25 may be provided on any one of the seal surface of the front housing 53 and the stationary ring 21 and the seal surface of the shaft 63 and the rotating ring 22.
  • a U-ring may be provided on the seal surfaces of the shaft 63 and the rotary ring 22, and for example, the seal surfaces of the front housing 53 and the fixed ring 21 may be joined so that the sealing performance is maintained.
  • the U rings 23, 24, and 25 are provided on the contact surface of the stationary ring 21 with the front housing 53.
  • the U ring 23 is disposed on the contact surface of the front housing 53 with the stationary ring 21.
  • 24, 25 may be provided.
  • the U-rings 23, 24, 25 are provided on the contact surface of the rotating ring 22 with the shaft 63.
  • the U-rings 23, 24 are provided on the contact surface of the shaft 63 with the rotating ring 22. 25 may be provided.
  • the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present disclosure.
  • the material, shape, positional relationship, etc. of the constituent elements, etc. when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc.
  • the material, shape, positional relationship, etc. are not limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Gasket Seals (AREA)
  • Mechanical Sealing (AREA)

Abstract

A shaft sealing device is used in a compressor (51) for compressing a carbon dioxide refrigerant. The shaft sealing device is provided with a rotating ring (22) and a stationary ring (21). The rotating ring is affixed to a shaft (63) located inside a housing (53, 55, 57) for containing a refrigerant. The stationary ring is affixed to a shaft hole (53b) formed in the housing and rotatably supports the shaft passed through the shaft hole. The sealing face between the housing and the stationary ring and/or the sealing face between the shaft and the rotating ring is provided with an annular seal member (23, 24, 25) having an opening and having protrusions (23a, 24a, 25a, 23b, 24b, 25b) formed on both sides of the opening in the radial direction thereof. The seal member is disposed so that the opening is open toward the refrigerant within the housing, and the protrusions are pressed by elasticity against the sealing face between the housing and the stationary ring and/or the sealing face between the shaft and the rotating ring.

Description

軸封装置およびそれを用いた圧縮機Shaft seal device and compressor using the same 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年12月25日に出願された日本特許出願2014-262228号を基にしている。 This application is based on Japanese Patent Application No. 2014-262228 filed on December 25, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、軸封装置およびそれを用いた圧縮機に関するものである。 The present disclosure relates to a shaft seal device and a compressor using the shaft seal device.
 一般的な圧縮機は、シャフトの回転によりハウジング内の流体に流体圧を発生させる圧縮機構を有している。このような圧縮機は、ハウジングとシャフトの隙間からハウジングの外部へ流体が漏れ出るのを防止する軸封装置を備えている。 General compressors have a compression mechanism that generates fluid pressure in the fluid in the housing by rotating the shaft. Such a compressor includes a shaft seal device that prevents fluid from leaking out of the housing through a gap between the housing and the shaft.
 近年、このような圧縮機では、フロンに変わる二酸化炭素(CO)が冷媒ガスとして採用されつつある。このような冷媒ガスを採用した場合、軸封装置に作用する圧力がフロンを用いた場合よりも10倍以上となることがある。その場合、軸封装置への負荷が大きく、軸封装置の耐久性の低下が一層生じやすくなる。 In recent years, in such a compressor, carbon dioxide (CO 2 ), which is replaced with chlorofluorocarbon, is being adopted as a refrigerant gas. When such a refrigerant gas is employed, the pressure acting on the shaft seal device may be 10 times or more than when the fluorocarbon is used. In that case, the load on the shaft seal device is large, and the durability of the shaft seal device is more easily reduced.
 耐久性の向上を目的とした軸封装置として、固定環、回転環、パッキン(Oリング)、およびバネを備えた軸封装置がある(例えば、特許文献1参照)。固定環は、軸孔に固定され、環状をなして固定環の作用部側に固定側シール端面を有している。回転環は、ハウジング内に位置するシャフトに固定され、環状をなして回転環の受動部側に固定側シール端面と摺接する回転側シール端面を有している。パッキンは、シャフトに固定され、環状をなしてシャフトと回転環の隙間を封止する。バネは、シャフトに固定され、回転環をハウジング外へ軸方向に押圧する。 As a shaft seal device for the purpose of improving durability, there is a shaft seal device provided with a fixed ring, a rotating ring, a packing (O-ring), and a spring (for example, see Patent Document 1). The stationary ring is fixed to the shaft hole, has an annular shape, and has a stationary-side seal end face on the working part side of the stationary ring. The rotating ring is fixed to a shaft located in the housing, and has a rotating side seal end face that forms an annular shape and is in sliding contact with the fixed side sealing end face on the passive portion side of the rotating ring. The packing is fixed to the shaft and forms an annular shape to seal a gap between the shaft and the rotating ring. The spring is fixed to the shaft and presses the rotating ring in the axial direction out of the housing.
特開2007-9886号公報Japanese Patent Laid-Open No. 2007-9886
 本開示の発明者らによる検討によると、上記特許文献1に記載されたような圧縮機の軸封装置では、固定側シール端面と回転側シール端面が摺動するようになっており、この摺動する部分で摩擦熱が発生する。また、二酸化炭素を採用した場合、軸封装置の周囲温度はフロンガスを用いた場合よりも高温になる。したがって、このような軸封装置は、耐熱性に優れていることが求められる。 According to studies by the inventors of the present disclosure, in the shaft seal device of the compressor as described in Patent Document 1, the fixed-side seal end surface and the rotary-side seal end surface slide, and this slide Frictional heat is generated in the moving part. In addition, when carbon dioxide is employed, the ambient temperature of the shaft seal device is higher than that when chlorofluorocarbon is used. Therefore, such a shaft seal device is required to have excellent heat resistance.
 また、このような圧縮機は、作動時に軸封装置の周囲圧力が常に大きく変動する。また、このような圧縮機では、作動時に二酸化炭素の冷媒の圧力によってシャフトと回転環の隙間を封止するパッキンの内部に冷媒が繰り返し出入りする。このとき、高圧環境下でパッキンの内部に浸透した冷媒ガスが、減圧時等にパッキン内部で膨張する過程を繰り返し、パッキンに亀裂等が発生する発泡現象が生じる。このような現象が生じることのないよう、このような圧縮機の軸封装置は、耐発泡性に優れていることが求められる。 Also, in such a compressor, the ambient pressure of the shaft seal device always fluctuates greatly during operation. In such a compressor, the refrigerant repeatedly enters and exits the packing that seals the gap between the shaft and the rotating ring by the pressure of the carbon dioxide refrigerant during operation. At this time, the refrigerant gas that has penetrated into the packing in a high-pressure environment repeats a process of expanding inside the packing during decompression or the like, and a foaming phenomenon occurs in which a crack or the like occurs in the packing. In order to prevent such a phenomenon from occurring, the shaft seal device of such a compressor is required to have excellent foam resistance.
 また、二酸化炭素の分子量はフロンと比較して低くなっている。このため、このような圧縮機では、非常に透過性が高く、シャフトと回転環の隙間を封止するパッキンを透過して二酸化炭素がハウジングの外に漏れやすい。このような現象が生じないよう、このような圧縮機の軸封装置は、二酸化炭素耐透過性に優れていることも求められる。 Also, the molecular weight of carbon dioxide is lower than that of chlorofluorocarbon. For this reason, in such a compressor, the permeability is very high, and carbon dioxide tends to leak out of the housing through the packing that seals the gap between the shaft and the rotating ring. In order to prevent such a phenomenon from occurring, the shaft seal device of such a compressor is also required to have excellent carbon dioxide permeation resistance.
 また、車両用空調装置に搭載される圧縮機は、極低温の状態で使用される場合もある。このため、このような圧縮機の軸封装置は、極低温でも気密性を確保できるようにすることも求められる。 Also, the compressor mounted on the vehicle air conditioner may be used at a very low temperature. For this reason, such a shaft seal device of a compressor is also required to ensure airtightness even at extremely low temperatures.
 上記したように、このような圧縮機の軸封装置では、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性に優れていることが求められる。 As described above, such a shaft seal device of a compressor is required to be excellent in heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance.
 しかしながら、特許文献1に記載された圧縮機は、パッキン(Oリング)によりシャフトと回転環の接触面(シール部)を封止する構成となっている。このようなパッキンは一般的にゴム材で構成される。しかし、ゴム材を用いてパッキンを構成した場合、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たすのは困難であり、長期間にわたってシール面のシール性を維持するのは難しい。 However, the compressor described in Patent Document 1 is configured to seal the contact surface (seal part) between the shaft and the rotating ring by packing (O-ring). Such a packing is generally made of a rubber material. However, when packing is made of rubber material, it is difficult to satisfy the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic temperature resistance. Difficult to maintain.
 本開示は上記点に鑑みたもので、より長期間にわたってシール面のシール性を維持できる軸封装置およびそれを用いた圧縮機を提供することを目的とする。 The present disclosure has been made in view of the above points, and an object of the present disclosure is to provide a shaft seal device capable of maintaining the sealing performance of the seal surface for a longer period of time and a compressor using the same.
 本開示の軸封装置は、二酸化炭素の冷媒を圧縮する圧縮機に用いられる。軸封装置は、回転環と固定環を備える。回転環は、冷媒を収容するハウジングの内側に位置するシャフトに固定される。固定環は、ハウジングに形成された軸孔に固定され、軸孔に挿通されたシャフトを回転可能に支持する。ハウジングと固定環のシール面およびシャフトと回転環のシール面のうち少なくとも一方には、開口部を有し、該開口部の径方向における両側に突起部が形成された環状のシール部材が設けられている。シール部材は、開口部がハウジングの内部の冷媒側を向いて開口するように配置され、突起部が弾性によりシール面に押し付けられる。 The shaft seal device of the present disclosure is used for a compressor that compresses a refrigerant of carbon dioxide. The shaft seal device includes a rotating ring and a fixed ring. The rotating ring is fixed to a shaft located inside the housing that houses the refrigerant. The fixed ring is fixed to a shaft hole formed in the housing, and rotatably supports a shaft inserted through the shaft hole. At least one of the sealing surface of the housing and the stationary ring and the sealing surface of the shaft and the rotating ring is provided with an annular sealing member having an opening and having protrusions formed on both sides in the radial direction of the opening. ing. The seal member is disposed such that the opening portion opens toward the refrigerant side inside the housing, and the protrusion portion is pressed against the seal surface by elasticity.
 ここで、シール部材は、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たす樹脂を用いることができる。このような樹脂製のシール部材は、例えば、ゴム材では満たすことのできない耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たすことができ、更に、弾性変形して開口部の両外側に形成された突起部がシール面に押し付けられるようにすることができるため、より長期間にわたってシール面のシール性を維持することができる。 Here, as the seal member, a resin that satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic temperature resistance can be used. Such a resin seal member can satisfy, for example, four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance, and cryogenic resistance that cannot be satisfied by a rubber material, and further elastic deformation. Since the protrusions formed on both outer sides of the opening can be pressed against the sealing surface, the sealing performance of the sealing surface can be maintained for a longer period of time.
 本開示の圧縮機は、上述した軸封装置を、シャフトの周囲の密封に用いている。 The compressor of the present disclosure uses the above-described shaft seal device for sealing around the shaft.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
第1実施形態に係る圧縮機の縦断面図である。 図1中のZ部の拡大図である。 第1実施形態に係る軸封装置の回転環とシャフトの接触面の断面図である。 第1実施形態に係る軸封装置のUリングの断面の様子を示した図である。 Uリングの作動について説明するための図である。 二酸化炭素の冷媒使用時の各種ゴム材料の特性を比較した図である。 第2実施形態に係る軸封装置のUリングの構成を示した図である。 図7に示すUリングに用いられるバネ部材を示す図である。 第3実施形態に係る軸封装置のUリングの構成を示した図である。 図9に示すUリングに用いられるバネ部材を示す図である。
The above and other objects, features, and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings.
It is a longitudinal section of the compressor concerning a 1st embodiment. It is an enlarged view of the Z section in FIG. It is sectional drawing of the contact surface of the rotating ring and shaft of the shaft-seal apparatus which concerns on 1st Embodiment. It is the figure which showed the mode of the cross section of the U-ring of the shaft seal device which concerns on 1st Embodiment. It is a figure for demonstrating the action | operation of a U ring. It is the figure which compared the characteristic of the various rubber materials at the time of the refrigerant | coolant of a carbon dioxide. It is the figure which showed the structure of the U-ring of the shaft seal apparatus which concerns on 2nd Embodiment. It is a figure which shows the spring member used for the U-ring shown in FIG. It is the figure which showed the structure of the U-ring of the shaft seal apparatus which concerns on 3rd Embodiment. It is a figure which shows the spring member used for the U-ring shown in FIG.
 以下に、図面を参照しながら本開示を実施するための複数の実施形態を説明する。各実施形態において先行する実施形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各実施形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した実施形態と同様とする。各実施形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to those described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other parts of the configuration are the same as those of the embodiment described above. In addition to the combination of parts specifically described in each embodiment, the embodiments may be partially combined as long as the combination does not hinder.
 (第1実施形態)
 以下、第1実施形態に係る圧縮機および軸封装置について、図1から図6を参照して説明する。本実施形態に係る圧縮機は、駆動軸の中心線に対して傾斜して配置された斜板の傾斜角度を変化させることで、往復運動するピストンの行程を変化させて圧縮機の吐出容量を変化させる斜板型圧縮機51として構成されている。斜板型圧縮機51は、二酸化炭素の冷媒を圧縮する圧縮機である。斜板型圧縮機51は、例えば、自動車等の空調装置に適用される。
(First embodiment)
Hereinafter, the compressor and the shaft seal device according to the first embodiment will be described with reference to FIGS. 1 to 6. The compressor according to the present embodiment changes the stroke of the reciprocating piston by changing the inclination angle of the swash plate arranged to be inclined with respect to the center line of the drive shaft, thereby reducing the discharge capacity of the compressor. The swash plate compressor 51 is changed. The swash plate compressor 51 is a compressor that compresses a refrigerant of carbon dioxide. The swash plate compressor 51 is applied to an air conditioner such as an automobile.
 また、斜板型圧縮機51は、有底筒状のフロントハウジング53を有している。この有底筒状のフロントハウジング53の開口部には、この開口部を塞ぐようにシリンダブロック55が設けられている。シリンダブロック55には、リアハウジング57が設けられている。フロントハウジング53の底壁53aの中央部とシリンダブロック55の中央部には、それぞれラジアルベアリング59、61が設けられている。ラジアルベアリング59、61間に、シャフト63が軸支されている。なお、フロントハウジング53とシリンダブロック55とリアハウジング57により冷媒を収容するハウジングが構成される。 The swash plate compressor 51 has a bottomed cylindrical front housing 53. A cylinder block 55 is provided at the opening of the bottomed cylindrical front housing 53 so as to close the opening. A rear housing 57 is provided in the cylinder block 55. Radial bearings 59 and 61 are provided at the center of the bottom wall 53a of the front housing 53 and the center of the cylinder block 55, respectively. A shaft 63 is pivotally supported between the radial bearings 59 and 61. The front housing 53, the cylinder block 55, and the rear housing 57 constitute a housing that stores the refrigerant.
 また、フロントハウジング53の底壁53aでラジアルベアリング59より前側(図中、左側)には、メカニカルシールと呼ばれる軸封装置20が設けられている。この軸封装置20は、フロントハウジング53とシャフト63の隙間からフロントハウジング53の外部に冷媒が漏れ出るのを防止する。この軸封装置20については、後で詳細に説明する。 Further, a shaft seal device 20 called a mechanical seal is provided on the bottom wall 53a of the front housing 53 on the front side (the left side in the drawing) from the radial bearing 59. The shaft seal device 20 prevents the refrigerant from leaking out of the front housing 53 through the gap between the front housing 53 and the shaft 63. The shaft seal device 20 will be described in detail later.
 フロントハウジング53の底壁53a上には、シャフト63に固定された円盤状のラグプレート73が設けられている。このラグプレート73と底壁53aとの間には、スラスト軸受75が介装されており、ピストン圧縮反力による軸方向荷重を受けている。 On the bottom wall 53 a of the front housing 53, a disk-shaped lug plate 73 fixed to the shaft 63 is provided. A thrust bearing 75 is interposed between the lug plate 73 and the bottom wall 53a, and receives an axial load due to a piston compression reaction force.
 シャフト63のラグプレート73とシリンダブロック55との間には、斜板77がシャフト63の軸方向に対して回転可能に設けられている。この斜板77とラグプレート73とは、ラグプレート73に設けられたリンク機構部79と、斜板77に設けられたピン81によって、傾角可能に連結されており、ラグプレート73の回転を斜板77に伝達する。 A swash plate 77 is provided between the lug plate 73 of the shaft 63 and the cylinder block 55 so as to be rotatable with respect to the axial direction of the shaft 63. The swash plate 77 and the lug plate 73 are coupled so as to be tiltable by a link mechanism 79 provided on the lug plate 73 and a pin 81 provided on the swash plate 77, and the rotation of the lug plate 73 is inclined. Transmit to the plate 77.
 シリンダブロック55には、周方向に等間隔に離間してシリンダボア83が形成されている。このシリンダボア83は、シャフト63の軸線に平行に配設されており、その内部にはピストン85が往復動可能に挿入されている。 In the cylinder block 55, cylinder bores 83 are formed at equal intervals in the circumferential direction. The cylinder bore 83 is disposed parallel to the axis of the shaft 63, and a piston 85 is inserted therein so as to be able to reciprocate.
 このピストン85には球面軸受87が設けられている。この球面軸受87には、斜板77の外周部を周方向に摺動可能に把持した一対のシュー89が係合している。 This piston 85 is provided with a spherical bearing 87. The spherical bearing 87 is engaged with a pair of shoes 89 holding the outer peripheral portion of the swash plate 77 so as to be slidable in the circumferential direction.
 シリンダブロック55とリアハウジング57との間にはバルブプレート91が介装されている。バルブプレート91とシリンダブロック55との間には、吸入弁93が設けられており、吸入ポートをシールする。 A valve plate 91 is interposed between the cylinder block 55 and the rear housing 57. A suction valve 93 is provided between the valve plate 91 and the cylinder block 55 to seal the suction port.
 リアハウジング57の内側には、吸入室95と吐出室97が設けられている。バルブプレート91のリアハウジング57側の吐出室97には、吐出弁99と弁リフト量を規制するリテーナ101がボルト等によってバルブプレート91に締結されている。 A suction chamber 95 and a discharge chamber 97 are provided inside the rear housing 57. In a discharge chamber 97 on the rear housing 57 side of the valve plate 91, a discharge valve 99 and a retainer 101 that regulates the valve lift amount are fastened to the valve plate 91 by bolts or the like.
 リアハウジング57には、制御弁103が設けられており、斜板室71に制御ガスを導入して斜板の傾き角を調整し、吐出容量を設定する。なお、制御弁103から斜板室71へ制御ガスを導入する通路は、シリンダブロック55、リアハウジング57、バルブプレート91等に形成されるがここでは図示しない。 The rear housing 57 is provided with a control valve 103, which introduces a control gas into the swash plate chamber 71 to adjust the inclination angle of the swash plate and set the discharge capacity. A passage for introducing control gas from the control valve 103 to the swash plate chamber 71 is formed in the cylinder block 55, the rear housing 57, the valve plate 91, etc., but is not shown here.
 次に、本実施形態の軸封装置20について説明する。軸封装置20は、シャフト63の周囲を密封するものである。また、軸封装置20は、バランス型の軸封装置である。軸封装置20は、フロントハウジング53の底壁53aの中央部に形成された軸孔53bに設けられている。図2に示すように、軸封装置20は、固定環21、回転環22、スプリング27およびブラケット28を有している。 Next, the shaft seal device 20 of this embodiment will be described. The shaft seal device 20 seals the periphery of the shaft 63. The shaft seal device 20 is a balanced shaft seal device. The shaft seal device 20 is provided in a shaft hole 53 b formed in the center portion of the bottom wall 53 a of the front housing 53. As shown in FIG. 2, the shaft seal device 20 includes a fixed ring 21, a rotating ring 22, a spring 27, and a bracket 28.
 固定環21は、例えば、シリコンカーバイト製であり、軸孔53bに固定されている。その軸孔53bはフロントハウジング53に形成されている。固定環21は軸孔53bに挿通されたシャフト63を回転可能に支持する。シャフト63は、軸孔53bを介してフロントハウジング53を貫通している。シャフト63の一端は、フロントハウジング53の外側に位置している。また、固定環21は、環状をなしており、回転環22に隣接する側(図中、右側)に固定側シール端面21aを有している。 The fixed ring 21 is made of, for example, silicon carbide, and is fixed to the shaft hole 53b. The shaft hole 53 b is formed in the front housing 53. The fixed ring 21 rotatably supports the shaft 63 inserted through the shaft hole 53b. The shaft 63 passes through the front housing 53 via the shaft hole 53b. One end of the shaft 63 is located outside the front housing 53. The fixed ring 21 has an annular shape, and has a fixed-side seal end face 21 a on the side adjacent to the rotating ring 22 (right side in the figure).
 回転環22は、例えば、カーボン製であり、フロントハウジング53の内側に位置するシャフト63に固定されている。回転環22は、環状をなしており、固定環21に隣接する側(図中、左側)に回転側シール端面22aを有している。回転環22は、シャフト63と一体となって回転する。 The rotary ring 22 is made of carbon, for example, and is fixed to a shaft 63 located inside the front housing 53. The rotating ring 22 has an annular shape, and has a rotating side seal end face 22a on the side adjacent to the fixed ring 21 (left side in the figure). The rotating ring 22 rotates integrally with the shaft 63.
 スプリング27は、たとえばコイルバネであり、シャフト63にブラケット28を介して固定されている。また、スプリング27は、回転環22をフロントハウジング53の前側(図中、左側)へ軸方向に付勢する。 The spring 27 is, for example, a coil spring, and is fixed to the shaft 63 via the bracket 28. Further, the spring 27 urges the rotary ring 22 in the axial direction toward the front side (left side in the drawing) of the front housing 53.
 ブラケット28は、スプリング27の座面を形成する。ブラケット28は、シャフト63に固定され、シャフト63と回転環22と一体的に回転する。 The bracket 28 forms the seating surface of the spring 27. The bracket 28 is fixed to the shaft 63 and rotates integrally with the shaft 63 and the rotary ring 22.
 また、固定環21とフロントハウジング53のハウジングの軸孔53bの接触面(シール面)と、回転環22とシャフト63の接触面(シール面)には、それぞれシール部材に相当するUリング23が設けられている。 Further, U-rings 23 corresponding to sealing members are respectively provided on the contact surface (seal surface) of the shaft hole 53b of the housing of the fixed ring 21 and the front housing 53 and the contact surface (seal surface) of the rotary ring 22 and the shaft 63. Is provided.
 具体的には、固定環21の外周面にはUリング挿入溝210が形成されている。Uリング挿入溝210には、柔軟性を有する樹脂製のUリング23が配置されている。このUリング23により固定環21とフロントハウジング53の軸孔53bの接触面(シール面)がシールされる。 Specifically, a U-ring insertion groove 210 is formed on the outer peripheral surface of the stationary ring 21. In the U-ring insertion groove 210, a flexible resin U-ring 23 is disposed. The U ring 23 seals the contact surface (seal surface) between the stationary ring 21 and the shaft hole 53 b of the front housing 53.
 また、回転環22の内周面にはUリング挿入溝220が形成されている。Uリング挿入溝220にも、柔軟性を有する樹脂製のUリング23が配置されている。このUリング23により回転環22とシャフト63の接触面(シール面)がシールされる。各Uリング23の構成および材質は同一となっている。 Further, a U-ring insertion groove 220 is formed on the inner peripheral surface of the rotary ring 22. Also in the U-ring insertion groove 220, a flexible resin U-ring 23 is arranged. The contact surface (seal surface) between the rotating ring 22 and the shaft 63 is sealed by the U ring 23. The configuration and material of each U-ring 23 are the same.
 図3は、回転環22とシャフト63の接触面の断面図である。また、図4は、本実施形態に係る軸封装置のUリング23の断面を示した図である。Uリング23は環状のシール部材であり、断面において径方向に対向する外側シール壁部および内側シール壁部と、両シール壁部を連結するシール底部とからU字形状をなしている。シール底部は、外側シール壁部および内側シール壁部において、フロントハウジング53の外側に位置するシャフト63の一端側を連結している。一方、外側シール壁部の開放端部および内側シール壁部の開放端部の間には、環状の開口部が形成されている。 FIG. 3 is a cross-sectional view of the contact surface between the rotating ring 22 and the shaft 63. FIG. 4 is a view showing a cross section of the U-ring 23 of the shaft seal device according to the present embodiment. The U-ring 23 is an annular seal member, and has a U-shape from an outer seal wall portion and an inner seal wall portion that face each other in the radial direction in a cross section, and a seal bottom portion that connects both seal wall portions. The seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion. On the other hand, an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
 図3に示すUリング23の断面において、開口部の径方向における両側(両開放端部)には、突起部23aと突起部23bが形成されている。すなわち、外側シール壁部の開放端部の径方向外側に突起部23aが設けられ、内側シール壁部の開放端部の径方向内側に突起部23bが設けられている。突起部23aおよび突起部23bは、開口部の径方向における両側から突起している。より詳細には、突起部23aは、外側シール壁部から径方向の外側に突出し、突起部23bは、内側シール壁部から径方向の内側に突出している。 In the cross section of the U-ring 23 shown in FIG. 3, a protrusion 23a and a protrusion 23b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 23a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 23b is provided on the radially inner side of the open end of the inner seal wall. The protrusion 23a and the protrusion 23b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 23a protrudes radially outward from the outer seal wall, and the protrusion 23b protrudes radially inward from the inner seal wall.
 Uリング23は、フッ化炭素樹脂であるPTFE(ポリテトラフルオロエチレン)により構成されている。 The U ring 23 is made of PTFE (polytetrafluoroethylene) which is a fluorocarbon resin.
 Uリング23は、開口部がハウジングの内部の冷媒側を向いて開口するように配置されている。すなわち、Uリング23は、開口部がシャフト63におけるフロントハウジング53の外側に位置する一端とは反対側に向けて開口するよう設けられる。Uリング23は、突起部23a、23bが弾性によりシール面に押し付けられる寸法構造となっている。すなわち、Uリング23は、図5に示すように、ハウジングの内部の冷媒の圧力Pが高くなるとUリング23が弾性変形して開口部が広がり、突起部23aと突起部23bにシャフト63と回転環22を押さえ付ける力Fが働きく。これにより、突起部23a、23bが、回転環22とシャフト63の接触面(シール面)を強い力でシールする。 The U-ring 23 is arranged so that the opening opens toward the refrigerant side inside the housing. That is, the U-ring 23 is provided so that the opening portion opens toward the side opposite to one end of the shaft 63 located outside the front housing 53. The U-ring 23 has a dimensional structure in which the protrusions 23a and 23b are pressed against the seal surface by elasticity. That is, as shown in FIG. 5, when the pressure P of the refrigerant inside the housing increases, the U-ring 23 is elastically deformed to expand the opening, and the shaft 63 rotates with the protrusions 23a and 23b. The force F that holds down the ring 22 works. Thereby, the protrusions 23a and 23b seal the contact surface (seal surface) between the rotating ring 22 and the shaft 63 with a strong force.
 また、Uリング23の開口部には、環状をなす金属製のバネ部材230が設けられている。このバネ部材230は、Uリング23の開口部を押し広げる。このバネ部材230によって、Uリング23の突起部23aと突起部23bがより強くシール面に押し付けられる。 Also, an annular metal spring member 230 is provided at the opening of the U-ring 23. This spring member 230 pushes and widens the opening of the U-ring 23. By the spring member 230, the protrusion 23a and the protrusion 23b of the U-ring 23 are more strongly pressed against the seal surface.
 なお、本実施形態におけるバネ部材230は、断面がW形状となっている。このバネ部材230により、ハウジングの内部の冷媒の圧力が低い場合でも開口部が広がり、突起部23aと突起部23bがシール面に押し付けられる。 Note that the spring member 230 in the present embodiment has a W-shaped cross section. The spring member 230 expands the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 23a and the protrusion 23b are pressed against the seal surface.
 上記した構成において、シャフト63を外部駆動力(例えば車両エンジン)により回転すると、シャフト63に固定されたラグプレート73が回転し、ピン81とリンク機構部79によって連結された斜板77が回転する。ここで、斜板77の外周部はシュー89によって周方向摺動自在に把持されており、シュー89は、ピストン85の球面軸受に揺動自在に係合されている。したがって、斜板77の回転揺動運動はピストン85の往復運動に変換され、シリンダ内の流体が吐出、あるいは吸入される。 In the above configuration, when the shaft 63 is rotated by an external driving force (for example, a vehicle engine), the lug plate 73 fixed to the shaft 63 is rotated, and the swash plate 77 connected by the pin 81 and the link mechanism portion 79 is rotated. . Here, the outer peripheral portion of the swash plate 77 is gripped by a shoe 89 so as to be slidable in the circumferential direction, and the shoe 89 is slidably engaged with a spherical bearing of the piston 85. Accordingly, the rotational swing motion of the swash plate 77 is converted into the reciprocating motion of the piston 85, and the fluid in the cylinder is discharged or sucked.
 このような斜板型圧縮機51の軸封装置20では、(A)固定側シール端面21aと回転側シール端面22aの接触面、(B)回転環22とシャフト63の接触面、(C)固定環21とフロントハウジング53のハウジングの軸孔53bの接触面の3箇所において、外部への冷媒の漏洩を防止するシール部分が生じる。以下、(A)から(C)に示したシールについて説明する。 In such a shaft seal device 20 of the swash plate compressor 51, (A) a contact surface between the fixed-side seal end surface 21a and the rotation-side seal end surface 22a, (B) a contact surface between the rotation ring 22 and the shaft 63, (C) At three locations on the contact surface of the shaft ring 53b of the stationary ring 21 and the housing of the front housing 53, seal portions that prevent leakage of the refrigerant to the outside are generated. Hereinafter, the seals shown in (A) to (C) will be described.
 (A)固定側シール端面21aと回転側シール端面22aの接触面のシール
 シャフト63が回転すると、固定環21の固定側シール端面21aと、回転環22の回転側シール端面22aとがスプリング27及び圧縮機の冷媒内圧により押圧されつつ摺動する。なお、冷媒として使用される二酸化炭素の冷媒には潤滑油が混入されている。潤滑油が固定環21の固定側シール端面21aと回転環22の回転側シール端面22aの接触面に引き込まれることで、油膜が形成される。このように、固定側シール端面21aと回転側シール端面22aの微小隙間が潤滑油で満たされ、ハウジング内の冷媒が外部に漏れないようシールされる。
(A) When the seal shaft 63 of the contact surface between the fixed-side seal end surface 21a and the rotation-side seal end surface 22a rotates, the fixed-side seal end surface 21a of the fixed ring 21 and the rotation-side seal end surface 22a of the rotation ring 22 are connected to the spring 27 and The slider slides while being pressed by the refrigerant internal pressure of the compressor. Lubricating oil is mixed in the carbon dioxide refrigerant used as the refrigerant. The lubricating oil is drawn into the contact surface between the fixed-side seal end surface 21a of the fixed ring 21 and the rotary-side seal end surface 22a of the rotating ring 22, whereby an oil film is formed. Thus, the minute gap between the fixed-side seal end surface 21a and the rotation-side seal end surface 22a is filled with the lubricating oil, and the refrigerant in the housing is sealed so as not to leak to the outside.
 また、シャフト63が軸方向に変位してもスプリング27により回転環22のシャフト63の軸方向への移動が許容されるため、固定環21の固定側シール端面21aと回転環22の回転側シール端面22aのシールは維持される。 Even if the shaft 63 is displaced in the axial direction, the spring 27 allows the rotation ring 22 to move in the axial direction of the shaft 63, so that the fixed-side seal end surface 21 a of the fixed ring 21 and the rotation-side seal of the rotation ring 22 are allowed. The seal of the end face 22a is maintained.
 (B)回転環22とシャフト63の接触面のシール
 シャフト63と回転環22の接触面(シール面)には、断面においてU字形状を有する環状のUリング23が設けられている。本実施形態では、Uリング23は樹脂製である。Uリング23は、開口部の径方向における両側に突起部23a、23bを有している。突起部23a、23bが弾性によりシール面に押し付けられ、シャフト63と回転環22のシール面がシールされる。
(B) Sealing of the contact surface between the rotating ring 22 and the shaft 63 An annular U-ring 23 having a U-shape in cross section is provided on the contact surface (seal surface) of the shaft 63 and the rotating ring 22. In the present embodiment, the U ring 23 is made of resin. The U-ring 23 has protrusions 23a and 23b on both sides in the radial direction of the opening. The protrusions 23a and 23b are pressed against the sealing surface by elasticity, and the sealing surfaces of the shaft 63 and the rotary ring 22 are sealed.
 (C)固定環21とフロントハウジング53の軸孔53bの接触面のシール
 固定環21とフロントハウジング53の軸孔53bの接触面(シール面)には、開口部の両外側に突起部23a、23bが形成された断面U字形状の環状の樹脂製のUリング23が設けられている。突起部23a、23bが弾性によりシール面に押し付けられ、固定環21とフロントハウジング53の軸孔53bのシール面がシールされる。
(C) Sealing of the contact surface between the fixed ring 21 and the shaft hole 53b of the front housing 53 The contact surface (seal surface) of the fixed ring 21 and the shaft hole 53b of the front housing 53 has protrusions 23a on both outer sides of the opening. An annular resin U-ring 23 having a U-shaped cross section with 23b formed therein is provided. The protrusions 23 a and 23 b are pressed against the sealing surface by elasticity, and the sealing surface of the stationary ring 21 and the shaft hole 53 b of the front housing 53 is sealed.
 斜板型圧縮機51は、二酸化炭素を冷媒として採用しているため、軸封装置20においては、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たすことが求められる。 Since the swash plate compressor 51 employs carbon dioxide as a refrigerant, the shaft seal device 20 satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance. Is required.
 本実施形態の軸封装置20に設けられた2つのUリング23は、それぞれフッ化炭素樹脂であるPTFE(ポリテトラフルオロエチレン)により構成されている。ここで、図6を参照して、各種ゴム材と樹脂であるPTFEの各種特性比較について説明する。 The two U rings 23 provided in the shaft seal device 20 of the present embodiment are each made of PTFE (polytetrafluoroethylene) which is a fluorocarbon resin. Here, with reference to FIG. 6, various characteristics comparison between various rubber materials and PTFE which is resin will be described.
 EPDM(エチレンプロピレンゴム)は、耐熱性、二酸化炭素耐透過性、耐発泡性および極低温性のいずれも劣る。また、高温用HNBR(ニトリルゴム)は、耐熱性、二酸化炭素耐透過性および極低温性に優れているものの耐発泡性に劣る。また、VMQ(シリコーンゴム)は、耐熱性、耐発泡性および極低温性に優れているものの二酸化炭素耐透過性に劣る。また、FKM(フッ素ゴム)は、耐熱性および二酸化炭素耐透過性に優れているが、耐発泡性および極低温性は劣る。このように、ゴム剤では、耐熱性、二酸化炭素耐透過性、耐発泡性および極低温性の4つの要求を満たすことはできない。 EPDM (ethylene propylene rubber) is inferior in all of heat resistance, carbon dioxide permeation resistance, foam resistance and cryogenic temperature. Moreover, although HNBR (nitrile rubber) for high temperature is excellent in heat resistance, carbon dioxide permeation resistance and cryogenic temperature, it is inferior in foaming resistance. Moreover, VMQ (silicone rubber) is inferior in carbon dioxide permeation resistance although it is excellent in heat resistance, foam resistance and cryogenic temperature. FKM (fluoro rubber) is excellent in heat resistance and carbon dioxide permeation resistance, but is inferior in foam resistance and cryogenic temperature. As described above, the rubber agent cannot satisfy the four requirements of heat resistance, carbon dioxide permeation resistance, foam resistance and cryogenic temperature.
 これに対し、本実施形態の軸封装置20に設けられた2つのUリング23は、柔軟性を有する樹脂であるPTFE(ポリテトラフルオロエチレン)により構成されている。PTFEは、耐熱性、二酸化炭素耐透過性、耐発泡性および極低温性の4つの要件を満たしている。 On the other hand, the two U-rings 23 provided in the shaft seal device 20 of the present embodiment are made of PTFE (polytetrafluoroethylene) which is a flexible resin. PTFE satisfies four requirements of heat resistance, carbon dioxide permeation resistance, foam resistance and cryogenic temperature.
 上記した構成によれば、軸封装置20は、ハウジングと固定環21のシール面およびシャフト63と回転環22のシール面のそれぞれにUリング23が設けられている。Uリング23は、開口部がハウジングの内部の冷媒側を向いて開口するように配置され、開口部の径方向における両側に形成された突起部23a、23bが弾性によりシール面に押し付けられる。Uリング23を形成する材料として、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たす樹脂を用いることができる。このような樹脂製のUリング23は、例えば、ゴム材では満たすことのできない耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たすことができる。更に、Uリング23が弾性変形することで、突起部23a、23bがシール面に押し付けられる。これにより、長期間にわたってシール面のシール性を維持することができる。 According to the configuration described above, the shaft seal device 20 is provided with the U-ring 23 on each of the seal surface of the housing and the stationary ring 21 and the seal surface of the shaft 63 and the rotary ring 22. The U-ring 23 is disposed so that the opening portion opens toward the refrigerant side inside the housing, and the protrusions 23a and 23b formed on both sides in the radial direction of the opening portion are pressed against the sealing surface by elasticity. As a material for forming the U-ring 23, a resin that satisfies the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance can be used. Such a resin U-ring 23 can satisfy, for example, four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic resistance that cannot be satisfied by a rubber material. Further, the U-ring 23 is elastically deformed, so that the protrusions 23a and 23b are pressed against the seal surface. Thereby, the sealing performance of a sealing surface can be maintained over a long period of time.
 また、シャフト63と回転環22のシール面では、スプリング27に付勢された回転環22がシャフト63とともにシャフト63の軸方向に移動する場合があるが、このようなシャフト63と回転環22のシール面にUリング23を設けることで、効果的にシールを行うことが可能である。 Further, on the seal surface of the shaft 63 and the rotary ring 22, the rotary ring 22 biased by the spring 27 may move in the axial direction of the shaft 63 together with the shaft 63. By providing the U-ring 23 on the sealing surface, it is possible to effectively perform the sealing.
 また、耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たすことができる樹脂としては、例えば、PTFE(ポリテトラフルオロエチレン)を用いることができる。 Also, as a resin that can satisfy the four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance and cryogenic temperature resistance, for example, PTFE (polytetrafluoroethylene) can be used.
 また、Uリング23は、Uリング23の開口部を押し広げるバネ部材230を有し、該バネ部材230により突起部23a、23bがシール面に押し付けられるので、ハウジングの内部の冷媒の圧力が低い場合でも、シール性を確保することができる。 Further, the U-ring 23 has a spring member 230 that pushes the opening of the U-ring 23, and the protrusions 23a and 23b are pressed against the seal surface by the spring member 230, so that the pressure of the refrigerant inside the housing is low. Even in this case, the sealing property can be ensured.
 (第2実施形態)
 以下、第2実施形態に係る圧縮機および軸封装置について、図7、図8を参照して説明する。第1実施形態におけるUリング23は、断面がW字形状となっているバネ部材230を有している。これに対し、本実施形態におけるUリング24は、直径の異なる2つの円環板状のバネ部材240、241を有している。
(Second Embodiment)
Hereinafter, a compressor and a shaft seal device according to the second embodiment will be described with reference to FIGS. 7 and 8. The U-ring 23 in the first embodiment has a spring member 230 having a W-shaped cross section. On the other hand, the U-ring 24 in this embodiment has two annular plate- like spring members 240 and 241 having different diameters.
 Uリング24は、環状のシール部材であり、断面において径方向に対向する外側シール壁部および内側シール壁部と、両シール壁部を連結するシール底部とからU字形状をなしている。シール底部は、外側シール壁部および内側シール壁部において、フロントハウジング53の外側に位置するシャフト63の一端側を連結している。一方、外側シール壁部の開放端部および内側シール壁部の開放端部の間には、環状の開口部が形成されている。 The U-ring 24 is an annular seal member, and has a U-shape including an outer seal wall portion and an inner seal wall portion that are opposed in the radial direction in a cross section, and a seal bottom portion that couples both seal wall portions. The seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion. On the other hand, an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
 図7に示すUリング24の断面において、開口部の径方向における両側(両開放端部)には、突起部24aと突起部24bが形成されている。すなわち、外側シール壁部の開放端部の径方向外側に突起部24aが設けられ、内側シール壁部の開放端部の径方向内側に突起部24bが設けられている。突起部24aおよび突起部24bは、開口部の径方向における両側から突起している。より詳細には、突起部24aは、外側シール壁部から径方向の外側に突出し、突起部24bは、内側シール壁部から径方向の内側に突出している。 In the cross section of the U-ring 24 shown in FIG. 7, a protrusion 24a and a protrusion 24b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 24a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 24b is provided on the radially inner side of the open end of the inner seal wall. The protrusion 24a and the protrusion 24b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 24a protrudes radially outward from the outer seal wall, and the protrusion 24b protrudes radially inward from the inner seal wall.
 バネ部材240、241はそれぞれ、円環状に形成した金属製の薄板により構成され、弾性変形する。 The spring members 240 and 241 are each composed of a thin metal plate formed in an annular shape, and are elastically deformed.
 バネ部材240は、Uリング24の外側シール壁部のうち、突起部24aとは反対側の壁面に配置される。バネ部材240は、Uリング24の当該壁面に配置される前の状態において、Uリング24の外側シール壁部(開口部の外周側側面)よりも僅かに大きくなっている。換言すると、バネ部材240の直径は、Uリング24の開口部に配置される前の状態において、Uリング24の開口部の直径よりも僅かに大きい。したがって、Uリング24の開口部に配置されると、図8に示すように、径方向外側に向けて力が作用する。 The spring member 240 is disposed on the wall surface on the opposite side of the protruding portion 24a in the outer seal wall portion of the U-ring 24. The spring member 240 is slightly larger than the outer seal wall portion (the outer peripheral side surface of the opening) of the U ring 24 before being placed on the wall surface of the U ring 24. In other words, the diameter of the spring member 240 is slightly larger than the diameter of the opening of the U-ring 24 in a state before being arranged at the opening of the U-ring 24. Therefore, when arranged in the opening of the U-ring 24, a force acts radially outward as shown in FIG.
 また、バネ部材241は、Uリング24の内側シール壁部のうち、突起部24bとは反対側の壁面に配置される。バネ部材241は、Uリング24の当該壁面に配置される前の状態において、Uリング24の内側シール壁部(開口部の内周側側面)よりも僅かに小さくなっている。還元すると、バネ部材241の直径は、Uリング24の開口部に配置される前の状態において、Uリング24の開口部の直径よりも僅かに小さい。したがって、Uリング24の開口部に配置されると、図8に示すように、径方向内側に向けて力が作用する。 Further, the spring member 241 is disposed on the wall surface on the opposite side of the projecting portion 24b in the inner seal wall portion of the U ring 24. The spring member 241 is slightly smaller than the inner seal wall portion (the inner peripheral side surface of the opening) of the U ring 24 before being disposed on the wall surface of the U ring 24. In other words, the diameter of the spring member 241 is slightly smaller than the diameter of the opening of the U-ring 24 in a state before being arranged at the opening of the U-ring 24. Therefore, when arranged at the opening of the U-ring 24, a force acts radially inward as shown in FIG.
 これらのバネ部材240、241により、ハウジングの内部の冷媒の圧力が低い場合でも開口部が広がり、突起部24aと突起部24bがシール面に押し付けられる。 These spring members 240 and 241 open the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 24a and the protrusion 24b are pressed against the seal surface.
 このようなUリング24が、固定環21とフロントハウジング53のハウジングの軸孔53bの接触面(シール面)と、回転環22とシャフト63の接触面(シール面)にそれぞれ設けられている。 Such U-rings 24 are provided on the contact surface (seal surface) of the shaft hole 53b of the stationary ring 21 and the front housing 53, and on the contact surface (seal surface) of the rotary ring 22 and the shaft 63, respectively.
 本実施形態では、第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effect as that of the first embodiment, which is obtained from the configuration common to the first embodiment.
 また、本実施形態のような金属製の薄板を円環状に形成したバネ部材240、241を備えたUリング24は、構成が簡素であるため低コスト化が可能であり、軸封装置20の小型化も可能である。 In addition, the U-ring 24 including the spring members 240 and 241 formed of a metal thin plate in an annular shape as in the present embodiment can be reduced in cost because of its simple configuration. Miniaturization is also possible.
 なお、本実施形態は第1実施形態に基づいた実施形態であるが、本実施形態を前述の第1実施形態のうちの何れかと組み合わせることも可能である。 In addition, although this embodiment is embodiment based on 1st Embodiment, it is also possible to combine this embodiment with either of the above-mentioned 1st Embodiment.
 (第3実施形態)
 以下、第3実施形態に係る圧縮機および軸封装置について、図9、図10を参照して説明する。第1実施形態におけるUリング23のバネ部材230は、断面においてW字形状となっている。これに対し、本実施形態におけるUリング25のバネ部材250は、断面においてU字形状となっている。
(Third embodiment)
Hereinafter, a compressor and a shaft seal device according to a third embodiment will be described with reference to FIGS. 9 and 10. The spring member 230 of the U-ring 23 in the first embodiment is W-shaped in cross section. On the other hand, the spring member 250 of the U ring 25 in the present embodiment has a U shape in cross section.
 Uリング25は、環状のシール部材であり、断面において径方向に対向する外側シール壁部および内側シール壁部と、両シール壁部を連結するシール底部とからU字形状をなしている。シール底部は、外側シール壁部および内側シール壁部において、フロントハウジング53の外側に位置するシャフト63の一端側を連結している。一方、外側シール壁部の開放端部および内側シール壁部の開放端部の間には、環状の開口部が形成されている。 The U-ring 25 is an annular seal member, and has a U shape from an outer seal wall portion and an inner seal wall portion that are opposed in the radial direction in a cross section, and a seal bottom portion that couples both seal wall portions. The seal bottom portion connects one end side of the shaft 63 positioned outside the front housing 53 at the outer seal wall portion and the inner seal wall portion. On the other hand, an annular opening is formed between the open end of the outer seal wall and the open end of the inner seal wall.
 図9に示すUリング25の断面において、開口部の径方向における両側(両開放端部)には、突起部25aと突起部25bが形成されている。すなわち、外側シール壁部の開放端部の径方向外側に突起部25aが設けられ、内側シール壁部の開放端部の径方向内側に突起部25bが設けられている。突起部25aおよび突起部25bは、開口部の径方向における両側から突起している。より詳細には、突起部25aは、外側シール壁部から径方向の外側に突出し、突起部25bは、内側シール壁部から径方向の内側に突出している。 In the cross section of the U-ring 25 shown in FIG. 9, a protrusion 25a and a protrusion 25b are formed on both sides (both open ends) in the radial direction of the opening. That is, the protrusion 25a is provided on the radially outer side of the open end of the outer seal wall, and the protrusion 25b is provided on the radially inner side of the open end of the inner seal wall. The protrusion 25a and the protrusion 25b protrude from both sides in the radial direction of the opening. More specifically, the protrusion 25a protrudes radially outward from the outer seal wall, and the protrusion 25b protrudes radially inward from the inner seal wall.
 バネ部材250は、金属製の薄板を円環状に形成して構成されており、断面においてU字形状を有している。バネ部材250は、Uリング24の開口部に配置されると、図10に示すように、バネ部材250の開口部を開口させる方向に力が作用する。 The spring member 250 is formed by forming a thin metal plate into an annular shape, and has a U-shape in cross section. When the spring member 250 is disposed at the opening of the U-ring 24, a force acts in the direction of opening the opening of the spring member 250 as shown in FIG.
 このバネ部材250により、ハウジングの内部の冷媒の圧力が低い場合でも開口部が広がり、突起部25aと突起部25bがシール面に押し付けられる。 The spring member 250 expands the opening even when the pressure of the refrigerant inside the housing is low, and the protrusion 25a and the protrusion 25b are pressed against the seal surface.
 このようなUリング25が、固定環21とフロントハウジング53のハウジングの軸孔53bの接触面(シール面)と、回転環22とシャフト63の接触面(シール面)にそれぞれ設けられている。 Such U-rings 25 are provided on the contact surface (seal surface) of the shaft hole 53b of the stationary ring 21 and the front housing 53, and on the contact surface (seal surface) of the rotary ring 22 and the shaft 63, respectively.
 本実施形態では、第1実施形態と共通の構成から奏される効果を第1実施形態と同様に得ることができる。 In this embodiment, it is possible to obtain the same effect as that of the first embodiment, which is obtained from the configuration common to the first embodiment.
 また、本実施形態のような断面がU字形状となっているバネ部材250を備えたUリング25は、構成が簡素であるため低コスト化が可能であり、軸封装置20の小型化も可能である。 Further, since the U-ring 25 including the spring member 250 having a U-shaped cross section as in the present embodiment has a simple configuration, the cost can be reduced, and the shaft seal device 20 can be downsized. Is possible.
 なお、本実施形態は第1実施形態に基づいた実施形態であるが、本実施形態を前述の第1実施形態のうちの何れかと組み合わせることも可能である。 In addition, although this embodiment is embodiment based on 1st Embodiment, it is also possible to combine this embodiment with either of the above-mentioned 1st Embodiment.
 (他の実施形態)
 第1から第3実施形態では、本開示の圧縮機について、二酸化炭素を冷媒とした斜板型圧縮機を例に説明したが、斜板型圧縮機以外の各種圧縮機に適用することができる。
(Other embodiments)
In the first to third embodiments, the compressor of the present disclosure has been described by taking a swash plate compressor using carbon dioxide as a refrigerant as an example, but can be applied to various compressors other than the swash plate compressor. .
 また、第1から第3実施形態では、バランス型の軸封装置を例に説明したが、このような型の軸封装置に限定されるものではなく、例えば、アンバランス型の軸封装置に適用することもできる。 In the first to third embodiments, the balance type shaft seal device has been described as an example. However, the present invention is not limited to such a type shaft seal device. For example, an unbalanced shaft seal device may be used. It can also be applied.
 また、第1から第3実施形態では、Uリング23、24、25は断面がU字形状となっているが、例えば、断面がV字形状となっているようにしてもよい。 In the first to third embodiments, the U-rings 23, 24, and 25 have a U-shaped cross section, but may have a V-shaped cross section, for example.
 また、第1から第3実施形態では、Uリング23、24、25の開口部には、バネ部材230、240、241、250が設けられている。しかしながら、必ずしもこのようなバネ部材を設ける必要はない。 In the first to third embodiments, spring members 230, 240, 241, and 250 are provided at the openings of the U-rings 23, 24, and 25. However, it is not always necessary to provide such a spring member.
 また、第1から第3実施形態では、Uリング23、24、25をPTFE(ポリテトラフルオロエチレン)により構成した。しかしながら、PTFE以外の耐熱性、耐発泡性、二酸化炭素耐透過性および耐極低温性の4つの要件を満たす樹脂により構成してもよい。 In the first to third embodiments, the U-rings 23, 24, and 25 are made of PTFE (polytetrafluoroethylene). However, you may comprise by resin other than PTFE which satisfy | fills four requirements of heat resistance, foam resistance, carbon dioxide permeation resistance, and cryogenic temperature resistance.
 また、第1実施形態のUリング23は、断面形状がW字形状のバネ部材230を備え、第2実施形態のUリング25は、断面形状がU字形状のバネ部材250を備えている。しかしながら、例えば、Uリングに、断面形状がV字形状のバネ部材を備えるようにしてもよい。 The U-ring 23 of the first embodiment includes a spring member 230 having a W-shaped cross section, and the U-ring 25 of the second embodiment includes a spring member 250 having a U-shaped cross section. However, for example, the U-ring may be provided with a spring member having a V-shaped cross section.
 また、第1から第3実施形態では、フロントハウジング53と固定環21のシール面およびシャフト63と回転環22のシール面の両方のシール面にUリング23、24、25を設けた。しかしながら、フロントハウジング53と固定環21のシール面およびシャフト63と回転環22のシール面のいずれか一方にUリング23、24、25を設けてもよい。また、シャフト63と回転環22のシール面にUリングを設け、例えば、フロントハウジング53と固定環21のシール面はシール性が維持されるよう接合してもよい。 In the first to third embodiments, U rings 23, 24, and 25 are provided on both the seal surfaces of the front housing 53 and the stationary ring 21 and the seal surfaces of the shaft 63 and the rotating ring 22. However, the U rings 23, 24, and 25 may be provided on any one of the seal surface of the front housing 53 and the stationary ring 21 and the seal surface of the shaft 63 and the rotating ring 22. Further, a U-ring may be provided on the seal surfaces of the shaft 63 and the rotary ring 22, and for example, the seal surfaces of the front housing 53 and the fixed ring 21 may be joined so that the sealing performance is maintained.
 また、第1から第3実施形態では、固定環21におけるフロントハウジング53との接触面にUリング23、24、25を設けたが、フロントハウジング53における固定環21との接触面にUリング23、24、25を設けてもよい。また、第1、第2実施形態では、回転環22におけるシャフト63との接触面にUリング23、24、25を設けたが、シャフト63における回転環22との接触面にUリング23、24、25を設けてもよい。 In the first to third embodiments, the U rings 23, 24, and 25 are provided on the contact surface of the stationary ring 21 with the front housing 53. However, the U ring 23 is disposed on the contact surface of the front housing 53 with the stationary ring 21. , 24, 25 may be provided. In the first and second embodiments, the U-rings 23, 24, 25 are provided on the contact surface of the rotating ring 22 with the shaft 63. However, the U-rings 23, 24 are provided on the contact surface of the shaft 63 with the rotating ring 22. 25 may be provided.
 なお、本開示は上記した実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲内において適宜変更が可能である。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。

 
Note that the present disclosure is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present disclosure. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.

Claims (7)

  1.  二酸化炭素の冷媒を圧縮する圧縮機(51)の軸封装置であって、
     前記冷媒を収容するハウジング(53、55、57)の内側に位置するシャフト(63)に固定される回転環(22)と、
     前記ハウジングに形成された軸孔(53b)に固定され、前記軸孔に挿通された前記シャフトを回転可能に支持する固定環(21)と、を備え、
     前記ハウジングと前記固定環のシール面および前記シャフトと前記回転環のシール面のうち少なくとも一方には、開口部を有し、該開口部の径方向における両側に突起部(23a、24a、25a、23b、24b、25b)が形成された環状のシール部材(23、24、25)が設けられており、
     前記シール部材は、前記開口部が前記ハウジングの内部の前記冷媒側を向いて開口するように配置され、前記突起部が弾性により前記シール面に押し付けられる軸封装置。
    A shaft seal device of a compressor (51) for compressing a carbon dioxide refrigerant,
    A rotating ring (22) fixed to a shaft (63) located inside a housing (53, 55, 57) containing the refrigerant;
    A fixed ring (21) fixed to a shaft hole (53b) formed in the housing and rotatably supporting the shaft inserted through the shaft hole;
    At least one of the sealing surface of the housing and the stationary ring and the sealing surface of the shaft and the rotary ring has an opening, and protrusions (23a, 24a, 25a, 23b, 24b, 25b) are provided with annular sealing members (23, 24, 25),
    The seal member is a shaft seal device in which the opening is disposed so as to open toward the refrigerant inside the housing, and the protrusion is elastically pressed against the seal surface.
  2.  前記シール部材は、断面U字形状をなすUリングである請求項1に記載の軸封装置。 The shaft seal device according to claim 1, wherein the seal member is a U-ring having a U-shaped cross section.
  3.  前記シール部材は、前記シャフトと前記回転環のシール面に設けられている請求項1または2に記載の軸封装置。 The shaft seal device according to claim 1 or 2, wherein the seal member is provided on a seal surface of the shaft and the rotary ring.
  4.  前記シール部材は、PTFEで構成されている請求項1ないし3のいずれか1つに記載の軸封装置。 The shaft seal device according to any one of claims 1 to 3, wherein the seal member is made of PTFE.
  5.  前記シール部材は、前記シール部材の前記開口部を押し広げるバネ部材(230、240、241、250)を有し、
     前記バネ部材により前記突起部が前記シール面に押し付けられる請求項1ないし4のいずれか1つに記載の軸封装置。
    The seal member has spring members (230, 240, 241, 250) that spread the opening of the seal member,
    The shaft sealing device according to claim 1, wherein the protrusion is pressed against the seal surface by the spring member.
  6.  前記バネ部材は、断面形状がU字、V字、W字のいずれかとなっている請求項5に記載の軸封装置。 The shaft seal device according to claim 5, wherein the spring member has a U-shaped, V-shaped, or W-shaped cross section.
  7.  請求項1ないし6のいずれか1つに記載の軸封装置を、前記シャフトの周囲の密封に用いている圧縮機。

     
    A compressor using the shaft seal device according to any one of claims 1 to 6 for sealing around the shaft.

PCT/JP2015/006087 2014-12-25 2015-12-08 Shaft sealing device and compressor using same WO2016103601A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262228 2014-12-25
JP2014262228A JP2016121762A (en) 2014-12-25 2014-12-25 Shaft seal device and compressor

Publications (1)

Publication Number Publication Date
WO2016103601A1 true WO2016103601A1 (en) 2016-06-30

Family

ID=56149671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006087 WO2016103601A1 (en) 2014-12-25 2015-12-08 Shaft sealing device and compressor using same

Country Status (2)

Country Link
JP (1) JP2016121762A (en)
WO (1) WO2016103601A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3944758A1 (en) * 2020-07-30 2022-02-02 BSH Hausgeräte GmbH Sealing ring for a plant cultivation system and plant cultivation system with a sealing ring
US20230028144A1 (en) * 2019-12-11 2023-01-26 Ntn Corporation Shaft seal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383355B2 (en) * 2020-04-09 2023-11-20 イーグル工業株式会社 metal gasket
WO2023233969A1 (en) * 2022-06-01 2023-12-07 伸和コントロールズ株式会社 Three-way valve for flow rate control, and temperature control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149164U (en) * 1980-04-10 1981-11-09
JPH0280863A (en) * 1988-09-13 1990-03-20 Natl Space Dev Agency Japan<Nasda> High-rigidity seal ring
JP2007092546A (en) * 2005-09-27 2007-04-12 Toshiba Kyaria Kk Fluid machine
JP2008111391A (en) * 2006-10-31 2008-05-15 Sanden Corp Compressor
WO2009093460A1 (en) * 2008-01-23 2009-07-30 Valeo Thermal Systems Japan Corporation Shaft sealing structure for compressor
JP2012163216A (en) * 2010-06-30 2012-08-30 Mitsubishi Cable Ind Ltd U-shaped seal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56149164U (en) * 1980-04-10 1981-11-09
JPH0280863A (en) * 1988-09-13 1990-03-20 Natl Space Dev Agency Japan<Nasda> High-rigidity seal ring
JP2007092546A (en) * 2005-09-27 2007-04-12 Toshiba Kyaria Kk Fluid machine
JP2008111391A (en) * 2006-10-31 2008-05-15 Sanden Corp Compressor
WO2009093460A1 (en) * 2008-01-23 2009-07-30 Valeo Thermal Systems Japan Corporation Shaft sealing structure for compressor
JP2012163216A (en) * 2010-06-30 2012-08-30 Mitsubishi Cable Ind Ltd U-shaped seal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230028144A1 (en) * 2019-12-11 2023-01-26 Ntn Corporation Shaft seal
EP3944758A1 (en) * 2020-07-30 2022-02-02 BSH Hausgeräte GmbH Sealing ring for a plant cultivation system and plant cultivation system with a sealing ring

Also Published As

Publication number Publication date
JP2016121762A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2016103601A1 (en) Shaft sealing device and compressor using same
EP3517807B1 (en) Single seal ring stuffing box
US20100230905A1 (en) Shaft Sealing Device for a Fluid Machine
JP5052948B2 (en) Piston ring and fluid suction / discharge device using the piston ring
WO2000079157A1 (en) Lip-type high-pressure seal
JP2000170656A (en) Compressor sealing structure and compressor
JP4958445B2 (en) Mechanical seal device for compressor
JP2002317764A (en) Compressor sealing structure and compressor
JP2005201366A (en) Shaft seal device and compressor
US6688602B2 (en) Shaft sealing mechanism of compressor with mechanical seal
JP2003240129A (en) Seal
WO2016103602A1 (en) Shaft-sealing device and compressor
JP2003028302A (en) Sealing device
EP3742027A1 (en) Seal structure and seal to be used in same
US8991297B2 (en) Compressors with improved sealing assemblies
JP2004190844A (en) Sealing device
JP2007292306A (en) Shaft seal device for fluid machine
US7024866B2 (en) Axial loaded seal system with a static L-seal
JP2005201336A (en) Shaft seal device and compressor
JP2006177500A (en) Mechanical seal
JP4143786B2 (en) Sealing device
JP2004060830A (en) Lip type high pressure seal
JP2009108688A (en) Shaft sealing device for compressor
JP2005090626A (en) Sealing construction
JP2003269615A (en) Seal ring and seal structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872177

Country of ref document: EP

Kind code of ref document: A1