WO2016132692A1 - Shaft-sealing device - Google Patents

Shaft-sealing device Download PDF

Info

Publication number
WO2016132692A1
WO2016132692A1 PCT/JP2016/000549 JP2016000549W WO2016132692A1 WO 2016132692 A1 WO2016132692 A1 WO 2016132692A1 JP 2016000549 W JP2016000549 W JP 2016000549W WO 2016132692 A1 WO2016132692 A1 WO 2016132692A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
lip seal
housing
ring
fixed
Prior art date
Application number
PCT/JP2016/000549
Other languages
French (fr)
Japanese (ja)
Inventor
秋山 訓孝
亨 大隈
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112016000784.1T priority Critical patent/DE112016000784T5/en
Publication of WO2016132692A1 publication Critical patent/WO2016132692A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member
    • F16J15/38Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member sealed by a packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/10Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F04B27/1036Component parts, details, e.g. sealings, lubrication
    • F04B27/1081Casings, housings

Definitions

  • the present disclosure relates to a shaft seal device applied to a compressor that compresses a fluid.
  • Patent Document 1 discloses a shaft seal device applied to a compressor that compresses carbon dioxide as a refrigerant in a vapor compression refrigeration cycle apparatus.
  • the shaft seal device of Patent Document 1 includes a rotary ring fixed to a rotary shaft of a compressor, and a fixed ring fixed around a shaft hole provided in a housing of the compressor. By bringing the stationary ring into surface contact, the refrigerant in the housing is prevented from leaking outside through the gap between the rotating ring and the stationary ring.
  • the shaft seal device applied to the compressor of the refrigeration cycle apparatus when the compressor is operated, the refrigeration oil enclosed in the refrigeration cycle apparatus together with the refrigerant is caused to flow into the gap between the rotating ring and the stationary ring. Can do. Thereby, a clearance gap can be filled up with highly viscous refrigerating machine oil, and the sealing performance of a shaft seal apparatus can be improved.
  • Patent Document 1 in a refrigeration cycle apparatus that constitutes a supercritical refrigeration cycle that employs carbon dioxide as a refrigerant and the pressure of the high-pressure side refrigerant of the cycle is equal to or higher than the critical pressure of the refrigerant, The pressure difference between the refrigerant pressure and the atmospheric pressure outside the housing becomes relatively large. For this reason, the improvement of the sealing performance of the shaft seal device by the refrigerating machine oil described above is effective.
  • the outer peripheral side of an annular lip seal formed of rubber or the like is fixed to the housing, and the inner peripheral side of the lip seal is brought into contact with the periphery of the rotating shaft.
  • a means for improving the sealing performance can be considered.
  • the lip seal is likely to be worn or damaged when the rotating shaft rotates. For this reason, when adding a lip seal, there exists a possibility that it may be difficult to maintain a sealing performance over a long period of time.
  • a shaft seal device is applied to a compressor having a housing that forms a space in which a part of a rotating shaft is accommodated, and includes a shaft hole provided in the housing and a rotating shaft. It is possible to suppress leakage of the fluid to be compressed in the housing from the gap.
  • the shaft sealing device includes an annular rotating ring fixed to the outer peripheral side of the rotating shaft and an annular ring fixed to the periphery of the shaft hole of the housing and in surface contact with the rotating ring when the rotating shaft is inserted into the shaft hole.
  • the rotation shaft and the member fixed thereto are defined as the rotation shaft side member
  • the housing and the member fixed thereto are defined as the housing side member, the rotation shaft side member and the housing side
  • the rotating ring and the stationary ring are in surface contact with each other during the operation of the compressor whose rotating shaft is rotating, the fluid to be compressed in the housing leaks to the outside like a so-called mechanical seal. Can be suppressed.
  • the shape of the lip seal changes to a non-contact state with the rotating shaft side member or the housing side member due to the action of the deformed portion. Therefore, even if the rotating shaft rotates, it is possible to suppress the lip seal from being worn or damaged.
  • the temperature of the deforming portion is lowered, so that the lip seal is deformed into a shape in contact with the rotating shaft side member or the housing side member by the action of the deforming portion.
  • the lip seal causes the fluid to be compressed in the housing. Can be prevented from leaking outside.
  • the rotating shaft side member corresponds to a rotating shaft, a rotating ring, and the like
  • the housing side member corresponds to a housing, a fixed ring, and the like.
  • FIG. 3 is an enlarged cross-sectional view of a part III in FIG. 2, and is a schematic enlarged cross-sectional view showing a shape of a lip seal when the compressor of the first embodiment is stopped. It is an expanded sectional view corresponding to Drawing 2 of a 2nd embodiment. It is an expanded sectional view corresponding to Drawing 2 of a 3rd embodiment. It is a typical expanded sectional view of the lip seal of 4th Embodiment.
  • the shaft seal device 50 of the present embodiment is applied to a compressor 10 that compresses and discharges a refrigerant that is a compression target fluid in a vapor compression refrigeration cycle apparatus.
  • the refrigeration cycle apparatus of the present embodiment is applied to a vehicle air conditioner, and fulfills a function of cooling blown air blown into the vehicle interior.
  • this refrigeration cycle apparatus employs carbon dioxide as a refrigerant, and constitutes a so-called supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side of the cycle is equal to or higher than the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the sliding part of the compressor 10 is mixed in the refrigerant, and at least a part of the refrigeration oil circulates in the cycle together with the refrigerant. As this refrigeration oil, what has compatibility with a liquid phase refrigerant is adopted.
  • the compressor 10 is configured as a swash plate type variable displacement compressor.
  • the compressor 10 includes a compression mechanism unit 20 that compresses and discharges a refrigerant, a shaft 30 that is a rotation shaft that transmits a rotational driving force output from the engine to the compression mechanism unit 20, and a compression mechanism unit 20 and a shaft therein. And a housing 40 that forms a space for accommodating a part of the housing 30 and the like.
  • the housing 40 of this embodiment is formed in a bottomed cylindrical shape by combining a plurality of constituent members such as a front housing 41, a middle housing 42, a rear housing 43, and the like.
  • the front housing 41 is formed of a cup-shaped metal member and forms a control pressure chamber 41a therein.
  • the rear housing 43 is formed of a cup-shaped metal member, and forms a discharge chamber 43a and the like into which the refrigerant discharged from the compression mechanism unit 20 flows.
  • the middle housing 42 is arranged between the front housing 41 and the rear housing 43 so as to close both openings of the front housing 41 and the rear housing 43, and forms the cylinder 21 of the compression mechanism section 20. It is.
  • a cylindrical boss 41b protruding in the central axis direction is formed.
  • a pulley (not shown) is rotatably attached to the outer peripheral surface of the boss portion 41b via a bearing member such as a bearing.
  • a rotational driving force output from the engine is transmitted to the pulley via the belt.
  • a shaft hole 41c that penetrates the inside and outside of the front housing 41 is formed at the center of the boss 41b formed on the bottom surface of the front housing 41.
  • the shaft 30 is inserted into the shaft hole 41c.
  • the shaft 30 is formed of a substantially cylindrical member made of metal, and the central axis thereof is disposed substantially parallel to the central axis of the housing 40. Furthermore, a part of the shaft 30 protrudes outward from the shaft hole 41c of the front housing 41 and is connected to a pulley. Thereby, the rotational driving force output from the engine is transmitted to the shaft 30 via the pulley.
  • an electromagnetic clutch for intermittently connecting the pulley and the shaft 30 may be interposed at the connecting portion between the pulley and the shaft 30.
  • the remaining part of the shaft 30 is arranged so as to penetrate the inside of the control pressure chamber 41a, and the lug plate 22 extending in the radial direction is fixed to the part accommodated in the control pressure chamber 41a. Therefore, the lug plate 22 rotates with the shaft 30. Furthermore, the link part 23 is provided in the outer peripheral side of the lug plate 22, The swash plate 24 is connected with this link part 23 so that the inclination angle with respect to the central axis of the shaft 30 can be changed.
  • a plurality of pistons 26 that reciprocate in parallel with the central axis of the shaft 30 are connected to the swash plate 24 via a shoe 25 that is a spherical bearing.
  • the plurality of pistons 26 reciprocate inside the plurality of cylinders 21 formed in the middle housing 42 in conjunction with the rotation of the swash plate 24. Thereby, the refrigerant is sucked into the compression chamber surrounded by the end face of the piston 26 and the inner wall of the cylinder 21, and the sucked refrigerant is compressed.
  • the stroke of the reciprocating motion of the piston 26 can be changed by changing the inclination angle of the swash plate 24.
  • the discharge capacity can be changed by changing the stroke amount.
  • the discharge capacity is the geometric volume of the compression chamber, that is, the cylinder volume between the top dead center and the bottom dead center of the piston stroke.
  • the inclination angle of the swash plate 24 includes the pressure acting on the front and rear of the piston 26, the refrigerant pressure Pc in the space in which the swash plate and the like in the housing 40 are accommodated (that is, the control pressure chamber 41a in the front housing 41), and the compression chamber. Can be changed according to a balance with the pressure (refrigerant discharge pressure Pd and refrigerant suction pressure Ps).
  • the refrigerant pressure Pc in the control pressure chamber 41a adjusts the valve opening degree of the electromagnetic capacity control valve 27 attached to the rear housing 43, and the refrigerant discharge pressure Pd and the suction pressure Pd introduced into the control pressure chamber 41a. This is done by changing the introduction ratio.
  • the opening degree of the electromagnetic capacity control valve 27 is controlled by a control current output from an air conditioning control device (not shown).
  • a plurality of cylinders 21 are formed in the middle housing 42 of the present embodiment, and the same number of pistons 26 as the cylinders 21 are connected to the swash plate 24.
  • FIG. 1 for clarity of illustration, a pair of cylinders 21 and pistons 26 is illustrated, and the remaining cylinders 21 and pistons 26 are not illustrated.
  • the shaft seal device 50 includes an annular rotary ring 51 fixed to the outer peripheral side of the shaft 30, an annular fixed ring 52 fixed around the shaft hole 41 c of the front housing 41, and the front housing 41. It is configured to have a lip seal 53 or the like that is fixed to the inner peripheral side (housing side member) of the boss portion 41b and arranged so as to be in contact with the outer peripheral surface (rotary shaft side member) of the shaft 30.
  • Rotating ring 51 is formed of an annular member made of silicon carbide (silicon carbide).
  • the outer peripheral side of the rotating ring 51 is supported by a guide member 55 formed of an annular metal member.
  • the guide member 55 is fixed to the shaft 30 and restricts the displacement of the rotating ring 51 in the rotation direction.
  • a spring 55 a that is an elastic member is disposed between the guide member 55 and the rotating ring 51.
  • the spring 55a applies a load that biases the rotating ring 51 toward one end side in the axial direction of the shaft 30 (the end portion side on the shaft hole 31 side).
  • an O-ring 51 a as a seal member is disposed between the inner peripheral surface of the rotary ring 51 and the outer peripheral surface of the shaft 30, and the inner peripheral surface of the rotary ring 51 and the outer peripheral surface of the shaft 30 are arranged. There is no leakage of refrigerant.
  • the fixed ring 52 is formed of an annular member made of silicon carbide similarly to the rotating ring 51.
  • the stationary ring 52 is disposed on one axial end side of the shaft 30 with respect to the rotating ring 51 and is disposed so as to be in surface contact with the rotating ring 51.
  • the rotating ring 51 when the shaft 30 is assembled to the housing 40 and inserted into the shaft hole 41c, the rotating ring 51 receives a load from the spring 55a, thereby reliably bringing the rotating ring 51 and the stationary ring 52 into surface contact. Can do. At this time, a contact surface (seal surface) between the rotating ring 51 and the stationary ring 52 is formed in an annular shape around the shaft 30.
  • an O-ring 52 a as a seal member is disposed between the outer peripheral surface of the fixed ring 52 and the inner peripheral surface of the boss portion 41 b of the housing 40, and the outer peripheral surface of the fixed ring 52 and the boss of the housing 40 are disposed. The refrigerant does not leak from the space between the inner peripheral surface of the portion 41b.
  • the guide member 55, the spring 55 a, the rotating ring 51, the lug plate 22, and the like of this embodiment rotate integrally with the shaft 30. Therefore, the shaft 30, the guide member 55, the rotating ring 51, and the like constitute a rotating shaft side member described in the claims.
  • the housing 40, the stationary ring 52, and the like constitute a housing side member described in the claims.
  • the lip seal 53 is made of rubber having excellent heat resistance (specifically, HNBR: hydrogenated nitrile rubber). Further, the lip seal 53 is disposed on one end side in the axial direction of the shaft 30 with respect to the fixed ring 52 in a state of being integrated with the annular metal protection member 53a.
  • HNBR hydrogenated nitrile rubber
  • the lip seal 53 is disposed downstream of the contact surface between the rotating ring 51 and the stationary ring 52 in the refrigerant leakage direction.
  • the lip seal 53 is disposed on the outer side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52. As shown in FIG. 2, the lip seal 53 extends beyond the contact surface between the rotating ring 51 and the fixed ring 52 to the outside of the diameter of the rotating shaft 30.
  • the protective member 53a has a disk-shaped part 53b that spreads in the radial direction of the shaft 30, and a cylindrical part 53c provided on the outer peripheral side of the disk-shaped part. And the axial direction both ends of the cylindrical part 53c are sandwiched between the annular projecting part 41d formed on the inner peripheral side of the boss part 41b and the surface of one end side in the axial direction of the stationary ring 52, The lip seal 53 and the protective member 53a are fixed inside the boss portion 41b.
  • the lip seal 53 is slightly crushed in the axial direction by the fixed ring 52, but the deformation amount is restricted by the cylindrical portion 53c. As a result, leakage from the gap between the lip seal 53 and the stationary ring 52 is suppressed, and unnecessary deformation of the lip seal 53 can be suppressed to protect the lip seal 53. Furthermore, since the disk-shaped part 53b is provided in the protection member 53a, it is possible to suppress the lip seal 53 from being bent to the outside of the housing 40.
  • the tip portion on the inner peripheral side of the lip seal 53 is inclined so as to gradually approach the shaft 30 toward the inner side of the housing 40 in the axial section.
  • the tip of the lip seal 53 is pressed against the outer peripheral surface of the shaft 30 by the pressure of the refrigerant, and the leakage from the gap between the lip seal 53 and the shaft 30 is suppressed. It is possible to improve the sealing performance.
  • a bimetal 54 is integrally formed in the lip seal 53 of this embodiment by insert molding.
  • the bimetal 54 is a laminate of two types of metal plates having different coefficients of thermal expansion, and changes to a specific shape according to a temperature change.
  • the inner peripheral side of the lip seal 53 comes into contact with the shaft 30, as shown in FIG.
  • a shape is adopted in which the inner peripheral side of the lip seal 53 is deformed into a shape that does not contact the shaft 30, that is, a non-contact shape.
  • the bimetal 54 of the present embodiment constitutes an example of a deformed portion of the present application.
  • FIG. 2 also shows a state where the temperature of the bimetal 54 itself has not risen, as in FIG.
  • the compressor 10 mounted on the vehicle when the temperature of the bimetal 54 itself becomes at least 50 ° C. or more, the inner peripheral side of the lip seal 53 is deformed into a shape that does not contact the shaft 30. It is desirable to adopt one.
  • the shaft 30 rotates by transmitting the rotational driving force output from the engine. Then, when the rotational driving force is transmitted from the shaft 30 to the compression mechanism unit 20, the compression mechanism unit 20 compresses and discharges the refrigerant.
  • the shaft seal device 50 of the present embodiment since the rotary ring 51 and the fixed ring 52 are in surface contact with each other at the contact surface formed in an annular shape, the inside of the housing 40 is similar to a so-called mechanical seal.
  • the refrigerant can be prevented from leaking outside.
  • the refrigeration oil is mixed in the refrigerant of the refrigeration cycle apparatus of the present embodiment, the refrigeration oil can flow into the gap between the rotating ring 51 and the stationary ring 52.
  • the clearance gap between the rotating ring 51 and the stationary ring 52 can be filled with highly viscous refrigerating machine oil, and the sealing performance of the shaft seal device 50 can be improved effectively.
  • the temperature of the refrigerant and the compressor 10 rises due to a temperature rise due to adiabatic compression of the refrigerant, friction of a sliding portion in the compressor 10, and the like.
  • this temperature rise is transmitted to the bimetal 54 via the contact portion between the refrigerant and the bimetal 54.
  • the lip seal 53 is deformed into a shape that does not come into contact with the shaft 30 due to deformation accompanying the temperature rise of the bimetal 54.
  • the refrigerating machine oil may not be able to fill the gap between the rotating ring 51 and the stationary ring 52, and the sealing performance of the gap between the rotating ring 51 and the stationary ring 52 may not be improved.
  • the shaft seal device 50 of the present embodiment when the rotation of the shaft 30 is stopped and the compressor 10 is stopped, the temperature of the bimetal 53 is lowered. The shape is deformed to contact the shaft 30. Therefore, when the operation of the compressor 10 is stopped, the lip seal 53 can prevent the refrigerant in the housing 40 from leaking outside.
  • the shaft seal device 50 of the present embodiment high sealing performance can be exhibited regardless of the operating state of the compressor 10 (rotation state of the shaft 30), and wear and damage of the lip seal 53 are suppressed.
  • a highly durable shaft seal device can be provided.
  • the lip seal 53 and the protective member 53a are arranged outside the housing 40 rather than the contact surface between the rotating ring 51 and the fixed ring 52. It is easy to adopt a configuration in which the inner peripheral side is in direct contact with the shaft 30. Therefore, the lip seal 53, the protection member 53 a, and the bimetal 54 can be prevented from being enlarged, and the shape can be easily assembled in the housing 40.
  • the bimetal 54 and the lip seal 53 are integrally formed by insert molding. Accordingly, it is possible to easily realize a deformed portion that deforms the lip seal 53 from a shape that contacts the shaft 30 to a shape that does not contact the shaft 30 as the temperature rises.
  • the refrigerating machine oil can improve the sealing performance of the gap between the rotating ring 51 and the stationary ring 52, and when the compressor 10 is stopped, the lip seal 53 It is extremely effective that the refrigerant in the housing 40 can be prevented from leaking outside.
  • FIG. 5 is a drawing corresponding to FIG. 2 described in the first embodiment, and the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • the lip seal 53 and the bimetal 54 of the present embodiment are integrated by insert molding as in the first embodiment. Further, as shown in FIG. 5, the lip seal 53 is fixed to a portion closer to the control pressure chamber side than the boss portion 41 d in the housing 40, and the inner peripheral side thereof is disposed so as to be in contact with the outer peripheral surface of the shaft 30. ing.
  • the lip seal 53 of the present embodiment is arranged upstream of the contact surface between the rotating ring 51 and the stationary ring 52 in the refrigerant leakage direction.
  • the lip seal 53 is disposed on the inner side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52.
  • the lip seal 53 is disposed on the inner side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52. Accordingly, when the rotation of the shaft 30 is stopped and the lip seal 53 is deformed into a shape in contact with the shaft 30, the seal portion between the lip seal 53 and the shaft 30 reaches the seal portion between the rotating ring 51 and the fixed ring 52. The refrigerant pressure in the range is unlikely to rise.
  • FIG. 6 is a drawing corresponding to FIG. 2 described in the first embodiment.
  • the lip seal 53 and the bimetal 54 of the present embodiment are integrated by insert molding as in the first embodiment. Further, as shown in FIG. 6, the lip seal 53 is fixed to the rotary ring 51 (rotary shaft side member), and the outer peripheral side thereof is disposed so as to be able to contact the fixed ring 52 (housing side member).
  • FIG. 7 is a drawing corresponding to FIG. 3 described in the first embodiment.
  • locking portions 53b and 53c for locking the bimetal 54 at the outer peripheral end and the inner peripheral end are formed.
  • the bimetal 54 and the lip seal 53 are integrally deformed. That is, with the deformation of the bimetal 54, the lip seal 53 is similarly deformed.
  • the compression mechanism unit 20 is not limited thereto.
  • any compression mechanism that compresses fluid by transmitting a rotational driving force from the shaft 30 such as a scroll-type compression mechanism, a vane-type compression mechanism, or a rolling piston-type compression mechanism can be widely used.
  • the deforming portion is not limited to this.
  • the deforming portion is formed by joining two types of resin plates having different thermal expansion coefficients. Alternatively, it may be formed by bonding resins and metals having different thermal expansion coefficients.
  • the example in which the rotating ring 51 and the stationary ring 52 formed of silicon carbide are used has been described.
  • the material of the rotating ring 51 and the stationary ring 52 is not limited thereto.
  • it may be formed of carbon fiber or a carbon fiber reinforced composite material.
  • the above-mentioned embodiment demonstrated the example which employ
  • the example in which the shaft seal device 50 according to the present disclosure is applied to the compressor 10 of the refrigeration cycle device that employs carbon dioxide as a refrigerant has been described. It is not limited.
  • the present invention may be applied to a compressor of a refrigeration cycle apparatus constituting a subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side does not exceed the critical pressure of the refrigerant, or can be applied to compressors for a wide variety of other uses.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressor (AREA)
  • Sealing With Elastic Sealing Lips (AREA)
  • Mechanical Sealing (AREA)
  • Sealing Devices (AREA)

Abstract

A shaft-sealing device is provided with: a rotating ring (51) fixed to the outer circumference of a shaft (30); a fixed ring (52) fixed on the circumference of a shaft hole (41c) of a housing (40) and in surface contact with the rotating ring (51); a lip seal (53), the outer circumference of which is fixed to the housing (40) and the inner circumference of which contacts the shaft (30); and a bimetal (54) for changing the lip seal (53) from a shape that contacts the shaft (30) to a shape that does not contact same as temperature increases. As a result, when a compressor (10) is stopped and the bimetal (54) has a low temperature, sealing is improved by bringing the lip seal (53) into contact with the shaft (30) and when the compressor (10) is operating and the bimetal has a high temperature, the lip seal (53) is protected by keeping the lip seal (53) from contacting the shaft (30).

Description

軸封装置Shaft seal device 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2015年2月17日に出願された日本特許出願2015-028747号を基にしている。 This application is based on Japanese Patent Application No. 2015-028747 filed on Feb. 17, 2015, the disclosure of which is incorporated into this application by reference.
 本開示は、流体を圧縮する圧縮機に適用される軸封装置に関する。 The present disclosure relates to a shaft seal device applied to a compressor that compresses a fluid.
 従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置にて冷媒である二酸化炭素を圧縮する圧縮機に適用された軸封装置が開示されている。 Conventionally, Patent Document 1 discloses a shaft seal device applied to a compressor that compresses carbon dioxide as a refrigerant in a vapor compression refrigeration cycle apparatus.
 この特許文献1の軸封装置は、圧縮機の回転軸に固定された回転環と、圧縮機のハウジングに設けられた軸孔の周囲に固定された固定環とを備えており、回転環と固定環とを面接触させることによって、ハウジング内の冷媒が回転環と固定環との隙間を介して外部へ漏れ出てしまうことを抑制している。 The shaft seal device of Patent Document 1 includes a rotary ring fixed to a rotary shaft of a compressor, and a fixed ring fixed around a shaft hole provided in a housing of the compressor. By bringing the stationary ring into surface contact, the refrigerant in the housing is prevented from leaking outside through the gap between the rotating ring and the stationary ring.
 さらに、冷凍サイクル装置の圧縮機に適用される軸封装置では、圧縮機の作動時に、冷媒とともに冷凍サイクル装置内に封入されている冷凍機油を、回転環と固定環との隙間へ流入させることができる。これにより、粘性の高い冷凍機油によって隙間を埋めて、軸封装置のシール性を向上させることができる。 Furthermore, in the shaft seal device applied to the compressor of the refrigeration cycle apparatus, when the compressor is operated, the refrigeration oil enclosed in the refrigeration cycle apparatus together with the refrigerant is caused to flow into the gap between the rotating ring and the stationary ring. Can do. Thereby, a clearance gap can be filled up with highly viscous refrigerating machine oil, and the sealing performance of a shaft seal apparatus can be improved.
 ここで、特許文献1のように、冷媒として二酸化炭素を採用し、サイクルの高圧側冷媒の圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成する冷凍サイクル装置では、圧縮機のハウジング内の冷媒圧とハウジング外の大気圧との圧力差が比較的大きくなる。このため、上述した冷凍機油による軸封装置のシール性の向上は有効である。 Here, as in Patent Document 1, in a refrigeration cycle apparatus that constitutes a supercritical refrigeration cycle that employs carbon dioxide as a refrigerant and the pressure of the high-pressure side refrigerant of the cycle is equal to or higher than the critical pressure of the refrigerant, The pressure difference between the refrigerant pressure and the atmospheric pressure outside the housing becomes relatively large. For this reason, the improvement of the sealing performance of the shaft seal device by the refrigerating machine oil described above is effective.
特開2007-9886号公報Japanese Patent Laid-Open No. 2007-9886
 ところが、発明者らの検討によると、冷凍サイクル装置の圧縮機では、長時間の作動停止時等にハウジング内に液相冷媒が溜まってしまう、いわゆる「冷媒の寝込み現象」が生じてしまう。このような現象が生じると、液相冷媒に相溶性を有する冷凍機油が希釈されてしまうので、冷凍機油の粘性が著しく低下してしまう。その結果、冷凍機油が回転環と固定環との隙間を埋めることができなくなり、隙間のシール性を向上させることができなくなってしまう。 However, according to the study by the inventors, in the compressor of the refrigeration cycle apparatus, a so-called “refrigerant stagnation phenomenon” occurs in which liquid refrigerant accumulates in the housing when the operation is stopped for a long time. When such a phenomenon occurs, the refrigerating machine oil having compatibility with the liquid phase refrigerant is diluted, so that the viscosity of the refrigerating machine oil is significantly reduced. As a result, the refrigerating machine oil cannot fill the gap between the rotating ring and the stationary ring, and the sealing performance of the gap cannot be improved.
 これに対して、軸封装置に加えて、例えば、ハウジングにゴム等で形成された円環状のリップシールの外周側を固定し、このリップシールの内周側を回転軸の周囲に接触させることで、シール性を向上させる手段が考えられる。しかしながら、リップシールは、回転軸が回転すると摩耗や損傷が生じやすい。このため、リップシールを追加する場合、長期間に亘ってシール性を維持することが難しいおそれがある。 On the other hand, in addition to the shaft seal device, for example, the outer peripheral side of an annular lip seal formed of rubber or the like is fixed to the housing, and the inner peripheral side of the lip seal is brought into contact with the periphery of the rotating shaft. Thus, a means for improving the sealing performance can be considered. However, the lip seal is likely to be worn or damaged when the rotating shaft rotates. For this reason, when adding a lip seal, there exists a possibility that it may be difficult to maintain a sealing performance over a long period of time.
 本開示は、上記点に鑑み、圧縮機の回転軸の回転状態によらず高いシール性を発揮しつつ、耐久性の高い軸封装置を提供することを目的とする。 本開示の一つの特徴例による軸封装置は、内部に回転軸の一部が収容される空間を形成するハウジングを有する圧縮機に適用されて、ハウジングに設けられた軸孔と回転軸との隙間からハウジング内の圧縮対象流体が漏れ出ることを抑制できる。前記軸封装置は、回転軸の外周側に固定された環状の回転環と、ハウジングの軸孔の周囲に固定されて、回転軸が軸孔に挿入された際に回転環に面接触する環状の固定環と、回転軸とこれに固定された部材とを回転軸側部材と定義し、ハウジングとこれに固定された部材とをハウジング側部材と定義したときに、回転軸側部材およびハウジング側部材のいずれか一方に固定されて、他方に接触可能に配置された環状のリップシールと、温度上昇に伴ってリップシールをハウジング側部材および回転軸側部材の他方に接触する形状から非接触となる形状に変形させる変形部と、を備えることを特徴とする。 In view of the above points, it is an object of the present disclosure to provide a highly durable shaft seal device that exhibits high sealing performance regardless of the rotation state of the rotation shaft of the compressor. A shaft seal device according to a feature example of the present disclosure is applied to a compressor having a housing that forms a space in which a part of a rotating shaft is accommodated, and includes a shaft hole provided in the housing and a rotating shaft. It is possible to suppress leakage of the fluid to be compressed in the housing from the gap. The shaft sealing device includes an annular rotating ring fixed to the outer peripheral side of the rotating shaft and an annular ring fixed to the periphery of the shaft hole of the housing and in surface contact with the rotating ring when the rotating shaft is inserted into the shaft hole. When the fixed ring, the rotation shaft and the member fixed thereto are defined as the rotation shaft side member, and the housing and the member fixed thereto are defined as the housing side member, the rotation shaft side member and the housing side An annular lip seal fixed to one of the members and arranged so as to be in contact with the other, and a shape in which the lip seal is brought into contact with the other of the housing side member and the rotary shaft side member as the temperature rises. And a deforming portion that is deformed into a shape.
 これによれば、回転軸が回転している圧縮機の作動時には、回転環と固定環が面接触しているので、いわゆるメカニカルシールと同様に、ハウジング内の圧縮対象流体が外部へ漏れ出てしまうことを抑制することができる。 According to this, since the rotating ring and the stationary ring are in surface contact with each other during the operation of the compressor whose rotating shaft is rotating, the fluid to be compressed in the housing leaks to the outside like a so-called mechanical seal. Can be suppressed.
 この際、圧縮機が作動して変形部の温度が高温になると、変形部の作用によって、リップシールが回転軸側部材あるいはハウジング側部材に非接触となる形状に変化する。従って、回転軸が回転していても、リップシールに摩耗や損傷が生じてしまうことを抑制することができる。 At this time, when the compressor is activated and the temperature of the deformed portion becomes high, the shape of the lip seal changes to a non-contact state with the rotating shaft side member or the housing side member due to the action of the deformed portion. Therefore, even if the rotating shaft rotates, it is possible to suppress the lip seal from being worn or damaged.
 一方、回転軸が停止している圧縮機の停止時には、変形部の温度が低下するので、変形部の作用によって、リップシールが回転軸側部材あるいはハウジング側部材に接触する形状に変形する。 On the other hand, when the compressor whose rotating shaft is stopped is stopped, the temperature of the deforming portion is lowered, so that the lip seal is deformed into a shape in contact with the rotating shaft side member or the housing side member by the action of the deforming portion.
 従って、回転軸が停止している際に、回転環と固定環との隙間のシール性が低下しやすくなる圧縮機に適用された場合であっても、リップシールによって、ハウジング内の圧縮対象流体が外部へ漏れ出てしまうことを抑制することができる。 Therefore, even when applied to a compressor in which the sealing performance of the gap between the rotating ring and the stationary ring is likely to be lowered when the rotating shaft is stopped, the lip seal causes the fluid to be compressed in the housing. Can be prevented from leaking outside.
 よって、圧縮機の回転軸の回転状態によらず高いシール性を発揮することができるとともに、リップシールの摩耗や損傷を抑制可能な耐久性の高い軸封装置を提供することができる。 Therefore, it is possible to provide a highly durable shaft seal device that can exhibit high sealing performance regardless of the rotation state of the rotary shaft of the compressor and can suppress wear and damage of the lip seal.
 例えば、回転軸側部材は、回転軸、回転環等が該当し、ハウジング側部材は、ハウジング、固定環等が該当する。 For example, the rotating shaft side member corresponds to a rotating shaft, a rotating ring, and the like, and the housing side member corresponds to a housing, a fixed ring, and the like.
第1実施形態の圧縮機の軸方向断面図である。It is an axial sectional view of the compressor of a 1st embodiment. 図1のII部の拡大断面図である。It is an expanded sectional view of the II section of FIG. 図2のIII部の拡大断面図であって、第1実施形態の圧縮機の作動時におけるリップシールの形状を示す模式的な拡大断面図である。It is an expanded sectional view of the III section of Drawing 2, Comprising: It is a typical expanded sectional view showing the shape of a lip seal at the time of operation of the compressor of a 1st embodiment. 図2のIII部の拡大断面図であって、第1実施形態の圧縮機の停止時におけるリップシールの形状を示す模式的な拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a part III in FIG. 2, and is a schematic enlarged cross-sectional view showing a shape of a lip seal when the compressor of the first embodiment is stopped. 第2実施形態の図2に対応する拡大断面図である。It is an expanded sectional view corresponding to Drawing 2 of a 2nd embodiment. 第3実施形態の図2に対応する拡大断面図である。It is an expanded sectional view corresponding to Drawing 2 of a 3rd embodiment. 第4実施形態のリップシールの模式的な拡大断面図である。It is a typical expanded sectional view of the lip seal of 4th Embodiment.
 (第1実施形態)
 図1~図4により、本開示の第1実施形態について説明する。本実施形態の軸封装置50は、蒸気圧縮式の冷凍サイクル装置にて圧縮対象流体である冷媒を圧縮して吐出する圧縮機10に適用されている。本実施形態の冷凍サイクル装置は、車両用空調装置に適用されて、車室内へ送風される送風空気を冷却する機能を果たす。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. The shaft seal device 50 of the present embodiment is applied to a compressor 10 that compresses and discharges a refrigerant that is a compression target fluid in a vapor compression refrigeration cycle apparatus. The refrigeration cycle apparatus of the present embodiment is applied to a vehicle air conditioner, and fulfills a function of cooling blown air blown into the vehicle interior.
 また、この冷凍サイクル装置では、冷媒として二酸化炭素を採用しており、サイクルの高圧側の冷媒圧力が冷媒の臨界圧力以上となる、いわゆる超臨界冷凍サイクルを構成している。さらに、冷媒には圧縮機10の摺動部を潤滑するための冷凍機油が混入されており、冷凍機油の少なくとも一部は冷媒とともにサイクルを循環している。この冷凍機油としては、液相冷媒に相溶性を有するものが採用されている。 Also, this refrigeration cycle apparatus employs carbon dioxide as a refrigerant, and constitutes a so-called supercritical refrigeration cycle in which the refrigerant pressure on the high pressure side of the cycle is equal to or higher than the critical pressure of the refrigerant. Furthermore, refrigeration oil for lubricating the sliding part of the compressor 10 is mixed in the refrigerant, and at least a part of the refrigeration oil circulates in the cycle together with the refrigerant. As this refrigeration oil, what has compatibility with a liquid phase refrigerant is adopted.
 次に、圧縮機10について説明する。圧縮機10は、図1に示すように、斜板式の可変容量型の圧縮機として構成されている。圧縮機10は、冷媒を圧縮して吐出する圧縮機構部20、圧縮機構部20にエンジンから出力された回転駆動力を伝達する回転軸であるシャフト30、並びに、内部に圧縮機構部20およびシャフト30の一部等を収容する空間を形成するハウジング40等を有している。 Next, the compressor 10 will be described. As shown in FIG. 1, the compressor 10 is configured as a swash plate type variable displacement compressor. The compressor 10 includes a compression mechanism unit 20 that compresses and discharges a refrigerant, a shaft 30 that is a rotation shaft that transmits a rotational driving force output from the engine to the compression mechanism unit 20, and a compression mechanism unit 20 and a shaft therein. And a housing 40 that forms a space for accommodating a part of the housing 30 and the like.
 より具体的には、本実施形態のハウジング40は、フロントハウジング41、ミドルハウジング42、リアハウジング43等の複数の構成部材を組み合わせることによって、有底円筒状に形成されている。 More specifically, the housing 40 of this embodiment is formed in a bottomed cylindrical shape by combining a plurality of constituent members such as a front housing 41, a middle housing 42, a rear housing 43, and the like.
 フロントハウジング41は、カップ状の金属部材で形成されており、内部に制御圧室41aを形成するものである。リアハウジング43は、カップ状の金属部材で形成されており、内部に圧縮機構部20から吐出された冷媒を流入させる吐出室43a等を形成するものである。ミドルハウジング42は、フロントハウジング41とリアハウジング43との間に、フロントハウジング41およびリアハウジング43の双方の開口部を閉塞するように配置されており、圧縮機構部20のシリンダ21を形成するものである。 The front housing 41 is formed of a cup-shaped metal member and forms a control pressure chamber 41a therein. The rear housing 43 is formed of a cup-shaped metal member, and forms a discharge chamber 43a and the like into which the refrigerant discharged from the compression mechanism unit 20 flows. The middle housing 42 is arranged between the front housing 41 and the rear housing 43 so as to close both openings of the front housing 41 and the rear housing 43, and forms the cylinder 21 of the compression mechanism section 20. It is.
 フロントハウジング41の底面の中央部には、中心軸方向に突出する円筒状のボス部41bが形成されている。ボス部41bの外周面には、ベアリング等の軸受部材を介して、図示しないプーリが回転自在に取り付けられている。プーリには、ベルトを介して、エンジンから出力された回転駆動力が伝達される。 At the center of the bottom surface of the front housing 41, a cylindrical boss 41b protruding in the central axis direction is formed. A pulley (not shown) is rotatably attached to the outer peripheral surface of the boss portion 41b via a bearing member such as a bearing. A rotational driving force output from the engine is transmitted to the pulley via the belt.
 さらに、フロントハウジング41の底面に形成されたボス部41bの中心部には、フロントハウジング41の内外を貫通する軸孔41cが形成されている。軸孔41cには、シャフト30が挿入されている。 Furthermore, a shaft hole 41c that penetrates the inside and outside of the front housing 41 is formed at the center of the boss 41b formed on the bottom surface of the front housing 41. The shaft 30 is inserted into the shaft hole 41c.
 シャフト30は、金属製の略円柱状部材で形成されており、その中心軸がハウジング40の中心軸と略平行に配置されている。さらに、シャフト30の一部は、フロントハウジング41の軸孔41cから外部へ向かって突出し、プーリに連結されている。これにより、エンジンから出力された回転駆動力が、プーリを介してシャフト30に伝達される。もちろん、プーリとシャフト30との連結部に、プーリとシャフト30とを断続させる電磁クラッチを介在させてもよい。 The shaft 30 is formed of a substantially cylindrical member made of metal, and the central axis thereof is disposed substantially parallel to the central axis of the housing 40. Furthermore, a part of the shaft 30 protrudes outward from the shaft hole 41c of the front housing 41 and is connected to a pulley. Thereby, the rotational driving force output from the engine is transmitted to the shaft 30 via the pulley. Of course, an electromagnetic clutch for intermittently connecting the pulley and the shaft 30 may be interposed at the connecting portion between the pulley and the shaft 30.
 シャフト30の残余の部位は、制御圧室41a内を貫通するように配置されており、制御圧室41a内に収容された部位には、径方向に広がるラグプレート22が固定されている。従って、ラグプレート22は、シャフト30とともに回転する。さらに、ラグプレート22の外周側には、リンク部23が設けられており、このリンク部23には、シャフト30の中心軸に対する傾斜角度を変更可能に斜板24が連結されている。 The remaining part of the shaft 30 is arranged so as to penetrate the inside of the control pressure chamber 41a, and the lug plate 22 extending in the radial direction is fixed to the part accommodated in the control pressure chamber 41a. Therefore, the lug plate 22 rotates with the shaft 30. Furthermore, the link part 23 is provided in the outer peripheral side of the lug plate 22, The swash plate 24 is connected with this link part 23 so that the inclination angle with respect to the central axis of the shaft 30 can be changed.
 斜板24には、球面軸受であるシュー25を介して、シャフト30の中心軸に対して平行に往復運動する複数のピストン26が連結されている。そして、この複数のピストン26が、斜板24の回転に連動して、それぞれミドルハウジング42に形成された複数のシリンダ21の内部を往復運動する。これにより、ピストン26の端面とシリンダ21の内壁によって囲まれた圧縮室内へ冷媒を吸入し、吸入された冷媒を圧縮する。 A plurality of pistons 26 that reciprocate in parallel with the central axis of the shaft 30 are connected to the swash plate 24 via a shoe 25 that is a spherical bearing. The plurality of pistons 26 reciprocate inside the plurality of cylinders 21 formed in the middle housing 42 in conjunction with the rotation of the swash plate 24. Thereby, the refrigerant is sucked into the compression chamber surrounded by the end face of the piston 26 and the inner wall of the cylinder 21, and the sucked refrigerant is compressed.
 また、本実施形態の圧縮機構部20では、斜板24の傾斜角度を変化させることによって、ピストン26の往復運動のストロークを変化させることができる。そして、このストローク量の変化によって、吐出容量を変化させることができる。なお、吐出容量とは、圧縮室の幾何学的な容積、すなわちピストンストロークの上死点と下死点との間のシリンダ容積である。 Further, in the compression mechanism unit 20 of the present embodiment, the stroke of the reciprocating motion of the piston 26 can be changed by changing the inclination angle of the swash plate 24. The discharge capacity can be changed by changing the stroke amount. The discharge capacity is the geometric volume of the compression chamber, that is, the cylinder volume between the top dead center and the bottom dead center of the piston stroke.
 斜板24の傾斜角度は、ピストン26の前後に作用する圧力、ハウジング40内の斜板等が収容される空間(すなわち、フロントハウジング41内の制御圧室41a)の冷媒圧力Pcと、圧縮室内の圧力(冷媒吐出圧Pdおよび冷媒吸入圧Ps)との釣り合いによって変化させることができる。 The inclination angle of the swash plate 24 includes the pressure acting on the front and rear of the piston 26, the refrigerant pressure Pc in the space in which the swash plate and the like in the housing 40 are accommodated (that is, the control pressure chamber 41a in the front housing 41), and the compression chamber. Can be changed according to a balance with the pressure (refrigerant discharge pressure Pd and refrigerant suction pressure Ps).
 さらに、制御圧室41aの冷媒圧力Pcは、リアハウジング43に取り付けられた電磁式容量制御弁27の弁開度を調整して、制御圧室41aへ導入される冷媒吐出圧Pdと吸入圧Pdの導入割合を変化させることによって行われる。なお、電磁式容量制御弁27の弁開度は、図示しない空調制御装置から出力される制御電流によって制御される。 Further, the refrigerant pressure Pc in the control pressure chamber 41a adjusts the valve opening degree of the electromagnetic capacity control valve 27 attached to the rear housing 43, and the refrigerant discharge pressure Pd and the suction pressure Pd introduced into the control pressure chamber 41a. This is done by changing the introduction ratio. The opening degree of the electromagnetic capacity control valve 27 is controlled by a control current output from an air conditioning control device (not shown).
 ここで、前述の如く、本実施形態のミドルハウジング42には、複数のシリンダ21が形成され、斜板24にはシリンダ21と同数のピストン26が連結されている。これに対して、図1では、図示の明確化のため、一組のシリンダ21およびピストン26を図示しており、残りのシリンダ21およびピストン26の図示を省略している。 Here, as described above, a plurality of cylinders 21 are formed in the middle housing 42 of the present embodiment, and the same number of pistons 26 as the cylinders 21 are connected to the swash plate 24. On the other hand, in FIG. 1, for clarity of illustration, a pair of cylinders 21 and pistons 26 is illustrated, and the remaining cylinders 21 and pistons 26 are not illustrated.
 次に、図2を用いて、ハウジング40に設けられた軸孔41cとシャフト30との隙間からハウジング40内(具体的には、制御圧室41a内)の冷媒が漏れ出ることを抑制する軸封装置50について説明する。 Next, referring to FIG. 2, a shaft that suppresses leakage of refrigerant in the housing 40 (specifically, in the control pressure chamber 41 a) from the gap between the shaft hole 41 c provided in the housing 40 and the shaft 30. The sealing device 50 will be described.
 本実施形態の軸封装置50は、シャフト30の外周側に固定された円環状の回転環51、フロントハウジング41の軸孔41cの周囲に固定された円環状の固定環52、フロントハウジング41のボス部41bの内周側(ハウジング側部材)に固定されて、シャフト30の外周面(回転軸側部材)に接触可能に配置されたリップシール53等を有して構成されている。 The shaft seal device 50 according to the present embodiment includes an annular rotary ring 51 fixed to the outer peripheral side of the shaft 30, an annular fixed ring 52 fixed around the shaft hole 41 c of the front housing 41, and the front housing 41. It is configured to have a lip seal 53 or the like that is fixed to the inner peripheral side (housing side member) of the boss portion 41b and arranged so as to be in contact with the outer peripheral surface (rotary shaft side member) of the shaft 30.
 回転環51は、炭化ケイ素(シリコンカーバイド)製の円環状部材で形成されている。回転環51の外周側は、環状の金属製部材で形成されたガイド部材55によって支持されている。ガイド部材55は、シャフト30に固定されており、回転環51の回転方向の変位を規制している。 Rotating ring 51 is formed of an annular member made of silicon carbide (silicon carbide). The outer peripheral side of the rotating ring 51 is supported by a guide member 55 formed of an annular metal member. The guide member 55 is fixed to the shaft 30 and restricts the displacement of the rotating ring 51 in the rotation direction.
 ガイド部材55と回転環51との間には、弾性部材であるスプリング55aが配置されている。スプリング55aは、回転環51に対して、シャフト30の軸方向一端側(軸孔31側の端部側)へ付勢する荷重をかけている。また、回転環51の内周面とシャフト30の外周面との間には、シール部材としてのO-リング51aが配置されており、回転環51の内周面とシャフト30の外周面との間から冷媒が漏れることはない。 A spring 55 a that is an elastic member is disposed between the guide member 55 and the rotating ring 51. The spring 55a applies a load that biases the rotating ring 51 toward one end side in the axial direction of the shaft 30 (the end portion side on the shaft hole 31 side). Further, an O-ring 51 a as a seal member is disposed between the inner peripheral surface of the rotary ring 51 and the outer peripheral surface of the shaft 30, and the inner peripheral surface of the rotary ring 51 and the outer peripheral surface of the shaft 30 are arranged. There is no leakage of refrigerant.
 固定環52は、回転環51と同様に、炭化ケイ素製の円環状部材で形成されている。固定環52は、回転環51よりもシャフト30の軸方向一端側に配置されているとともに、回転環51と面接触するように配置されている。 The fixed ring 52 is formed of an annular member made of silicon carbide similarly to the rotating ring 51. The stationary ring 52 is disposed on one axial end side of the shaft 30 with respect to the rotating ring 51 and is disposed so as to be in surface contact with the rotating ring 51.
 本実施形態では、シャフト30がハウジング40に組み付けられて軸孔41cに挿入されると、回転環51がスプリング55aから荷重を受けることで、回転環51と固定環52を確実に面接触させることができる。この際、回転環51と固定環52との接触面(シール面)は、シャフト30の軸周りに環状に形成される。 In the present embodiment, when the shaft 30 is assembled to the housing 40 and inserted into the shaft hole 41c, the rotating ring 51 receives a load from the spring 55a, thereby reliably bringing the rotating ring 51 and the stationary ring 52 into surface contact. Can do. At this time, a contact surface (seal surface) between the rotating ring 51 and the stationary ring 52 is formed in an annular shape around the shaft 30.
 また、固定環52の外周面とハウジング40のボス部41bの内周面との間には、シール部材としてのO-リング52aが配置されており、固定環52の外周面とハウジング40のボス部41bの内周面との間から冷媒が漏れることはない。 Further, an O-ring 52 a as a seal member is disposed between the outer peripheral surface of the fixed ring 52 and the inner peripheral surface of the boss portion 41 b of the housing 40, and the outer peripheral surface of the fixed ring 52 and the boss of the housing 40 are disposed. The refrigerant does not leak from the space between the inner peripheral surface of the portion 41b.
 以上の説明から明らかなように、本実施形態のガイド部材55、スプリング55a、回転環51、ラグプレート22等は、シャフト30と一体となって回転する。従って、シャフト30、ガイド部材55、回転環51等は、特許請求の範囲に記載された回転軸側部材を構成している。一方、ハウジング40、固定環52等は、特許請求の範囲に記載されたハウジング側部材を構成している。 As is clear from the above description, the guide member 55, the spring 55 a, the rotating ring 51, the lug plate 22, and the like of this embodiment rotate integrally with the shaft 30. Therefore, the shaft 30, the guide member 55, the rotating ring 51, and the like constitute a rotating shaft side member described in the claims. On the other hand, the housing 40, the stationary ring 52, and the like constitute a housing side member described in the claims.
 次に、リップシール53について説明する。リップシール53は、耐熱性に優れるゴム(具体的には、HNBR:水素化ニトリルゴム)で形成されている。さらに、リップシール53は、円環状の金属製の保護部材53aと一体化された状態で、固定環52よりもシャフト30の軸方向一端側に配置されている。 Next, the lip seal 53 will be described. The lip seal 53 is made of rubber having excellent heat resistance (specifically, HNBR: hydrogenated nitrile rubber). Further, the lip seal 53 is disposed on one end side in the axial direction of the shaft 30 with respect to the fixed ring 52 in a state of being integrated with the annular metal protection member 53a.
 このため、リップシール53は、回転環51と固定環52との接触面よりも、冷媒の漏れ方向の下流側に配置されている。換言すると、リップシール53は、回転環51と固定環52との接触面よりも、ハウジング40の外部側に配置されている。図2のように、リップシール53は、回転環51と前記固定環52との接触面よりも、回転軸30の径外側に延伸されている。 For this reason, the lip seal 53 is disposed downstream of the contact surface between the rotating ring 51 and the stationary ring 52 in the refrigerant leakage direction. In other words, the lip seal 53 is disposed on the outer side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52. As shown in FIG. 2, the lip seal 53 extends beyond the contact surface between the rotating ring 51 and the fixed ring 52 to the outside of the diameter of the rotating shaft 30.
 保護部材53aは、シャフト30の径方向に広がる円板状部53b、および円板状部の外周側に設けられた筒状部53cを有している。そして、筒状部53cの軸方向両端部が、ボス部41bの内周側に形成された環状の突出部41dと固定環52の軸方向一端側の面との間に挟み混まれることによって、リップシール53および保護部材53aがボス部41bの内部に固定されている。 The protective member 53a has a disk-shaped part 53b that spreads in the radial direction of the shaft 30, and a cylindrical part 53c provided on the outer peripheral side of the disk-shaped part. And the axial direction both ends of the cylindrical part 53c are sandwiched between the annular projecting part 41d formed on the inner peripheral side of the boss part 41b and the surface of one end side in the axial direction of the stationary ring 52, The lip seal 53 and the protective member 53a are fixed inside the boss portion 41b.
 この際、リップシール53は固定環52によって僅かに軸方向に押しつぶされるものの、筒状部53cによって変形量が規制される。これにより、リップシール53と固定環52との隙間からの漏れが抑制されるとともに、リップシール53の不必要な変形を抑制して、リップシール53の保護を図ることができる。さらに、保護部材53aには、円板状部53bが設けられているので、リップシール53がハウジング40の外部側に折れ曲がってしまうことを抑制することができる。 At this time, the lip seal 53 is slightly crushed in the axial direction by the fixed ring 52, but the deformation amount is restricted by the cylindrical portion 53c. As a result, leakage from the gap between the lip seal 53 and the stationary ring 52 is suppressed, and unnecessary deformation of the lip seal 53 can be suppressed to protect the lip seal 53. Furthermore, since the disk-shaped part 53b is provided in the protection member 53a, it is possible to suppress the lip seal 53 from being bent to the outside of the housing 40.
 また、リップシール53の内周側の先端部は、図2に示すように、軸方向断面において、ハウジング40の内部側へ向かって徐々にシャフト30に近づくように傾斜している。これにより、ハウジング40の内部から冷媒が漏れた際に、冷媒の圧力によってリップシール53の先端部をシャフト30の外周面に押しつけ、リップシール53とシャフト30との隙間からの漏れを抑制するためのシール性を向上させることができる。 Further, as shown in FIG. 2, the tip portion on the inner peripheral side of the lip seal 53 is inclined so as to gradually approach the shaft 30 toward the inner side of the housing 40 in the axial section. Thus, when the refrigerant leaks from the inside of the housing 40, the tip of the lip seal 53 is pressed against the outer peripheral surface of the shaft 30 by the pressure of the refrigerant, and the leakage from the gap between the lip seal 53 and the shaft 30 is suppressed. It is possible to improve the sealing performance.
 さらに、本実施形態のリップシール53の内部には、インサート成形によって、バイメタル54が一体成形されている。バイメタル54は、熱膨張率が異なる2種類の金属の板を貼り合わせたもので、温度変化に応じて特有の形状に変化するものである。 Furthermore, a bimetal 54 is integrally formed in the lip seal 53 of this embodiment by insert molding. The bimetal 54 is a laminate of two types of metal plates having different coefficients of thermal expansion, and changes to a specific shape according to a temperature change.
 より詳細には、本実施形態では、バイメタル54として、バイメタル54自体の温度が上昇するに伴って、図3に示すように、リップシール53の内周側がシャフト30に接触する形状から、図4に示すように、リップシール53の内周側がシャフト30に接触しない形状、すなわち非接触となる形状に変形するものを採用している。 More specifically, in the present embodiment, as the bimetal 54 increases in temperature as the bimetal 54 itself increases, as shown in FIG. 3, the inner peripheral side of the lip seal 53 comes into contact with the shaft 30, as shown in FIG. As shown in FIG. 4, a shape is adopted in which the inner peripheral side of the lip seal 53 is deformed into a shape that does not contact the shaft 30, that is, a non-contact shape.
 このことは、バイメタル54として、バイメタル54に熱を伝える部位(リップシール53周囲の冷媒(圧縮対象流体)、あるいは、リップシール53が接触する部位)の温度上昇に伴って、リップシール53がシャフト30に接触する形状から非接触となる形状に変形するものを採用していると表現することもできる。 This is because, as the bimetal 54, the lip seal 53 is moved to the shaft as the temperature of the portion (the refrigerant around the lip seal 53 (fluid to be compressed) or the portion where the lip seal 53 contacts) that transmits heat to the bimetal 54 increases. It can also be expressed that a shape that deforms from a shape that contacts 30 to a shape that does not contact is adopted.
 従って、本実施形態のバイメタル54は、本願の変形部の一例を構成している。また、図2についても、図3と同様にバイメタル54自体の温度が上昇していない状態を示している。さらに、本実施形態の如く、車両に搭載される圧縮機10では、バイメタル54自体の温度が少なくとも50℃以上となった際に、リップシール53の内周側がシャフト30に接触しない形状に変形するものを採用することが望ましい。 Therefore, the bimetal 54 of the present embodiment constitutes an example of a deformed portion of the present application. FIG. 2 also shows a state where the temperature of the bimetal 54 itself has not risen, as in FIG. Further, as in the present embodiment, in the compressor 10 mounted on the vehicle, when the temperature of the bimetal 54 itself becomes at least 50 ° C. or more, the inner peripheral side of the lip seal 53 is deformed into a shape that does not contact the shaft 30. It is desirable to adopt one.
 次に、上記構成における本実施形態の作用および効果について説明する。本実施形態の圧縮機10では、エンジンから出力された回転駆動力が伝達されることによって、シャフト30が回転する。そして、シャフト30から回転駆動力が圧縮機構部20へ伝達されることによって、圧縮機構部20が冷媒を圧縮して吐出する。 Next, the operation and effect of this embodiment in the above configuration will be described. In the compressor 10 of this embodiment, the shaft 30 rotates by transmitting the rotational driving force output from the engine. Then, when the rotational driving force is transmitted from the shaft 30 to the compression mechanism unit 20, the compression mechanism unit 20 compresses and discharges the refrigerant.
 この際、本実施形態の軸封装置50によれば、回転環51と固定環52が環状に形成された接触面にて面接触しているので、いわゆるメカニカルシールと同様に、ハウジング40内の冷媒が外部へ漏れ出てしまうことを抑制することができる。 At this time, according to the shaft seal device 50 of the present embodiment, since the rotary ring 51 and the fixed ring 52 are in surface contact with each other at the contact surface formed in an annular shape, the inside of the housing 40 is similar to a so-called mechanical seal. The refrigerant can be prevented from leaking outside.
 さらに、本実施形態の冷凍サイクル装置の冷媒には、冷凍機油が混入されているので、冷凍機油を回転環51と固定環52との隙間に流入させることができる。これにより、粘性の高い冷凍機油によって回転環51と固定環52との隙間を埋めて、軸封装置50のシール性を効果的に向上させることができる。 Furthermore, since the refrigeration oil is mixed in the refrigerant of the refrigeration cycle apparatus of the present embodiment, the refrigeration oil can flow into the gap between the rotating ring 51 and the stationary ring 52. Thereby, the clearance gap between the rotating ring 51 and the stationary ring 52 can be filled with highly viscous refrigerating machine oil, and the sealing performance of the shaft seal device 50 can be improved effectively.
 ここで、圧縮機10が作動している際には、冷媒の断熱圧縮による温度上昇や、圧縮機10内の摺動部位の摩擦等によって、冷媒および圧縮機10の温度が上昇する。このため、本実施形態の軸封装置50では、この温度上昇が冷媒およびバイメタル54の接触部位を介して、バイメタル54に伝達される。そして、バイメタル54の温度上昇に伴う変形によって、リップシール53がシャフト30に接触しない形状に変形する。 Here, when the compressor 10 is operating, the temperature of the refrigerant and the compressor 10 rises due to a temperature rise due to adiabatic compression of the refrigerant, friction of a sliding portion in the compressor 10, and the like. For this reason, in the shaft seal device 50 of this embodiment, this temperature rise is transmitted to the bimetal 54 via the contact portion between the refrigerant and the bimetal 54. The lip seal 53 is deformed into a shape that does not come into contact with the shaft 30 due to deformation accompanying the temperature rise of the bimetal 54.
 従って、シャフト30が回転する圧縮機10の作動時には、リップシール53とシャフト30との摩擦によって、リップシール53に摩耗や損傷が生じてしまうことを抑制することができる。 Therefore, it is possible to prevent the lip seal 53 from being worn or damaged due to friction between the lip seal 53 and the shaft 30 during the operation of the compressor 10 in which the shaft 30 rotates.
 ところで、冷凍サイクル装置に適用される圧縮機では、一般的に、通常作動時には気相冷媒を吸入し、圧縮して吐出する。ところが、圧縮機を長時間に亘って作動停止させた際等にはハウジング内に液相冷媒が溜まってしまう「冷媒の寝込み現象」が生じる。このような現象が生じると、液相冷媒に相溶性を有する冷凍機油が希釈されてしまうので、冷凍機油の粘性が著しく低下してしまう。 By the way, in a compressor applied to a refrigeration cycle apparatus, in general, a gas phase refrigerant is sucked, compressed, and discharged during normal operation. However, when the compressor is stopped for a long time, a “refrigerant stagnation phenomenon” occurs in which liquid-phase refrigerant accumulates in the housing. When such a phenomenon occurs, the refrigerating machine oil having compatibility with the liquid phase refrigerant is diluted, so that the viscosity of the refrigerating machine oil is significantly reduced.
 その結果、冷凍機油が回転環51と固定環52との隙間を埋めることができなくなり、回転環51と固定環52との隙間のシール性を向上させることができなくなってしまうおそれがある。 As a result, the refrigerating machine oil may not be able to fill the gap between the rotating ring 51 and the stationary ring 52, and the sealing performance of the gap between the rotating ring 51 and the stationary ring 52 may not be improved.
 これに対して、本実施形態の軸封装置50によれば、シャフト30の回転が停止し、圧縮機10が停止している際には、バイメタル53の温度が低下するので、リップシール53がシャフト30に接触する形状に変形する。従って、圧縮機10の作動停止時には、リップシール53によって、ハウジング40内の冷媒が外部へ漏れ出てしまうことを抑制することができる。 On the other hand, according to the shaft seal device 50 of the present embodiment, when the rotation of the shaft 30 is stopped and the compressor 10 is stopped, the temperature of the bimetal 53 is lowered. The shape is deformed to contact the shaft 30. Therefore, when the operation of the compressor 10 is stopped, the lip seal 53 can prevent the refrigerant in the housing 40 from leaking outside.
 すなわち、本実施形態の軸封装置50によれば、圧縮機10の作動状態(シャフト30の回転状態)によらず高いシール性を発揮することができるとともに、リップシール53の摩耗や損傷を抑制可能な耐久性の高い軸封装置を提供することができる。 That is, according to the shaft seal device 50 of the present embodiment, high sealing performance can be exhibited regardless of the operating state of the compressor 10 (rotation state of the shaft 30), and wear and damage of the lip seal 53 are suppressed. A highly durable shaft seal device can be provided.
 また、本実施形態の軸封装置50では、リップシール53および保護部材53aを、回転環51と固定環52との接触面よりも、ハウジング40の外部に配置しているので、リップシール53の内周側を直接シャフト30に接触させる構成としやすい。従って、リップシール53、保護部材53a、およびバイメタル54の大型化を抑制できるとともに、ハウジング40内に組み付けやすい形状とすることができる。 Further, in the shaft seal device 50 of the present embodiment, the lip seal 53 and the protective member 53a are arranged outside the housing 40 rather than the contact surface between the rotating ring 51 and the fixed ring 52. It is easy to adopt a configuration in which the inner peripheral side is in direct contact with the shaft 30. Therefore, the lip seal 53, the protection member 53 a, and the bimetal 54 can be prevented from being enlarged, and the shape can be easily assembled in the housing 40.
 また、本実施形態の軸封装置50では、バイメタル54とリップシール53とをインサート成形によって一体的に形成している。従って、温度上昇に伴って、リップシール53をシャフト30に接触する形状からシャフト30に接触しない形状に変形させる変形部を容易に実現することができる。 Further, in the shaft seal device 50 of the present embodiment, the bimetal 54 and the lip seal 53 are integrally formed by insert molding. Accordingly, it is possible to easily realize a deformed portion that deforms the lip seal 53 from a shape that contacts the shaft 30 to a shape that does not contact the shaft 30 as the temperature rises.
 また、本実施形態のように、冷媒として二酸化炭素を採用して超臨界冷凍サイクルを構成する冷凍サイクル装置では、圧縮機10のハウジング40内の冷媒圧とハウジング40外の大気圧との圧力差が比較的大きくなる。従って、通常のフロン系冷媒(R134a、R1234yf等)を採用する冷凍サイクル装置よりも、回転環51と固定環52との隙間から冷媒が漏れやすい。 Further, as in the present embodiment, in the refrigeration cycle apparatus that constitutes the supercritical refrigeration cycle using carbon dioxide as the refrigerant, the pressure difference between the refrigerant pressure in the housing 40 of the compressor 10 and the atmospheric pressure outside the housing 40. Is relatively large. Therefore, the refrigerant is more likely to leak from the gap between the rotating ring 51 and the stationary ring 52 than a refrigeration cycle apparatus that employs normal chlorofluorocarbon refrigerants (R134a, R1234yf, etc.).
 従って、本実施形態の如く、圧縮機10の作動時には、冷凍機油によって回転環51と固定環52との隙間のシール性を向上させることができ、圧縮機10の停止時には、リップシール53によって、ハウジング40内の冷媒が外部へ漏れ出てしまうことを抑制することができることは、極めて有効である。 Therefore, as in this embodiment, when the compressor 10 is in operation, the refrigerating machine oil can improve the sealing performance of the gap between the rotating ring 51 and the stationary ring 52, and when the compressor 10 is stopped, the lip seal 53 It is extremely effective that the refrigerant in the housing 40 can be prevented from leaking outside.
 (第2実施形態)
 本実施形態では、第1実施形態に対して、図5に示すように、リップシール53およびバイメタル54の配置態様を変更した例を説明する。なお、図5は、第1実施形態で説明した図2に対応する図面であって、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
(Second Embodiment)
This embodiment demonstrates the example which changed the arrangement | positioning aspect of the lip seal 53 and the bimetal 54 with respect to 1st Embodiment, as shown in FIG. FIG. 5 is a drawing corresponding to FIG. 2 described in the first embodiment, and the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 より具体的には、本実施形態のリップシール53およびバイメタル54は、第1実施形態と同様に、インサート成形によって一体化されている。さらに、リップシール53は、図5に示すように、ハウジング40内のボス部41dよりも制御圧室側に近い部位に固定されて、その内周側がシャフト30の外周面に接触可能に配置されている。 More specifically, the lip seal 53 and the bimetal 54 of the present embodiment are integrated by insert molding as in the first embodiment. Further, as shown in FIG. 5, the lip seal 53 is fixed to a portion closer to the control pressure chamber side than the boss portion 41 d in the housing 40, and the inner peripheral side thereof is disposed so as to be in contact with the outer peripheral surface of the shaft 30. ing.
 このため、本実施形態のリップシール53は、回転環51と固定環52との接触面よりも、冷媒の漏れ方向の上流側に配置されている。換言すると、リップシール53は、回転環51と固定環52との接触面よりも、ハウジング40の内部側に配置されている。 For this reason, the lip seal 53 of the present embodiment is arranged upstream of the contact surface between the rotating ring 51 and the stationary ring 52 in the refrigerant leakage direction. In other words, the lip seal 53 is disposed on the inner side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52.
 その他の圧縮機10および軸封装置50の構成は、第1実施形態と同様である。従って、本実施形態の軸封装置50においても、第1実施形態と同様に、圧縮機10の作動状態(シャフト30の回転状態)によらず高いシール性を発揮することができるとともに、リップシール53の摩耗や損傷を抑制可能な耐久性の高い軸封装置を提供することができる。 Other configurations of the compressor 10 and the shaft seal device 50 are the same as those in the first embodiment. Accordingly, in the shaft seal device 50 of the present embodiment, as in the first embodiment, a high sealing performance can be exhibited regardless of the operating state of the compressor 10 (the rotation state of the shaft 30), and the lip seal It is possible to provide a highly durable shaft seal device capable of suppressing the wear and damage of 53.
 さらに、本実施形態の軸封装置50では、リップシール53が、回転環51と固定環52との接触面よりも、ハウジング40の内部側に配置されている。従って、シャフト30の回転が停止してリップシール53がシャフト30に接触する形状に変形した際に、リップシール53とシャフト30とのシール部から回転環51と固定環52とのシール部へ至る範囲の冷媒の圧力が上昇しにくい。 Furthermore, in the shaft seal device 50 of the present embodiment, the lip seal 53 is disposed on the inner side of the housing 40 with respect to the contact surface between the rotating ring 51 and the fixed ring 52. Accordingly, when the rotation of the shaft 30 is stopped and the lip seal 53 is deformed into a shape in contact with the shaft 30, the seal portion between the lip seal 53 and the shaft 30 reaches the seal portion between the rotating ring 51 and the fixed ring 52. The refrigerant pressure in the range is unlikely to rise.
 その結果、シャフト30の回転が停止して圧縮機10の作動が停止した際に、リップシール53とシャフト30とのシール部から回転環51と固定環52とのシール部へ至る範囲の冷媒が外部に漏れてしまうことを抑制することができる。 As a result, when the rotation of the shaft 30 is stopped and the operation of the compressor 10 is stopped, the refrigerant in a range from the seal portion between the lip seal 53 and the shaft 30 to the seal portion between the rotary ring 51 and the fixed ring 52 is discharged. It is possible to suppress leakage to the outside.
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図6に示すように、リップシール53およびバイメタル54の配置態様を変更した例を説明する。なお、図6は、第1実施形態で説明した図2に対応する図面である。
(Third embodiment)
This embodiment demonstrates the example which changed the arrangement | positioning aspect of the lip seal 53 and the bimetal 54 with respect to 1st Embodiment, as shown in FIG. FIG. 6 is a drawing corresponding to FIG. 2 described in the first embodiment.
 より具体的には、本実施形態のリップシール53およびバイメタル54は、第1実施形態と同様に、インサート成形によって一体化されている。さらに、リップシール53は、図6に示すように、回転環51(回転軸側部材)に固定されて、その外周側が固定環52(ハウジング側部材)に接触可能に配置されている。 More specifically, the lip seal 53 and the bimetal 54 of the present embodiment are integrated by insert molding as in the first embodiment. Further, as shown in FIG. 6, the lip seal 53 is fixed to the rotary ring 51 (rotary shaft side member), and the outer peripheral side thereof is disposed so as to be able to contact the fixed ring 52 (housing side member).
 その他の圧縮機10および軸封装置50の構成は、第1実施形態と同様である。従って、本実施形態の軸封装置50においても、第1実施形態と同様に、圧縮機10の作動状態(シャフト30の回転状態)によらず高いシール性を発揮することができるとともに、リップシール53の摩耗や損傷を抑制可能な耐久性の高い軸封装置を提供することができる。 Other configurations of the compressor 10 and the shaft seal device 50 are the same as those in the first embodiment. Accordingly, in the shaft seal device 50 of the present embodiment, as in the first embodiment, a high sealing performance can be exhibited regardless of the operating state of the compressor 10 (the rotation state of the shaft 30), and the lip seal It is possible to provide a highly durable shaft seal device capable of suppressing the wear and damage of 53.
 (第4実施形態)
 上述の実施形態では、リップシール53およびバイメタル54を、インサート成形によって一体化した例を説明したが、本実施形態では、図7に示すように、別部材として構成されたリップシール53およびバイメタル54を一体的に変形するように一体化させた例を説明する。なお、図7は、第1実施形態で説明した図3に対応する図面である。
(Fourth embodiment)
In the above-described embodiment, the example in which the lip seal 53 and the bimetal 54 are integrated by insert molding has been described. However, in this embodiment, as shown in FIG. 7, the lip seal 53 and the bimetal 54 configured as separate members. An example in which these are integrated so as to be integrally deformed will be described. FIG. 7 is a drawing corresponding to FIG. 3 described in the first embodiment.
 より具体的には、本実施形態のリップシール53の外表面には、外周側端部および内周側端部にバイメタル54を係止するための係止部53b、53cが形成されている。これにより、バイメタル54およびリップシール53は一体的に変形する。すなわち、バイメタル54の変形に伴ってリップシール53も同様に変形する。 More specifically, on the outer surface of the lip seal 53 of the present embodiment, locking portions 53b and 53c for locking the bimetal 54 at the outer peripheral end and the inner peripheral end are formed. Thereby, the bimetal 54 and the lip seal 53 are integrally deformed. That is, with the deformation of the bimetal 54, the lip seal 53 is similarly deformed.
 その他の圧縮機10および軸封装置50の構成は、第1実施形態と同様である。従って、本実施形態の軸封装置50においても、第1実施形態と同様に、圧縮機10の作動状態(シャフト30の回転状態)によらず高いシール性を発揮することができるとともに、リップシール53の摩耗や損傷を抑制可能な耐久性の高い軸封装置を提供することができる。さらに、リップシール53およびバイメタル54を接着材等によって接合してもよい。 Other configurations of the compressor 10 and the shaft seal device 50 are the same as those in the first embodiment. Accordingly, in the shaft seal device 50 of the present embodiment, as in the first embodiment, a high sealing performance can be exhibited regardless of the operating state of the compressor 10 (the rotation state of the shaft 30), and the lip seal It is possible to provide a highly durable shaft seal device capable of suppressing the wear and damage of 53. Further, the lip seal 53 and the bimetal 54 may be joined with an adhesive or the like.
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第2、第3実施形態で説明した軸封装置50に、第4実施形態で説明したように一体化されたリップシール53およびバイメタル54を採用してもよい。
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure. Further, the means disclosed in each of the above embodiments may be appropriately combined within a practicable range. For example, the lip seal 53 and the bimetal 54 integrated as described in the fourth embodiment may be employed in the shaft seal device 50 described in the second and third embodiments.
 また、上述の実施形態では、圧縮機10の圧縮機構部20として斜板式の可変容量型の圧縮機構を採用した例を説明したが、圧縮機構部20は、これに限定されない。例えば、スクロール型の圧縮機構、ベーン型の圧縮機構、ローリングピストン型の圧縮機構等、シャフト30から回転駆動力を伝達されることで流体を圧縮する圧縮機構であれば、幅広く採用可能である。 In the above-described embodiment, an example in which a swash plate type variable displacement compression mechanism is employed as the compression mechanism unit 20 of the compressor 10 has been described. However, the compression mechanism unit 20 is not limited thereto. For example, any compression mechanism that compresses fluid by transmitting a rotational driving force from the shaft 30 such as a scroll-type compression mechanism, a vane-type compression mechanism, or a rolling piston-type compression mechanism can be widely used.
 また、上述の実施形態では、変形部としてバイメタルを採用した例を説明したが、変形部はこれに限定されない。例えば、変形部は、温度変化に応じてリップシール53の形状を所望の形状に変形させることができれば、熱膨張率が異なる2種類の樹脂の板を接合することによって形成されたものであってもよいし、熱膨張率が異なる樹脂および金属を接合することによって形成されたものであってもよい。 In the above-described embodiment, the example in which the bimetal is adopted as the deforming portion has been described, but the deforming portion is not limited to this. For example, if the shape of the lip seal 53 can be deformed to a desired shape according to a temperature change, the deforming portion is formed by joining two types of resin plates having different thermal expansion coefficients. Alternatively, it may be formed by bonding resins and metals having different thermal expansion coefficients.
 また、上述の実施形態では、炭化ケイ素で形成された回転環51および固定環52を採用した例を説明したが、回転環51および固定環52の材質はこれに限定されない。例えば、炭素繊維、炭素繊維強化複合材料で形成されていてもよい。また、上述の実施形態では、ゴムで形成されたリップシール53を採用した例を説明したが、リップシール53の材質はこれに限定されない。例えば、樹脂で形成されていてもよい。 In the above-described embodiment, the example in which the rotating ring 51 and the stationary ring 52 formed of silicon carbide are used has been described. However, the material of the rotating ring 51 and the stationary ring 52 is not limited thereto. For example, it may be formed of carbon fiber or a carbon fiber reinforced composite material. Moreover, although the above-mentioned embodiment demonstrated the example which employ | adopted the lip seal 53 formed with rubber | gum, the material of the lip seal 53 is not limited to this. For example, you may form with resin.
 また、上述の実施形態では、本開示に係る軸封装置50を、冷媒として二酸化炭素を採用する冷凍サイクル装置の圧縮機10に適用した例を説明したが、軸封装置50の適用はこれに限定されない。もちろん、高圧側の冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成する冷凍サイクル装置の圧縮機に適用してもよいし、その他幅広い用途の圧縮機に適用することができる。 Moreover, in the above-described embodiment, the example in which the shaft seal device 50 according to the present disclosure is applied to the compressor 10 of the refrigeration cycle device that employs carbon dioxide as a refrigerant has been described. It is not limited. Of course, the present invention may be applied to a compressor of a refrigeration cycle apparatus constituting a subcritical refrigeration cycle in which the refrigerant pressure on the high pressure side does not exceed the critical pressure of the refrigerant, or can be applied to compressors for a wide variety of other uses.

Claims (7)

  1.  内部に回転軸(30)の一部が収容される空間を形成するハウジング(40)を有する圧縮機(10)に適用されて、
     前記ハウジング(40)に設けられた軸孔(41c)と前記回転軸(30)との隙間から前記ハウジング(40)内の圧縮対象流体が漏れ出ることを抑制する軸封装置であって、
     前記回転軸(30)の外周側に固定された環状の回転環(51)と、
     前記ハウジング(40)の前記軸孔(41c)の周囲に固定されて、前記回転軸(30)が前記軸孔(41c)に挿入された際に前記回転環(51)に面接触する環状の固定環(52)と、
     前記回転軸(30)とこれに固定された部材とを回転軸側部材(30、51)と定義し、前記ハウジング(40)とこれに固定された部材とをハウジング側部材(40、52)と定義したときに、前記回転軸側部材(30、51)および前記ハウジング側部材(40、52)のいずれか一方に固定されて、他方に接触可能に配置された環状のリップシール(53)と、
     温度上昇に伴って、前記リップシール(53)を前記ハウジング側部材(40、52)および前記回転軸側部材(30、51)の他方に接触する形状から非接触となる形状に変形させる変形部(54)と、を備えている軸封装置。
    Applied to the compressor (10) having a housing (40) that forms a space in which a part of the rotating shaft (30) is accommodated,
    A shaft seal device that suppresses leakage of a fluid to be compressed in the housing (40) from a gap between a shaft hole (41c) provided in the housing (40) and the rotating shaft (30),
    An annular rotating ring (51) fixed to the outer peripheral side of the rotating shaft (30);
    An annular ring is fixed around the shaft hole (41c) of the housing (40) and comes into surface contact with the rotating ring (51) when the rotating shaft (30) is inserted into the shaft hole (41c). A stationary ring (52);
    The rotating shaft (30) and the members fixed thereto are defined as rotating shaft side members (30, 51), and the housing (40) and the members fixed thereto are defined as housing side members (40, 52). Is defined on the rotary shaft side member (30, 51) and the housing side member (40, 52), and the annular lip seal (53) is disposed so as to be in contact with the other. When,
    As the temperature rises, the lip seal (53) is deformed from a shape in contact with the other of the housing side member (40, 52) and the rotary shaft side member (30, 51) to a non-contact shape. (54).
  2.  前記リップシール(53)は、前記回転環(51)と前記固定環(52)との接触面よりも、前記ハウジング(40)の外部側に配置されていることを特徴とする請求項1に記載の軸封装置。 The said lip seal (53) is arrange | positioned in the exterior side of the said housing (40) rather than the contact surface of the said rotating ring (51) and the said fixed ring (52). The shaft seal device described.
  3.  前記リップシール(53)は、前記回転環(51)および前記固定環(52)のいずれか一方に固定されて、他方に接触可能に配置されていることを特徴とする請求項1または2に記載の軸封装置。 The lip seal (53) is fixed to one of the rotating ring (51) and the fixed ring (52) and arranged so as to be in contact with the other. The shaft seal device described.
  4.  前記リップシール(53)は、前記回転環(51)と前記固定環(52)との接触面よりも、前記回転軸(30)の径外側に延伸されていることを特徴とする請求項1ないし3のいずれか1つに記載の軸封装置。 The said lip seal (53) is extended | stretched on the diameter outer side of the said rotating shaft (30) rather than the contact surface of the said rotating ring (51) and the said fixed ring (52). 4. The shaft seal device according to any one of 3 to 3.
  5.  前記リップシール(53)は、ゴムあるいは樹脂にて形成されており、
     前記変形部(54)は、バイメタルにて形成されており、
     前記変形部(54)および前記リップシール(53)は、インサート成形によって一体的に形成されていることを特徴とする請求項1ないし4のいずれか1つに記載の軸封装置。
    The lip seal (53) is made of rubber or resin,
    The deformation part (54) is formed of bimetal,
    The shaft seal device according to any one of claims 1 to 4, wherein the deformable portion (54) and the lip seal (53) are integrally formed by insert molding.
  6.  前記リップシール(53)は、ゴムあるいは樹脂にて形成されており、
     前記変形部(54)は、バイメタルにて形成されており、
     前記変形部(54)が前記リップシール(53)の外表面に形成された係止部(53b、53c)に係止されていることによって、前記変形部(54)および前記リップシール(53)は一体的に変形することを特徴とする請求項1ないし4のいずれか1つに記載の軸封装置。
    The lip seal (53) is made of rubber or resin,
    The deformation part (54) is formed of bimetal,
    The deformable portion (54) and the lip seal (53) are locked by locking portions (53b, 53c) formed on the outer surface of the lip seal (53). The shaft seal device according to any one of claims 1 to 4, wherein the shaft is integrally deformed.
  7.  前記圧縮機(10)は、冷媒として二酸化炭素が採用された蒸気圧縮式の冷凍サイクル装置に適用されており、
     前記圧縮対象流体は、前記二酸化炭素であることを特徴とする請求項1ないし8のいずれか1つに記載の軸封装置。

     
    The compressor (10) is applied to a vapor compression refrigeration cycle apparatus employing carbon dioxide as a refrigerant,
    The shaft seal device according to any one of claims 1 to 8, wherein the compression target fluid is the carbon dioxide.

PCT/JP2016/000549 2015-02-17 2016-02-03 Shaft-sealing device WO2016132692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112016000784.1T DE112016000784T5 (en) 2015-02-17 2016-02-03 A shaft sealing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-028747 2015-02-17
JP2015028747A JP6455209B2 (en) 2015-02-17 2015-02-17 Shaft seal device

Publications (1)

Publication Number Publication Date
WO2016132692A1 true WO2016132692A1 (en) 2016-08-25

Family

ID=56692185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000549 WO2016132692A1 (en) 2015-02-17 2016-02-03 Shaft-sealing device

Country Status (3)

Country Link
JP (1) JP6455209B2 (en)
DE (1) DE112016000784T5 (en)
WO (1) WO2016132692A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669531U (en) * 1993-03-16 1994-09-30 エヌオーケー株式会社 Sealing device
EP1336778A2 (en) * 2002-02-14 2003-08-20 ROLLS-ROYCE plc Brush seal
JP2007239943A (en) * 2006-03-10 2007-09-20 Toyota Motor Corp Oil seal
JP2009174376A (en) * 2008-01-23 2009-08-06 Valeo Thermal Systems Japan Corp Shaft seal structure for compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0669531U (en) * 1993-03-16 1994-09-30 エヌオーケー株式会社 Sealing device
EP1336778A2 (en) * 2002-02-14 2003-08-20 ROLLS-ROYCE plc Brush seal
JP2007239943A (en) * 2006-03-10 2007-09-20 Toyota Motor Corp Oil seal
JP2009174376A (en) * 2008-01-23 2009-08-06 Valeo Thermal Systems Japan Corp Shaft seal structure for compressor

Also Published As

Publication number Publication date
JP6455209B2 (en) 2019-01-23
JP2016151311A (en) 2016-08-22
DE112016000784T5 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
US6695599B2 (en) Scroll compressor
US9353862B2 (en) Piston for a reciprocating hermetic compressor
JP5017052B2 (en) Screw fluid machine
US20140208774A1 (en) Cryogenic refrigerator
EP2000712A9 (en) Shaft seal device for fluid machine
JP6706346B2 (en) Gaseous fluid compressor
US6457947B1 (en) Piston compressor for refrigerant, with thermal insulation
JP6067477B2 (en) Cryogenic refrigerator
US20050186087A1 (en) Compressor
JP6455209B2 (en) Shaft seal device
JP2003322261A (en) Shaft seal device, compressor with shaft seal device, and shaft sealing method
WO2016103601A1 (en) Shaft sealing device and compressor using same
JP2004028017A (en) Scroll type compressor
KR102073110B1 (en) Discharge check valve for variable swash plate compressor
JP2015158156A (en) Scroll compressor
KR101181003B1 (en) The Sealing Assembly for Driving Shaft of Compressor
KR101883175B1 (en) sealing structure for pressure relief valve of swash plate type compressor
WO2018139500A1 (en) Scroll compressor
WO2019142533A1 (en) Compressor
JP2005201336A (en) Shaft seal device and compressor
KR20230155642A (en) Scroll compressor
JP2008057332A (en) Compressor
JP2007292306A (en) Shaft seal device for fluid machine
JP4106223B2 (en) Gas compressor
WO2016103602A1 (en) Shaft-sealing device and compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752083

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016000784

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752083

Country of ref document: EP

Kind code of ref document: A1