WO2016103602A1 - Shaft-sealing device and compressor - Google Patents

Shaft-sealing device and compressor Download PDF

Info

Publication number
WO2016103602A1
WO2016103602A1 PCT/JP2015/006088 JP2015006088W WO2016103602A1 WO 2016103602 A1 WO2016103602 A1 WO 2016103602A1 JP 2015006088 W JP2015006088 W JP 2015006088W WO 2016103602 A1 WO2016103602 A1 WO 2016103602A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
housing
ring
rings
refrigerant
Prior art date
Application number
PCT/JP2015/006088
Other languages
French (fr)
Japanese (ja)
Inventor
亨 大隈
秋山 訓孝
卓瞳 高橋
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016103602A1 publication Critical patent/WO2016103602A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/18Sealings between relatively-moving surfaces with stuffing-boxes for elastic or plastic packings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member

Definitions

  • the present disclosure relates to a shaft seal device for a compressor that compresses a carbon dioxide refrigerant and a compressor.
  • General compressors have a compression mechanism that generates fluid pressure in the fluid in the housing by rotating the shaft.
  • Such a compressor includes a shaft seal device that prevents fluid from leaking out of the housing through a gap between the housing and the shaft.
  • the atmospheric pressure of the shaft seal device always fluctuates greatly during operation of the compressor as described above.
  • the refrigerant repeatedly enters and exits the packing that seals the gap between the shaft and the rotating ring by the pressure of the carbon dioxide refrigerant during operation.
  • the refrigerant gas that has penetrated into the packing under a high-pressure environment may repeat the process of expanding inside the packing during decompression or the like, which may cause a foaming phenomenon in which a crack or the like occurs in the packing.
  • the packing used in the shaft seal device of such a compressor is required to have excellent foam resistance.
  • the molecular weight of carbon dioxide is lower than that of chlorofluorocarbon.
  • the carbon dioxide permeability is very high, and carbon dioxide tends to leak out of the housing through the packing that seals the gap between the shaft and the rotating ring and the housing and the stationary ring.
  • the packing used in the shaft seal device of such a compressor is also required to have excellent permeation resistance.
  • This disclosure is intended to maintain the sealing performance of the sealing surface for a longer period of time.
  • a shaft seal device is a shaft seal device for a compressor that compresses a carbon dioxide refrigerant, and is formed in a housing and a rotating ring fixed to a shaft positioned inside a housing that stores the refrigerant.
  • a fixed ring that is fixed to the shaft hole and rotatably supports the shaft inserted through the shaft hole.
  • a plurality of O-rings for sealing at least one of the housing and the fixed ring and between the shaft and the rotating ring are provided so as to be aligned in the axial direction of the shaft.
  • the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing.
  • the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
  • the plurality of O-rings sealing at least one of the housing and the stationary ring and between the shaft and the rotating ring are provided so as to be aligned in the axial direction of the shaft.
  • the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. Therefore, this O-ring can satisfy the foaming resistance requirement.
  • the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing, the O-ring arranged on the atmosphere side outside this housing
  • the ring can meet the requirements of permeation resistance.
  • the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period.
  • a shaft seal device is a shaft seal device for a compressor that compresses a carbon dioxide refrigerant, and is formed in a housing and a rotating ring fixed to a shaft positioned inside the housing that stores the refrigerant.
  • a fixed ring that is fixed to the shaft hole and rotatably supports the shaft inserted through the shaft hole.
  • At least one of a plurality of O-rings sealing between the housing and the fixed ring and a plurality of O-rings sealing between the shaft and the rotating ring is provided.
  • the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing.
  • the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
  • the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. Therefore, this O-ring can satisfy the foaming resistance requirement. Further, since the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing, the O-ring arranged on the atmosphere side outside this housing The ring can meet the requirements of permeation resistance. Thus, the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period.
  • the compressor according to the present embodiment changes the stroke of the reciprocating piston by changing the inclination angle of the swash plate arranged to be inclined with respect to the center line of the drive shaft, thereby reducing the discharge capacity of the compressor.
  • the swash plate compressor 51 is changed.
  • the swash plate compressor 51 is a compressor that compresses a carbon dioxide refrigerant.
  • the swash plate compressor 51 is applied to an air conditioner such as an automobile.
  • the swash plate compressor 51 has a bottomed cylindrical front housing 53.
  • a cylinder block 55 is provided at the opening of the bottomed cylindrical front housing 53 so as to close the opening, and a rear housing 57 is provided at the cylinder block 55.
  • Radial bearings 59 and 61 are provided at the center portion of the bottom wall 53 a of the front housing 53 and the center portion of the cylinder block 55, and a shaft 63 is pivotally supported between the radial bearings 59 and 61.
  • the front housing 53, the cylinder block 55, and the rear housing 57 constitute a housing that stores the refrigerant.
  • a shaft seal device 20 generally called a mechanical seal is provided on the bottom wall 53a of the front housing 53 on the front side (the left side in the drawing) from the radial bearing 59.
  • the shaft seal device 20 is for preventing the refrigerant from leaking out of the front housing 53 through the gap between the front housing 53 and the shaft 63.
  • the shaft seal device 20 will be described in detail later.
  • a disk-shaped lug plate 73 fixed to the shaft 63 is provided on the upper side of the bottom wall 53 a of the front housing 53.
  • a thrust bearing 75 is interposed between the lug plate 73 and the bottom wall 53a, and receives an axial load due to a piston compression reaction force.
  • a swash plate 77 is provided at a portion of the shaft 63 between the lug plate 73 and the cylinder block 55 so as to be rotatable with respect to the axial direction of the shaft 63.
  • the swash plate 77 and the lug plate 73 are coupled so as to be tiltable by a link mechanism 79 provided on the lug plate 73 and a pin 81 provided on the swash plate 77, and the rotation of the lug plate 73 is inclined. This is transmitted to the plate 77.
  • cylinder bores 83 are formed at equal intervals in the circumferential direction.
  • the cylinder bore 83 is disposed parallel to the axis of the shaft 63, and a piston 85 is inserted therein so as to be able to reciprocate.
  • This piston 85 is provided with a spherical bearing 87.
  • the spherical bearing 87 is engaged with a pair of shoes holding the outer peripheral portion of the swash plate 77 so as to be slidable in the circumferential direction.
  • a valve plate 91 is interposed between the cylinder block 55 and the rear housing 57, and a suction valve 93 is provided between the valve plate 91 and the cylinder block 55 to seal the suction port. It is like that.
  • a suction chamber 95 and a discharge chamber 97 are provided inside the rear housing 57.
  • a discharge valve 99 and a retainer 101 that regulates the valve lift amount are fastened to the valve plate 91 by bolts or the like.
  • the rear housing 57 is provided with a control valve 103, and a control gas is introduced into the swash plate chamber 71 to adjust the inclination angle of the swash plate and set the discharge capacity.
  • a passage for introducing control gas from the control valve 103 to the swash plate chamber 71 is formed in the cylinder block 55, the rear housing 57, the valve plate 91, etc., but is not shown here.
  • the shaft seal device 20 of the swash plate compressor 51 seals the periphery of the shaft 63.
  • the shaft seal device 20 is a balanced shaft seal device.
  • the shaft seal device 20 is provided in a shaft hole 53 b formed in the center portion of the bottom wall 53 a of the front housing 53.
  • the shaft seal device 20 includes a fixed ring 21, a rotating ring 22, a spring 27, and a bracket 28.
  • the fixed ring 21 is made of, for example, silicon carbide, and is fixed to the shaft hole 53b.
  • the shaft hole 53 b is formed in the front housing 53.
  • the fixed ring 21 rotatably supports the shaft 63 inserted through the shaft hole 53b.
  • the stationary ring 21 has an annular shape, and has a stationary-side seal end face 21a on the rotating ring 22 side (right side in the drawing).
  • the rotary ring 22 is made of carbon, for example, and is fixed to a shaft 63 located inside the front housing 53.
  • the rotating ring 22 has an annular shape, and has a rotating side seal end face 22a on the stationary ring 21 side (left side in the figure).
  • the rotating ring 22 rotates integrally with the shaft 63.
  • the spring 27 is, for example, a coil spring, and is fixed to the shaft 63 via the bracket 28. Further, the spring 27 urges the rotary ring 22 in the axial direction toward the front side (left side in the drawing) of the front housing 53.
  • the bracket 28 forms a seating surface of the spring 27, is fixed to the shaft 63, and rotates integrally with the shaft 63 and the rotary ring 22.
  • two O-rings 23 and 24 are provided so as to be aligned in the axial direction of the shaft 63.
  • two groove portions 210 and 211 are formed on the outer peripheral surface of the fixed ring 21, and O-rings 23 and 24 are disposed in these groove portions 210 and 211, respectively.
  • the O-rings 23 and 24 seal the gap between the stationary ring 21 and the shaft hole 53b.
  • two O-rings 25 and 26 are provided between the rotary ring 22 and the shaft 63 (for example, a contact surface) so as to be aligned in the axial direction of the shaft 63.
  • two grooves 220 and 221 are formed on the inner peripheral surface of the rotating ring 22, and O-rings 25 and 26 are disposed in these grooves 220 and 221, respectively.
  • the O-rings 25 and 26 seal the gap between the rotary ring 22 and the shaft 63.
  • the shaft seal device 20 having the above-described configuration, when the shaft 63 rotates, the fixed-side seal end surface 21a of the fixed ring 21 and the rotation-side seal end surface 22a of the rotary ring 22 are pressed by the spring 27 and the refrigerant internal pressure of the compressor. It slides while being done.
  • lubricating oil is mixed in the carbon dioxide refrigerant used as the refrigerant gas, and this lubricating oil is drawn into the contact surface between the stationary seal end surface 21a of the stationary ring 21 and the rotational sealing end surface 22a of the rotating ring 22. As a result, an oil film is formed.
  • the minute gap between the fixed-side seal end surface 21a and the rotation-side seal end surface 22a is filled with the lubricating oil, and the housing is sealed so that the refrigerant in the housing does not leak to the outside.
  • the spring 27 allows the rotation ring 22 to move in the axial direction of the shaft 63, so that the fixed side seal end surface 21 a of the fixed ring 21 and the rotation side seal end surface of the rotation ring 22 are allowed. The 22a seal is maintained.
  • O-rings 25 and 26 are provided between the rotary ring 22 and the shaft 63 (seal surface). The space between the rotary ring 22 and the shaft 63 (seal surface) is sealed by these O-rings 25 and 26.
  • the O-ring 25 arranged in the inner (refrigerant side) direction of the housing is more excellent in foam resistance than the O-ring 26 arranged in the outer direction of the housing.
  • the O-ring 26 disposed in the outer (atmosphere side) direction of the housing is superior in permeation resistance than the O-ring 25 disposed in the inner direction of the housing.
  • the O-ring 25 is made of silicon rubber having excellent foam resistance
  • the O-ring 26 is made of fluorine rubber or nitrile rubber having excellent permeation resistance.
  • O-rings 23 and 24 are provided between the fixed ring 21 and the shaft hole 53 b of the front housing 53 (seal surface), and the O-rings 23 and 24 provide a shaft hole 53 b of the fixed ring 21 and the front housing 53. Is sealed.
  • the O-ring 23 arranged in the housing (refrigerant side) direction is superior in foam resistance to the O-ring 24 arranged in the housing outside (atmosphere side) direction.
  • the O-ring 24 arranged in the outer direction of the housing is superior in permeation resistance than the O-ring 23 arranged in the inner direction of the housing.
  • the O-ring 23 is made of silicon rubber having excellent foam resistance
  • the O-ring 24 is made of fluorine rubber or nitrile rubber having excellent permeation resistance.
  • FIG. 3 is a diagram comparing the characteristics of various rubber materials in the environment where carbon dioxide refrigerant is used.
  • the heat resistance is evaluated by the time during which the O-ring can function as a rubber having elasticity when the O-ring having a predetermined shape is left in an environment of 150 ° C.
  • the heat resistance becomes higher as the time that can function as a rubber having elasticity is longer.
  • the carbon dioxide permeation resistance is evaluated by the gas permeability of carbon dioxide.
  • the carbon dioxide permeation resistance is evaluated by gas permeability at a pressure difference of 5 MPa of carbon dioxide.
  • the carbon dioxide permeation resistance becomes higher as the gas permeability of carbon dioxide is lower.
  • the foaming resistance is determined by immersing an O-ring of a predetermined shape in liquefied carbon dioxide at 20 ° C. for 15 hours, then immediately releasing it into the atmosphere and leaving it in a high-temperature atmosphere at 100 ° C. for 1 hour. It was evaluated by the number of visible cracks confirmed on each cut surface when divided at a place. The foaming resistance becomes higher as the number of cracks is smaller.
  • EPDM ethylene propylene rubber
  • HNBR nitrile rubber
  • CR chloroprene rubber
  • ACM acrylic rubber
  • VQM silicone rubber
  • FKM fluoro rubber
  • the O-ring 25 arranged in the direction of the refrigerant inside the housing is made of silicon rubber having excellent foam resistance. Therefore, the foaming phenomenon in which the carbon dioxide refrigerant permeates into the O-ring 25 due to pressure fluctuation and cracks are generated is suppressed.
  • the O-ring 25 is made of silicon rubber and has poor permeation resistance, the refrigerant permeates.
  • an O-ring 26 made of fluorine rubber or nitrile rubber having excellent permeation resistance is disposed in the atmosphere side direction outside the housing with respect to the O-ring 25.
  • the O-ring 26 may be disposed closer to the atmosphere outside the housing than the O-ring 25.
  • the O-ring 25 made of silicon rubber having excellent foaming resistance is arranged in the refrigerant side direction inside the housing relative to the O-ring 26, so that the pressure is reduced. The effects of fluctuations are also suppressed.
  • the O-ring 25 may be disposed closer to the refrigerant inside the housing than the O-ring 26.
  • a plurality of O-rings 23 to 26 are provided between the housing and the stationary ring 21 and between the shaft 63 and the rotating ring 22 so as to be aligned in the axial direction of the shaft 63.
  • O-rings 23 and 25 arranged in the refrigerant side direction inside the housing are O-rings 24 and 26 arranged in the atmosphere side direction outside the housing. Therefore, the O-rings 23 and 25 can satisfy the requirements for foam resistance.
  • the O-rings 24 and 26 arranged in the atmosphere side direction outside the housing have better permeation resistance than the O-rings 23 and 25 arranged in the refrigerant side direction inside the housing, these O-rings 24 and 26 can satisfy the requirement of permeation resistance.
  • the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period.
  • At least one of a plurality of O-rings 23 and 24 that seal between the housing and the stationary ring 21 and a plurality of O-rings 25 and 26 that seal between the shaft 63 and the rotating ring 22 may be provided. .
  • the rotating ring 22 biased by the spring 27 may move in the axial direction of the shaft 63 together with the shaft 63.
  • the O-rings 23 and 25 arranged in the inner direction of the housing are made of silicon rubber, and the O-rings 24 and 26 arranged in the outer direction of the housing are made of fluorine rubber or nitrile rubber, thereby being heat resistant.
  • Three requirements of resistance, foam resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period of time.
  • the compressor and the shaft seal device according to the second embodiment of the present disclosure will be described with reference to FIG. 4.
  • the groove portions 210 and 211 are separately formed on the outer peripheral surface of the stationary ring 21, and the groove portions 220 and 221 are separately formed on the inner peripheral surface of the rotating ring 22.
  • O-rings 23 to 26 are disposed at 210, 211, 220, and 221 respectively.
  • one groove portion 212 is formed on the outer peripheral surface of the stationary ring 21, and the O-rings 23 and 24 are disposed in the groove portion 212.
  • One groove portion 222 is formed on the inner peripheral surface of the rotating ring 22, and O-rings 25 and 26 are disposed in the groove portion 222.
  • the O-rings 23 and 24 may be disposed in one groove 212 and the O-rings 25 and 26 may be disposed in one groove 222.
  • the effect produced from the configuration of the first embodiment can be obtained as in the first embodiment.
  • the two O rings 23 and 24 are provided between the stationary ring 21 and the front housing 53 (for example, the contact surface), but three or more O rings may be provided.
  • the two O-rings 25 and 26 are provided between the rotating ring 22 and the shaft 63 (for example, the contact surface), but three or more O-rings may be provided. .
  • the O-rings 23 to 26 are provided between the fixed ring 21 and the front housing 53, and between the rotary ring 22 and the shaft 63.
  • the fixed ring 21 and the front housing 53 are provided.
  • Each O-ring may be provided between the rotary ring 22 and the rotary ring 22 and the shaft 63.
  • the two O-rings 23 and 24 are provided between the fixed ring 21 and the front housing 53.
  • a plurality of O-rings are provided between the fixed ring 21 and the front housing 53. It may be provided.
  • a plurality of O-rings 25 and 26 are provided between the rotating ring 22 and the shaft 63, but a plurality of O-rings are provided between the rotating ring 22 and the shaft 63. Also good.
  • the present invention is applied to a compressor that compresses a carbon dioxide refrigerant, but the present invention can also be applied to a compressor that compresses a fluid other than carbon dioxide.
  • the balance-type shaft seal device has been described as an example.
  • the present invention is not limited to such a type of shaft seal device, and is applied to, for example, an unbalanced shaft seal device. You can also.
  • the O-rings 23 to 26 are provided on both the sealing surfaces of the housing 53 and the stationary ring 21 and the sealing surfaces of the shaft 63 and the rotating ring 22.
  • An O-ring may be provided on at least one of the seal surface of the ring 21 and the seal surface of the shaft 63 and the rotary ring 22.
  • O-rings 25 and 26 may be provided on the seal surfaces of the shaft 63 and the rotating ring 22, and for example, the seal surfaces of the housing 53 and the fixed ring 21 may be joined so that the sealing performance is maintained.

Abstract

The present invention is a shaft-sealing device (20) for a compressor (51) and is provided with a rotating ring (22), which is fixed on a shaft (63) that is located inside a housing (53, 55, 57), and a fixed ring (21), which is fixed to a shaft hole formed in the housing and is for rotatably supporting the shaft that is inserted in the shaft hole. Multiple O-rings (23-26) for sealing between the housing and the fixed ring and/or between the shaft and the rotating ring are provided so as to line up side by side in the axial direction of the shaft. Of the multiple O-rings, the O-rings disposed on the coolant side towards the interior of the housing have better anti-foaming properties than the O-rings disposed on the atmospheric side towards the exterior of the housing. The O-rings disposed on the atmospheric side have better permeability resistance than the O-rings disposed on the coolant side. Such a configuration is able to satisfy the two requirements for anti-foaming properties and permeability resistance and is able to maintain sealing properties of the sealing surfaces for longer periods.

Description

軸封装置および圧縮機Shaft seal device and compressor 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年12月25日に出願された日本特許出願2014-262227を基にしている。 This application is based on Japanese Patent Application No. 2014-262227 filed on Dec. 25, 2014, the disclosure of which is incorporated herein by reference.
 本開示は、二酸化炭素冷媒を圧縮する圧縮機用軸封装置および圧縮機に関するものである。 The present disclosure relates to a shaft seal device for a compressor that compresses a carbon dioxide refrigerant and a compressor.
 一般的な圧縮機は、シャフトの回転によりハウジング内の流体に流体圧を発生させる圧縮機構を有している。このような圧縮機は、ハウジングとシャフトの隙間からハウジングの外部へ流体が漏れ出すのを防止する軸封装置を備えている。 General compressors have a compression mechanism that generates fluid pressure in the fluid in the housing by rotating the shaft. Such a compressor includes a shaft seal device that prevents fluid from leaking out of the housing through a gap between the housing and the shaft.
 近年、このような圧縮機では、フロンに代わる二酸化炭素(CO2)が冷媒ガスとして採用されつつある。圧縮する流体としてこのような冷媒ガスを採用した場合、軸封装置に作用する圧力がフロンを用いた場合よりも10倍以上となることがある。この場合、軸封装置への負荷が大きく、軸封装置の耐久性の低下が一層生じやすくなるおそれがある。 Recently, in such compressors, carbon dioxide (CO2) instead of Freon is being adopted as a refrigerant gas. When such a refrigerant gas is employed as the fluid to be compressed, the pressure acting on the shaft seal device may be 10 times or more than when using chlorofluorocarbon. In this case, the load on the shaft seal device is large, and the durability of the shaft seal device may be further reduced.
 そこで、耐久性を向上するため、軸孔に固定され、環状をなして固定環の作用部側に固定側シール端面をもつ固定環と、ハウジング内に位置するシャフトに固定され、環状をなして回転環の受動部側に固定側シール端面と摺接する回転側シール端面を持つ回転環と、シャフトに固定され、環状をなしてシャフトと回転環の隙間を封止するパッキン(Oリング)と、シャフトに固定され、回転環をハウジング外へ軸方向に押圧するバネを備えた軸封装置がある(例えば、特許文献1参照)。 Therefore, in order to improve the durability, it is fixed to the shaft hole, and is fixed to the shaft that is fixed to the shaft located in the housing and the fixed ring having the fixed side seal end surface on the working part side of the fixed ring. A rotating ring having a rotating side seal end face that is in sliding contact with the fixed side seal end face on the passive part side of the rotating ring, and a packing (O-ring) that is fixed to the shaft and seals the gap between the shaft and the rotating ring; There is a shaft seal device provided with a spring that is fixed to a shaft and presses the rotating ring in the axial direction outside the housing (see, for example, Patent Document 1).
特開2007-9886号公報Japanese Patent Laid-Open No. 2007-9886
 発明者らの検討によると、上記したような圧縮機は、作動時に軸封装置の雰囲気圧力が常に大きく変動する。また、このような圧縮機の軸封装置では、作動時に二酸化炭素冷媒の圧力によってシャフトと回転環の隙間を封止するパッキンの内部に冷媒が繰り返し出入りする。このとき、高圧環境下でパッキンの内部に浸透した冷媒ガスが、減圧時等にパッキン内部で膨張する過程を繰り返し、パッキンに亀裂等が発生する発泡現象が生じるおそれがある。このような現象が生じることのないよう、このような圧縮機の軸封装置に用いられるパッキンには、耐発泡性に優れていることが求められる。 According to the inventors' investigation, the atmospheric pressure of the shaft seal device always fluctuates greatly during operation of the compressor as described above. In such a shaft seal device of the compressor, the refrigerant repeatedly enters and exits the packing that seals the gap between the shaft and the rotating ring by the pressure of the carbon dioxide refrigerant during operation. At this time, the refrigerant gas that has penetrated into the packing under a high-pressure environment may repeat the process of expanding inside the packing during decompression or the like, which may cause a foaming phenomenon in which a crack or the like occurs in the packing. In order to prevent such a phenomenon from occurring, the packing used in the shaft seal device of such a compressor is required to have excellent foam resistance.
 また、二酸化炭素の分子量はフロン等と比較して低くなっている。このため、このような圧縮機では、非常に二酸化炭素の透過性が高く、シャフトと回転環及びハウジングと固定環の隙間を封止するパッキンを透過して二酸化炭素がハウジングの外に漏れやすい。このような現象が生じないよう、このような圧縮機の軸封装置に用いられるパッキンには、耐透過性に優れていることも求められる。 Also, the molecular weight of carbon dioxide is lower than that of chlorofluorocarbon. For this reason, in such a compressor, the carbon dioxide permeability is very high, and carbon dioxide tends to leak out of the housing through the packing that seals the gap between the shaft and the rotating ring and the housing and the stationary ring. In order to prevent such a phenomenon from occurring, the packing used in the shaft seal device of such a compressor is also required to have excellent permeation resistance.
 1つのパッキンでシャフトと回転環の接触面(シール面)を封止するようになっている圧縮機では、1つのパッキンで耐発泡性と耐透過性の要件を満たすのは困難な場合があり、長期間にわたってシール面のシール性を維持するのは難しい可能性がある。 With a compressor that seals the contact surface (seal surface) of the shaft and rotating ring with one packing, it may be difficult to meet the requirements for foam resistance and permeation resistance with one packing. It may be difficult to maintain the sealing performance of the sealing surface over a long period of time.
 本開示は、より長期間にわたってシール面のシール性を維持できるようにすることを目的とする。 This disclosure is intended to maintain the sealing performance of the sealing surface for a longer period of time.
 本開示の一態様による軸封装置は、二酸化炭素冷媒を圧縮する圧縮機用軸封装置であって、冷媒を収容するハウジングの内側に位置するシャフトに固定される回転環と、ハウジングに形成された軸孔に固定され、軸孔に挿通されたシャフトを回転可能に支持する固定環と、を備える。ハウジングと固定環の間およびシャフトと回転環の間のうち少なくとも一方を封止する複数のOリングがシャフトの軸方向に並ぶように設けられている。複数のOリングのうち、ハウジングの内部の冷媒側に配置された前記Oリングはハウジングの外部の大気側に配置されたOリングよりも耐発泡性に優れている。ハウジングの外部の大気側に配置されたOリングはハウジングの内部の冷媒側に配置されたOリングよりも耐透過性に優れている。 A shaft seal device according to an aspect of the present disclosure is a shaft seal device for a compressor that compresses a carbon dioxide refrigerant, and is formed in a housing and a rotating ring fixed to a shaft positioned inside a housing that stores the refrigerant. A fixed ring that is fixed to the shaft hole and rotatably supports the shaft inserted through the shaft hole. A plurality of O-rings for sealing at least one of the housing and the fixed ring and between the shaft and the rotating ring are provided so as to be aligned in the axial direction of the shaft. Among the plurality of O-rings, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. The O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
 このような構成によれば、ハウジングと固定環の間およびシャフトと回転環の間のうち少なくとも一方を封止する複数のOリングがシャフトの軸方向に並ぶように設けられている。シャフトの軸方向に並ぶように設けられた複数のOリングのうち、ハウジングの内部の冷媒側に配置されたOリングはハウジングの外部の大気側に配置されたOリングよりも耐発泡性に優れているので、このOリングにより耐発泡性の要件を満たすことができる。また、ハウジングの外部の大気側に配置されたOリングはハウジングの内部の冷媒側に配置されたOリングよりも耐透過性に優れているので、このハウジングの外部の大気側に配置されたOリングにより耐透過性の要件を満たすことができる。このように、耐発泡性と耐透過性の2つの要件を満たすことができ、より長期間にわたってシール面のシール性を維持することができる。 According to such a configuration, the plurality of O-rings sealing at least one of the housing and the stationary ring and between the shaft and the rotating ring are provided so as to be aligned in the axial direction of the shaft. Of the plurality of O-rings arranged in the axial direction of the shaft, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. Therefore, this O-ring can satisfy the foaming resistance requirement. Further, since the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing, the O-ring arranged on the atmosphere side outside this housing The ring can meet the requirements of permeation resistance. Thus, the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period.
 本開示の別の態様による軸封装置は、二酸化炭素冷媒を圧縮する圧縮機用軸封装置であって、冷媒を収容するハウジングの内側に位置するシャフトに固定される回転環と、ハウジングに形成された軸孔に固定され、軸孔に挿通されたシャフトを回転可能に支持する固定環と、を備える。ハウジングと固定環の間を封止する複数のOリング、及び、シャフトと回転環の間を封止する複数のOリングのうち少なくとも一方が設けられている。複数のOリングのうち、ハウジングの内部の冷媒側に配置された前記Oリングはハウジングの外部の大気側に配置されたOリングよりも耐発泡性に優れている。ハウジングの外部の大気側に配置されたOリングはハウジングの内部の冷媒側に配置されたOリングよりも耐透過性に優れている。 A shaft seal device according to another aspect of the present disclosure is a shaft seal device for a compressor that compresses a carbon dioxide refrigerant, and is formed in a housing and a rotating ring fixed to a shaft positioned inside the housing that stores the refrigerant. A fixed ring that is fixed to the shaft hole and rotatably supports the shaft inserted through the shaft hole. At least one of a plurality of O-rings sealing between the housing and the fixed ring and a plurality of O-rings sealing between the shaft and the rotating ring is provided. Among the plurality of O-rings, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. The O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
 このような構成によれば、ハウジングと固定環の間を封止する複数のOリング、及び、シャフトと回転環の間を封止する複数のOリングのうち少なくとも一方が設けられている。シャフトの軸方向に並ぶように設けられた複数のOリングのうち、ハウジングの内部の冷媒側に配置されたOリングはハウジングの外部の大気側に配置されたOリングよりも耐発泡性に優れているので、このOリングにより耐発泡性の要件を満たすことができる。また、ハウジングの外部の大気側に配置されたOリングはハウジングの内部の冷媒側に配置されたOリングよりも耐透過性に優れているので、このハウジングの外部の大気側に配置されたOリングにより耐透過性の要件を満たすことができる。このように、耐発泡性と耐透過性の2つの要件を満たすことができ、より長期間にわたってシール面のシール性を維持することができる。 According to such a configuration, at least one of a plurality of O-rings sealing between the housing and the fixed ring and a plurality of O-rings sealing between the shaft and the rotating ring is provided. Of the plurality of O-rings arranged in the axial direction of the shaft, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing. Therefore, this O-ring can satisfy the foaming resistance requirement. Further, since the O-ring arranged on the atmosphere side outside the housing has better permeation resistance than the O-ring arranged on the refrigerant side inside the housing, the O-ring arranged on the atmosphere side outside this housing The ring can meet the requirements of permeation resistance. Thus, the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period.
本開示の第1実施形態に係る斜板型圧縮機の縦断面図である。It is a longitudinal section of the swash plate type compressor concerning a 1st embodiment of this indication. 図1中のZ部拡大図である。It is the Z section enlarged view in FIG. 各種ゴム材の二酸化炭素冷媒の使用環境下における特性を比較した図である。It is the figure which compared the characteristic in the use environment of the carbon dioxide refrigerant of various rubber materials. 本開示の第2実施形態に係る斜板型圧縮機の軸封装置の断面図である。It is sectional drawing of the shaft seal apparatus of the swash plate type compressor which concerns on 2nd Embodiment of this indication.
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of modes for carrying out the present disclosure will be described with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not explicitly stated unless there is a problem with the combination. Is also possible.
 (第1実施形態)
 以下、本開示の第1実施形態に係る圧縮機および軸封装置について、図1~図3を参照して説明する。本実施形態に係る圧縮機は、駆動軸の中心線に対して傾斜して配置された斜板の傾斜角度を変化させることで、往復運動するピストンの行程を変化させて圧縮機の吐出容量を変化させる斜板型圧縮機51として構成されている。また、本斜板型圧縮機51は、二酸化炭素冷媒を圧縮する圧縮機である。本斜板型圧縮機51は、例えば、自動車等の空調装置に適用される。
(First embodiment)
Hereinafter, the compressor and the shaft seal device according to the first embodiment of the present disclosure will be described with reference to FIGS. 1 to 3. The compressor according to the present embodiment changes the stroke of the reciprocating piston by changing the inclination angle of the swash plate arranged to be inclined with respect to the center line of the drive shaft, thereby reducing the discharge capacity of the compressor. The swash plate compressor 51 is changed. The swash plate compressor 51 is a compressor that compresses a carbon dioxide refrigerant. The swash plate compressor 51 is applied to an air conditioner such as an automobile.
 また、本斜板型圧縮機51は、有底筒状のフロントハウジング53を有している。この有底筒状のフロントハウジング53の開口部には、この開口部を塞ぐようにシリンダブロック55が設けられており、このシリンダブロック55には、リアハウジング57が設けられている。フロントハウジング53の底壁53aの中央部とシリンダブロック55の中央部には、それぞれラジアルベアリング59、61が設けられており、これらラジアルベアリング59、61間に、シャフト63が軸支されている。なお、フロントハウジング53とシリンダブロック55とリアハウジング57により冷媒を収容するハウジングが構成される。 The swash plate compressor 51 has a bottomed cylindrical front housing 53. A cylinder block 55 is provided at the opening of the bottomed cylindrical front housing 53 so as to close the opening, and a rear housing 57 is provided at the cylinder block 55. Radial bearings 59 and 61 are provided at the center portion of the bottom wall 53 a of the front housing 53 and the center portion of the cylinder block 55, and a shaft 63 is pivotally supported between the radial bearings 59 and 61. The front housing 53, the cylinder block 55, and the rear housing 57 constitute a housing that stores the refrigerant.
 また、フロントハウジング53の底壁53aでラジアルベアリング59より前側(図中、左側)には、一般的にはメカニカルシールと呼ばれる軸封装置20が設けられている。この軸封装置20は、フロントハウジング53とシャフト63の隙間からフロントハウジング53の外部に冷媒が漏れ出るのを防止するためのものである。この軸封装置20については、後で詳細に説明する。 A shaft seal device 20 generally called a mechanical seal is provided on the bottom wall 53a of the front housing 53 on the front side (the left side in the drawing) from the radial bearing 59. The shaft seal device 20 is for preventing the refrigerant from leaking out of the front housing 53 through the gap between the front housing 53 and the shaft 63. The shaft seal device 20 will be described in detail later.
 フロントハウジング53の底壁53a上側には、シャフト63に固定された円盤状のラグプレート73が設けられている。このラグプレート73と底壁53aとの間には、スラスト軸受75が介装されておりピストン圧縮反力による軸方向荷重を受けている。 A disk-shaped lug plate 73 fixed to the shaft 63 is provided on the upper side of the bottom wall 53 a of the front housing 53. A thrust bearing 75 is interposed between the lug plate 73 and the bottom wall 53a, and receives an axial load due to a piston compression reaction force.
 シャフト63におけるラグプレート73とシリンダブロック55との間の部分には、斜板77がシャフト63の軸方向に対して回転可能に設けられている。この斜板77とラグプレート73とは、ラグプレート73に設けられたリンク機構部79と、斜板77に設けられたピン81によって、傾角可能に連結されており、ラグプレート73の回転を斜板77に伝達するようになっている。 A swash plate 77 is provided at a portion of the shaft 63 between the lug plate 73 and the cylinder block 55 so as to be rotatable with respect to the axial direction of the shaft 63. The swash plate 77 and the lug plate 73 are coupled so as to be tiltable by a link mechanism 79 provided on the lug plate 73 and a pin 81 provided on the swash plate 77, and the rotation of the lug plate 73 is inclined. This is transmitted to the plate 77.
 シリンダブロック55には、周方向に等間隔に離間してシリンダボア83が形成されている。このシリンダボア83は、シャフト63の軸線に平行に配設されており、その内部にはピストン85が往復動可能に挿入されている。 In the cylinder block 55, cylinder bores 83 are formed at equal intervals in the circumferential direction. The cylinder bore 83 is disposed parallel to the axis of the shaft 63, and a piston 85 is inserted therein so as to be able to reciprocate.
 このピストン85には球面軸受87が設けられている。この球面軸受87には、斜板77の外周部を周方向に摺動可能に把持した一対のシューが係合している。 This piston 85 is provided with a spherical bearing 87. The spherical bearing 87 is engaged with a pair of shoes holding the outer peripheral portion of the swash plate 77 so as to be slidable in the circumferential direction.
 シリンダブロック55とリアハウジング57との間にはバルブプレート91が介装されており、このバルブプレート91とシリンダブロック55との間には、吸入弁93が設けられており、吸入ポートをシールするようになっている。 A valve plate 91 is interposed between the cylinder block 55 and the rear housing 57, and a suction valve 93 is provided between the valve plate 91 and the cylinder block 55 to seal the suction port. It is like that.
 リアハウジング57の内側には、吸入室95と吐出室97が設けられている。バルブプレート91のリアハウジング57側の吐出室97には、吐出弁99と弁リフト量を規制するリテーナ101がボルト等によってバルブプレート91に締結されている。 A suction chamber 95 and a discharge chamber 97 are provided inside the rear housing 57. In a discharge chamber 97 on the rear housing 57 side of the valve plate 91, a discharge valve 99 and a retainer 101 that regulates the valve lift amount are fastened to the valve plate 91 by bolts or the like.
 リアハウジング57には、制御弁103が設けられており、斜板室71に制御ガスを導入して斜板の傾き角を調整し、吐出容量を設定するようになっている。なお、制御弁103から斜板室71へ制御ガスを導入する通路は、シリンダブロック55、リアハウジング57、バルブプレート91等に形成されるがここでは図示しない。 The rear housing 57 is provided with a control valve 103, and a control gas is introduced into the swash plate chamber 71 to adjust the inclination angle of the swash plate and set the discharge capacity. A passage for introducing control gas from the control valve 103 to the swash plate chamber 71 is formed in the cylinder block 55, the rear housing 57, the valve plate 91, etc., but is not shown here.
 次に、本斜板型圧縮機51の軸封装置20について説明する。本軸封装置20は、シャフト63の周囲を密封するものである。また、本軸封装置20は、バランス型の軸封装置である。軸封装置20は、フロントハウジング53の底壁53aの中央部に形成された軸孔53bに設けられている。図2に示すように、軸封装置20は、固定環21、回転環22、スプリング27およびブラケット28を有している。 Next, the shaft seal device 20 of the swash plate compressor 51 will be described. The shaft seal device 20 seals the periphery of the shaft 63. The shaft seal device 20 is a balanced shaft seal device. The shaft seal device 20 is provided in a shaft hole 53 b formed in the center portion of the bottom wall 53 a of the front housing 53. As shown in FIG. 2, the shaft seal device 20 includes a fixed ring 21, a rotating ring 22, a spring 27, and a bracket 28.
 固定環21は、例えば、シリコンカーバイト製であり、軸孔53bに固定されている。その軸孔53bはフロントハウジング53に形成されている。固定環21は軸孔53bに挿通されたシャフト63を回転可能に支持する。また、固定環21は、環状をなしており、回転環22側(図中、右側)に固定側シール端面21aを有している。 The fixed ring 21 is made of, for example, silicon carbide, and is fixed to the shaft hole 53b. The shaft hole 53 b is formed in the front housing 53. The fixed ring 21 rotatably supports the shaft 63 inserted through the shaft hole 53b. The stationary ring 21 has an annular shape, and has a stationary-side seal end face 21a on the rotating ring 22 side (right side in the drawing).
 回転環22は、例えば、カーボン製であり、フロントハウジング53の内側に位置するシャフト63に固定されている。回転環22は、環状をなしており、固定環21側(図中、左側)に回転側シール端面22aを有している。回転環22は、シャフト63と一体となって回転する。 The rotary ring 22 is made of carbon, for example, and is fixed to a shaft 63 located inside the front housing 53. The rotating ring 22 has an annular shape, and has a rotating side seal end face 22a on the stationary ring 21 side (left side in the figure). The rotating ring 22 rotates integrally with the shaft 63.
 スプリング27は、例えばコイルバネであり、シャフト63にブラケット28を介して固定されている。また、スプリング27は、回転環22をフロントハウジング53の前側(図中、左側)へ軸方向に付勢する。 The spring 27 is, for example, a coil spring, and is fixed to the shaft 63 via the bracket 28. Further, the spring 27 urges the rotary ring 22 in the axial direction toward the front side (left side in the drawing) of the front housing 53.
 ブラケット28は、スプリング27の座面を形成するものであり、シャフト63に固定され、シャフト63と回転環22と一体的に回転する。 The bracket 28 forms a seating surface of the spring 27, is fixed to the shaft 63, and rotates integrally with the shaft 63 and the rotary ring 22.
 固定環21と軸孔53bの間(例えば、接触面)には、シャフト63の軸方向に並ぶように2つのOリング23、24が設けられている。具体的には、固定環21の外周面には、2つの溝部210、211が形成されており、これらの溝部210、211にそれぞれOリング23、24が配置されている。Oリング23、24は、固定環21と軸孔53bの隙間を封止する。 Between the fixed ring 21 and the shaft hole 53b (for example, a contact surface), two O- rings 23 and 24 are provided so as to be aligned in the axial direction of the shaft 63. Specifically, two groove portions 210 and 211 are formed on the outer peripheral surface of the fixed ring 21, and O- rings 23 and 24 are disposed in these groove portions 210 and 211, respectively. The O- rings 23 and 24 seal the gap between the stationary ring 21 and the shaft hole 53b.
 また、回転環22とシャフト63の間(例えば、接触面)には、シャフト63の軸方向に並ぶように2つのOリング25、26が設けられている。具体的には、回転環22の内周面には、2つの溝部220、221が形成されており、これらの溝部220、221にそれぞれOリング25、26が配置されている。Oリング25、26は、回転環22とシャフト63の隙間を封止する。 Further, two O- rings 25 and 26 are provided between the rotary ring 22 and the shaft 63 (for example, a contact surface) so as to be aligned in the axial direction of the shaft 63. Specifically, two grooves 220 and 221 are formed on the inner peripheral surface of the rotating ring 22, and O- rings 25 and 26 are disposed in these grooves 220 and 221, respectively. The O- rings 25 and 26 seal the gap between the rotary ring 22 and the shaft 63.
 上記した構成において、シャフト63を外部駆動力(例えば車両エンジン)により回転すると、シャフト63に固定されたラグプレート73が回転し、ピン81とリンク機構部79によって連結された斜板77が回転する。ここで、斜板77の外周部はシューによって周方向摺動自在に把持されており、シューは、ピストン85の球面軸受に揺動自在に係合されている。したがって、斜板77の回転揺動運動はピストン85の往復運動に変換され、シリンダ内の流体の吐出、吸入が行われる。 In the above configuration, when the shaft 63 is rotated by an external driving force (for example, a vehicle engine), the lug plate 73 fixed to the shaft 63 is rotated, and the swash plate 77 connected by the pin 81 and the link mechanism portion 79 is rotated. . Here, the outer peripheral portion of the swash plate 77 is gripped by a shoe so as to be slidable in the circumferential direction, and the shoe is slidably engaged with a spherical bearing of the piston 85. Accordingly, the rotational swing motion of the swash plate 77 is converted into the reciprocating motion of the piston 85, and the fluid in the cylinder is discharged and sucked.
 また、上記した構成の軸封装置20では、シャフト63が回転すると、固定環21の固定側シール端面21aと、回転環22の回転側シール端面22aとがスプリング27及び圧縮機の冷媒内圧により押圧されつつ摺動する。なお、冷媒ガスとして使用される二酸化炭素冷媒には潤滑油が混入されており、この潤滑油が固定環21の固定側シール端面21aと回転環22の回転側シール端面22aの接触面に引き込まれて油膜が形成される。このように、固定側シール端面21aと回転側シール端面22aの微小隙間が潤滑油で満たされ、ハウジング内の冷媒が外部に漏洩しないようシールされる。 In the shaft seal device 20 having the above-described configuration, when the shaft 63 rotates, the fixed-side seal end surface 21a of the fixed ring 21 and the rotation-side seal end surface 22a of the rotary ring 22 are pressed by the spring 27 and the refrigerant internal pressure of the compressor. It slides while being done. In addition, lubricating oil is mixed in the carbon dioxide refrigerant used as the refrigerant gas, and this lubricating oil is drawn into the contact surface between the stationary seal end surface 21a of the stationary ring 21 and the rotational sealing end surface 22a of the rotating ring 22. As a result, an oil film is formed. Thus, the minute gap between the fixed-side seal end surface 21a and the rotation-side seal end surface 22a is filled with the lubricating oil, and the housing is sealed so that the refrigerant in the housing does not leak to the outside.
 また、シャフト63が軸方向に変位してもスプリング27により回転環22のシャフト63の軸方向への移動が許容されるため固定環21の固定側シール端面21aと回転環22の回転側シール端面22aのシールは維持される。 Further, even if the shaft 63 is displaced in the axial direction, the spring 27 allows the rotation ring 22 to move in the axial direction of the shaft 63, so that the fixed side seal end surface 21 a of the fixed ring 21 and the rotation side seal end surface of the rotation ring 22 are allowed. The 22a seal is maintained.
 また、回転環22とシャフト63の間(シール面)には、Oリング25、26が設けられている。これらのOリング25、26により回転環22とシャフト63の間(シール面)がシールされる。ここで、ハウジングの内側(冷媒側)方向に配置されたOリング25はハウジングの外側方向に配置されたOリング26よりも耐発泡性に優れている。また、ハウジングの外側(大気側)方向に配置されたOリング26はハウジングの内側方向に配置されたOリング25よりも耐透過性に優れている。具体的には、Oリング25は、耐発泡性に優れたシリコンゴムにより構成されており、Oリング26は、耐透過性に優れたフッ素ゴム又はニトリルゴムにより構成されている。 Further, O- rings 25 and 26 are provided between the rotary ring 22 and the shaft 63 (seal surface). The space between the rotary ring 22 and the shaft 63 (seal surface) is sealed by these O- rings 25 and 26. Here, the O-ring 25 arranged in the inner (refrigerant side) direction of the housing is more excellent in foam resistance than the O-ring 26 arranged in the outer direction of the housing. Further, the O-ring 26 disposed in the outer (atmosphere side) direction of the housing is superior in permeation resistance than the O-ring 25 disposed in the inner direction of the housing. Specifically, the O-ring 25 is made of silicon rubber having excellent foam resistance, and the O-ring 26 is made of fluorine rubber or nitrile rubber having excellent permeation resistance.
 また、固定環21とフロントハウジング53の軸孔53bの間(シール面)には、Oリング23、24が設けられており、Oリング23、24により固定環21とフロントハウジング53の軸孔53bの間がシールされる。ここで、ハウジングの内側(冷媒側)方向に配置されたOリング23はハウジングの外側(大気側)方向に配置されたOリング24よりも耐発泡性に優れている。また、ハウジングの外側方向に配置されたOリング24はハウジングの内側方向に配置されたOリング23よりも耐透過性に優れている。具体的には、Oリング23は、耐発泡性に優れたシリコンゴムにより構成されており、Oリング24は、耐透過性に優れたフッ素ゴム又はニトリルゴムにより構成されている。 Further, O- rings 23 and 24 are provided between the fixed ring 21 and the shaft hole 53 b of the front housing 53 (seal surface), and the O- rings 23 and 24 provide a shaft hole 53 b of the fixed ring 21 and the front housing 53. Is sealed. Here, the O-ring 23 arranged in the housing (refrigerant side) direction is superior in foam resistance to the O-ring 24 arranged in the housing outside (atmosphere side) direction. Further, the O-ring 24 arranged in the outer direction of the housing is superior in permeation resistance than the O-ring 23 arranged in the inner direction of the housing. Specifically, the O-ring 23 is made of silicon rubber having excellent foam resistance, and the O-ring 24 is made of fluorine rubber or nitrile rubber having excellent permeation resistance.
 このような圧縮機は、固定側シール端面21aと回転側シール端面22aが摺動するようになっており、この摺動する部分で摩擦熱が発生する。また、圧縮機の冷媒として二酸化炭素を採用した場合、軸封装置の雰囲気温度はフロンガスを用いた場合よりも高温になる。したがって、このような軸封装置に用いられるOリングには、耐熱性に優れていることも求められる。 In such a compressor, the fixed-side seal end surface 21a and the rotary-side seal end surface 22a slide, and frictional heat is generated in the sliding portion. In addition, when carbon dioxide is employed as the refrigerant for the compressor, the ambient temperature of the shaft seal device becomes higher than that when chlorofluorocarbon is used. Therefore, the O-ring used in such a shaft seal device is also required to have excellent heat resistance.
 ここで、各種ゴム材の二酸化炭素冷媒の使用環境下における特性について説明する。図3は、各種ゴム材の二酸化炭素冷媒の使用環境下における特性を比較した図である。 Here, the characteristics of various rubber materials in the usage environment of carbon dioxide refrigerant will be described. FIG. 3 is a diagram comparing the characteristics of various rubber materials in the environment where carbon dioxide refrigerant is used.
 ここで、耐熱性は、所定形状のOリングを150℃の環境下で放置した場合にOリングが弾性力を有するゴムとして機能することができる時間で評価したものである。耐熱性は、弾性力を有するゴムとして機能することができる時間が長い方ほど高い評価となる。 Here, the heat resistance is evaluated by the time during which the O-ring can function as a rubber having elasticity when the O-ring having a predetermined shape is left in an environment of 150 ° C. The heat resistance becomes higher as the time that can function as a rubber having elasticity is longer.
 また、二酸化炭素耐透過性は、二酸化炭素の気体透過率で評価したものである。二酸化炭素耐透過性は、二酸化炭素の5MPaの圧力差における気体透過率で評価したものである。二酸化炭素耐透過性は、二酸化炭素の気体透過率が低いほど高い評価となる。 Moreover, the carbon dioxide permeation resistance is evaluated by the gas permeability of carbon dioxide. The carbon dioxide permeation resistance is evaluated by gas permeability at a pressure difference of 5 MPa of carbon dioxide. The carbon dioxide permeation resistance becomes higher as the gas permeability of carbon dioxide is lower.
 また、耐発泡性は、所定形状のOリングを20℃の液化二酸化炭素に15時間浸漬させた後、直ちに大気開放して100℃の高温大気中に1時間放置し、その後Oリングを3か所で分割したときに各切断面に確認される視認可能な亀裂の数で評価されたものである。耐発泡性は、亀裂の数が少ないほど高い評価となる。 In addition, the foaming resistance is determined by immersing an O-ring of a predetermined shape in liquefied carbon dioxide at 20 ° C. for 15 hours, then immediately releasing it into the atmosphere and leaving it in a high-temperature atmosphere at 100 ° C. for 1 hour. It was evaluated by the number of visible cracks confirmed on each cut surface when divided at a place. The foaming resistance becomes higher as the number of cracks is smaller.
 EPDM(エチレンプロピレンゴム)は、耐熱性は普通であるが二酸化炭素耐透過性と耐発泡性が劣る。また、HNBR(ニトリルゴム)は、二酸化炭素耐透過性に優れているが耐熱性と耐発泡性が劣る。また、CR(クロロプレンゴム)は、二酸化炭素耐透過性は普通であるが耐熱性と耐発泡性が劣る。また、ACM(アクリルゴム)は、耐熱性は普通であるが二酸化炭素耐透過性と耐発泡性が劣る。また、VQM(シリコンゴム)は、耐熱性と耐発泡性が優れているが二酸化炭素耐透過性が劣る。また、FKM(フッ素ゴム)は、耐熱性と二酸化炭素耐透過性に優れているが耐発泡性が劣る。 EPDM (ethylene propylene rubber) has normal heat resistance but is inferior in carbon dioxide permeation resistance and foam resistance. HNBR (nitrile rubber) is excellent in carbon dioxide permeation resistance but inferior in heat resistance and foam resistance. Moreover, CR (chloroprene rubber) has ordinary carbon dioxide permeation resistance but is inferior in heat resistance and foam resistance. ACM (acrylic rubber) has normal heat resistance but is inferior in carbon dioxide permeation resistance and foam resistance. VQM (silicone rubber) is excellent in heat resistance and foam resistance but inferior in carbon dioxide permeation resistance. Moreover, FKM (fluoro rubber) is excellent in heat resistance and carbon dioxide permeation resistance, but inferior in foam resistance.
 本軸封装置20では、ハウジングの内部の冷媒側方向に配置されたOリング25は、耐発泡性に優れたシリコンゴムにより構成されている。したがって、圧力変動により二酸化炭素冷媒がOリング25の中に浸透して亀裂等が発生する発泡現象は抑制される。 In the shaft seal device 20, the O-ring 25 arranged in the direction of the refrigerant inside the housing is made of silicon rubber having excellent foam resistance. Therefore, the foaming phenomenon in which the carbon dioxide refrigerant permeates into the O-ring 25 due to pressure fluctuation and cracks are generated is suppressed.
 また、Oリング25はシリコンゴムにより構成されており耐透過性が劣るため、冷媒が透過してしまう。このため、Oリング25よりもハウジングの外部の大気側方向には、耐透過性に優れたフッ素ゴム又はニトリルゴムにより構成されたOリング26が配置されている。Oリング26は、Oリング25よりもハウジングの外部の大気側に配置されても良い。 Moreover, since the O-ring 25 is made of silicon rubber and has poor permeation resistance, the refrigerant permeates. For this reason, an O-ring 26 made of fluorine rubber or nitrile rubber having excellent permeation resistance is disposed in the atmosphere side direction outside the housing with respect to the O-ring 25. The O-ring 26 may be disposed closer to the atmosphere outside the housing than the O-ring 25.
 なお、Oリング26は、耐発泡性が劣るが、Oリング26よりもハウジングの内部の冷媒側方向に耐発泡性に優れたシリコンゴムにより構成されたOリング25が配置されているので、圧力変動による影響も抑制される。Oリング25は、Oリング26よりもハウジングの内部の冷媒側に配置されても良い。 Although the O-ring 26 is inferior in foaming resistance, the O-ring 25 made of silicon rubber having excellent foaming resistance is arranged in the refrigerant side direction inside the housing relative to the O-ring 26, so that the pressure is reduced. The effects of fluctuations are also suppressed. The O-ring 25 may be disposed closer to the refrigerant inside the housing than the O-ring 26.
 上記した構成によれば、ハウジングと固定環21の間およびシャフト63と回転環22の間には、シャフト63の軸方向に並ぶように複数のOリング23~26が設けられており、シャフト63の軸方向に並ぶように設けられた複数のOリングのうち、ハウジングの内部の冷媒側方向に配置されたOリング23、25はハウジングの外部の大気側方向に配置されたOリング24、26よりも耐発泡性に優れているので、これらのOリング23、25により耐発泡性の要件を満たすことができる。また、ハウジングの外部の大気側方向に配置されたOリング24、26はハウジングの内部の冷媒側方向に配置されたOリング23、25よりも耐透過性に優れているので、これらのOリング24、26により耐透過性の要件を満たすことができる。このように、耐発泡性と耐透過性の2つの要件を満たすことができ、より長期間にわたってシール面のシール性を維持することができる。ハウジングと固定環21の間を封止する複数のOリング23、24、及び、シャフト63と回転環22の間を封止する複数のOリング25、26のうち少なくとも一方が設けられても良い。 According to the configuration described above, a plurality of O-rings 23 to 26 are provided between the housing and the stationary ring 21 and between the shaft 63 and the rotating ring 22 so as to be aligned in the axial direction of the shaft 63. Among the plurality of O-rings arranged in the axial direction, O- rings 23 and 25 arranged in the refrigerant side direction inside the housing are O- rings 24 and 26 arranged in the atmosphere side direction outside the housing. Therefore, the O- rings 23 and 25 can satisfy the requirements for foam resistance. Further, since the O- rings 24 and 26 arranged in the atmosphere side direction outside the housing have better permeation resistance than the O- rings 23 and 25 arranged in the refrigerant side direction inside the housing, these O- rings 24 and 26 can satisfy the requirement of permeation resistance. Thus, the two requirements of foaming resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period. At least one of a plurality of O- rings 23 and 24 that seal between the housing and the stationary ring 21 and a plurality of O- rings 25 and 26 that seal between the shaft 63 and the rotating ring 22 may be provided. .
 また、シャフト63と回転環22の間(シール面)では、スプリング27に付勢された回転環22がシャフト63とともにシャフト63の軸方向に移動する場合があるが、このようなシャフト63と回転環22の間(シール面)に上記したOリング23~26を設けることで、効果的にシールを行うことが可能である。 In addition, between the shaft 63 and the rotating ring 22 (seal surface), the rotating ring 22 biased by the spring 27 may move in the axial direction of the shaft 63 together with the shaft 63. By providing the above-described O-rings 23 to 26 between the rings 22 (seal surface), it is possible to effectively seal.
 また、ハウジングの内側方向に配置されたOリング23、25は、シリコンゴムにより構成し、ハウジングの外側方向に配置されたOリング24、26は、フッ素ゴム又はニトリルゴムにより構成することで、耐熱性、耐発泡性および耐透過性の3つの要件を満たすことができ、より長期間にわたってシール面のシール性を維持することができる。 In addition, the O- rings 23 and 25 arranged in the inner direction of the housing are made of silicon rubber, and the O- rings 24 and 26 arranged in the outer direction of the housing are made of fluorine rubber or nitrile rubber, thereby being heat resistant. Three requirements of resistance, foam resistance and permeation resistance can be satisfied, and the sealing performance of the sealing surface can be maintained for a longer period of time.
 (第2実施形態)
 以下、本開示の第2実施形態に係る圧縮機および軸封装置について、図4を参照して説明する。第1実施形態に係る圧縮機は、固定環21の外周面に別々に溝部210、211が形成され、回転環22の内周面に別々に溝部220、221が形成されており、これらの溝部210、211、220、221にそれぞれOリング23~26が配置されている。これに対し、本実施形態に係る圧縮機は、固定環21の外周面に1つの溝部212が形成され、この溝部212にOリング23、24が配置される。また、回転環22の内周面に1つの溝部222が形成され、この溝部222にOリング25、26が配置されている。
(Second Embodiment)
Hereinafter, the compressor and the shaft seal device according to the second embodiment of the present disclosure will be described with reference to FIG. 4. In the compressor according to the first embodiment, the groove portions 210 and 211 are separately formed on the outer peripheral surface of the stationary ring 21, and the groove portions 220 and 221 are separately formed on the inner peripheral surface of the rotating ring 22. O-rings 23 to 26 are disposed at 210, 211, 220, and 221 respectively. On the other hand, in the compressor according to this embodiment, one groove portion 212 is formed on the outer peripheral surface of the stationary ring 21, and the O- rings 23 and 24 are disposed in the groove portion 212. One groove portion 222 is formed on the inner peripheral surface of the rotating ring 22, and O- rings 25 and 26 are disposed in the groove portion 222.
 このように、1つの溝部212にOリング23、24を配置するとともに、1つの溝部222にOリング25、26を配置してもよい。 As described above, the O- rings 23 and 24 may be disposed in one groove 212 and the O- rings 25 and 26 may be disposed in one groove 222.
 本実施形態では、第1実施形態の構成から奏される効果を第1実施形態と同様に得ることができる。 In this embodiment, the effect produced from the configuration of the first embodiment can be obtained as in the first embodiment.
 第1、第2実施形態では、固定環21におけるフロントハウジング53との間(例えば、接触面)に2つのOリング23、24を設けたが、3つ以上のOリングを設けてもよい。また、第1、第2実施形態では、回転環22におけるシャフト63との間(例えば、接触面)に2つのOリング25、26を設けたが、3つ以上のOリングを設けてもよい。 In the first and second embodiments, the two O rings 23 and 24 are provided between the stationary ring 21 and the front housing 53 (for example, the contact surface), but three or more O rings may be provided. In the first and second embodiments, the two O- rings 25 and 26 are provided between the rotating ring 22 and the shaft 63 (for example, the contact surface), but three or more O-rings may be provided. .
 また、第1、第2実施形態では、固定環21とフロントハウジング53の間と回転環22とシャフト63の間に各Oリング23~26を設けるようにしたが、固定環21とフロントハウジング53の間と回転環22とシャフト63の間のいずれか一方に各Oリングを設けるようにしてもよい。 In the first and second embodiments, the O-rings 23 to 26 are provided between the fixed ring 21 and the front housing 53, and between the rotary ring 22 and the shaft 63. However, the fixed ring 21 and the front housing 53 are provided. Each O-ring may be provided between the rotary ring 22 and the rotary ring 22 and the shaft 63.
 また、第1、第2実施形態では、固定環21におけるフロントハウジング53との間に2つのOリング23、24を設けたが、フロントハウジング53における固定環21との間に複数のOリングを設けてもよい。また、第1、第2実施形態では、回転環22におけるシャフト63との間に複数のOリング25、26を設けたが、シャフト63における回転環22との間に複数のOリングを設けてもよい。 In the first and second embodiments, the two O- rings 23 and 24 are provided between the fixed ring 21 and the front housing 53. However, a plurality of O-rings are provided between the fixed ring 21 and the front housing 53. It may be provided. In the first and second embodiments, a plurality of O- rings 25 and 26 are provided between the rotating ring 22 and the shaft 63, but a plurality of O-rings are provided between the rotating ring 22 and the shaft 63. Also good.
 また、第1、第2実施形態では、二酸化炭素冷媒を圧縮する圧縮機に適用する例を示したが、二酸化炭素以外の流体を圧縮する圧縮機に適用することもできる。 In the first and second embodiments, an example is shown in which the present invention is applied to a compressor that compresses a carbon dioxide refrigerant, but the present invention can also be applied to a compressor that compresses a fluid other than carbon dioxide.
 第1、第2実施形態では、バランス型の軸封装置を例に説明したが、このような型の軸封装置に限定されるものではなく、例えば、アンバランス型の軸封装置に適用することもできる。 In the first and second embodiments, the balance-type shaft seal device has been described as an example. However, the present invention is not limited to such a type of shaft seal device, and is applied to, for example, an unbalanced shaft seal device. You can also.
 また、第1、第2実施形態では、ハウジング53と固定環21のシール面およびシャフト63と回転環22のシール面の両方のシール面にOリング23~26を設けたが、ハウジング53と固定環21のシール面およびシャフト63と回転環22のシール面の少なくとも一方にOリングを設けてもよい。また、シャフト63と回転環22のシール面にOリング25、26を設け、例えば、ハウジング53と固定環21のシール面はシール性が維持されるよう接合してもよい。 In the first and second embodiments, the O-rings 23 to 26 are provided on both the sealing surfaces of the housing 53 and the stationary ring 21 and the sealing surfaces of the shaft 63 and the rotating ring 22. An O-ring may be provided on at least one of the seal surface of the ring 21 and the seal surface of the shaft 63 and the rotary ring 22. Further, O- rings 25 and 26 may be provided on the seal surfaces of the shaft 63 and the rotating ring 22, and for example, the seal surfaces of the housing 53 and the fixed ring 21 may be joined so that the sealing performance is maintained.
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態において、構成要素等の材質、形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の材質、形状、位置関係等に限定される場合等を除き、その材質、形状、位置関係等に限定されるものではない。 Note that the present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. In each of the above embodiments, when referring to the material, shape, positional relationship, etc. of the constituent elements, etc., unless otherwise specified, or in principle limited to a specific material, shape, positional relationship, etc. The material, shape, positional relationship, etc. are not limited.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  二酸化炭素冷媒を圧縮する圧縮機(51)用軸封装置(20)であって、
     前記冷媒を収容するハウジング(53、55、57)の内側に位置するシャフト(63)に固定される回転環(22)と、
     前記ハウジングに形成された軸孔に固定され、前記軸孔に挿通された前記シャフトを回転可能に支持する固定環(21)と、を備え、
     前記ハウジングと前記固定環の間および前記シャフトと前記回転環の間のうち少なくとも一方を封止する複数のOリング(23~26)が、前記シャフトの軸方向に並ぶように設けられており、
     前記複数のOリングのうち、前記ハウジングの内部の前記冷媒側に配置された前記Oリングは前記ハウジングの外部の大気側に配置された前記Oリングよりも耐発泡性に優れており、前記ハウジングの外部の大気側に配置された前記Oリングは前記ハウジングの内部の前記冷媒側に配置された前記Oリングよりも耐透過性に優れている軸封装置。
    A shaft seal device (20) for a compressor (51) for compressing carbon dioxide refrigerant,
    A rotating ring (22) fixed to a shaft (63) located inside a housing (53, 55, 57) containing the refrigerant;
    A fixed ring (21) fixed to a shaft hole formed in the housing and rotatably supporting the shaft inserted through the shaft hole;
    A plurality of O-rings (23 to 26) for sealing at least one of the housing and the stationary ring and between the shaft and the rotating ring are provided so as to be aligned in the axial direction of the shaft,
    Among the plurality of O-rings, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing, and the housing A shaft seal device in which the O-ring arranged on the atmosphere side outside the tube is superior in permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
  2.  前記複数のOリングは、前記シャフトと前記回転環の間を封止するように設けられている請求項1に記載の軸封装置。 The shaft seal device according to claim 1, wherein the plurality of O-rings are provided so as to seal between the shaft and the rotating ring.
  3.  前記ハウジングの内部の冷媒側に配置された前記Oリングは、シリコンゴムにより構成されており、前記ハウジングの外部の大気側に配置された前記Oリングは、フッ素ゴムにより構成されている請求項1または2に記載の軸封装置。 2. The O-ring arranged on the refrigerant side inside the housing is made of silicon rubber, and the O-ring arranged on the atmosphere side outside the housing is made of fluorine rubber. Or the shaft seal apparatus of 2.
  4.  請求項1ないし3のいずれか1つに記載の軸封装置を備え、
     前記軸封装置は、前記シャフトの周囲を密封している圧縮機。
    A shaft seal device according to any one of claims 1 to 3, comprising:
    The shaft seal device is a compressor that seals the periphery of the shaft.
  5.  二酸化炭素冷媒を圧縮する圧縮機(51)用軸封装置(20)であって、
     前記冷媒を収容するハウジング(53、55、57)の内側に位置するシャフト(63)に固定される回転環(22)と、
     前記ハウジングに形成された軸孔に固定され、前記軸孔に挿通された前記シャフトを回転可能に支持する固定環(21)と、を備え、
     前記ハウジングと前記固定環の間を封止する複数のOリング(23、24)、及び、前記シャフトと前記回転環の間を封止する複数のOリング(25、26)のうち少なくとも一方が設けられており、
     前記複数のOリングのうち、前記ハウジングの内部の前記冷媒側に配置された前記Oリングは前記ハウジングの外部の大気側に配置された前記Oリングよりも耐発泡性に優れており、前記ハウジングの外部の大気側に配置された前記Oリングは前記ハウジングの内部の前記冷媒側に配置された前記Oリングよりも耐透過性に優れている軸封装置。
    A shaft seal device (20) for a compressor (51) for compressing carbon dioxide refrigerant,
    A rotating ring (22) fixed to a shaft (63) located inside a housing (53, 55, 57) containing the refrigerant;
    A fixed ring (21) fixed to a shaft hole formed in the housing and rotatably supporting the shaft inserted through the shaft hole;
    At least one of a plurality of O-rings (23, 24) for sealing between the housing and the stationary ring and a plurality of O-rings (25, 26) for sealing between the shaft and the rotating ring is provided. Provided,
    Among the plurality of O-rings, the O-ring arranged on the refrigerant side inside the housing has better foam resistance than the O-ring arranged on the atmosphere side outside the housing, and the housing A shaft seal device in which the O-ring arranged on the atmosphere side outside the tube is superior in permeation resistance than the O-ring arranged on the refrigerant side inside the housing.
  6.  前記シャフトと前記回転環の間封止する複数のOリングが設けられている請求項5に記載の軸封装置。 The shaft seal device according to claim 5, wherein a plurality of O-rings for sealing between the shaft and the rotating ring are provided.
  7.  前記ハウジングの内部の冷媒側に配置された前記Oリングは、シリコンゴムにより構成されており、前記ハウジングの外部の大気側に配置された前記Oリングは、フッ素ゴム又はニトリルゴムにより構成されている請求項5または6に記載の軸封装置。 The O-ring arranged on the refrigerant side inside the housing is made of silicon rubber, and the O-ring arranged on the atmosphere side outside the housing is made of fluorine rubber or nitrile rubber. The shaft seal device according to claim 5 or 6.
PCT/JP2015/006088 2014-12-25 2015-12-08 Shaft-sealing device and compressor WO2016103602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-262227 2014-12-25
JP2014262227A JP2016121761A (en) 2014-12-25 2014-12-25 Shaft seal device and compressor

Publications (1)

Publication Number Publication Date
WO2016103602A1 true WO2016103602A1 (en) 2016-06-30

Family

ID=56149672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006088 WO2016103602A1 (en) 2014-12-25 2015-12-08 Shaft-sealing device and compressor

Country Status (2)

Country Link
JP (1) JP2016121761A (en)
WO (1) WO2016103602A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391762U (en) * 1986-12-03 1988-06-14
JP2002364534A (en) * 2001-06-11 2002-12-18 Saginomiya Seisakusho Inc Pressure sensitive solenoid control valve
JP2006348851A (en) * 2005-06-16 2006-12-28 Sanden Corp Solenoid capacity control valve for variable displacement swash plate type compressor
JP2007198264A (en) * 2006-01-26 2007-08-09 Sanden Corp Mechanical seal device of compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391762U (en) * 1986-12-03 1988-06-14
JP2002364534A (en) * 2001-06-11 2002-12-18 Saginomiya Seisakusho Inc Pressure sensitive solenoid control valve
JP2006348851A (en) * 2005-06-16 2006-12-28 Sanden Corp Solenoid capacity control valve for variable displacement swash plate type compressor
JP2007198264A (en) * 2006-01-26 2007-08-09 Sanden Corp Mechanical seal device of compressor

Also Published As

Publication number Publication date
JP2016121761A (en) 2016-07-07

Similar Documents

Publication Publication Date Title
EP3517807B1 (en) Single seal ring stuffing box
US6322086B1 (en) Seal structure of compressor, and the compressor
WO2016103601A1 (en) Shaft sealing device and compressor using same
EP0961032B1 (en) A reciprocating type refrigerant compressor with an improved internal sealing unit
US6722666B2 (en) Seal structure for use in housing of compressor
WO2016103602A1 (en) Shaft-sealing device and compressor
JP2005201366A (en) Shaft seal device and compressor
JP2003240129A (en) Seal
CN109323001A (en) Sealing device
US8991297B2 (en) Compressors with improved sealing assemblies
US20200332896A1 (en) Seal structure and seal to be used in same
JP2007292306A (en) Shaft seal device for fluid machine
JP2005201336A (en) Shaft seal device and compressor
JP2005090625A (en) Sealing construction
JP2004301173A (en) Sealing structure
JP2005090626A (en) Sealing construction
KR102341873B1 (en) Double oil seal structure for drive shaft of fan oil hydraulic motor of combat mobile vehicle
JP2003269615A (en) Seal ring and seal structure
JP3069736B1 (en) Gas compressor
JP2009002429A (en) Sealing structure
JP2009108688A (en) Shaft sealing device for compressor
JPH10274157A (en) Compression device
JP2005214285A (en) Seal structure
WO2016132692A1 (en) Shaft-sealing device
JP2005201356A (en) Seal construction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872178

Country of ref document: EP

Kind code of ref document: A1