JP2007092546A - Fluid machine - Google Patents

Fluid machine Download PDF

Info

Publication number
JP2007092546A
JP2007092546A JP2005279872A JP2005279872A JP2007092546A JP 2007092546 A JP2007092546 A JP 2007092546A JP 2005279872 A JP2005279872 A JP 2005279872A JP 2005279872 A JP2005279872 A JP 2005279872A JP 2007092546 A JP2007092546 A JP 2007092546A
Authority
JP
Japan
Prior art keywords
roller
seal
fluid machine
cylinder
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005279872A
Other languages
Japanese (ja)
Inventor
Shogo Shida
勝吾 志田
Masayuki Okuda
正幸 奥田
Masatoshi Yoshida
政敏 吉田
Satoshi Koyama
聡 小山
Takeshi Fukuda
岳 福田
Moriaki Shimoda
盛彰 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005279872A priority Critical patent/JP2007092546A/en
Publication of JP2007092546A publication Critical patent/JP2007092546A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly efficient and silent fluid machine which is reduced in wearing in a sealing member and in an opposite surface, has long-term reliability and high airtightness, and is reduced in the sliding loss of friction. <P>SOLUTION: The fluid machine equipped with a helical compression mechanism is provided with an annular seal member which is installed in an annular groove formed on the end surface at the end side of a roller and one of a bearing surface of a bearing member to seal the end surface of the roller and the bearing surface of the bearing member. The seal member comprises a seal material composed of two lips to form a seal surface having a cross sectional U-shape and facing each other, and a heel to connect the two lips, and a spring installed inside the seal material. Out of the two lips, a projection is formed on the sliding surface of the lip at the opposite groove bottom side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は流体機械に係り、特にヘリカル式作動室のシール機構を改良した流体機械に関する。   The present invention relates to a fluid machine, and more particularly to a fluid machine having an improved seal mechanism for a helical working chamber.

シリンダ内に偏心配置されたローラの外周面に形成された螺旋状のブレード溝に摺動可能に嵌められかつ複数の作動室を形成する螺旋状のブレードを備えたヘリカル式コンプレッサにおいて、無潤滑のコンプレッサは、圧縮室の吐出側とローラの駆動部(クランクシャフト、ボールベアリング、オルダムリングなど大気中の部分)との間にシール部材(以下、シールリングという。)が必要である。   A helical compressor having a helical blade that is slidably fitted in a helical blade groove formed on an outer peripheral surface of a roller arranged eccentrically in a cylinder and that forms a plurality of working chambers. The compressor requires a seal member (hereinafter referred to as a seal ring) between the discharge side of the compression chamber and the driving unit of the roller (a portion in the atmosphere such as a crankshaft, a ball bearing, and an Oldham ring).

従来、この箇所は、スプリングを装着したPTFE樹脂(四ふっ化エチレン樹脂)製のシール部材(バリシール)を使用、ローラ端面と副軸受でシールしている。このシール隙間はローラ、シリンダ、副軸受の部品精度および組立精度によって決定され、シール隙間の変動幅(寸法、平行度)は大きくなる。また、装着の際にシールリングを押し潰すが、剛性が高く押圧力が大きいと摩耗の増加および摩擦抵抗の増加による消費電力の増加を招く問題がある。   Conventionally, this portion is sealed with a roller end face and a secondary bearing using a seal member (varistor seal) made of PTFE resin (ethylene tetrafluoride resin) with a spring attached. This seal gap is determined by the component accuracy and assembly accuracy of the roller, cylinder, and auxiliary bearing, and the fluctuation width (size, parallelism) of the seal gap increases. In addition, the seal ring is crushed during mounting. However, if the rigidity is high and the pressing force is large, there is a problem that power consumption increases due to increased wear and frictional resistance.

そのため、スプリングには押圧力が小さく可動範囲が広い斜め巻きコイルスプリングなどが使用されている。   Therefore, an oblique winding coil spring having a small pressing force and a wide movable range is used for the spring.

シールリングは、ローラもしくは軸受のどちらか一方に設けられた溝にフリーの状態で装着される。フランジタイプのように固定可能なシール部材では、シール隙間の変動幅が許容できず、一方を固定することによってシール性低下を招くおそれがある。   The seal ring is mounted in a free state in a groove provided in either the roller or the bearing. In a seal member that can be fixed like a flange type, the variation width of the seal gap cannot be allowed, and fixing one of the seal members may cause a decrease in sealing performance.

つまり、この種のシール材が一般に使用される回転軸回りのシールとは異なり、シール部を構成する部品点数が多いためにシール隙間の変動幅が大きくなり、上記構成のシールリングが使用される。   In other words, unlike a seal around a rotating shaft in which this type of seal material is generally used, the number of parts constituting the seal portion is large, so that the fluctuation range of the seal gap increases, and the seal ring having the above configuration is used. .

上記従来の構成では、次の問題があった。   The conventional configuration has the following problems.

シール部材の接触状態が不安定であり、初期の摺動側の接触面が広いと、(1)摺動面の初期馴染みが阻害される、(2)摩耗粉の排出が悪く摩耗粉の噛み込みによる摩耗進行がある、(3)摩耗進行により更に接触面が広がって摩擦抵抗が増加、圧縮機性能低下(摩擦ロス大)がある、(4)摩擦抵抗増加により溝内を回転、更に摩耗を進行させる、といった悪循環になり、圧縮機性能の長期信頼性に問題があった。   When the contact state of the seal member is unstable and the contact surface on the initial sliding side is wide, (1) the initial familiarity of the sliding surface is hindered, and (2) the wear powder is poorly discharged and the wear powder is bitten. (3) The contact surface further expands due to wear, the frictional resistance increases, the compressor performance decreases (large friction loss), (4) The groove rotates due to increased frictional resistance, and further wear It has become a vicious cycle of advancing, and there has been a problem in the long-term reliability of the compressor performance.

また、従来のヘリカル式コンプレッサにおいて、起動時、運転条件変更時など過渡時には、ローラが不安定な動きとなり、シリンダと接触して、音、振動、摩耗などの問題が発生するおそれがあった。   In addition, in a conventional helical compressor, the rollers may move in an unstable manner during a transition such as when starting or when operating conditions are changed, and there is a possibility that problems such as noise, vibration, and wear may occur due to contact with the cylinder.

なお、流体機械の摺動部の改良に関して、特許文献1及び特許文献2に記載のような提案がなされている。
特開2003−3978号公報 特開2003−97464号公報
In addition, about the improvement of the sliding part of a fluid machine, the proposal like patent document 1 and patent document 2 is made | formed.
Japanese Patent Laid-Open No. 2003-3978 JP 2003-97464 A

本発明は上述した事情を考慮してなされたもので、シール部材および相手面の摩耗が小さく、長期信頼性があり、高い機密性を有し、摩擦による摺動ロスを小さく、高性能で、静粛な流体機械を提供することを目的とする。   The present invention has been made in consideration of the above-mentioned circumstances, the wear of the seal member and the mating surface is small, long-term reliability, high confidentiality, low sliding loss due to friction, high performance, An object is to provide a quiet fluid machine.

上述した目的を達成するため、本発明に係る流体機械は、シリンダと、このシリンダ内に偏心して配置され一端側から他端側に向かって螺旋状溝が設けられたローラと、前記螺旋状溝に出没自在に嵌め込まれ前記シリンダと前記ローラとの間に複数の作動室を形成する螺旋状のブレードと、前記ローラを前記シリンダ内で偏心回転させることにより一端側の作動室に吸込んだ作動流体を他端側の作動室に移送するクランクシャフトと、前記シリンダの端面に設けられ前記クランクシャフトを支持するとともに前記ローラのスラスト荷重を支持する軸受部材と、前記ローラの他端側の端面と前記軸受部材の軸受面の一方に設けられた環状溝と、前記環状溝に装着され、前記ローラの端面と前記軸受部材の軸受面間をシールする環状のシール部材を備えた流体機械において、前記シール部材は、断面形状がコ字状をなし互いに対向してシール面を構成する2個のリップ部及びこのリップ部同士を連結するヒール部とからなるシール材と、このシール材の内側に設けられたバネとからなり、前記2個のリップ部のうち、反溝底側のリップ部の摺動面に突起を設けたことを特徴とする。   In order to achieve the above-described object, a fluid machine according to the present invention includes a cylinder, a roller that is eccentrically disposed in the cylinder and provided with a spiral groove from one end side toward the other end side, and the spiral groove. A spiral blade that is fitted in and out freely to form a plurality of working chambers between the cylinder and the roller, and a working fluid that is sucked into the working chamber on one end side by rotating the roller eccentrically in the cylinder The other end side of the roller, a bearing member that supports the crankshaft and supports the thrust load of the roller, and an end surface on the other end side of the roller; An annular groove provided on one of the bearing surfaces of the bearing member, and an annular seal member that is mounted in the annular groove and seals between the end surface of the roller and the bearing surface of the bearing member In the fluid machine provided, the seal member has a sealing material including two lip portions that have a U-shaped cross-section and are opposed to each other to form a seal surface, and a heel portion that connects the lip portions, It comprises a spring provided on the inner side of the sealing material, and a protrusion is provided on the sliding surface of the lip portion on the opposite groove bottom side of the two lip portions.

本発明に係る流体機械によれば、シール部材および相手面の摩耗が小さく、長期信頼性があり、高い機密性を有し、摩擦による摺動ロスを小さく、高性能で静粛な流体機械を提供することができる。   According to the fluid machine of the present invention, there is provided a high-performance and quiet fluid machine with low wear on the seal member and the mating surface, long-term reliability, high confidentiality, low sliding loss due to friction, and high performance. can do.

以下、本発明に係る流体機械の第1実施形態について横型ヘリカル圧縮機を例にとり添付図面を参照して説明する。   Hereinafter, a first embodiment of a fluid machine according to the present invention will be described by taking a horizontal helical compressor as an example with reference to the accompanying drawings.

図1は本発明に係る流体機械の第1実施形態としての横型ヘリカル圧縮機の縦断面図である。   FIG. 1 is a longitudinal sectional view of a horizontal helical compressor as a first embodiment of a fluid machine according to the present invention.

図1に示すように、本第1実施形態の横型ヘリカル圧縮機1は、ケーシングレスであり、多数の作動室が形成されるヘリカル圧縮機構部2と、このヘリカル圧縮機構部2を駆動させる電動機部3と、この電動機部3とヘリカル圧縮機構部2間に設けられ電動機部3の動力をヘリカル圧縮機構部2に伝達するクランクシャフト4をベース5に直線上に配置している。   As shown in FIG. 1, the horizontal helical compressor 1 of the first embodiment is a casingless, helical compression mechanism portion 2 in which a large number of working chambers are formed, and an electric motor that drives the helical compression mechanism portion 2. The crankshaft 4 provided between the motor unit 3 and the helical compression mechanism unit 2 and transmitting the power of the motor unit 3 to the helical compression mechanism unit 2 is linearly arranged on the base 5.

また、ヘリカル圧縮機構部2の一側と電動機部3間にクランクシャフト4を支持する主軸受6を、ヘリカル圧縮機構部2の他側にクランクシャフト4を支持するとともにローラ22のスラスト荷重を支持する副軸受7を設けて、副軸受7とヘリカル圧縮機構部2のローラ22間には、ローラ22が自転するのを防止するための自転防止機構を構成するオルダムリング8を設け、さらに、クランクシャフト4の一端には、ヘリカル圧縮機1を冷却する冷却ファン9を設けている。   Further, the main bearing 6 that supports the crankshaft 4 is supported between one side of the helical compression mechanism 2 and the motor unit 3, and the crankshaft 4 is supported on the other side of the helical compression mechanism 2 and the thrust load of the roller 22 is supported. And an Oldham ring 8 constituting an anti-rotation mechanism for preventing the roller 22 from rotating, between the auxiliary bearing 7 and the roller 22 of the helical compression mechanism 2. A cooling fan 9 that cools the helical compressor 1 is provided at one end of the shaft 4.

電動機部3は、主軸受6に固定されたモータステータ31と、このモータステータ31内で回転し、クランクシャフト4を回転させるモータロータ32とからなっている。   The electric motor unit 3 includes a motor stator 31 fixed to the main bearing 6 and a motor rotor 32 that rotates in the motor stator 31 and rotates the crankshaft 4.

一方、ヘリカル圧縮機構部2は、シリンダ21内に、旋回(公転)自在に偏心配置された可動部材としての環状の上記ローラ22と、このローラ22とシリンダ21間に軸方向に次第に容積が小さくなる作動室としての圧縮室23を区画する不等ピッチのブレード24とを有している。   On the other hand, the helical compression mechanism section 2 has an annular roller 22 as a movable member that is eccentrically disposed in a cylinder 21 so as to be able to turn (revolve), and the volume between the roller 22 and the cylinder 21 gradually decreases in the axial direction. And blades 24 of unequal pitch that define a compression chamber 23 as a working chamber.

ローラ22の外周面には、所定寸法の螺旋状溝22aが図1中左端の吸込口21a側端から右端の吐出口21b端に向けてピッチが徐々に小さくなるように形成されており、このブレード溝22a内には弾性を有する螺旋状のブレード24が出没かつ摺動可能に嵌め込まれている。   On the outer peripheral surface of the roller 22, a spiral groove 22a having a predetermined size is formed so that the pitch gradually decreases from the left end of the suction port 21a side in FIG. 1 toward the right end of the discharge port 21b. A spiral blade 24 having elasticity is fitted in the blade groove 22a so as to appear and slide.

また、回転するローラ22と主軸受6間には、主軸受6に設けた取付溝6aに挿入して、環状をなし、図2に示す断面形状をなす吸込側シール部材25を設けている。この吸込側シール部材25は、断面形状がコ字状をなし互いに対向してシール面を構成する2個のリップ部25a及びこのリップ部25a同士を連結するヒール部25bとからなるシール材25cと、このシール材25cの内側に設けられた弾性部材25dとからなっている。   Further, between the rotating roller 22 and the main bearing 6, there is provided a suction side seal member 25 which is inserted into a mounting groove 6a provided in the main bearing 6 to form an annular shape and has a cross-sectional shape shown in FIG. The suction-side seal member 25 has a sealing material 25c composed of two lip portions 25a that have a U-shaped cross-section and are opposed to each other to form a seal surface, and a heel portion 25b that connects the lip portions 25a to each other. The elastic member 25d is provided inside the sealing material 25c.

さらに、ローラ22と副軸受7間には、ローラ22に設けた取付溝22bに挿入して、図3に示す環状、図4に示す断面形状をなす吐出側シール部材26を設けている。吐出側シール部材26は、例えばふっ素樹脂製で、断面形状がコ字状をなし互いに対向してシール面を構成する2個のリップ部26a、26a及びこのリップ部26a、26a同士を連結するヒール部26bとからなるシール材26cと、このシール材26cの内側に設けられた斜め巻きバネ26dとからなっており、2個のリップ部26a、26aのうち、反溝底側のリップ部26aの摺動面に円弧状突起26eを設ける。 Further, between the roller 22 and the sub-bearing 7, a discharge side seal member 26 having a ring shape shown in FIG. 3 and a cross-sectional shape shown in FIG. 4 is provided by being inserted into a mounting groove 22b provided in the roller 22. Discharge side sealing member 26 is made of, for example, fluorocarbon resin, two lip portions 26a 1, 26a 2 and the lip portion 26a which constitutes a seal surface cross-sectional shape to face each other without the U-shape 1, 26a 2 to each other And a slanted winding spring 26d provided on the inner side of the sealing material 26c, of the two lip portions 26a 1 and 26a 2 , the bottom of the anti-groove providing an arcuate protrusion 26e on the sliding surface of the lip portion 26a 1 of the side.

図5に示すように、円弧状突起26eの幅D1は摺動面となり得る全幅D2の1/2以下であるのが好ましい。これにより、初期馴染みや長期の使用において、円弧状突起に摩耗が生じてもシール面の幅が大きくならず、突起の効果が長期に渡って得られる。また、図5および図6に示すように、円弧状突起26eの位置(突起中心L)が摺動面となり得る全幅D2の中心よりも開口側に配置するのが好ましい。これにより、シール部材の押圧力が減少、シール部の面圧および摩擦抵抗が低減でき高性能と信頼性が得られる。   As shown in FIG. 5, the width D1 of the arcuate protrusion 26e is preferably less than or equal to ½ of the total width D2 that can be a sliding surface. Thereby, in the initial familiarity and long-term use, even if the arc-shaped protrusion is worn, the width of the sealing surface is not increased, and the effect of the protrusion can be obtained for a long time. Further, as shown in FIGS. 5 and 6, it is preferable that the position of the arc-shaped protrusion 26e (projection center L) is disposed on the opening side with respect to the center of the full width D2 that can be the sliding surface. Thereby, the pressing force of the seal member is reduced, the surface pressure and the frictional resistance of the seal portion can be reduced, and high performance and reliability can be obtained.

さらに、上述図4に示すように、溝底側のリップ部26aの摺動面に傾斜面を設けてもよいが、図7あるいは図8に示すように、溝底側のリップ部26aからヒール部26bに渡って同一平面状であってもよい。これにより、溝へ挿入する面を平滑にして、広い面で溝底と接触するように配設することで、溝底との摩擦抵抗が大きくなり、シール部材の回転を抑制でき、安定したシール性能が長期に渡って維持できる。摺動側ではないので、摩擦抵抗による圧縮機性能への影響はない。 Furthermore, as shown in FIG. 4 above, an inclined surface may be provided on the sliding surface of the lip portion 26a 2 on the groove bottom side, but as shown in FIG. 7 or FIG. 8, the lip portion 26a 3 on the groove bottom side. The heel portion 26b may be flush with the same plane. As a result, the surface to be inserted into the groove is smoothed and disposed so as to be in contact with the groove bottom on a wide surface, thereby increasing the frictional resistance with the groove bottom and suppressing the rotation of the seal member, and a stable seal. Performance can be maintained over a long period of time. Since it is not on the sliding side, there is no effect on the compressor performance due to frictional resistance.

なお、本実施形態では、突起を円弧状の例で説明したが、図9に示す三角形状突起26eあるいは図10に示す台形状突起26eでも同様の効果が得られ、また、図11に示すように、リップ部26aに円弧状突起26eを有し、リップ部26aからヒール部26bに渡って同一平面状にし、板バネ26fを装着した構成でも、同様の効果が得られる。 In the present embodiment, the protrusion is described as an example of an arc shape, but the same effect can be obtained with the triangular protrusion 26e 1 shown in FIG. 9 or the trapezoid protrusion 26e 2 shown in FIG. as shown, it has an arc-shaped protrusions 26e to the lip portion 26a 1, and on the same plane over the lip portion 26a 3 to the heel portion 26b, even in a configuration of mounting the leaf spring 26f, the same effect can be obtained.

本第1実施形態の横型ヘリカル圧縮機によれば、反溝底側のリップ部に突起を設けることで、小さい接触面でシールを行うため、使用初期、接触面圧が大きく摺動面の初期馴染みが早く(ふっ素樹脂の移着膜生成)、高い機密性が得られる。また、旋回運動による摺動は、小半径を連続的に描くような微細な動きであることから摩耗粉の排出が難しく、噛込み易く、摩耗粉による摩耗(ざらつき摩耗)が生じるが、突起によって接触部から閉口部に向けて常に隙間ができ、摩耗粉の排出が良好で摩耗粉の噛込みが抑えられ、シール部材および相手面の摩耗が低減できる。さらに接触面が小さいために摩擦による摺動ロスが小さく、圧縮機性能が向上する。   According to the horizontal helical compressor of the first embodiment, since a seal is provided with a small contact surface by providing a protrusion on the lip portion on the bottom side of the groove, the contact surface pressure is large at the initial stage of use, and the sliding surface is at the initial stage. Familiarity is fast (fluorine resin transfer film generation) and high confidentiality is obtained. In addition, sliding by swivel movement is a fine movement that continuously draws a small radius, so it is difficult to discharge wear powder, it is easy to bite, and wear (rough wear) due to wear powder occurs. A gap is always formed from the contact portion toward the closing portion, wear powder can be discharged well, the wear powder can be prevented from being caught, and wear of the seal member and the mating surface can be reduced. Furthermore, since the contact surface is small, sliding loss due to friction is small, and compressor performance is improved.

次に本発明の第2実施形態に係る流体機械について説明する。   Next, a fluid machine according to a second embodiment of the present invention will be described.

本第2実施形態は、第1実施形態の吐出側及び吸込側シール部材が接する接触面を含む摺動面に摺動特性が優れた別部材を付加する。   In the second embodiment, another member having excellent sliding characteristics is added to the sliding surface including the contact surface with which the discharge side and suction side sealing members of the first embodiment are in contact.

例えば、図1及び図12に示すように、ローラ22と主軸受6間に吸込側シール部材25を設けている。この吸込側シール部材25が互いに対向して相対的に摺動する部材、すなわちローラ22の一側面に摺動特性が優れた別部材27を付着する。   For example, as shown in FIGS. 1 and 12, a suction-side seal member 25 is provided between the roller 22 and the main bearing 6. A separate member 27 having excellent sliding characteristics is attached to one side surface of the roller 22 in which the suction side seal member 25 is opposed and relatively slid.

また、図13に示すように、ローラ22と副軸受7間に吐出側シール部材26を設けている。この吐出側シール部材26が互いに対向して相対的に摺動する部材、すなわち副軸受7の一側に摺動特性が優れた別部材27を付着する。   Further, as shown in FIG. 13, a discharge-side seal member 26 is provided between the roller 22 and the auxiliary bearing 7. The discharge side seal member 26 is opposed to each other, and a separate member 27 having excellent sliding characteristics is attached to one side of the sub bearing 7.

さらに、図14に示すように、副軸受7のオルダム溝7aに案内されるオルダムリング8のキー部8aに別部材27を付着する。   Further, as shown in FIG. 14, another member 27 is attached to the key portion 8 a of the Oldham ring 8 guided by the Oldham groove 7 a of the auxiliary bearing 7.

一般にローラ等摺動相手部品の表面処理により摺動特性を向上させる場合には、その使用材料は、材質が制限されるが、本第2実施形態によれば、材質に制限されずに最適な摺動部材を選定できる。また別部材を交換することで、摺動相手部品全体の交換が必要なく、メンテナンス性が向上する。さらには、摺動相手部品の製造性向上のために、この部品を鋳造した場合、その摺動面に巣があっても、別部材品を介在させることで巣による摩耗への影響を排除でき、高信頼性の圧縮機が実現される。   In general, when the sliding characteristics are improved by the surface treatment of a sliding counterpart component such as a roller, the material used is limited in material, but according to the second embodiment, the optimal material is not limited by the material. A sliding member can be selected. In addition, by exchanging another member, it is not necessary to replace the entire sliding counterpart part, and the maintainability is improved. Furthermore, to improve the manufacturability of sliding mating parts, if this part is cast, even if there is a nest on the sliding surface, the effect of wear on the nest can be eliminated by interposing another part product. A highly reliable compressor is realized.

このように、摺動部に摺動特性の優れた別部材を設けることで、摩擦が低減し、低入力化することで高性能の圧縮機を実現でき、さらに、整備時に別部材のみの部分的な交換ですみ、経済的である。   In this way, by providing another member with excellent sliding characteristics in the sliding part, friction can be reduced, and a high-performance compressor can be realized by lowering the input. It is economical because it is economical.

この別部材として、ローラ等摺動相手部品となる部材より面粗さの小さい部材を用いるのが好ましい。これにより、高信頼性、摩擦が低減して、低入力化することで高性能の圧縮機が実現され、また、平面度の高い部品を設けることで、シール面においては漏れが低減し、その他の面でもあっても摺動の際のガタつきが低減して、より高性能の圧縮機が実現される。   As this separate member, it is preferable to use a member having a surface roughness smaller than that of a member to be a sliding counterpart such as a roller. This realizes a high-performance compressor with high reliability, reduced friction, and low input. Also, by providing parts with high flatness, leakage on the sealing surface is reduced. Even with this, the backlash during sliding is reduced, and a higher performance compressor is realized.

別部材の材質としては、面粗さの小さい、あるいは平面度の良いPET(ポリエチレンテレフタレート)等でできたシートが好ましい。これにより、面精度がよいものを容易に入手でき、また部品形状に合った加工もし易い。   The material of the separate member is preferably a sheet made of PET (polyethylene terephthalate) or the like having a small surface roughness or good flatness. As a result, it is possible to easily obtain a product having good surface accuracy, and it is easy to perform processing suitable for the part shape.

さらに、別部材が薄板であるのが好ましい。薄板であれば別部材自体の平面度が若干悪くても、組立てた際に形状が他部品に倣うので、組立てた状態で良好な平面度を得やすい。   Further, the separate member is preferably a thin plate. If it is a thin plate, even if the flatness of the separate member itself is slightly worse, the shape follows that of the other parts when assembled, so it is easy to obtain good flatness in the assembled state.

また、薄板は固体潤滑被膜で覆ったものが好ましい。これにより、摺動特性がさらに優れた材料の選定が可能になり、高信頼性、摩擦が低減して、低入力化で高性能の圧縮機が実現される。   The thin plate is preferably covered with a solid lubricating film. As a result, it is possible to select a material having further excellent sliding characteristics, and a high-reliability, low-friction, high-performance compressor with low input is realized.

また、本発明の第3実施形態に係る流体機械について説明する。   A fluid machine according to a third embodiment of the present invention will be described.

本第3実施形態は、第1実施形態のローラの外周にテーパー部を形成し、このテーパー部に固体潤滑被膜を形成する。   In the third embodiment, a tapered portion is formed on the outer periphery of the roller of the first embodiment, and a solid lubricating film is formed on the tapered portion.

例えば、図15に示すように、第3実施形態の横型ヘリカル圧縮機のローラ22は、その外周面22cにテーパー部22cを形成し、このテーパー部22cの表面に固体潤滑被膜28を形成する。 For example, as shown in FIG. 15, the roller 22 of the lateral helical compressor of the third embodiment is formed a tapered portion 22c 1 on the outer peripheral surface 22c, forming a solid lubricant film 28 on the surface of the tapered portion 22c 1 To do.

ローラとシリンダのクリアランスは、漏れを減らし、体積効率をよくするためには、小さい方が好ましいが、起動時、運転条件変更時など過渡時には、ローラが不安定な動きとなり、シリンダと接触する可能性がある。そこで、ローラ外周の反オルダム側はその一部をテーパーとし、接触を防止している。テーパーとすれば、ローラとシリンダのクリアランスが広がるので漏れは増加する。そこで、そのテーパー部に固体潤滑被膜を塗布することにより、クリアランスを小さくして漏れを防止し、ローラの動きが不安定な時も固体潤滑被膜と直接シリンダが接触し、ローラが直接は接触しないので、音、振動、摩耗などの問題を解決でき静粛な横型ヘリカル圧縮機が実現される。   The roller / cylinder clearance is preferably small to reduce leakage and improve volumetric efficiency, but the roller may move in an unstable manner and come into contact with the cylinder during transitions such as during startup or when changing operating conditions. There is sex. Therefore, a part of the anti-Oldham side of the outer periphery of the roller is tapered to prevent contact. If taper is used, the clearance between the roller and the cylinder increases, so that leakage increases. Therefore, by applying a solid lubricant film to the tapered portion, the clearance is reduced to prevent leakage, and even when the roller movement is unstable, the solid lubricant film and the cylinder are in direct contact, and the roller is not in direct contact. Therefore, a quiet horizontal helical compressor that can solve problems such as sound, vibration, and wear is realized.

テーパーの始点からの距離に応じて、固体潤滑被膜の厚さを変えるのが好ましい。テーパーの始点から遠くローラ外周径が小さい部位では、固体潤滑被膜を厚く、テーパの始点近傍のローラ外径がそれ程小さくない部位では薄く塗布することにより、テーパーを設けていない部位とほぼ同様の外径にして、ローラとシリンダのクリアランスを小さくして、ローラが直接シリンダに接触するのを減じることができる。   It is preferable to change the thickness of the solid lubricant film according to the distance from the taper starting point. Applying a thick solid lubricant film in areas where the roller outer diameter is small, away from the taper starting point, and thinly in areas where the roller outer diameter in the vicinity of the taper starting point is not so small, it is almost the same as the area where no taper is provided. The diameter can reduce the clearance between the roller and the cylinder to reduce the roller from directly contacting the cylinder.

また、図16に示すように、ローラ22の外周の吸込側第1室目に対応する部位に、固体潤滑被膜29を塗布して形成するのが好ましい。これにより、熱膨脹の小さい吸込側第1室目のローラとシリンダのクリアランスが小さくなって、漏れが減少し、体積効率が向上する。   In addition, as shown in FIG. 16, it is preferable to apply and form a solid lubricant film 29 on a portion corresponding to the suction side first chamber on the outer periphery of the roller 22. Thereby, the clearance between the roller and the cylinder in the suction side first chamber with small thermal expansion is reduced, leakage is reduced, and volumetric efficiency is improved.

なお、上記各実施形態の流体機械では、横型ヘリカル圧縮機を例にとり説明したが、本発明はこれ以外の流体機械にも適用できる。   In the fluid machines of the above embodiments, the horizontal helical compressor has been described as an example. However, the present invention can also be applied to other fluid machines.

図1に示す本発明の横型ヘリカル圧縮機を用い、表1及び下記に示すように突起の有無及び突起の形状を変化させて、表2に示すような消費電力、摩耗量、圧縮応力を調べた。耐久時間は100時間と1000時間とし、また、シールリングの形状の差によって装着した際の押圧力が変化し摺動部の面圧や摩擦抵抗の増加に至ることから、装着を模擬した圧縮試験により圧縮応力を相対比較した。   Using the horizontal helical compressor of the present invention shown in FIG. 1, the presence / absence of protrusions and the shape of the protrusions are changed as shown in Table 1 and below, and the power consumption, wear amount, and compressive stress shown in Table 2 are examined. It was. Endurance time is 100 hours and 1000 hours, and the pressing force changes when mounting due to the difference in the shape of the seal ring, resulting in increased contact pressure and frictional resistance of the sliding part. The relative compression stress was compared.

[実施例1]
図5及び図6に示すように、PTFE樹脂製のシール外皮に斜め巻きコイルスプリングを挿入、開口部側の反溝底側のシール部(リップ部という)に円弧状の突起を設けている。また閉口部(ヒール部という)には段差が設けてある。ローラ側のリング状の装着溝と副軸側の摺動面の隙間(シール隙間という)の最大値に対して、充分に接触可能なリップ間高さ(H)が有りかつ、最小のシール隙間(K2)に対しても円弧状突起のリップ部とヒール部の段差によって副軸側摺動面との間に隙間(W)を設けている。つまり、使用されるシール隙間の範囲において隙間(W)が確保でき、摺動面では突起の先端が接触する。
[Example 1]
As shown in FIGS. 5 and 6, an oblique coil spring is inserted into a PTFE resin seal outer shell, and an arc-shaped protrusion is provided on the seal portion (referred to as a lip portion) on the side opposite to the groove on the opening side. Further, a step is provided in the closed portion (referred to as a heel portion). There is a minimum gap between the lip height (H) that allows sufficient contact with the maximum gap between the ring-shaped mounting groove on the roller side and the sliding surface on the countershaft side (referred to as the seal gap). Also with respect to (K2), a gap (W) is provided between the lip portion of the arcuate protrusion and the stepped portion of the heel portion between the secondary shaft side sliding surface. That is, a gap (W) can be secured in the range of the seal gap to be used, and the tip of the protrusion comes into contact with the sliding surface.

円弧状の突起の幅(D1)は、ヒール段差までのシール幅(D2)と同じ幅(D1=D2)としている。また接触部はシール幅(D2)に対して1/2の位置(L)に配置される。以下、同じ条件とするためにリップ間高さ(H)、最小のシール隙間(K)を合わせている。   The width (D1) of the arc-shaped protrusion is the same as the seal width (D2) up to the heel step (D1 = D2). The contact portion is disposed at a position (L) that is ½ of the seal width (D2). Hereinafter, the height between the lips (H) and the minimum seal gap (K) are matched in order to achieve the same conditions.

[実施例2]
実施例1と同じ構成であるが、突起の幅(D1)はヒール段差までのシール幅(D2)に対して1/2、1/3、1/7の長さの円弧状としている。接触部は、実施例1と同じシール幅(D2)に対して1/2の位置(L)に配置している。
[Example 2]
Although it is the same structure as Example 1, the width | variety of a processus | protrusion (D1) is made into circular arc shape of length 1/2, 1/3, and 1/7 with respect to the seal width (D2) to a heel level | step difference. The contact portion is arranged at a position (L) that is 1/2 with respect to the same seal width (D2) as in the first embodiment.

[実施例3]
実施例2と同じ、突起の幅(D1)がヒール段差までのシール幅(D2)に対して1/3の円弧状とした構成であるが、接触部はシール幅(D2)に対して1/3、1/6の位置(L)に配置する。
[Example 3]
As in the second embodiment, the protrusion width (D1) is an arc shape that is 1/3 of the seal width (D2) up to the heel step, but the contact portion is 1 for the seal width (D2). / 3 and 1/6 (L).

[実施例4]
図7に示すような構造を有し、図4の実施例1に対し、反摺動面(溝挿入側の面)は平滑である。リップ部の構成は実施例1と同じで、円弧状の突起の幅(D1)はシール幅(D2)と同じ幅(D1=D2)としている。また接触部はシール幅(D2)に対して1/2の位置(L)に配置される。
[Example 4]
7 has a structure as shown in FIG. 7, and the anti-sliding surface (surface on the groove insertion side) is smoother than that of Example 1 in FIG. The configuration of the lip portion is the same as that of the first embodiment, and the width (D1) of the arc-shaped protrusion is the same as the seal width (D2) (D1 = D2). The contact portion is disposed at a position (L) that is ½ of the seal width (D2).

[比較例1]
図17〜図19に示す従来のシールリングで、突起がない構成であるがリップ間高さ(H)と接触点は実施例1(突起位置)と同じである。また、最小のシール隙間(K2)に対しては隙間(W2)が小さく、面接触し易い状態である。

Figure 2007092546
[Comparative Example 1]
The conventional seal ring shown in FIGS. 17 to 19 has no protrusion, but the height (H) between the lips and the contact point are the same as those in Example 1 (protrusion position). Further, the gap (W2) is small with respect to the minimum seal gap (K2), and surface contact is easy.
Figure 2007092546

調査結果を表2に示す。

Figure 2007092546
The survey results are shown in Table 2.
Figure 2007092546

表2からもわかるように、
(1)圧縮応力(相対比)は、装着のバネ、リップ部の撓み剛性、リップ間高さ(H)、シール隙間(K)は同じなので、圧縮した際の作用点(接触点)の位置に関係する。つまり、開口部先端位置に突起を設けた方がモーメントの差で小さい力により挟み込むことができる。よって、その反力となる突起の接触応力(面圧)も小さくなる。
As can be seen from Table 2,
(1) Since the compression stress (relative ratio) is the same for the mounting spring, the bending rigidity of the lip, the height between the lips (H), and the seal gap (K), the position of the action point (contact point) when compressed Related to. In other words, the protrusion provided at the tip of the opening can be sandwiched with a small force due to the difference in moment. Therefore, the contact stress (surface pressure) of the protrusion, which is the reaction force, is also reduced.

以下、具体的に比較する。   Hereinafter, a specific comparison will be made.

(2)実施例1(比較例1との比較)
消費電力が100H後で比較例1の消費電力量を1としたとき0.02(2%)低減、1000H後の増加量も小さく、接触部の寸法差による摩擦抵抗の違いによる。圧縮応力は同一なので、突起による摺動特性向上の効果を確認できる。一方、比較例1は1000H後には、摩耗量が大きくなり、信頼性に乏しいことが判る。また、シールリングの閉口部内周面に摺動傷が見られ、ローラ構内を回転した痕跡があった。
(2) Example 1 (Comparison with Comparative Example 1)
When power consumption is 100H and the power consumption of Comparative Example 1 is 1, the reduction is 0.02 (2%), and the increase after 1000H is small, which is due to the difference in frictional resistance due to the dimensional difference of the contact portion. Since the compressive stress is the same, the effect of improving the sliding characteristics by the protrusion can be confirmed. On the other hand, it can be seen that in Comparative Example 1, the wear amount increased after 1000H, and the reliability was poor. In addition, sliding flaws were found on the inner peripheral surface of the closed portion of the seal ring, and there were traces of rotation in the roller premises.

実施例1はシールリングの閉口部内周面に摺動傷が若干見られ、ローラ構内を多少回転した痕跡があった。   In Example 1, some sliding scratches were seen on the inner peripheral surface of the closed portion of the seal ring, and there was a trace of slight rotation in the roller premises.

(3)実施例2(比較例1及び実施例1との比較)
実施例2は比較例1に比べて、消費電力が低減、1000H後の増加量も小さく、また、実施例1に比べて、突起の幅を小さくしたことで、実施例1よりも消費電力、摩耗量が改善された。しかし、実施例2の(3)は、突起の幅1/7が小さすぎて初期馴染みの段階で摩耗し、1000H後には実施例1よりも摩耗量は増加した。よって、シール可能な面の1/2未満、1/7を超える範囲の突起の幅が適していることが判る。
(3) Example 2 (Comparison with Comparative Example 1 and Example 1)
The power consumption of Example 2 is lower than that of Comparative Example 1, and the increase after 1000H is smaller. Also, the width of the protrusion is smaller than that of Example 1, so that the power consumption is higher than that of Example 1. The amount of wear has been improved. However, in Example 3 (3), the width 1/7 of the protrusion was too small and was worn at the initial familiarization stage, and the amount of wear increased after 1000 H compared to Example 1. Therefore, it can be seen that the width of the protrusion in the range of less than 1/2 and exceeding 1/7 of the sealable surface is suitable.

(4)実施例3(比較例1及び実施例2との比較)
実施例3は突起の位置を開口部の端に配置したことで、比較例1に比べて、消費電力が低減、1000H後の摩耗量も小さく、さらに、実施例2に比べて圧縮応力も小さくなり、突起の効果を最大限に発揮でき、消費電力、摩耗量が最も小さくなった。よって、突起の位置はシール可能な面の1/2を超えて開口側への配置が適していることが判る。
(4) Example 3 (Comparison with Comparative Example 1 and Example 2)
In Example 3, the position of the protrusion is arranged at the end of the opening, so that the power consumption is reduced compared to Comparative Example 1, the amount of wear after 1000 H is small, and the compressive stress is also small compared to Example 2. Therefore, the effect of the protrusion can be maximized, and the power consumption and the amount of wear are minimized. Therefore, it can be seen that the position of the protrusion is more than 1/2 of the surface that can be sealed and the arrangement on the opening side is suitable.

(5)実施例4(比較例1及実施例1との比較)
実施例4は、反摺動面が平滑であり、比較例1に比べて、消費電力が低減、1000H後の摩耗量も小さく、摩耗量も改善された。また、実施例1に比べて、1000Hでの摩耗量が抑制され、よって、溝挿入側の面を平滑にして接触面積を増やした効果により回転が抑えられ、長期に渡って高い信頼性が得られる。
(5) Example 4 (Comparison with Comparative Example 1 and Example 1)
In Example 4, the anti-sliding surface was smooth, and compared with Comparative Example 1, the power consumption was reduced, the amount of wear after 1000H was small, and the amount of wear was also improved. Further, compared with Example 1, the amount of wear at 1000H is suppressed, and therefore rotation is suppressed by the effect of increasing the contact area by smoothing the surface on the groove insertion side, and high reliability is obtained over a long period of time. It is done.

本発明に係る流体機械の第1実施形態の縦断面図。The longitudinal cross-sectional view of 1st Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第1実施形態に用いられる吸込側シール部材の縦断面図。The longitudinal cross-sectional view of the suction side sealing member used for 1st Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第1実施形態に用いられる吐出側シール部材の平面図。The top view of the discharge side sealing member used for 1st Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第1実施形態に用いられる吐出側シール部材の縦断面図。The longitudinal cross-sectional view of the discharge side sealing member used for 1st Embodiment of the fluid machine which concerns on this invention. 図4の吐出側シール部材の円弧状突起を拡大して示す縦断面図。The longitudinal cross-sectional view which expands and shows the arc-shaped protrusion of the discharge side sealing member of FIG. 本発明に係る吐出側シール部材の円弧状突起を示す縦断面図。The longitudinal cross-sectional view which shows the circular arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る吐出側シール部材の円弧状突起の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the circular-arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る吐出側シール部材の円弧状突起の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the circular-arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る吐出側シール部材の円弧状突起の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the circular-arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る吐出側シール部材の円弧状突起の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the circular-arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る吐出側シール部材の円弧状突起の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the circular-arc-shaped protrusion of the discharge side sealing member which concerns on this invention. 本発明に係る流体機械の第2実施形態に用いられる別部材の取り付け状態を示す縦断面図。The longitudinal cross-sectional view which shows the attachment state of another member used for 2nd Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第2実施形態に用いられる別部材の取り付け状態を示す縦断面図。The longitudinal cross-sectional view which shows the attachment state of another member used for 2nd Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第2実施形態に用いられる別部材の取り付け状態を示す縦断面図。The longitudinal cross-sectional view which shows the attachment state of another member used for 2nd Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第3実施形態に用いられるローラの縦断面図。The longitudinal cross-sectional view of the roller used for 3rd Embodiment of the fluid machine which concerns on this invention. 本発明に係る流体機械の第3実施形態に用いられるローラの側面図。The side view of the roller used for 3rd Embodiment of the fluid machine which concerns on this invention. 従来の流体機械に用いられる吐出側シール部材の縦断面図。The longitudinal cross-sectional view of the discharge side sealing member used for the conventional fluid machine. 従来の流体機械に用いられる吐出側シール部材の縦断面図。The longitudinal cross-sectional view of the discharge side sealing member used for the conventional fluid machine. 従来の流体機械に用いられる吐出側シール部材の縦断面図。The longitudinal cross-sectional view of the discharge side sealing member used for the conventional fluid machine.

符号の説明Explanation of symbols

1…横型ヘリカル圧縮機、2…ヘリカル圧縮機構部、3…電動機部、4…クランクシャフト、6…主軸受、7…副軸受、8…オルダムリング、6a…取付溝、21…シリンダ、22…ローラ、22a…螺旋状溝、22b…取付溝、23…圧縮室、24…ブレード、25…吸込側シール部材、26…吐出側シール部材、26a…リップ部、26a…リップ部、26b…ヒール部、26c…シール材、26d…斜め巻きバネ、26e…円弧状突起。 DESCRIPTION OF SYMBOLS 1 ... Horizontal type helical compressor, 2 ... Helical compression mechanism part, 3 ... Electric motor part, 4 ... Crankshaft, 6 ... Main bearing, 7 ... Secondary bearing, 8 ... Oldham ring, 6a ... Mounting groove, 21 ... Cylinder, 22 ... roller, 22a ... cam groove, 22b ... mounting groove 23 ... compression chamber, 24 ... blade, 25 ... suction side seal member, 26 ... discharge side sealing member, 26a 1 ... lip portion, 26a 2 ... lip portion, 26b ... Heel part, 26c ... sealing material, 26d ... slant winding spring, 26e ... arc-shaped protrusion.

Claims (4)

シリンダと、
このシリンダ内に偏心して配置され一端側から他端側に向かって螺旋状溝が設けられたローラと、
前記螺旋状溝に出没自在に嵌め込まれ前記シリンダと前記ローラとの間に複数の作動室を形成する螺旋状のブレードと、
前記ローラを前記シリンダ内で偏心回転させることにより一端側の作動室に吸込んだ作動流体を他端側の作動室に移送するクランクシャフトと、
前記シリンダの端面に設けられ前記クランクシャフトを支持するとともに前記ローラのスラスト荷重を支持する軸受部材と、
前記ローラの他端側の端面と前記軸受部材の軸受面の一方に設けられた環状溝と、
前記環状溝に装着され、前記ローラの端面と前記軸受部材の軸受面間をシールする環状のシール部材を備えた流体機械において、
前記シール部材は、断面形状がコ字状をなし互いに対向してシール面を構成する2個のリップ部及びこのリップ部同士を連結するヒール部とからなるシール材と、このシール材の内側に設けられたバネとからなり、前記2個のリップ部のうち、反溝底側のリップ部の摺動面に突起を設けたことを特徴とする流体機械。
A cylinder,
A roller arranged eccentrically in this cylinder and provided with a spiral groove from one end to the other end;
A spiral blade that is fitted in the spiral groove so as to be freely retractable and forms a plurality of working chambers between the cylinder and the roller;
A crankshaft that transfers the working fluid sucked into the working chamber on one end side to the working chamber on the other end side by rotating the roller eccentrically in the cylinder;
A bearing member provided on an end surface of the cylinder for supporting the crankshaft and supporting a thrust load of the roller;
An annular groove provided in one of the end surface on the other end side of the roller and the bearing surface of the bearing member;
In the fluid machine equipped with the annular groove and having an annular seal member that seals between the end surface of the roller and the bearing surface of the bearing member,
The seal member has a U-shaped cross-sectional shape, a seal material including two lip portions that are opposed to each other to form a seal surface, and a heel portion that connects the lip portions, and an inner side of the seal material. A fluid machine comprising: a spring provided; and a protrusion provided on a sliding surface of the lip portion on the side opposite to the groove between the two lip portions.
前記シール材の溝底側はリップ部からヒール部に渡って同一平面状に形成されていることを特徴とする請求項1に記載の流体機械。 2. The fluid machine according to claim 1, wherein the groove bottom side of the sealing material is formed in the same plane from the lip part to the heel part. 互いに対向して相対的に摺動する部材間に摺動特性の優れた別部材を設けたことを特徴とする請求項1または2記載の流体機械。 3. The fluid machine according to claim 1, wherein another member having excellent sliding characteristics is provided between the members that slide relative to each other. 前記ローラの外周面にテーパー部を形成し、前記テーパー部の表面に固体潤滑被膜を形成したことを特徴とする請求項1ないし3のいずれか1項に記載の流体機械。 The fluid machine according to any one of claims 1 to 3, wherein a tapered portion is formed on an outer peripheral surface of the roller, and a solid lubricating film is formed on a surface of the tapered portion.
JP2005279872A 2005-09-27 2005-09-27 Fluid machine Pending JP2007092546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005279872A JP2007092546A (en) 2005-09-27 2005-09-27 Fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005279872A JP2007092546A (en) 2005-09-27 2005-09-27 Fluid machine

Publications (1)

Publication Number Publication Date
JP2007092546A true JP2007092546A (en) 2007-04-12

Family

ID=37978564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005279872A Pending JP2007092546A (en) 2005-09-27 2005-09-27 Fluid machine

Country Status (1)

Country Link
JP (1) JP2007092546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150475A (en) * 2007-12-20 2009-07-09 Hitachi Constr Mach Co Ltd Reduction gear
JP2012031990A (en) * 2010-06-30 2012-02-16 Mitsubishi Cable Ind Ltd U-shaped seal
JP2016050665A (en) * 2014-09-02 2016-04-11 株式会社 神崎高級工機製作所 Seal structure of axle supporting portion
WO2016103601A1 (en) * 2014-12-25 2016-06-30 株式会社デンソー Shaft sealing device and compressor using same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150475A (en) * 2007-12-20 2009-07-09 Hitachi Constr Mach Co Ltd Reduction gear
JP2012031990A (en) * 2010-06-30 2012-02-16 Mitsubishi Cable Ind Ltd U-shaped seal
JP2012163216A (en) * 2010-06-30 2012-08-30 Mitsubishi Cable Ind Ltd U-shaped seal
JP2013032848A (en) * 2010-06-30 2013-02-14 Mitsubishi Cable Ind Ltd U-shaped seal
JP2016050665A (en) * 2014-09-02 2016-04-11 株式会社 神崎高級工機製作所 Seal structure of axle supporting portion
WO2016103601A1 (en) * 2014-12-25 2016-06-30 株式会社デンソー Shaft sealing device and compressor using same

Similar Documents

Publication Publication Date Title
JP5008374B2 (en) Scroll compressor
WO2012005150A1 (en) Scroll compressor
JP4846586B2 (en) Vane rotary air pump
JP2007092546A (en) Fluid machine
JPWO2017098663A1 (en) Flat wave gear device
JPH08200360A (en) Bearing holding structure
JPH0472484A (en) Scroll compressor
JPH08261171A (en) Scroll type compressor
JP2010144522A (en) Scroll compressor
JP2006258043A (en) Vane rotary air pump
CN107514365B (en) Pump body assembly and compressor with same
KR940000440B1 (en) Scroll type compressor
JP2000097174A (en) Outer periphery driving type scroll compressor
JP5525863B2 (en) Scroll type fluid machine
JP2019074025A (en) Tip seal for scroll compressor
JP3976070B2 (en) Scroll type fluid machinery
US20220074411A1 (en) Scroll compressor
JP7050283B2 (en) Oilless compressor
JP2022542034A (en) scroll pump
CN114867941A (en) Scroll gas machine
JP2002250285A (en) Scroll compressor
JPS59183090A (en) Scroll type compressing device
JP2021050725A (en) Scroll type fluid machine
JP2007187036A (en) Vane rotary type air pump
JP3976081B2 (en) Scroll type fluid machinery