WO2016103477A1 - Filter inspection apparatus - Google Patents

Filter inspection apparatus Download PDF

Info

Publication number
WO2016103477A1
WO2016103477A1 PCT/JP2014/084599 JP2014084599W WO2016103477A1 WO 2016103477 A1 WO2016103477 A1 WO 2016103477A1 JP 2014084599 W JP2014084599 W JP 2014084599W WO 2016103477 A1 WO2016103477 A1 WO 2016103477A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
electromagnetic wave
inspection
reflected
predetermined
Prior art date
Application number
PCT/JP2014/084599
Other languages
French (fr)
Japanese (ja)
Inventor
木田 信三
智史 中村
直樹 石田
是枝 雄一
Original Assignee
日本たばこ産業株式会社
八光オートメーション株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本たばこ産業株式会社, 八光オートメーション株式会社 filed Critical 日本たばこ産業株式会社
Priority to PCT/JP2014/084599 priority Critical patent/WO2016103477A1/en
Priority to EP14909081.3A priority patent/EP3238552B8/en
Priority to JP2016565821A priority patent/JP6367369B2/en
Priority to PL14909081T priority patent/PL3238552T3/en
Publication of WO2016103477A1 publication Critical patent/WO2016103477A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24DCIGARS; CIGARETTES; TOBACCO SMOKE FILTERS; MOUTHPIECES FOR CIGARS OR CIGARETTES; MANUFACTURE OF TOBACCO SMOKE FILTERS OR MOUTHPIECES
    • A24D3/00Tobacco smoke filters, e.g. filter-tips, filtering inserts; Filters specially adapted for simulated smoking devices; Mouthpieces for cigars or cigarettes
    • A24D3/02Manufacture of tobacco smoke filters
    • A24D3/0295Process control means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24CMACHINES FOR MAKING CIGARS OR CIGARETTES
    • A24C5/00Making cigarettes; Making tipping materials for, or attaching filters or mouthpieces to, cigars or cigarettes
    • A24C5/32Separating, ordering, counting or examining cigarettes; Regulating the feeding of tobacco according to rod or cigarette condition
    • A24C5/34Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes
    • A24C5/3412Examining cigarettes or the rod, e.g. for regulating the feeding of tobacco; Removing defective cigarettes by means of light, radiation or electrostatic fields

Definitions

  • the present invention relates to an inspection apparatus for inspecting the quality of an arrangement state of a predetermined object to be arranged in a filter for smoking articles.
  • a liquid-filled capsule is arranged in a filter provided in the cigarette, and the content liquid of the liquid-filled capsule is composed of, for example, a fragrance and a solvent in which the fragrance is dissolved.
  • the user squeezes the liquid-filled capsule prior to or during smoking to cause the liquid content to leak out, and the cigarette mainstream smoke is a fragrance.
  • fragrances Of fragrances.
  • a cigarette provided with such a filter since the presence of the liquid-filled capsule greatly affects its quality, it is necessary to inspect whether or not the liquid-filled capsule is normally arranged in the filter.
  • Patent Document 1 in order to determine an arrangement state of a capsule to be arranged in a cigarette filter, an electromagnetic wave in a frequency band of 0.1 THz to 10 THz is irradiated to a filter to be inspected, and the transmitted electromagnetic wave is applied.
  • a form to be used is disclosed.
  • a sensor transmitter is arranged at the bottom of each of a plurality of grooves provided on the drum, and a sensor receiver is arranged in a form fixed to the outside of the drum.
  • a device is formed.
  • the drum is rotated in a state where the filter is placed so as to cover the sensor transmitter of the drum housing, and at this time, a plurality of transmitted electromagnetic waves due to the transmission of the electromagnetic wave transmitted from the sensor transmitter through the filter. It is comprised so that it can receive with a sensor receiver. Based on the reception results of these sensor receivers, the state of the capsule in the filter is detected.
  • the target filter is irradiated with electromagnetic waves, and the electromagnetic waves are transmitted through the filter.
  • the transmitted electromagnetic wave is used.
  • the electromagnetic wave irradiation unit and the transmission electromagnetic wave reception unit on opposite sides of the target filter, and as a result, a configuration for inspection of the arrangement state (hereinafter referred to as “inspection configuration”). ) Must have a large space volume.
  • the determination is performed so as not to hinder the efficient production of the filter and cigarette. Preferably it is done. Therefore, it is preferable that when the target filter is transported on the production line, the determination regarding the arrangement state of the predetermined arrangement in the filter is performed.
  • inspection using transmitted electromagnetic waves is performed. However, it is difficult to accurately arrange the inspection configuration on the production line, particularly on the line on which the filter is transported.
  • the present invention has been made in view of the above-described problems, and an object thereof is to reduce the size of an inspection apparatus that inspects the arrangement state of a predetermined arrangement in a filter for smoking articles.
  • one antenna unit irradiates the inspection electromagnetic wave to the target filter to be inspected and receives the reflected electromagnetic wave returning from the target filter due to the irradiation electromagnetic wave.
  • the structure which performs is adopted. With this configuration, it is possible to reduce the space volume required for acquiring information related to the arrangement state of the predetermined arrangement in the target filter.
  • the present invention is an inspection device for inspecting the quality of an arrangement state of a predetermined object to be arranged in a filter for smoking articles, wherein the inspection electromagnetic wave having a predetermined frequency is applied to the smoking object to be inspected.
  • An irradiation unit that irradiates a target filter that is a filter for goods, a receiving unit that receives a reflected electromagnetic wave from the target filter by the inspection electromagnetic wave irradiated by the irradiation unit, and a target filter
  • An antenna unit that is disposed and propagates the inspection electromagnetic wave and the reflected electromagnetic wave, and based on the reflected signal obtained by the receiving unit, the intensity of the reflected signal related to the arrangement state of the predetermined arrangement in the target filter;
  • an acquisition unit that acquires predetermined information regarding a phase shift of the reflected signal, and the target file based on the predetermined information acquired by the acquisition unit. Comprising a determining unit the quality of the arrangement of the predetermined arrangement thereof arranged in data, the.
  • the inspection apparatus has an antenna unit arranged to face the target filter.
  • This antenna unit carries inspection electromagnetic waves and reflected electromagnetic waves. Therefore, when the inspection electromagnetic wave irradiated from the irradiation unit reaches the target filter through the antenna unit, at least a part of the inspection electromagnetic wave is reflected by the target filter and received by the reception unit through the antenna unit. In addition, even if the inspection electromagnetic wave is transmitted through the target filter, the electromagnetic wave that is reflected at a place other than the target filter and is directed toward the reception unit may be received by the reception unit through the antenna unit.
  • Such an electromagnetic wave reflected from the inspection electromagnetic wave is referred to as a reflected electromagnetic wave in distinction from the inspection electromagnetic wave irradiated to the target filter.
  • the reflected electromagnetic wave reflects a physical action resulting from the arrangement state of the predetermined arrangement object in the target filter. That is, when the inspection electromagnetic wave is irradiated to the target filter and reflected by the target filter, the arrangement state of the predetermined arrangement, such as the shape of the predetermined arrangement, its deformation state, and the position in the filter, is the intensity or phase of the reflected electromagnetic wave. Will be reflected.
  • the predetermined object to be inspected for the arrangement state by the inspection apparatus of the present invention should be arranged in the filter, and the information on the arrangement state can be reflected in the reflected electromagnetic wave by the inspection electromagnetic wave.
  • Any object, structure, etc. may be used.
  • a liquid-filled capsule filled with a predetermined perfume liquid can be exemplified.
  • the liquid-filled capsule is a capsule in which a predetermined fragrance liquid is filled, and the fragrance liquid reflects a change in electromagnetic wave intensity and a phase shift due to reflection of the inspection electromagnetic wave in the reflected electromagnetic wave.
  • the arrangement state is a state related to the arrangement of the predetermined arrangement in the filter.
  • the arrangement is suitably arranged with respect to the position of the predetermined arrangement in the filter.
  • a state where it is suitably arranged without being deformed, a state where a predetermined arrangement exists in the filter, and the like can be exemplified.
  • the reflected electromagnetic wave is received by the receiving unit, and the reflected signal formed there is a signal relating to the intensity and phase shift of the reflected electromagnetic wave reflecting the arrangement state of the predetermined arrangement. Therefore, the acquisition unit acquires predetermined information related to the intensity and phase shift of the reflection signal as information reflecting the arrangement state of the predetermined arrangement based on the reflection signal obtained by the reception unit. Then, the determination unit can grasp the arrangement state of the predetermined arrangement based on the predetermined information, and thus determines the quality of the arrangement state. For example, when the intensity or phase shift of the reflected signal as the predetermined information belongs to a reference range, the determination unit can determine that the arrangement state of the predetermined arrangement is suitable.
  • the antenna unit by configuring the antenna unit to face the target filter and transmitting the inspection electromagnetic wave through the antenna unit and receiving the reflected electromagnetic wave, the inspection necessary for the inspection of the arrangement state of the predetermined arrangement is required. Is only a space existing between the antenna unit and the target filter, and the inspection space can be made compact compared to the conventional transmission type inspection apparatus. Furthermore, the inventors of the present application have found that the frequency range of the inspection electromagnetic wave can be set relatively low in the reflection type inspection apparatus as in the present invention. For example, an electromagnetic wave having a frequency in the range of 10 GHz to 100 GHz can be suitably used as the inspection electromagnetic wave. More preferably, an electromagnetic wave having a frequency in the range of 20 GHz to 30 GHz can be used as the inspection electromagnetic wave.
  • the antenna unit may be formed so as to transmit the inspection electromagnetic wave to the target filter and receive the reflected electromagnetic wave from the target filter in the same antenna housing.
  • the receiving unit reflects not only the reflected electromagnetic wave in which the inspection electromagnetic wave is directly reflected by the target filter but also the inspection electromagnetic wave receives some action from the target filter, and the arrangement state of the predetermined arrangement is reflected.
  • An electromagnetic wave that is directed toward the receiving unit from the target filter may be configured to be received as a reflected electromagnetic wave.
  • the inspection apparatus described above is disposed on the back of the target filter on the side opposite to the antenna unit, and transmits the transmitted electromagnetic wave that is a part of the irradiated inspection electromagnetic wave and transmitted through the target filter again.
  • the receiving unit may reflect the transmitted electromagnetic wave by the reflective unit. Configured to receive a secondary reflected electromagnetic wave that is a generated electromagnetic wave.
  • the secondary reflected electromagnetic wave passes through the target filter once in the process from the irradiation part to the reflection part, and then passes through the target filter once again in the process from the reflection part to the reception part. Become. Therefore, the arrangement state of the predetermined arrangement in the target filter is reflected relatively strongly in the secondary reflected electromagnetic wave. Therefore, in addition to the reflected electromagnetic wave, the secondary reflected electromagnetic wave is received by the receiving unit, and predetermined information is obtained therefrom, whereby the determining unit can make a more accurate determination regarding the quality of the arrangement state.
  • the inspection apparatus of the present invention transports a plurality of the smoking article filters placed on a transport table.
  • the apparatus further includes a transfer device arranged with respect to the antenna unit such that the inspection electromagnetic wave is irradiated to the target filter included in the filter for smoking articles transferred by the transfer device.
  • the reflection unit can be exemplified by a metal predetermined member included in the transport table.
  • the predetermined information is information on the intensity of the reflected signal
  • the inspection apparatus is configured to smoke the inspection electromagnetic wave having the predetermined frequency is not disposed in the predetermined arrangement.
  • the image processing apparatus may further include a correction unit that corrects the predetermined information acquired by the acquisition unit based on information on the reference signal intensity obtained in advance by irradiating the reference filter that is the article filter.
  • the said determination part may determine the quality of the arrangement
  • the reference signal intensity obtained by the receiving unit when the inspection electromagnetic wave is irradiated to the reference filter in which the predetermined arrangement is not arranged is information other than the arrangement state of the predetermined arrangement in the filter, in other words, It can be said that the noise with respect to the information regarding the arrangement state is reflected. Therefore, it can be said that the correction unit can accurately extract information on the arrangement state of the predetermined arrangement in the target filter by correcting the predetermined information based on the information on the reference signal intensity. Based on the corrected predetermined information, the determination unit makes a determination regarding the quality of the arrangement state, whereby the determination accuracy can be improved.
  • irradiation of the inspection electromagnetic wave from the irradiation unit may be performed on the target filter being conveyed, and in that case, irradiation of the inspection electromagnetic wave by the irradiation unit and While the target filter passes through a predetermined irradiation range set so as to enable reception of reflected electromagnetic waves by the reception unit, the acquisition unit may receive information on the intensity of the reflected signal, or the reflection Information about the phase shift of the signal is acquired a plurality of times, and the intensity information that has been acquired or the phase shift information that has the maximum change with respect to the test electromagnetic wave, or the phase shift that has the maximum change with respect to the test electromagnetic wave is obtained. Information may be acquired as the predetermined information.
  • the intensity information having the largest change or the maximum phase shift information with respect to the inspection electromagnetic wave is the reflected electromagnetic wave. It can be said that the information corresponds to the state that most accurately reflects the arrangement state of the predetermined arrangement object in the target filter. Therefore, the accuracy can be improved by performing the determination by the determination unit using the predetermined information which is the intensity information having the maximum change or the phase shift information having the maximum change.
  • FIG. 1 shows a manufacturing process of a filter attached to a cigarette on a capsule filter hoisting machine 10, a cigarette manufacturing process on a cigarette hoisting machine 15, and the cigarette hoisting machine 15.
  • FIG. 1 shows the flow of the test
  • the content of each process is demonstrated easily.
  • the flow on the capsule filter hoisting machine 10 will be described.
  • capsules are supplied and inserted from the capsule supply process 12 into the filter material, which is a bundle of acetate fibers, supplied from the filter material supply process 11, and then the capsules in the winding process 13. Is inserted into a rod shape by a web.
  • the filter rod is cut at a predetermined length with a cutter (not shown) to obtain a capsule filter rod.
  • the manufactured capsule filter rod is sent to the filter chip attachment 16 in the cigarette hoisting machine 15. There, first, the capsule filter rod is integrally wound around the cigarette rod manufactured in the previous step through the tip paper in the tip winding step 17. Usually, the capsule filter rod has a double length, and cigarette rods are arranged on both ends of the double length capsule filter rod on the drum, and chip paper is wound to produce a double cigarette. Is done. This double cigarette is sent to a cutting step 18 performed on another drum, where it is cut to produce a cigarette having a length of one. Then, the manufactured cigarette is sent to the inspection step 19, and the capsule inspection apparatus shown in FIG. 2 provided in the filter chip attachment 16 relates to an efficient capsule on-machine with respect to the cigarette filter. Inspection is performed.
  • the capsule inspection apparatus corresponds to the inspection apparatus according to the present invention.
  • the capsule inspection apparatus is used for the inspection on the quality of the arrangement state of the capsule 1 a in the filter 1 of the cigarette 2 and the control apparatus 20 for executing various processes executed by the inspection apparatus.
  • a probe antenna 23 and a drum 30 capable of transporting a plurality of cigarettes 2 having a filter to be inspected are provided.
  • a circulator 24 is connected to the probe antenna 23, and the inspection electromagnetic wave supplied from the noise source 21 passes through the low-pass filter 22 and the inspection electromagnetic wave in a predetermined frequency band is generated in the circulator 24. Then, the inspection electromagnetic wave is input to the circulator 24.
  • an electromagnetic wave having an oscillation frequency of 22 GHz to 40 GHz generated by the noise source 21 is passed through the low pass filter 22 to generate an inspection electromagnetic wave of 20 to 30 GHz.
  • the frequency of the inspection electromagnetic wave input to the circulator 24 may belong to 10 to 100 GHz.
  • a detector 25 is connected to the circulator 24 at its output.
  • the detector 25 takes out an electrical reflection signal corresponding to a reflected electromagnetic wave, which will be described later, and then performs predetermined electrical processing such as amplification and filtering on the reflection signal by the amplifier filter 26, and sends the reflected signal to the control device 20. Is delivered.
  • the probe antenna 23 has a long and narrow antenna casing, and is arranged so that the tip thereof faces the filter 1 to be inspected. And the inspection electromagnetic wave is irradiated from the front-end
  • the inspection electromagnetic wave transmission part and the reflected electromagnetic wave reception part of the probe antenna 23 are installed at positions facing the drum 30 that is rotationally driven.
  • a rotary encoder 32 is connected to a drum body 31 supported so as to be rotatable via a shaft.
  • a cigarette 2 having the filter 1 to be inspected is arranged on the drum body 31 of the drum 30 as shown in FIG.
  • the drum body 31 is a metal cylindrical object, and an accommodation portion formed so that the cigarette 2 is accommodated in the axial direction is disposed on the surface of the cylindrical object along the axial direction.
  • the cigarette 2 has a filter 1 positioned on the right end surface side of the drum body 31 in FIG. 2 and a cigarette rod positioned on the left end surface side of the drum body 31 in FIG. It is accommodated in the accommodating part.
  • positioning of the cigarette 2 shown in FIG. 2 is the state which projected the single cigarette 2 accommodated in the said accommodating part on the cross section containing the axis
  • the probe antenna is used. 23 the positional relationship that can be opposed to the inspection electromagnetic wave transmission part and the reflected electromagnetic wave reception part, that is, the positional relation that belongs to the inspection region that is irradiated with the inspection electromagnetic wave and can receive the reflected electromagnetic wave, It is formed between the probe antenna 23 and the filter 1. Therefore, in the process of rotating and transporting the plurality of cigarettes 2 by the drum 30, the capsule inspection apparatus shown in FIG. 2 sequentially inspects the filters 1 of the plurality of cigarettes 2 by irradiating inspection electromagnetic waves from the probe antenna 23. It will be attached to.
  • the rotary encoder 32 is driven by the drum drive shaft, and the pulse signal obtained therefrom and the drum clock pulse (DCP) corresponding to each cigarette generated by the hoisting machine are passed to the controller 20 of the capsule inspection apparatus. Has been. Therefore, based on the pulse signal and the DCP, the capsule inspection apparatus can grasp which cigarette filter 1 on the drum 30 is inspected.
  • DCP drum clock pulse
  • the details of the inspection of the arrangement state of the capsule 1a in the filter 1 by the capsule inspection apparatus will be described based on FIG.
  • the upper stage (a), the middle stage (b), and the lower stage (c) of FIG. 3 schematically show the accommodation state of the cigarette 2 in the drum 30 and show the received intensity of the reflected electromagnetic wave corresponding to the accommodation state.
  • the filter 1 is conveyed by the drum 30 in the width direction (perpendicular to the paper surface of FIG. 3) with respect to the probe antenna 23 by the inspection electromagnetic wave. Shows the transition of the reception intensity of the reflected electromagnetic wave with respect to the conveying distance in the width direction.
  • the line L1 is a reception intensity transition when the arrangement state of the capsule 1a in the filter 1 is a normal arrangement state
  • the line L2 is an abnormal arrangement state of the arrangement state of the capsule 1a in the filter 1. It is a reception intensity transition in the case.
  • the upper stage (a) of FIG. 3 shows a state in which the end face (right end face in FIG. 3) of the filter 1 of the cigarette 2 is flush with the right end face of the drum body 31, that is, the right end face of the filter 1.
  • the metal side surface 31 a of the drum body 31 is located on the opposite side of the probe antenna 23 of the capsule 1 a in the filter 1.
  • FIG. 3 shows the accommodation state of the cigarette 2 in which the right end surface of the filter 1 protrudes from the right end surface of the drum body 31, and the protrusion amount is ⁇ L2.
  • the metal side surface 31a of the drum body 31 is still located on the side opposite to the probe antenna 23 of the capsule 1a in the filter 1. It is in a state.
  • the lower part (c) of FIG. 3 shows the accommodation state of the cigarette 2 in which the right end surface of the filter 1 protrudes from the right end surface of the drum body 31, and the protrusion amount is ⁇ L3.
  • the filter 1 protrudes from the right end surface of the drum body 31, and the metal side surface 31 a of the drum body 31 is not located on the opposite side of the capsule 1 a in the filter 1 from the probe antenna 23. ing.
  • the filter 1 in each accommodated state of FIGS. 3A to 3C is inspected from the irradiation unit 23b. It is located in the area where electromagnetic waves are irradiated.
  • a part of the irradiated inspection electromagnetic wave is reflected on the filter 1 side and becomes a reflected electromagnetic wave directed toward the probe antenna 23.
  • the reflected electromagnetic waves include electromagnetic waves reflected at various sites on the filter 1 side, and can schematically be exemplified by the following four reflected electromagnetic waves.
  • the reflected electromagnetic waves (1) to (4) are substantially free from the inspection electromagnetic wave acting on the capsule 1a. Information on the arrangement state of the capsule 1a is not reflected.
  • the reflected electromagnetic wave (2) since the inspection electromagnetic wave is reflected by the capsule 1a that should be filled with the fragrance liquid, a part of the inspection electromagnetic wave is absorbed during the reflection, and as a result, the capsule 1a The presence of the fragrance liquid is reflected in the reception intensity of the reflected electromagnetic wave.
  • the reflected electromagnetic wave (4) the electromagnetic wave is reflected by the metal side surface 31a. However, since the inspection electromagnetic wave is transmitted through the capsule 1a in the reflection process, a part of the inspection electromagnetic wave is absorbed. As a result, like the reflected electromagnetic wave (2), the presence of the fragrance liquid in the capsule 1a is reflected in the reception intensity of the reflected electromagnetic wave.
  • the capsule inspection apparatus uses the reflection of the presence of the fragrance liquid in the capsule 1a to the reception intensity of the reflected electromagnetic wave, so that the arrangement state of the capsule 1a in the filter 1 is good, that is, whether the capsule 1a is in a normal arrangement state. Inspecting whether there is an abnormal arrangement state is performed. Specifically, in the accommodated state shown in FIG. 3A, since the metal side surface 31a exists on the back surface of the capsule 1a when viewed from the probe antenna 23, the reflected electromagnetic waves (2) and (4) Can be received by the probe antenna 23.
  • the perfume liquid when the capsule 1a is in a normal arrangement state, the perfume liquid is present in a certain region in the filter 1, so that the degree of absorption of the inspection electromagnetic wave increases, and the reception intensity by the probe antenna 23 greatly decreases. It will be.
  • the capsule 1a since the capsule 1a is arranged at the center of the width of the filter 1, if the capsule 1a is in the normal arrangement state, the reception intensity greatly decreases at the approximate median of the transport distance. It can be understood from FIG.
  • the perfume liquid when the capsule 1a is in an abnormally arranged state, the perfume liquid diffuses into the filter 1, so that the degree of absorption of the inspection electromagnetic wave is reduced, and the received intensity in the received intensity transition compared to the normal arranged state. The amount of decrease is small.
  • the filter 1 protrudes from the end surface of the drum body 31, but the metal side surface 31a exists on the back surface of the capsule 1a when viewed from the probe antenna 23. Therefore, the reflected electromagnetic waves (2) and (4) can be received by the probe antenna 23. Therefore, even in this case, when the amount of decrease in reception intensity in the reception intensity transition is compared between the normal arrangement state and the abnormal arrangement state, a clear difference ⁇ V2 can be found as shown in FIG.
  • the reflected electromagnetic wave (2) is received by the probe antenna 23.
  • the reflected electromagnetic wave (4) is not generated and cannot be received. Therefore, in the accommodated state, the difference ⁇ V3 in the amount of decrease in reception strength in the reception strength transition between the normal placement state and the abnormal placement state is smaller than the state shown in FIGS. 3 (a) and 3 (b). However, it can be grasped as a clear decrease in received strength to some extent. Therefore, even in such an accommodation state, it is possible to distinguish and determine a normal arrangement state and an abnormal arrangement state using the difference ⁇ V3.
  • an inspection electromagnetic wave of 22 to 28 GHz is irradiated.
  • the reception strength of the normal placement state and the abnormal placement state in the frequency band of 22 to 28 GHz it is preferable to use an electromagnetic wave having a frequency at which the difference in the amount of decrease is greatest. Therefore, in order to understand the correlation between the frequency of the inspection electromagnetic wave and the reception intensity, FIG. 4 shows the transition of the reception intensity of the reflected electromagnetic wave by the probe antenna 23 when the inspection electromagnetic wave of each frequency is used. Specifically, each of (a) to (e) in FIG.
  • the line L3 is the capsule 1a in the filter 1
  • the reception intensity transition when the arrangement state is the normal arrangement state
  • the line L4 is the reception intensity transition when the arrangement state of the capsule 1a in the filter 1 is the abnormal arrangement state. Note that the sign of the reception strength of each reception strength transition shown in FIG. 4 is opposite to the sign of the reception strength of each reception strength transition shown in FIG.
  • the difference in the received intensity changes between the normal arrangement state and the abnormal arrangement state is relatively large at any frequency in the frequency band of 22 to 28 GHz.
  • the inspection electromagnetic wave having a frequency can be suitably used for the inspection processing relating to the arrangement state of the capsule 1a.
  • the difference can be found to be the largest. Therefore, the inspection processing regarding the arrangement state of the capsule 1a is most preferably performed using the inspection electromagnetic wave of 24 GHz or 26 GHz. Do.
  • inspection process changes with the shape of the capsule 1a and the filter 1, a magnitude
  • the details of the inspection process of the filter 1 executed by the capsule inspection apparatus of the present invention that is, the inspection process related to the arrangement state of the capsule 1 a in the filter 1 using the above-described inspection electromagnetic wave will be described.
  • a predetermined control program is executed in the control device 20.
  • the inspection process is a process executed on the filter 1 provided in one cigarette 2. Therefore, when cigarettes are sequentially fed to the capsule inspection device by the drum 30 as described above, the inspection processing is repeatedly executed for the filter 1 of each cigarette 2. It is assumed that the inspection process of the present embodiment is performed with the cigarette 2 being housed in the drum body 31 in the housed state shown in FIG.
  • S101 whether or not the cigarette filter 1 to be inspected has reached the inspection area, that is, whether or not the filter 1 has reached the irradiation area of the inspection electromagnetic wave from the probe antenna 23. Is determined.
  • the control device 20 can grasp the relative position of the cigarette with respect to the inspection region by using the pulse signal from the rotary encoder 32, so that the filter 1 of the cigarette 2 conveyed by the drum 30 can be obtained. It can be determined that the inspection area has been reached. If an affirmative determination is made in S101, the process proceeds to S102. If a negative determination is made, the process of S101 is repeated, and the arrival of the filter 1 in the inspection region is awaited.
  • the inspection antenna is irradiated with the inspection electromagnetic wave from the probe antenna 23 to the filter 1 that has reached the inspection region.
  • the process of S102 ends, the process proceeds to S103.
  • the reflected electromagnetic wave is received by the probe antenna 23.
  • the reflected electromagnetic wave received by the probe antenna 23 is the reflected electromagnetic wave (1). Includes all of (4).
  • the process of S103 ends, the process proceeds to S104.
  • the reception intensity of the reflected electromagnetic wave received in S103 is corrected.
  • the control device 20 determines the reception intensity of the probe antenna 23 when the inspection electromagnetic wave is irradiated from the probe antenna 23 to the non-arranged filter that is the reference filter and the capsule 1a is not disposed. , As a reference signal strength.
  • the reception intensity (hereinafter referred to as “corrected reception intensity”) obtained by subtracting the reference signal intensity from the reception intensity of the reflected electromagnetic wave received in S103 theoretically reflects only the arrangement state of the capsule 1a. It can be said that the received strength is high. Therefore, the accuracy of the inspection process related to the arrangement state of the capsule 1a can be improved by using the corrected reception intensity.
  • the process of S104 ends, the process proceeds to S105.
  • S105 it is determined whether or not the corrected reception intensity acquired in S104 has been updated, that is, whether or not a corrected reception intensity having a lower intensity has been acquired. As described with reference to FIG. 3, when the first inspection electromagnetic wave is irradiated after the filter 1 reaches the inspection region, there is no corrected received intensity acquired in the past. In S105, an affirmative determination is made.
  • the corrected reception intensity (corrected reception intensity stored in the memory of the control device 20) acquired by the past irradiation of the inspection electromagnetic wave and the current time
  • the corrected reception intensity acquired by the irradiation of the inspection electromagnetic wave is compared, and if the current correction reception intensity is small, an affirmative determination is made in S105. If an affirmative determination is made in S105, the process proceeds to S106.
  • the corrected reception intensity data stored in the memory in the control device 20 is rewritten with the corrected reception intensity obtained by the current irradiation of the inspection electromagnetic wave. It is done.
  • the corrected reception intensity is not stored in the memory, and therefore the corrected reception intensity obtained by the first inspection electromagnetic wave irradiation is written in the memory as it is.
  • the process proceeds to S107.
  • the past correction reception intensity data stored in the memory in the control device 20 is maintained, and the correction obtained by the current irradiation of the inspection electromagnetic wave is performed. The reception strength is not used.
  • the data of the corrected reception intensity is updated because the inspection electromagnetic wave is reflected on the surface of the capsule 1a and the reflected electromagnetic wave is received, and the inspection electromagnetic wave transmitted through the capsule 1a is reflected on the metal side surface 31a and reflected.
  • the electromagnetic wave is received again after passing through the capsule 1a, that is, when the probe antenna 23 receives the reflected electromagnetic waves (2) and (4), the arrangement state of the capsule 1a is most effective for the reflected electromagnetic wave. This is because the reception intensity of reflected electromagnetic waves or the corrected reception intensity at that time is considered to be the smallest.
  • S108 it is determined whether or not the filter 1 has exited the inspection area. It should be noted that the cigarette is rotated and conveyed by the drum 30 during the processing of S102 to S106 and S107 described above. Therefore, the relative position of the cigarette with respect to the inspection area at the present time is grasped using the pulse signal from the rotary encoder 32, and the determination process of S108 is performed. If an affirmative determination is made in S108, the process proceeds to S109, and if a negative determination is made, the processes in and after S102 are repeated, and the process of acquiring the corrected received intensity by irradiating the filter 1 with the inspection electromagnetic wave is performed again.
  • the corrected reception intensity finally stored in the memory of the control device 20 is determined as the peak reception intensity Vp.
  • the peak reception intensity Vp is a reception intensity that most strongly reflects the arrangement state of the capsule 1a arranged inside the filter 1 to be inspected.
  • the process proceeds to S110.
  • S110 based on the peak reception intensity Vp, a determination is made regarding the capsule arrangement state in the filter 1 to be inspected. Specifically, when the peak reception intensity Vp is smaller than the predetermined threshold value Rv, it is determined that the capsule 1a is in the normal arrangement state in the filter 1 (processing of S111).
  • the fragrance liquid is locally dispersed in the filter 1 without being dispersed. Therefore, the presence state of the fragrance liquid is reflected in the reflected electromagnetic wave, and the peak reception intensity Vp is preferably a small value. Considering this point, the determination of S110 is performed.
  • the capsule 1a is in an abnormal arrangement state in the filter 1 (processing of S112).
  • the fragrance liquid is dispersed in the filter 1. Therefore, the reflection effect of the fragrance liquid is hardly reflected in the reflected electromagnetic wave, and the peak reception intensity Vp becomes a relatively large value.
  • the determination of S110 is performed. Also, the cigarette 2 having the filter 1 determined to be abnormal in S112 is excluded from the drum 30 in S113.
  • a known exclusion device (for example, a device that eliminates the compressed air) is used.
  • the probe antenna 23 that transmits the inspection electromagnetic wave and receives the reflected electromagnetic wave is used to inspect the arrangement state of the capsule 1a in the filter 1 using the reflected electromagnetic wave from the filter 1 side. Done.
  • the inspection electromagnetic wave is supplied to the probe antenna 23 and the reflected electromagnetic wave is taken out through the circulator 24.
  • the inspection electromagnetic wave and the reflected electromagnetic wave are carried by one probe antenna 23.
  • the inspection electromagnetic wave and the reflected electromagnetic wave generally pass on the same path in the inspection space between the probe antenna 23 and the filter 1. Therefore, when the inspection electromagnetic wave passes through the filter 1 and is received by the probe antenna 23 as a reflected electromagnetic wave, it passes through the same part of the filter 1, so if the inspection electromagnetic wave passes through the capsule 1a.
  • the state of the capsule 1a can be strongly reflected in the reflected electromagnetic wave, and the accuracy of the inspection apparatus can be improved.
  • the inspection regarding the arrangement state of the capsule 1a in the filter 1 is performed based on the reception intensity of the reflected electromagnetic wave.
  • the inspection is performed based on the phase shift of the reflected electromagnetic wave. You may go.
  • This phase shift means a phase shift between the inspection electromagnetic wave and the reflected electromagnetic wave.
  • FIG. 6 shows the transition of the phase shift when the inspection electromagnetic wave of each frequency is used. Specifically, each of (a) to (e) of FIG.
  • the line L5 is the capsule 1a of the filter 1 It is a phase shift transition when the placement state is a normal placement state
  • a line L6 is a phase shift transition when the placement state of the capsule 1a in the filter 1 is an abnormal placement state.
  • inspection process changes with the shape of the capsule 1a and the filter 1, a magnitude

Abstract

The filter inspection apparatus checks if a predetermined object designed to be placed in a smoking article filter is properly arranged. The filter inspection apparatus is provided with: an emission unit for emitting an inspection electromagnetic wave of a predetermined frequency to a smoking article filter to be inspected; a receiving unit for receiving from the filter a reflected electromagnetic wave of the inspection electromagnetic wave emitted from the emission unit; an antenna unit that is placed to face the filter and propagates the inspection electromagnetic wave and the reflected electromagnetic wave; an acquisition unit for acquiring, on the basis of a reflection signal obtained by the receiving unit, predetermined information relating to the intensity or phase shift of the reflection signal, which are associated with the arrangement of the predetermined object in the filter; and a determination unit for determining if the predetermined object is properly arranged in the filter on the basis of the predetermined information acquired by the acquisition unit. This configuration reduces the size of the inspection apparatus.

Description

フィルタ検査装置Filter inspection device
 本発明は、喫煙物品用フィルタ内に配置されるべき所定配置物の配置状態に関する良否を検査する検査装置に関する。 The present invention relates to an inspection apparatus for inspecting the quality of an arrangement state of a predetermined object to be arranged in a filter for smoking articles.
 シガレットに備えられるフィルタ内には液充填カプセルが配置されたものが知られており、この液充填カプセルの内容液は例えば香料と、この香料を溶解させた溶媒とからなる。このようなカプセル入りのフィルタを備えるシガレットを使用する場合には、ユーザは、喫煙に先立ち又は喫煙中に当該液充填カプセルを押し潰すことで、その内容液を漏出させ、シガレットの主流煙に香料の芳香を含ませることができる。このようなフィルタを備えるシガレットにあっては、その液充填カプセルの存在がその品質に大きく影響することから、フィルタ内に液充填カプセルが正常に配置されているか否かを検査する必要がある。例えば、特許文献1には、シガレットのフィルタ内に配置されるべきカプセルの配置状態を判定するために、0.1THz~10THzの周波数帯域の電磁波を検査対象のフィルタに照射し、その透過電磁波を利用する形態が開示されている。 It is known that a liquid-filled capsule is arranged in a filter provided in the cigarette, and the content liquid of the liquid-filled capsule is composed of, for example, a fragrance and a solvent in which the fragrance is dissolved. When using a cigarette equipped with such a filter containing a capsule, the user squeezes the liquid-filled capsule prior to or during smoking to cause the liquid content to leak out, and the cigarette mainstream smoke is a fragrance. Of fragrances. In a cigarette provided with such a filter, since the presence of the liquid-filled capsule greatly affects its quality, it is necessary to inspect whether or not the liquid-filled capsule is normally arranged in the filter. For example, in Patent Document 1, in order to determine an arrangement state of a capsule to be arranged in a cigarette filter, an electromagnetic wave in a frequency band of 0.1 THz to 10 THz is irradiated to a filter to be inspected, and the transmitted electromagnetic wave is applied. A form to be used is disclosed.
 また、特許文献2に示す技術では、ドラム上に設けられた複数の溝のそれぞれの底部にセンサ送信機が配置され、ドラムの外部に固定された形でセンサ受信機が配置されるように検査装置が形成される。そして、検査時には、フィルタがドラムの収容部のセンサ送信機を覆うように置かれた状態でドラムが回転され、このときセンサ送信機から送信された電磁波がフィルタを透過したことによる透過電磁波が複数のセンサ受信機で受信できるように構成されている。これらのセンサ受信機の受信結果に基づいて、フィルタ内のカプセルの状態の検出が行われる。 Moreover, in the technique shown in Patent Document 2, a sensor transmitter is arranged at the bottom of each of a plurality of grooves provided on the drum, and a sensor receiver is arranged in a form fixed to the outside of the drum. A device is formed. At the time of inspection, the drum is rotated in a state where the filter is placed so as to cover the sensor transmitter of the drum housing, and at this time, a plurality of transmitted electromagnetic waves due to the transmission of the electromagnetic wave transmitted from the sensor transmitter through the filter. It is comprised so that it can receive with a sensor receiver. Based on the reception results of these sensor receivers, the state of the capsule in the filter is detected.
国際公開第2014/078290号International Publication No. 2014/078290 国際公開第2014/005677号International Publication No. 2014/005677
 フィルタ内に配置されるべきカプセル等の所定配置物の配置状態の良否を検査するために、従来技術では、対象となるフィルタに対して電磁波を照射し、その電磁波がフィルタを透過することで得られる透過電磁波が利用されている。このような電磁波透過型の判定技術では、フィルタを電磁波が透過する際に、フィルタ内の所定配置物の配置状態が電磁波に反映されることで、当該配置状態に関する検査が可能となる。そのため、電磁波の照射部と透過電磁波の受信部とを、対象のフィルタを挟んでそれぞれ反対側に配置する必要があり、その結果、配置状態の検査のための構成(以下、「検査構成」という)に要する空間容積が大きくならざるを得ない。 In order to inspect the quality of the arrangement state of a predetermined arrangement object such as a capsule to be arranged in the filter, in the conventional technique, the target filter is irradiated with electromagnetic waves, and the electromagnetic waves are transmitted through the filter. The transmitted electromagnetic wave is used. In such an electromagnetic wave transmission type determination technique, when the electromagnetic wave is transmitted through the filter, the arrangement state of the predetermined arrangement in the filter is reflected in the electromagnetic wave, so that the inspection regarding the arrangement state can be performed. Therefore, it is necessary to arrange the electromagnetic wave irradiation unit and the transmission electromagnetic wave reception unit on opposite sides of the target filter, and as a result, a configuration for inspection of the arrangement state (hereinafter referred to as “inspection configuration”). ) Must have a large space volume.
 また、シガレットのフィルタのように大量生産されるフィルタにおいて、その内部に配置されるべき所定配置物の配置状態を判定する際は、フィルタやシガレットの効率的な生産を妨げないようにその判定が行われるのが好ましい。そこで、対象となるフィルタが生産ライン上で搬送等されている際に、フィルタ内の所定配置物の配置状態に関する判定が行われるのが好ましいが、従来技術のように透過電磁波を利用して検査を行おうとすると検査構成に要する空間容積が大きくなり、生産ライン上に、特に、フィルタが搬送されているライン上に検査構成を的確に配置することが困難となる。 Further, in a mass-produced filter such as a cigarette filter, when determining the arrangement state of a predetermined arrangement object to be arranged therein, the determination is performed so as not to hinder the efficient production of the filter and cigarette. Preferably it is done. Therefore, it is preferable that when the target filter is transported on the production line, the determination regarding the arrangement state of the predetermined arrangement in the filter is performed. However, as in the prior art, inspection using transmitted electromagnetic waves is performed. However, it is difficult to accurately arrange the inspection configuration on the production line, particularly on the line on which the filter is transported.
 本発明は、上記した問題点に鑑みてなされたものであり、喫煙物品用フィルタ内での所定配置物の配置状態を検査する検査装置の小型化を図ることを目的とする。 The present invention has been made in view of the above-described problems, and an object thereof is to reduce the size of an inspection apparatus that inspects the arrangement state of a predetermined arrangement in a filter for smoking articles.
 本発明において、上記課題を解決するために、一つのアンテナ部が、検査対象となる対象フィルタへの検査電磁波の照射と、該照射電磁波に起因して該対象フィルタから戻ってくる反射電磁波の受信とを行う構成を採用した。この構成により、対象フィルタ内での所定配置物の配置状態に関連する情報を取得するために必要とする空間容積を小さく抑えることができる。 In the present invention, in order to solve the above-described problem, one antenna unit irradiates the inspection electromagnetic wave to the target filter to be inspected and receives the reflected electromagnetic wave returning from the target filter due to the irradiation electromagnetic wave. The structure which performs is adopted. With this configuration, it is possible to reduce the space volume required for acquiring information related to the arrangement state of the predetermined arrangement in the target filter.
 具体的には、本発明は、喫煙物品用フィルタ内に配置されるべき所定配置物の配置状態に関する良否を検査する検査装置であって、所定周波数の検査電磁波を、検査の対象となる前記喫煙物品用フィルタである対象フィルタに対して照射する照射部と、前記照射部によって照射された前記検査電磁波による、前記対象フィルタからの反射電磁波を受信する受信部と、前記対象フィルタに対向するように配置され、前記検査電磁波と前記反射電磁波を伝搬させるアンテナ部と、前記受信部によって得られた反射信号に基づいて、前記対象フィルタ内の所定配置物の配置状態に関連する該反射信号の強度、又は該反射信号の位相ずれに関する所定情報を取得する取得部と、前記取得部によって取得された前記所定情報に基づいて、前記対象フィルタに配置された前記所定配置物の配置状態の良否を判定する判定部と、を備える。 Specifically, the present invention is an inspection device for inspecting the quality of an arrangement state of a predetermined object to be arranged in a filter for smoking articles, wherein the inspection electromagnetic wave having a predetermined frequency is applied to the smoking object to be inspected. An irradiation unit that irradiates a target filter that is a filter for goods, a receiving unit that receives a reflected electromagnetic wave from the target filter by the inspection electromagnetic wave irradiated by the irradiation unit, and a target filter An antenna unit that is disposed and propagates the inspection electromagnetic wave and the reflected electromagnetic wave, and based on the reflected signal obtained by the receiving unit, the intensity of the reflected signal related to the arrangement state of the predetermined arrangement in the target filter; Alternatively, an acquisition unit that acquires predetermined information regarding a phase shift of the reflected signal, and the target file based on the predetermined information acquired by the acquisition unit. Comprising a determining unit the quality of the arrangement of the predetermined arrangement thereof arranged in data, the.
 本発明に係る検査装置は、対象フィルタに対して対向するように配置されたアンテナ部を有している。このアンテナ部は、検査電磁波と反射電磁波を搬送するものである。したがって、照射部から照射された検査電磁波はアンテナ部を通して対象フィルタに到達したとき、少なくともその一部が対象フィルタによって反射され、アンテナ部を通して受信部によって受信されることになる。また、検査電磁波のうち対象フィルタを透過したものであっても、対象フィルタ以外の箇所で反射され受信部に向かってくる電磁波も、アンテナ部を通して受信部によって受信される場合もある。このような検査電磁波が反射された電磁波は、対象フィルタに照射された検査電磁波と区別して反射電磁波と称する。そして、この反射電磁波には、対象フィルタにおける所定配置物の配置状態に起因した物理的な作用が反映される。すなわち、検査電磁波が対象フィルタに照射され、対象フィルタで反射される場合、所定配置物の形状やその変形状態、フィルタ内での位置等、所定配置物の配置状態が、反射電磁波の強度や位相に反映されることになる。 The inspection apparatus according to the present invention has an antenna unit arranged to face the target filter. This antenna unit carries inspection electromagnetic waves and reflected electromagnetic waves. Therefore, when the inspection electromagnetic wave irradiated from the irradiation unit reaches the target filter through the antenna unit, at least a part of the inspection electromagnetic wave is reflected by the target filter and received by the reception unit through the antenna unit. In addition, even if the inspection electromagnetic wave is transmitted through the target filter, the electromagnetic wave that is reflected at a place other than the target filter and is directed toward the reception unit may be received by the reception unit through the antenna unit. Such an electromagnetic wave reflected from the inspection electromagnetic wave is referred to as a reflected electromagnetic wave in distinction from the inspection electromagnetic wave irradiated to the target filter. The reflected electromagnetic wave reflects a physical action resulting from the arrangement state of the predetermined arrangement object in the target filter. That is, when the inspection electromagnetic wave is irradiated to the target filter and reflected by the target filter, the arrangement state of the predetermined arrangement, such as the shape of the predetermined arrangement, its deformation state, and the position in the filter, is the intensity or phase of the reflected electromagnetic wave. Will be reflected.
 ここで、本発明の検査装置により配置状態に関する良否が検査される所定配置物は、フィルタ内に配置されるべきものであって、検査電磁波によって、その配置状態に関する情報が反射電磁波に反映可能な物体、構造物等であれば、何れの物であっても構わない。例えば、所定配置物としては、所定の香料液体が充填された液充填カプセルが例示できる。液充填カプセルは、カプセル内に所定の香料液体が充填されたものであり、当該香料液体によって、検査電磁波の反射による電磁波強度の変化や位相ずれが反射電磁波に反映されることになる。また、配置状態としては、フィルタ内での所定配置物の配置に関する状態であり、例えば、フィルタ内での所定配置物の位置に関し好適に配置されている状態、フィルタ内で所定配置物が破損や変形等せずに好適に配置されている状態、フィルタ内に所定配置物が存在している状態等を例示することができる。 Here, the predetermined object to be inspected for the arrangement state by the inspection apparatus of the present invention should be arranged in the filter, and the information on the arrangement state can be reflected in the reflected electromagnetic wave by the inspection electromagnetic wave. Any object, structure, etc. may be used. For example, as the predetermined arrangement, a liquid-filled capsule filled with a predetermined perfume liquid can be exemplified. The liquid-filled capsule is a capsule in which a predetermined fragrance liquid is filled, and the fragrance liquid reflects a change in electromagnetic wave intensity and a phase shift due to reflection of the inspection electromagnetic wave in the reflected electromagnetic wave. Further, the arrangement state is a state related to the arrangement of the predetermined arrangement in the filter. For example, the arrangement is suitably arranged with respect to the position of the predetermined arrangement in the filter. For example, a state where it is suitably arranged without being deformed, a state where a predetermined arrangement exists in the filter, and the like can be exemplified.
 ここで、受信部によって反射電磁波が受信され、そこで形成された反射信号は、所定配置物の配置状態が反映された反射電磁波の強度や位相ずれに関する信号である。そこで、取得部が、受信部によって得られた反射信号に基づいて、所定配置物の配置状態を反映する情報として、反射信号の強度や位相ずれに関する所定情報を取得する。そして、判定部が、当該所定情報に基づいて、所定配置物の配置状態を把握することが可能となり、以て、当該配置状態の良否を判定する。例えば、所定情報としての反射信号の強度や位相ずれが、基準となる範囲に属すれば、所定配置物の配置状態が好適な状態である等の判定を判定部が行うことが可能となる。 Here, the reflected electromagnetic wave is received by the receiving unit, and the reflected signal formed there is a signal relating to the intensity and phase shift of the reflected electromagnetic wave reflecting the arrangement state of the predetermined arrangement. Therefore, the acquisition unit acquires predetermined information related to the intensity and phase shift of the reflection signal as information reflecting the arrangement state of the predetermined arrangement based on the reflection signal obtained by the reception unit. Then, the determination unit can grasp the arrangement state of the predetermined arrangement based on the predetermined information, and thus determines the quality of the arrangement state. For example, when the intensity or phase shift of the reflected signal as the predetermined information belongs to a reference range, the determination unit can determine that the arrangement state of the predetermined arrangement is suitable.
 このように、アンテナ部を対象フィルタに対向させ該アンテナ部を通して検査電磁波を送信するとともに反射電磁波を受信するように構成することで、所定配置物の配置状態に関する良否の検査のために必要な検査は、アンテナ部と対象フィルタとの間に存在する空間のみとなり、従来の透過型の検査装置と比べて検査空間をコンパクトにすることが可能となる。更に、本発明のような反射型の検査装置においては、検査電磁波の周波数範囲を比較的低く設定することが可能であることを本願の発明者は見出した。例えば、10GHz~100GHzの範囲に属する周波数の電磁波を検査電磁波として好適に利用することが可能である。より好適には、20GHz~30GHzの範囲に属する周波数の電磁波を検査電磁波として利用できる。 In this way, by configuring the antenna unit to face the target filter and transmitting the inspection electromagnetic wave through the antenna unit and receiving the reflected electromagnetic wave, the inspection necessary for the inspection of the arrangement state of the predetermined arrangement is required. Is only a space existing between the antenna unit and the target filter, and the inspection space can be made compact compared to the conventional transmission type inspection apparatus. Furthermore, the inventors of the present application have found that the frequency range of the inspection electromagnetic wave can be set relatively low in the reflection type inspection apparatus as in the present invention. For example, an electromagnetic wave having a frequency in the range of 10 GHz to 100 GHz can be suitably used as the inspection electromagnetic wave. More preferably, an electromagnetic wave having a frequency in the range of 20 GHz to 30 GHz can be used as the inspection electromagnetic wave.
 また、上述までの検査装置において、前記アンテナ部は、同一のアンテナ筐体において前記検査電磁波を前記対象フィルタに送信するとともに前記反射電磁波を該対象フィルタから受信するように形成されてもよい。このように構成することで、アンテナ部の構成をよりコンパクトにしその配置に要する空間容積を可及的に小さくできるため、検査装置の小型化を促進させることができる。 In the inspection apparatus described above, the antenna unit may be formed so as to transmit the inspection electromagnetic wave to the target filter and receive the reflected electromagnetic wave from the target filter in the same antenna housing. By configuring in this way, the configuration of the antenna unit can be made more compact, and the space volume required for the arrangement can be made as small as possible, so that the downsizing of the inspection apparatus can be promoted.
 また、本発明の検査装置において、受信部は、検査電磁波が対象フィルタによって直接反射された反射電磁波だけではなく、検査電磁波が対象フィルタから何らかの作用を受け、所定配置物の配置状態が反映された電磁波であって、対象フィルタから受信部に向かってくる電磁波も反射電磁波として受信可能となるように構成されてもよい。このように複数種類の、所定配置物の配置状態が反映された電磁波を反射電磁波として利用することで、取得部が取得する所定情報に、所定配置物の配置状態をより的確に反映させ、判定部による判定精度を向上させることができる。 In the inspection apparatus of the present invention, the receiving unit reflects not only the reflected electromagnetic wave in which the inspection electromagnetic wave is directly reflected by the target filter but also the inspection electromagnetic wave receives some action from the target filter, and the arrangement state of the predetermined arrangement is reflected. An electromagnetic wave that is directed toward the receiving unit from the target filter may be configured to be received as a reflected electromagnetic wave. In this way, by using multiple types of electromagnetic waves reflecting the arrangement state of the predetermined arrangement object as reflected electromagnetic waves, the arrangement state of the predetermined arrangement object is more accurately reflected in the predetermined information acquired by the acquisition unit, and the determination is made. The determination accuracy by the unit can be improved.
 一例としては、上述の検査装置が、前記アンテナ部とは反対側の、前記対象フィルタの背部に配置され、照射された前記検査電磁波の一部であって該対象フィルタを透過した透過電磁波を再び該対象フィルタ側に反射するように形成された反射部を、更に備えてもよく、その場合、前記受信部は、前記対象フィルタからの反射電磁波に加えて、前記透過電磁波が前記反射部によって反射された電磁波である二次反射電磁波を受信するように構成される。当該二次反射電磁波は、照射部から反射部に至るまでの過程で一度対象フィルタ内を透過し、そして、反射部によって反射され受信部に至るまでの過程でもう一度対象フィルタ内を透過することになる。したがって、二次反射電磁波には、対象フィルタ内での所定配置物の配置状態が、比較的強く反映されることになる。そのため、上記反射電磁波に加えて当該二次反射電磁波を受信部によって受信し、そこから所定情報を取得することで、より的確な配置状態の良否に関する判定を判定部が行うことが可能となる。 As an example, the inspection apparatus described above is disposed on the back of the target filter on the side opposite to the antenna unit, and transmits the transmitted electromagnetic wave that is a part of the irradiated inspection electromagnetic wave and transmitted through the target filter again. In addition to the reflected electromagnetic wave from the target filter, the receiving unit may reflect the transmitted electromagnetic wave by the reflective unit. Configured to receive a secondary reflected electromagnetic wave that is a generated electromagnetic wave. The secondary reflected electromagnetic wave passes through the target filter once in the process from the irradiation part to the reflection part, and then passes through the target filter once again in the process from the reflection part to the reception part. Become. Therefore, the arrangement state of the predetermined arrangement in the target filter is reflected relatively strongly in the secondary reflected electromagnetic wave. Therefore, in addition to the reflected electromagnetic wave, the secondary reflected electromagnetic wave is received by the receiving unit, and predetermined information is obtained therefrom, whereby the determining unit can make a more accurate determination regarding the quality of the arrangement state.
 ここで、上記のような反射部による二次反射電磁波を受信部が受信し得る構成としては、本発明の検査装置が、複数の前記喫煙物品用フィルタを搬送台に載せた状態で搬送する搬送装置であって、該搬送装置によって搬送される喫煙物品用フィルタに含まれる前記対象フィルタに対して前記検査電磁波が照射されるように、前記アンテナ部に対して配置される搬送装置を、更に備え、前記反射部は、前記搬送台に含まれる、金属製の所定部材である形態を例示することができる。当該形態では、複数のフィルタが搬送装置の搬送台に載せられて搬送されている状態で、その中の対象フィルタに対してアンテナ部の照射部から検査電磁波が照射されると、当該対象フィルタによる直接の反射電磁波に加えて、搬送台の金属製の所定部材によって反射された二次反射電磁波がアンテナ部の受信部によって受信されることになる。したがって、当該形態によれば、フィルタの搬送中にフィルタ内の所定配置物の配置状態に関する良否判定が行われるため、効率的かつ高精度の判定を実現できる。 Here, as a configuration in which the reception unit can receive the secondary reflected electromagnetic wave by the reflection unit as described above, the inspection apparatus of the present invention transports a plurality of the smoking article filters placed on a transport table. The apparatus further includes a transfer device arranged with respect to the antenna unit such that the inspection electromagnetic wave is irradiated to the target filter included in the filter for smoking articles transferred by the transfer device. The reflection unit can be exemplified by a metal predetermined member included in the transport table. In the said form, when a test | inspection electromagnetic wave is irradiated from the irradiation part of an antenna part with respect to the object filter in the state in which the several filter is mounted and conveyed on the conveyance stand of a conveying apparatus, according to the said object filter In addition to the directly reflected electromagnetic wave, the secondary reflected electromagnetic wave reflected by the predetermined metal member of the carrier is received by the receiving unit of the antenna unit. Therefore, according to the said form, since the quality determination regarding the arrangement state of the predetermined arrangement | positioning object in a filter is performed during conveyance of a filter, efficient and highly accurate determination is realizable.
 ここで、上述までの検査装置において、前記所定情報は、前記反射信号の強度に関する情報であって、該検査装置は、前記所定周波数の検査電磁波が前記所定配置物を内部に配置されていない喫煙物品用フィルタである基準フィルタに対して照射されることで予め得られた基準信号強度に関する情報に基づいて、前記取得部によって取得された前記所定情報を補正する補正部を、更に備えてもよい。そして、前記判定部は、前記補正部によって補正された前記所定情報に基づいて、前記対象フィルタに配置された前記所定配置物の配置状態の良否を判定してもよい。 Here, in the inspection apparatus described above, the predetermined information is information on the intensity of the reflected signal, and the inspection apparatus is configured to smoke the inspection electromagnetic wave having the predetermined frequency is not disposed in the predetermined arrangement. The image processing apparatus may further include a correction unit that corrects the predetermined information acquired by the acquisition unit based on information on the reference signal intensity obtained in advance by irradiating the reference filter that is the article filter. . And the said determination part may determine the quality of the arrangement | positioning state of the said predetermined arrangement | positioning arrange | positioned at the said target filter based on the said predetermined information correct | amended by the said correction | amendment part.
 所定配置物が配置されていない基準フィルタに対して検査電磁波が照射されたときの、受信部によって得られた基準信号強度には、フィルタにおける所定配置物の配置状態以外の情報、換言すれば、当該配置状態に関する情報に対するノイズが反映されていると言うことができる。そこで、補正部は、この基準信号強度に関する情報に基づいて所定情報を補正することで、対象フィルタでの所定配置物の配置状態に関する情報を的確に抽出することができると言え、その結果、この補正された所定情報に基づいて判定部が配置状態の
良否に関する判定を行うことで、その判定精度の向上を図ることができる。
The reference signal intensity obtained by the receiving unit when the inspection electromagnetic wave is irradiated to the reference filter in which the predetermined arrangement is not arranged is information other than the arrangement state of the predetermined arrangement in the filter, in other words, It can be said that the noise with respect to the information regarding the arrangement state is reflected. Therefore, it can be said that the correction unit can accurately extract information on the arrangement state of the predetermined arrangement in the target filter by correcting the predetermined information based on the information on the reference signal intensity. Based on the corrected predetermined information, the determination unit makes a determination regarding the quality of the arrangement state, whereby the determination accuracy can be improved.
 また、上述までの検査装置において、搬送されている前記対象フィルタに対して、前記照射部からの前記検査電磁波の照射が行われてもよく、その場合、前記照射部による前記検査電磁波の照射及び前記受信部による反射電磁波の受信が可能となるように設定された所定の照射範囲を、前記対象フィルタが通過している間に、前記取得部は、前記反射信号の強度に関する情報、又は前記反射信号の位相ずれに関する情報を複数回取得し、該取得された強度情報、又は該位相ずれ情報の中から、該検査電磁波に対する変化が最大の強度情報、又は該検査電磁波に対する変化が最大の位相ずれ情報を前記所定情報として取得してもよい。このように複数回の反射信号の強度に関する情報、又は反射信号の位相ずれに関する情報の取得が行われる場合、その中でも検査電磁波に対する変化が最大の強度情報又は最大の位相ずれ情報は、反射電磁波が、対象フィルタでの所定配置物の配置状態を最も的確に反映している状態に対応する情報と言える。したがって、変化が最大の強度情報、又は変化が最大の位相ずれ情報である所定情報を利用して判定部による判定を行うことで、その精度の向上が図られる。 Moreover, in the inspection apparatus up to the above, irradiation of the inspection electromagnetic wave from the irradiation unit may be performed on the target filter being conveyed, and in that case, irradiation of the inspection electromagnetic wave by the irradiation unit and While the target filter passes through a predetermined irradiation range set so as to enable reception of reflected electromagnetic waves by the reception unit, the acquisition unit may receive information on the intensity of the reflected signal, or the reflection Information about the phase shift of the signal is acquired a plurality of times, and the intensity information that has been acquired or the phase shift information that has the maximum change with respect to the test electromagnetic wave, or the phase shift that has the maximum change with respect to the test electromagnetic wave is obtained. Information may be acquired as the predetermined information. As described above, when the information on the intensity of the reflected signal or information on the phase shift of the reflected signal is acquired a plurality of times, the intensity information having the largest change or the maximum phase shift information with respect to the inspection electromagnetic wave is the reflected electromagnetic wave. It can be said that the information corresponds to the state that most accurately reflects the arrangement state of the predetermined arrangement object in the target filter. Therefore, the accuracy can be improved by performing the determination by the determination unit using the predetermined information which is the intensity information having the maximum change or the phase shift information having the maximum change.
 本発明によれば、喫煙物品用フィルタ内での所定配置物の配置状態を検査する検査装置の小型化を図ることが可能となる。 According to the present invention, it is possible to reduce the size of an inspection apparatus that inspects the arrangement state of a predetermined object in a filter for smoking articles.
喫煙物品用フィルタ及びシガレットの製造工程への、本発明に係る検査装置による検査工程の適用を概略的に示す図である。It is a figure which shows roughly the application of the test | inspection process by the test | inspection apparatus based on this invention to the manufacturing process of the filter for smoking articles, and a cigarette. 本発明に係る検査装置の概略構成を示す図である。It is a figure showing the schematic structure of the inspection device concerning the present invention. 図2に示す検査装置での、喫煙物品用フィルタの配置されたドラム上の位置と反射電磁波の受信強度との相関を説明するための図である。It is a figure for demonstrating the correlation with the position on the drum in which the filter for smoking articles is arrange | positioned with the inspection apparatus shown in FIG. 2, and the received intensity of reflected electromagnetic waves. 本発明に係る検査装置において使用される検査電磁波の周波数と、反射電磁波の受信強度との相関を示す図である。It is a figure which shows the correlation with the frequency of the test | inspection electromagnetic wave used in the test | inspection apparatus which concerns on this invention, and the received intensity of reflected electromagnetic waves. 本発明に係る検査装置において実行される検査処理のフローチャートである。It is a flowchart of the test | inspection process performed in the test | inspection apparatus which concerns on this invention. 本発明に係る検査装置において使用される検査電磁波の周波数と、反射電磁波の位相ずれとの相関を示す図である。It is a figure which shows the correlation with the frequency of the test | inspection electromagnetic wave used in the test | inspection apparatus which concerns on this invention, and the phase shift of reflected electromagnetic wave.
 以下、本発明の具体的な実施形態について図面に基づいて説明する。本実施例に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に記載がない限りは発明の技術的範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. The dimensions, materials, shapes, relative arrangements, and the like of the components described in the present embodiment are not intended to limit the technical scope of the invention to those unless otherwise specified.
 図1は、シガレットに取り付けられるフィルタの、カプセルフィルタ巻上機10上での製造工程、及びシガレット巻上機15上でのシガレットの製造工程、及び、シガレット巻上機15上で行われる、該フィルタ内に配置された液充填カプセル(以下、単に「カプセル」という)の検査工程の流れを示す図である。以下、各工程の内容を簡単に説明する。先ず、カプセルフィルタ巻上機10上での流れについて説明する。カプセルフィルタ巻上機10では、フィルタ材供給工程11から供給される、アセテート繊維の束であるフィルタ材料に対してカプセル供給工程12よりカプセルが供給、挿入され、その後、巻上げ工程13で、そのカプセルが挿入されたフィルタ材料が巻取紙にてロッド形状に巻上げられる。その後、切断工程14で、図示しないカッタにてフィルタロッドが所定の長さ毎に切断され、カプセルフィルタロッドが得られる。 FIG. 1 shows a manufacturing process of a filter attached to a cigarette on a capsule filter hoisting machine 10, a cigarette manufacturing process on a cigarette hoisting machine 15, and the cigarette hoisting machine 15. It is a figure which shows the flow of the test | inspection process of the liquid filling capsule (henceforth a "capsule") arrange | positioned in the filter. Hereinafter, the content of each process is demonstrated easily. First, the flow on the capsule filter hoisting machine 10 will be described. In the capsule filter hoisting machine 10, capsules are supplied and inserted from the capsule supply process 12 into the filter material, which is a bundle of acetate fibers, supplied from the filter material supply process 11, and then the capsules in the winding process 13. Is inserted into a rod shape by a web. Thereafter, in the cutting step 14, the filter rod is cut at a predetermined length with a cutter (not shown) to obtain a capsule filter rod.
 製造されたカプセルフィルタロッドは、シガレット巻上機15でのフィルタチップアタッチメント16に送られる。そこでは、先ず、カプセルフィルタロッドが、チップ巻きつけ工程17で、前工程で製造されたシガレットロッドに対してチップペーパーを介して一体に巻きつけられる。通常、カプセルフィルタロッドは2倍長の長さを有しており、ドラム上にて2倍長のカプセルフィルタロッドの両端側にシガレットロッドが配置され、チップペーパーが巻きつけられ、ダブルシガレットが製造される。このダブルシガレットは別のドラム上で行われる切断工程18に送られ、そこで切断されて一本分の長さを有したシガレットが製造される。そして、その製造されたシガレットは検査工程19に送られ、フィルタチップアタッチメント16に設けられた、図2に図示されたカプセル検査装置によって、シガレットのフィルタに対してオンマシン上で効率的なカプセルに関する検査が行われる。なお、当該カプセル検査装置が、本発明に係る検査装置に相当する。 The manufactured capsule filter rod is sent to the filter chip attachment 16 in the cigarette hoisting machine 15. There, first, the capsule filter rod is integrally wound around the cigarette rod manufactured in the previous step through the tip paper in the tip winding step 17. Usually, the capsule filter rod has a double length, and cigarette rods are arranged on both ends of the double length capsule filter rod on the drum, and chip paper is wound to produce a double cigarette. Is done. This double cigarette is sent to a cutting step 18 performed on another drum, where it is cut to produce a cigarette having a length of one. Then, the manufactured cigarette is sent to the inspection step 19, and the capsule inspection apparatus shown in FIG. 2 provided in the filter chip attachment 16 relates to an efficient capsule on-machine with respect to the cigarette filter. Inspection is performed. The capsule inspection apparatus corresponds to the inspection apparatus according to the present invention.
 そこで、図2に基づいて、カプセル検査装置の構成について説明する。図2に示すように、カプセル検査装置は、当該検査装置で実行される各種の処理を実行するための制御装置20と、シガレット2のフィルタ1におけるカプセル1aの配置状態の良否に関する検査のためのプローブアンテナ23と、検査の対象となるフィルタを有するシガレット2を複数本搬送可能とするドラム30とを有している。 Therefore, the configuration of the capsule inspection apparatus will be described with reference to FIG. As shown in FIG. 2, the capsule inspection apparatus is used for the inspection on the quality of the arrangement state of the capsule 1 a in the filter 1 of the cigarette 2 and the control apparatus 20 for executing various processes executed by the inspection apparatus. A probe antenna 23 and a drum 30 capable of transporting a plurality of cigarettes 2 having a filter to be inspected are provided.
 ここで、プローブアンテナ23にはサーキュレータ24が接続され、サーキュレータ24には、雑音源21から供給される検査電磁波がローパスフィルタ22を通り所定の周波数帯の検査電磁波が生成される。そして、その検査電磁波がサーキュレータ24に入力される。なお、好ましくは、雑音源21で生成された発振周波数22GHz~40GHzの電磁波がローパスフィルタ22に通されて20~30GHzの検査電磁波が生成される。別例としては、サーキュレータ24に入力される検査電磁波の周波数は、10~100GHzに属するものでもよい。 Here, a circulator 24 is connected to the probe antenna 23, and the inspection electromagnetic wave supplied from the noise source 21 passes through the low-pass filter 22 and the inspection electromagnetic wave in a predetermined frequency band is generated in the circulator 24. Then, the inspection electromagnetic wave is input to the circulator 24. Preferably, an electromagnetic wave having an oscillation frequency of 22 GHz to 40 GHz generated by the noise source 21 is passed through the low pass filter 22 to generate an inspection electromagnetic wave of 20 to 30 GHz. As another example, the frequency of the inspection electromagnetic wave input to the circulator 24 may belong to 10 to 100 GHz.
 更に、サーキュレータ24には、その出力部に検波器25が接続される。この検波器25は、後述する反射電磁波に対応する電気的な反射信号を取り出し、その後、アンプフィルタ26により、反射信号に対する増幅、フィルタリング等の所定の電気処理が行われ、制御装置20に反射信号が引き渡される。 Furthermore, a detector 25 is connected to the circulator 24 at its output. The detector 25 takes out an electrical reflection signal corresponding to a reflected electromagnetic wave, which will be described later, and then performs predetermined electrical processing such as amplification and filtering on the reflection signal by the amplifier filter 26, and sends the reflected signal to the control device 20. Is delivered.
 ここで、プローブアンテナ23は、細長いアンテナ筐体を有し、その先端部が検査対象となるフィルタ1に対向するように配置される。そして、その先端部から検査電磁波が照射される。そして、照射された検査電磁波が、後述するようにフィルタ1又はドラム本体31で反射され、その反射電磁波を再びプローブアンテナ23で受信する。したがって、図2に示すカプセル検査装置では、検査電磁波と反射電磁波がともにプローブアンテナ23内を搬送されることになる。そのため、検査電磁波の送信部位と反射電磁波の受信部位とが、フィルタ1に対して同一の側に配置されることになる。 Here, the probe antenna 23 has a long and narrow antenna casing, and is arranged so that the tip thereof faces the filter 1 to be inspected. And the inspection electromagnetic wave is irradiated from the front-end | tip part. Then, the irradiated inspection electromagnetic wave is reflected by the filter 1 or the drum body 31 as will be described later, and the reflected electromagnetic wave is received by the probe antenna 23 again. Therefore, in the capsule inspection apparatus shown in FIG. 2, both the inspection electromagnetic wave and the reflected electromagnetic wave are carried in the probe antenna 23. Therefore, the inspection electromagnetic wave transmission part and the reflected electromagnetic wave reception part are arranged on the same side with respect to the filter 1.
 そのため、プローブアンテナ23の検査電磁波の送信部位と、反射電磁波の受信部位とが、回転駆動するドラム30に対面する位置に設置されることになる。このドラム30は、回転可能となるように支持されたドラム本体31に、シャフトを介してロータリーエンコーダ32が接続されている。 Therefore, the inspection electromagnetic wave transmission part and the reflected electromagnetic wave reception part of the probe antenna 23 are installed at positions facing the drum 30 that is rotationally driven. A rotary encoder 32 is connected to a drum body 31 supported so as to be rotatable via a shaft.
 そして、検査対象となるフィルタ1を有するシガレット2が、図2に示すようにドラム30のドラム本体31上に配置されている。具体的には、ドラム本体31は、金属製の円筒物体であり、シガレット2が軸方向に収容されるように形成された収容部が、当該円筒物体の表面上にその軸方向に沿って配置されており、シガレット2は、そのフィルタ1が図2におけるドラム本体31の右端面側に位置し、そのタバコロッドが図2におけるドラム本体31の左端面側に位置する状態で、ドラム本体31上の収容部内に収容される。なお、図2に示すシガレット2の配置は、当該収容部に収容された一本のシガレット2を、当該円筒物体の軸を含む断面に投影した状態である。 A cigarette 2 having the filter 1 to be inspected is arranged on the drum body 31 of the drum 30 as shown in FIG. Specifically, the drum body 31 is a metal cylindrical object, and an accommodation portion formed so that the cigarette 2 is accommodated in the axial direction is disposed on the surface of the cylindrical object along the axial direction. The cigarette 2 has a filter 1 positioned on the right end surface side of the drum body 31 in FIG. 2 and a cigarette rod positioned on the left end surface side of the drum body 31 in FIG. It is accommodated in the accommodating part. In addition, arrangement | positioning of the cigarette 2 shown in FIG. 2 is the state which projected the single cigarette 2 accommodated in the said accommodating part on the cross section containing the axis | shaft of the said cylindrical object.
 そして、ドラム本体31の円筒物体の表面には複数本のシガレット2が同時に収容された状態で、回転搬送されることになる。ドラム本体31上で回転搬送されているシガレット2のフィルタ1は、ドラム本体31の円筒物体の表面上に配置されているため、その回転搬送の工程の一部において、上述したように、プローブアンテナ23の検査電磁波の送信部位と、反射電磁波の受信部位と対向可能な位置関係、すなわち、プローブアンテナ23により検査電磁波が照射され、且つ反射電磁波を受け取ることが可能な検査領域に属する位置関係が、プローブアンテナ23とフィルタ1との間に形成されることになる。したがって、ドラム30により複数のシガレット2が回転搬送される工程において、図2に示すカプセル検査装置により、複数のシガレット2のそれぞれのフィルタ1が順次、プローブアンテナ23からの検査電磁波の照射による検査処理に付されることになる。 Then, a plurality of cigarettes 2 are simultaneously accommodated on the surface of the cylindrical object of the drum body 31 and are conveyed by rotation. Since the filter 1 of the cigarette 2 being rotated and conveyed on the drum body 31 is disposed on the surface of the cylindrical object of the drum body 31, as described above, in the part of the rotation and conveyance process, the probe antenna is used. 23, the positional relationship that can be opposed to the inspection electromagnetic wave transmission part and the reflected electromagnetic wave reception part, that is, the positional relation that belongs to the inspection region that is irradiated with the inspection electromagnetic wave and can receive the reflected electromagnetic wave, It is formed between the probe antenna 23 and the filter 1. Therefore, in the process of rotating and transporting the plurality of cigarettes 2 by the drum 30, the capsule inspection apparatus shown in FIG. 2 sequentially inspects the filters 1 of the plurality of cigarettes 2 by irradiating inspection electromagnetic waves from the probe antenna 23. It will be attached to.
 なお、ドラム駆動シャフトによりロータリーエンコーダ32が駆動され、そこから得られるパルス信号と巻上機が発生させるシガレット1本毎に対応するドラムクロックパルス(DCP)は、カプセル検査装置の制御装置20に渡されている。そのため、当該パルス信号とDCPに基づいて、カプセル検査装置は、ドラム30上の何れのシガレットのフィルタ1に対して検査処理が行われているかを把握することが可能である。 The rotary encoder 32 is driven by the drum drive shaft, and the pulse signal obtained therefrom and the drum clock pulse (DCP) corresponding to each cigarette generated by the hoisting machine are passed to the controller 20 of the capsule inspection apparatus. Has been. Therefore, based on the pulse signal and the DCP, the capsule inspection apparatus can grasp which cigarette filter 1 on the drum 30 is inspected.
 ここで、図3に基づいて、カプセル検査装置によるフィルタ1内のカプセル1aの配置状態の検査の詳細について説明する。なお、本実施例における配置状態としては、カプセル1aが破損せずに、すなわち内部の香料液体が漏出せずにフィルタ1内に正常に配置されている状態(以下、「正常配置状態」という)と、カプセル1aが破損し内部の香料液体が漏出した状態(以下、「異常配置状態」という)とが例示できる。図3の上段(a)、中段(b)、下段(c)では、それぞれドラム30におけるシガレット2の収容状態を模式的に示すとともに、その収容状態に対応した反射電磁波の受信強度を示す。具体的には、(a)~(c)のそれぞれは、検査電磁波が照射された状態において、ドラム30によってフィルタ1がプローブアンテナ23に対してその幅方向(図3の紙面垂直方向)に搬送されたときに、その幅方向の搬送距離に対する反射電磁波の受信強度の推移を示している。詳細には、線L1は、フィルタ1でのカプセル1aの配置状態が正常配置状態である場合の受信強度推移であり、線L2は、フィルタ1でのカプセル1aの配置状態が異常配置状態である場合の受信強度推移である。 Here, the details of the inspection of the arrangement state of the capsule 1a in the filter 1 by the capsule inspection apparatus will be described based on FIG. In addition, as an arrangement | positioning state in a present Example, the capsule 1a is not damaged, ie, the state which is normally arrange | positioned in the filter 1 without leaking an internal fragrance | flavor liquid (henceforth "normal arrangement state"). And the state (henceforth "abnormal arrangement state") which the capsule 1a was damaged and internal fragrance | flavor liquid leaked can be illustrated. The upper stage (a), the middle stage (b), and the lower stage (c) of FIG. 3 schematically show the accommodation state of the cigarette 2 in the drum 30 and show the received intensity of the reflected electromagnetic wave corresponding to the accommodation state. Specifically, in each of (a) to (c), the filter 1 is conveyed by the drum 30 in the width direction (perpendicular to the paper surface of FIG. 3) with respect to the probe antenna 23 by the inspection electromagnetic wave. Shows the transition of the reception intensity of the reflected electromagnetic wave with respect to the conveying distance in the width direction. Specifically, the line L1 is a reception intensity transition when the arrangement state of the capsule 1a in the filter 1 is a normal arrangement state, and the line L2 is an abnormal arrangement state of the arrangement state of the capsule 1a in the filter 1. It is a reception intensity transition in the case.
 そして、図3の上段(a)は、シガレット2のフィルタ1の端面(図3における右端面)が、ドラム本体31の右端面と面一となった状態、すなわち、フィルタ1の右端面の、ドラム本体31の右端面からの突出量ΔL1がゼロとなった状態の、シガレット2の収容状態に対応している。この収容状態では、フィルタ1内にあるカプセル1aの、プローブアンテナ23の反対側には、ドラム本体31の金属側面31aが位置した状態となっている。また、図3の中段(b)は、フィルタ1の右端面が、ドラム本体31の右端面から突出し、その突出量がΔL2となった、シガレット2の収容状態を示している。この収容状態では、フィルタ1がドラム本体31の右端面より突出してはいるものの、フィルタ1内にあるカプセル1aの、プローブアンテナ23の反対側には、まだドラム本体31の金属側面31aが位置した状態となっている。更に、図3の下段(c)は、フィルタ1の右端面が、ドラム本体31の右端面から突出し、その突出量がΔL3となった、シガレット2の収容状態を示している。この収容状態では、フィルタ1がドラム本体31の右端面より突出し、フィルタ1内にあるカプセル1aの、プローブアンテナ23の反対側には、ドラム本体31の金属側面31aは位置していない状態となっている。 The upper stage (a) of FIG. 3 shows a state in which the end face (right end face in FIG. 3) of the filter 1 of the cigarette 2 is flush with the right end face of the drum body 31, that is, the right end face of the filter 1. This corresponds to the accommodation state of the cigarette 2 in a state where the protrusion amount ΔL1 from the right end surface of the drum body 31 is zero. In this accommodated state, the metal side surface 31 a of the drum body 31 is located on the opposite side of the probe antenna 23 of the capsule 1 a in the filter 1. Moreover, the middle stage (b) of FIG. 3 shows the accommodation state of the cigarette 2 in which the right end surface of the filter 1 protrudes from the right end surface of the drum body 31, and the protrusion amount is ΔL2. In this accommodated state, although the filter 1 protrudes from the right end surface of the drum body 31, the metal side surface 31a of the drum body 31 is still located on the side opposite to the probe antenna 23 of the capsule 1a in the filter 1. It is in a state. Further, the lower part (c) of FIG. 3 shows the accommodation state of the cigarette 2 in which the right end surface of the filter 1 protrudes from the right end surface of the drum body 31, and the protrusion amount is ΔL3. In this accommodated state, the filter 1 protrudes from the right end surface of the drum body 31, and the metal side surface 31 a of the drum body 31 is not located on the opposite side of the capsule 1 a in the filter 1 from the probe antenna 23. ing.
 照射部23bから照射された検査電磁波は、一定の広がりをもってフィルタ1に対して照射されるため、図3の(a)~(c)の各収容状態におけるフィルタ1は、照射部23bからの検査電磁波が照射される領域に位置している。ここで、照射された検査電磁波の一部は、フィルタ1側で反射されてプローブアンテナ23に向かう反射電磁波となる。そして、当該反射電磁波には、フィルタ1側での様々な部位において反射された電磁波が含まれており、概略的には、次の4つの反射電磁波の形態を例示できる。
(1)フィルタ1の表面での反射電磁波
(2)フィルタ1内のカプセル1aの表面(すなわち、カプセル1aとフィルタ1との境界面)での反射電磁波
(3)フィルタ1を透過するもののカプセル1aを透過しない透過電磁波による、ドラム本体31の金属側面31aでの反射電磁波
(4)フィルタ1及びカプセル1aを透過した透過電磁波による、ドラム本体31の金属側面31aでの反射電磁波
Since the inspection electromagnetic wave irradiated from the irradiation unit 23b is irradiated to the filter 1 with a certain spread, the filter 1 in each accommodated state of FIGS. 3A to 3C is inspected from the irradiation unit 23b. It is located in the area where electromagnetic waves are irradiated. Here, a part of the irradiated inspection electromagnetic wave is reflected on the filter 1 side and becomes a reflected electromagnetic wave directed toward the probe antenna 23. The reflected electromagnetic waves include electromagnetic waves reflected at various sites on the filter 1 side, and can schematically be exemplified by the following four reflected electromagnetic waves.
(1) Reflected electromagnetic wave on the surface of the filter 1 (2) Reflected electromagnetic wave on the surface of the capsule 1a in the filter 1 (that is, the boundary surface between the capsule 1a and the filter 1) (3) Capsule 1a that passes through the filter 1 Reflected electromagnetic waves on the metal side surface 31a of the drum main body 31 due to the transmitted electromagnetic waves that do not pass through (4) Reflected electromagnetic waves on the metal side surface 31a of the drum main body 31 due to the transmitted electromagnetic waves transmitted through the filter 1 and the capsule 1a
 上記反射電磁波(1)~(4)のうち反射電磁波(1)及び(3)は、検査電磁波が実質的にカプセル1aに作用していないため、反射電磁波(1)及び(3)には、カプセル1aの配置状態に関する情報が反映されていないことになる。一方で、反射電磁波(2)については、検査電磁波が、香料液体が充填されているべきカプセル1aによって反射されているため、その反射に際して検査電磁波の一部が吸収等され、結果として、カプセル1a内の香料液体の存在が反射電磁波の受信強度に反映されることになる。また、反射電磁波(4)については、電磁波の反射は金属側面31aによって行われるが、その反射の過程において検査電磁波がカプセル1a内を透過しているため、検査電磁波の一部が吸収等され、結果として反射電磁波(2)と同じようにカプセル1a内の香料液体の存在が反射電磁波の受信強度に反映されることになる。 Of the reflected electromagnetic waves (1) to (4), the reflected electromagnetic waves (1) and (3) are substantially free from the inspection electromagnetic wave acting on the capsule 1a. Information on the arrangement state of the capsule 1a is not reflected. On the other hand, with respect to the reflected electromagnetic wave (2), since the inspection electromagnetic wave is reflected by the capsule 1a that should be filled with the fragrance liquid, a part of the inspection electromagnetic wave is absorbed during the reflection, and as a result, the capsule 1a The presence of the fragrance liquid is reflected in the reception intensity of the reflected electromagnetic wave. As for the reflected electromagnetic wave (4), the electromagnetic wave is reflected by the metal side surface 31a. However, since the inspection electromagnetic wave is transmitted through the capsule 1a in the reflection process, a part of the inspection electromagnetic wave is absorbed. As a result, like the reflected electromagnetic wave (2), the presence of the fragrance liquid in the capsule 1a is reflected in the reception intensity of the reflected electromagnetic wave.
 本発明に係るカプセル検査装置は、この反射電磁波の受信強度への、カプセル1a内の香料液体存在の反映を利用して、フィルタ1でのカプセル1aの配置状態の良否、すなわち、正常配置状態か異常配置状態であるかの検査処理を行うものである。具体的には、図3(a)に示す収容状態では、プローブアンテナ23から見たときにカプセル1aの背面には金属側面31aが存在しているため、上記反射電磁波(2)及び(4)をプローブアンテナ23によって受信可能である。そこで、カプセル1aが正常配置状態にあると、フィルタ1内の一定の領域に香料液体がまとまって存在しているため、検査電磁波の吸収度合いが大きくなり、プローブアンテナ23による受信強度は大きく低下することになる。なお、本実施例では、カプセル1aは、フィルタ1の幅において概ねその中央に配置されているため、カプセル1aが正常配置状態にあれば、搬送距離の概ね中央値で受信強度が大きく低下した推移を示すことが図3(a)から理解できる。一方で、カプセル1aが異常配置状態にあると、香料液体がフィルタ1内に拡散してしまうため、検査電磁波の吸収度合いが小さくなり、正常配置状態の場合と比べて、受信強度推移における受信強度の低下量が小さくなる。この結果、正常配置状態と異常配置状態とで受信強度推移における受信強度の低下量を比べると、図3(a)に示すように、明確な差異ΔV1を見出すことができる。そこで、この受信強度の低下量の差異ΔV1を利用して、正常配置状態と異常配置状態を分別して判定することが可能となる。 The capsule inspection apparatus according to the present invention uses the reflection of the presence of the fragrance liquid in the capsule 1a to the reception intensity of the reflected electromagnetic wave, so that the arrangement state of the capsule 1a in the filter 1 is good, that is, whether the capsule 1a is in a normal arrangement state. Inspecting whether there is an abnormal arrangement state is performed. Specifically, in the accommodated state shown in FIG. 3A, since the metal side surface 31a exists on the back surface of the capsule 1a when viewed from the probe antenna 23, the reflected electromagnetic waves (2) and (4) Can be received by the probe antenna 23. Therefore, when the capsule 1a is in a normal arrangement state, the perfume liquid is present in a certain region in the filter 1, so that the degree of absorption of the inspection electromagnetic wave increases, and the reception intensity by the probe antenna 23 greatly decreases. It will be. In the present embodiment, since the capsule 1a is arranged at the center of the width of the filter 1, if the capsule 1a is in the normal arrangement state, the reception intensity greatly decreases at the approximate median of the transport distance. It can be understood from FIG. On the other hand, when the capsule 1a is in an abnormally arranged state, the perfume liquid diffuses into the filter 1, so that the degree of absorption of the inspection electromagnetic wave is reduced, and the received intensity in the received intensity transition compared to the normal arranged state. The amount of decrease is small. As a result, when the reduction amount of the reception intensity in the reception intensity transition is compared between the normal arrangement state and the abnormal arrangement state, a clear difference ΔV1 can be found as shown in FIG. Therefore, it is possible to distinguish and determine the normal arrangement state and the abnormal arrangement state by using the difference ΔV1 in the amount of decrease in reception intensity.
 また、図3(b)に示す収容状態でも、フィルタ1がドラム本体31の端面から突出してはいるものの、プローブアンテナ23から見たときにカプセル1aの背面には金属側面31aが存在しているため、やはり上記反射電磁波(2)及び(4)をプローブアンテナ23によって受信可能である。そのため、この場合でも、正常配置状態と異常配置状態とで受信強度推移における受信強度の低下量を比べると、図3(b)に示すように、明確な差異ΔV2を見出すことができる。 3B, the filter 1 protrudes from the end surface of the drum body 31, but the metal side surface 31a exists on the back surface of the capsule 1a when viewed from the probe antenna 23. Therefore, the reflected electromagnetic waves (2) and (4) can be received by the probe antenna 23. Therefore, even in this case, when the amount of decrease in reception intensity in the reception intensity transition is compared between the normal arrangement state and the abnormal arrangement state, a clear difference ΔV2 can be found as shown in FIG.
 ここで、図3(c)に示す収容状態では、プローブアンテナ23から見たときにカプセル1aの背面には金属側面31aが存在していないため、上記反射電磁波(2)はプローブアンテナ23によって受信可能であるが、反射電磁波(4)が発生せずにその受信はできないことになる。そのため、当該収容状態では、正常配置状態と異常配置状態とで受信強度推移における受信強度の低下量の差異ΔV3は、上記の図3(a)、(b)に示す状態と比べて小さくはなるが、ある程度は明確な受信強度の低下量として把握可能である。したがって、このような収容状態であっても、差異ΔV3を利用して正常配置状態と異常配置状態を分別して判定することが可能となる。 Here, in the accommodated state shown in FIG. 3C, since the metal side surface 31 a does not exist on the back surface of the capsule 1 a when viewed from the probe antenna 23, the reflected electromagnetic wave (2) is received by the probe antenna 23. Although it is possible, the reflected electromagnetic wave (4) is not generated and cannot be received. Therefore, in the accommodated state, the difference ΔV3 in the amount of decrease in reception strength in the reception strength transition between the normal placement state and the abnormal placement state is smaller than the state shown in FIGS. 3 (a) and 3 (b). However, it can be grasped as a clear decrease in received strength to some extent. Therefore, even in such an accommodation state, it is possible to distinguish and determine a normal arrangement state and an abnormal arrangement state using the difference ΔV3.
 ここで、本実施例のカプセル検査装置では、22~28GHzの検査電磁波が照射される。上記のように受信強度の低下量の差異を利用して正常配置状態と異常配置状態を分別するには、22~28GHzの周波数帯域のうち、正常配置状態と異常配置状態とで、受信強度の低下量の差異が最も大きくなる周波数の電磁波を利用するのが好ましい。そこで、検査電磁波の周波数と受信強度の相関を理解するために、図4に、各周波数の検査電磁波を利用したときのプローブアンテナ23による反射電磁波の受信強度の推移を示している。具体的には、図4の(a)~(e)のそれぞれは、検査電磁波の周波数が22GHz、24GHz、26GHz、28GHz、30GHzに対応しており、線L3が、フィルタ1でのカプセル1aの配置状態が正常配置状態である場合の受信強度推移であり、線L4が、フィルタ1でのカプセル1aの配置状態が異常配置状態である場合の受信強度推移である。なお、図4に示す各受信強度推移の受信強度の符号が、図3に示す各受信強度推移の受信強度の符号と逆になっている。 Here, in the capsule inspection apparatus of this embodiment, an inspection electromagnetic wave of 22 to 28 GHz is irradiated. As described above, in order to separate the normal placement state and the abnormal placement state by using the difference in the reduction amount of the reception strength, the reception strength of the normal placement state and the abnormal placement state in the frequency band of 22 to 28 GHz. It is preferable to use an electromagnetic wave having a frequency at which the difference in the amount of decrease is greatest. Therefore, in order to understand the correlation between the frequency of the inspection electromagnetic wave and the reception intensity, FIG. 4 shows the transition of the reception intensity of the reflected electromagnetic wave by the probe antenna 23 when the inspection electromagnetic wave of each frequency is used. Specifically, each of (a) to (e) in FIG. 4 corresponds to the frequency of the inspection electromagnetic wave of 22 GHz, 24 GHz, 26 GHz, 28 GHz, and 30 GHz, and the line L3 is the capsule 1a in the filter 1 The reception intensity transition when the arrangement state is the normal arrangement state, and the line L4 is the reception intensity transition when the arrangement state of the capsule 1a in the filter 1 is the abnormal arrangement state. Note that the sign of the reception strength of each reception strength transition shown in FIG. 4 is opposite to the sign of the reception strength of each reception strength transition shown in FIG.
 図4から理解できるように、本実施例では22~28GHzの周波数帯域の何れの周波数でも、正常配置状態と異常配置状態とで受信強度の変化量の差異が比較的大きく発現されるため、その周波数を有する検査電磁波はカプセル1aの配置状態に関する検査処理には好適に利用できると言える。しかし、特に、検査電磁波の周波数が24GHz又は26GHzの場合に、当該差異が最も大きくなることを見出せることから、最も好ましくは24GHz又は26GHzの検査電磁波を利用してカプセル1aの配置状態に関する検査処理を行う。なお、この検査処理のための好適な検査電磁波の周波数は、カプセル1aやフィルタ1の形状、大きさ、カプセル1a内の香料液体の成分やフィルタ1の材質等によって変動すると考えられるため、これらの要素を考慮して適宜、検査電磁波の周波数を設定すればよい。 As can be understood from FIG. 4, in this embodiment, the difference in the received intensity changes between the normal arrangement state and the abnormal arrangement state is relatively large at any frequency in the frequency band of 22 to 28 GHz. It can be said that the inspection electromagnetic wave having a frequency can be suitably used for the inspection processing relating to the arrangement state of the capsule 1a. However, in particular, when the frequency of the inspection electromagnetic wave is 24 GHz or 26 GHz, the difference can be found to be the largest. Therefore, the inspection processing regarding the arrangement state of the capsule 1a is most preferably performed using the inspection electromagnetic wave of 24 GHz or 26 GHz. Do. In addition, since it is thought that the frequency of the suitable test | inspection electromagnetic wave for this test | inspection process changes with the shape of the capsule 1a and the filter 1, a magnitude | size, the component of the fragrance | flavor liquid in the capsule 1a, the material of the filter 1, etc., these The frequency of the inspection electromagnetic wave may be set as appropriate in consideration of factors.
 ここで、図4に基づいて、本発明のカプセル検査装置で実行されるフィルタ1の検査処理、すなわち上述した検査電磁波を利用した、フィルタ1内のカプセル1aの配置状態に関する検査処理の詳細を説明する。当該検査処理では、制御装置20において所定の制御プログラムが実行される。また、当該検査処理は、一本のシガレット2に備えられたフィルタ1に対して実行される処理である。したがって、上記のようにドラム30によってシガレットが順次、カプセル検査装置に送り込まれる場合には、その各シガレット2のフィルタ1に対して、当該検査処理が繰り返し実行されることになる。なお、本実施例の検査処理は、ドラム本体31に対するシガレット2の収容状態が図3(a)に示す収容状態で行われるものとする。 Here, based on FIG. 4, the details of the inspection process of the filter 1 executed by the capsule inspection apparatus of the present invention, that is, the inspection process related to the arrangement state of the capsule 1 a in the filter 1 using the above-described inspection electromagnetic wave will be described. To do. In the inspection process, a predetermined control program is executed in the control device 20. The inspection process is a process executed on the filter 1 provided in one cigarette 2. Therefore, when cigarettes are sequentially fed to the capsule inspection device by the drum 30 as described above, the inspection processing is repeatedly executed for the filter 1 of each cigarette 2. It is assumed that the inspection process of the present embodiment is performed with the cigarette 2 being housed in the drum body 31 in the housed state shown in FIG.
 先ず、S101では、検査の対象となるシガレットのフィルタ1が、検査領域内に到達しているか否か、すなわち、フィルタ1が、プローブアンテナ23からの検査電磁波の照射領域内に到達しているか否かが判定される。上記の通り、制御装置20は、ロータリーエンコーダ32からのパルス信号等を利用することで、検査領域に対するシガレットの相対位置を把握でき、以て、ドラム30により搬送されてきたシガレット2のフィルタ1が検査領域内に到達していると判定することができる。S101で肯定判定されるとS102へ進み、否定判定されるとS101の処理が繰り返され、フィルタ1の検査領域への到達が待たれることになる。 First, in S101, whether or not the cigarette filter 1 to be inspected has reached the inspection area, that is, whether or not the filter 1 has reached the irradiation area of the inspection electromagnetic wave from the probe antenna 23. Is determined. As described above, the control device 20 can grasp the relative position of the cigarette with respect to the inspection region by using the pulse signal from the rotary encoder 32, so that the filter 1 of the cigarette 2 conveyed by the drum 30 can be obtained. It can be determined that the inspection area has been reached. If an affirmative determination is made in S101, the process proceeds to S102. If a negative determination is made, the process of S101 is repeated, and the arrival of the filter 1 in the inspection region is awaited.
 次に、S102では、検査領域に到達したフィルタ1に対して、プローブアンテナ23から検査電磁波の照射が行われる。S102の処理が終了すると、S103へ進む。S103では、プローブアンテナ23による反射電磁波の受信が行われる。上記の通り、本検査処理では、ドラム本体31に対するシガレット2の収容状態が図3(a)に示す収容状態であるため、プローブアンテナ23によって受信される反射電磁波は、上記の反射電磁波(1)~(4)の全てを含む。S103の処理が終了すると、S104へ進む。 Next, in S102, the inspection antenna is irradiated with the inspection electromagnetic wave from the probe antenna 23 to the filter 1 that has reached the inspection region. When the process of S102 ends, the process proceeds to S103. In S103, the reflected electromagnetic wave is received by the probe antenna 23. As described above, in the present inspection process, since the accommodation state of the cigarette 2 with respect to the drum body 31 is the accommodation state shown in FIG. 3A, the reflected electromagnetic wave received by the probe antenna 23 is the reflected electromagnetic wave (1). Includes all of (4). When the process of S103 ends, the process proceeds to S104.
 S104では、S103で受信された反射電磁波の受信強度の補正が行われる。具体的には、制御装置20は、基準となるフィルタであってカプセル1aが配置されていない未配置フィルタに対してプローブアンテナ23から検査電磁波を照射したときの、該プローブアンテナ23による受信強度を、基準信号強度として予め有している。そして、S103で受信された反射電磁波の受信強度から当該基準信号強度を差し引くことで得られる受信強度(以下、「補正受信強度」という)は、理論的には、カプセル1aの配置状態のみが反映された受信強度と言える。したがって、当該補正受信強度を利用することで、カプセル1aの配置状態に関する検査処理の精度を向上させることができる。S104の処理が終了すると、S105へ進む。 In S104, the reception intensity of the reflected electromagnetic wave received in S103 is corrected. Specifically, the control device 20 determines the reception intensity of the probe antenna 23 when the inspection electromagnetic wave is irradiated from the probe antenna 23 to the non-arranged filter that is the reference filter and the capsule 1a is not disposed. , As a reference signal strength. The reception intensity (hereinafter referred to as “corrected reception intensity”) obtained by subtracting the reference signal intensity from the reception intensity of the reflected electromagnetic wave received in S103 theoretically reflects only the arrangement state of the capsule 1a. It can be said that the received strength is high. Therefore, the accuracy of the inspection process related to the arrangement state of the capsule 1a can be improved by using the corrected reception intensity. When the process of S104 ends, the process proceeds to S105.
 S105では、S104で取得された補正受信強度が更新されたか否か、すなわち、より強度の低い補正受信強度が取得されたか否かが判定される。図3に従って説明したように、フィルタ1が検査領域内に到達してから1回目の検査電磁波の照射が行われた場合には、過去に取得された補正受信強度は存在しないため、その場合はS105は肯定判定される。また、2回目以降の検査電磁波の照射が行われた場合には、過去の検査電磁波の照射で取得された補正受信強度(制御装置20のメモリ内に記憶されている補正受信強度)と、今回の検査電磁波の照射で取得された補正受信強度とを比較し、今回の補正受信強度が小さい場合には、S105において肯定判定されることになる。そして、S105で肯定判定されるとS106へ進み、S106で、制御装置20内のメモリに記憶されていた補正受信強度のデータが、今回の検査電磁波の照射で得られた補正受信強度に書き替えられる。なお、1回目の検査電磁波の照射の場合には、メモリ内には補正受信強度が記憶されていないため、1回目の検査電磁波の照射で得られた補正受信強度がそのままメモリに書き込まれる。一方で、S105で否定判定されるとS107へ進み、S107では、制御装置20内のメモリに記憶されていた過去の補正受信強度のデータが維持され、今回の検査電磁波の照射で得られた補正受信強度は利用されないことになる。 In S105, it is determined whether or not the corrected reception intensity acquired in S104 has been updated, that is, whether or not a corrected reception intensity having a lower intensity has been acquired. As described with reference to FIG. 3, when the first inspection electromagnetic wave is irradiated after the filter 1 reaches the inspection region, there is no corrected received intensity acquired in the past. In S105, an affirmative determination is made. In addition, when the inspection electromagnetic wave is irradiated for the second time or later, the corrected reception intensity (corrected reception intensity stored in the memory of the control device 20) acquired by the past irradiation of the inspection electromagnetic wave and the current time The corrected reception intensity acquired by the irradiation of the inspection electromagnetic wave is compared, and if the current correction reception intensity is small, an affirmative determination is made in S105. If an affirmative determination is made in S105, the process proceeds to S106. In S106, the corrected reception intensity data stored in the memory in the control device 20 is rewritten with the corrected reception intensity obtained by the current irradiation of the inspection electromagnetic wave. It is done. In the case of the first inspection electromagnetic wave irradiation, the corrected reception intensity is not stored in the memory, and therefore the corrected reception intensity obtained by the first inspection electromagnetic wave irradiation is written in the memory as it is. On the other hand, if a negative determination is made in S105, the process proceeds to S107. In S107, the past correction reception intensity data stored in the memory in the control device 20 is maintained, and the correction obtained by the current irradiation of the inspection electromagnetic wave is performed. The reception strength is not used.
 このように補正受信強度のデータ更新を行うのは、検査電磁波がカプセル1aの表面で反射しその反射電磁波が受信されるとともに、カプセル1aを透過した検査電磁波が金属側面31aで反射し、その反射電磁波が再びカプセル1aを透過した後に受信された場合、すなわち、プローブアンテナ23が、上記の反射電磁波(2)及び(4)を受信する場合に、反射電磁波にカプセル1aの配置状態が最も効果的に反映され、その際の反射電磁波の受信強度、又は、補正受信強度が最も小さくなると考えられるからである。S106又はS107の処理が終了すると、S108へ進む。 In this way, the data of the corrected reception intensity is updated because the inspection electromagnetic wave is reflected on the surface of the capsule 1a and the reflected electromagnetic wave is received, and the inspection electromagnetic wave transmitted through the capsule 1a is reflected on the metal side surface 31a and reflected. When the electromagnetic wave is received again after passing through the capsule 1a, that is, when the probe antenna 23 receives the reflected electromagnetic waves (2) and (4), the arrangement state of the capsule 1a is most effective for the reflected electromagnetic wave. This is because the reception intensity of reflected electromagnetic waves or the corrected reception intensity at that time is considered to be the smallest. When the process of S106 or S107 ends, the process proceeds to S108.
 次に、S108では、フィルタ1が、検査領域内を出たか否かが判定される。なお、上述したS102~S106、S107の処理が行われる間もドラム30によってシガレットは回転搬送されている。そこで、ロータリーエンコーダ32からのパルス信号等を利用して、現時点での検査領域に対するシガレットの相対位置を把握し、S108の判定処理が行われる。S108で肯定判定されるとS109へ進み、否定判定されるとS102以降の処理が繰り返され、再び、フィルタ1への検査電磁波の照射による補正受信強度の取得処理が行われることになる。 Next, in S108, it is determined whether or not the filter 1 has exited the inspection area. It should be noted that the cigarette is rotated and conveyed by the drum 30 during the processing of S102 to S106 and S107 described above. Therefore, the relative position of the cigarette with respect to the inspection area at the present time is grasped using the pulse signal from the rotary encoder 32, and the determination process of S108 is performed. If an affirmative determination is made in S108, the process proceeds to S109, and if a negative determination is made, the processes in and after S102 are repeated, and the process of acquiring the corrected received intensity by irradiating the filter 1 with the inspection electromagnetic wave is performed again.
 次に、S109では、最終的に制御装置20のメモリ内に記憶されている補正受信強度を、ピーク受信強度Vpとして決定する。当該ピーク受信強度Vpは、検査対象となったフィルタ1において、その内部に配置されたカプセル1aの配置状態を最も強く反映している受信強度である。S109の処理が終了すると、S110へ進む。S110では、ピーク受信強度Vpに基づいて、検査対象のフィルタ1でのカプセルの配置状態に関する判定が行われる。具体的には、ピーク受信強度Vpが、所定の閾値Rvより小さいとき、フィルタ1内においてカプセル1aは正常配置状態にあると判定される(S111の処理)。カプセル1a内に香料液体が適切に充填された状態が維持されている正常配置状態では、フィルタ1において香料液体が分散せず局所的に存在した状態となっている。そのため、反射電磁波にその香料液体の存在状態が反映され、ピーク受信強度Vpが好適に小さい値となる。その点を考え、S110の判定が行われることになる。 Next, in S109, the corrected reception intensity finally stored in the memory of the control device 20 is determined as the peak reception intensity Vp. The peak reception intensity Vp is a reception intensity that most strongly reflects the arrangement state of the capsule 1a arranged inside the filter 1 to be inspected. When the process of S109 ends, the process proceeds to S110. In S110, based on the peak reception intensity Vp, a determination is made regarding the capsule arrangement state in the filter 1 to be inspected. Specifically, when the peak reception intensity Vp is smaller than the predetermined threshold value Rv, it is determined that the capsule 1a is in the normal arrangement state in the filter 1 (processing of S111). In the normal arrangement state in which the state in which the fragrance liquid is appropriately filled in the capsule 1a is maintained, the fragrance liquid is locally dispersed in the filter 1 without being dispersed. Therefore, the presence state of the fragrance liquid is reflected in the reflected electromagnetic wave, and the peak reception intensity Vp is preferably a small value. Considering this point, the determination of S110 is performed.
 一方で、ピーク受信強度Vpが、所定の閾値Rvより小さくないとき、フィルタ1内においてカプセル1aは異常配置状態にあると判定する(S112の処理)。カプセル1a内に香料液体が適切に充填された状態が維持されていない異常配置状態では、フィルタ1において香料液体が分散した状態となっている。そのため、反射電磁波には香料液体の吸収効果が反映されにくく、ピーク受信強度Vpが比較的大きな値となる。その点を考え、S110の判定が行われることになる。また、S112において異常判定されたフィルタ1を有するシガレット2については、S113においてドラム30から排除される。この排除処理は、図示しない公知の排除のための装置(例えば、圧縮エアを用いて排除する装置)が使用される。このように異常判定されたシガレットが排除されることで、当該シガレットが包装され市場に出ていくことを回避することができる。 On the other hand, when the peak reception intensity Vp is not smaller than the predetermined threshold value Rv, it is determined that the capsule 1a is in an abnormal arrangement state in the filter 1 (processing of S112). In an abnormal arrangement state in which the state in which the fragrance liquid is properly filled in the capsule 1a is not maintained, the fragrance liquid is dispersed in the filter 1. Therefore, the reflection effect of the fragrance liquid is hardly reflected in the reflected electromagnetic wave, and the peak reception intensity Vp becomes a relatively large value. Considering this point, the determination of S110 is performed. Also, the cigarette 2 having the filter 1 determined to be abnormal in S112 is excluded from the drum 30 in S113. For this exclusion process, a known exclusion device (not shown) (for example, a device that eliminates the compressed air) is used. By removing the cigarette that has been determined to be abnormal as described above, it is possible to avoid the cigarette from being packaged and being put on the market.
 このように本検査処理では、検査電磁波の送信と反射電磁波の受信を行うプローブアンテナ23を用いて、フィルタ1側からの反射電磁波を利用した、フィルタ1内でのカプセル1aの配置状態に関する検査が行われる。このように反射型の検査を行う場合、従来技術の透過型の検査を行う場合と比べて、検査に要する空間容積を可及的に小さくすることが可能となり、以てカプセル検査装置の小型化を促進させることができる。 As described above, in this inspection process, the probe antenna 23 that transmits the inspection electromagnetic wave and receives the reflected electromagnetic wave is used to inspect the arrangement state of the capsule 1a in the filter 1 using the reflected electromagnetic wave from the filter 1 side. Done. In this way, when performing the reflection type inspection, it is possible to make the space volume required for the inspection as small as possible as compared with the case of performing the transmission type inspection of the prior art, thereby reducing the size of the capsule inspection apparatus. Can be promoted.
 更に、上記のカプセル検査装置では、サーキュレータ24を介することで、プローブアンテ23ナへの検査電磁波の供給及び反射電磁波の取り出しが行われる。これにより一つのプローブアンテナ23において検査電磁波と反射電磁波が搬送されることになる。このような構成を採用した場合、プローブアンテナ23とフィルタ1との間の検査空間において、検査電磁波と反射電磁波が概ね同一経路上を通ることになる。そのため、検査電磁波がフィルタ1を透過し、それが反射電磁波としてプローブアンテナ23に受信される場合、フィルタ1の同じ個所を通過することになるため、仮に検査電磁波がカプセル1aを透過していれば、反射電磁波にカプセル1aの状態を強く反映させることが可能になり、検査装置の精度向上が見込まれる。 Furthermore, in the capsule inspection apparatus, the inspection electromagnetic wave is supplied to the probe antenna 23 and the reflected electromagnetic wave is taken out through the circulator 24. As a result, the inspection electromagnetic wave and the reflected electromagnetic wave are carried by one probe antenna 23. When such a configuration is adopted, the inspection electromagnetic wave and the reflected electromagnetic wave generally pass on the same path in the inspection space between the probe antenna 23 and the filter 1. Therefore, when the inspection electromagnetic wave passes through the filter 1 and is received by the probe antenna 23 as a reflected electromagnetic wave, it passes through the same part of the filter 1, so if the inspection electromagnetic wave passes through the capsule 1a. Thus, the state of the capsule 1a can be strongly reflected in the reflected electromagnetic wave, and the accuracy of the inspection apparatus can be improved.
 <変形例1>
 上記の実施例においては、反射電磁波の受信強度に基づいて、フィルタ1内でのカプセル1aの配置状態に関する検査が行われるが、その態様に代えて、反射電磁波の位相ずれに基づいて当該検査を行ってもよい。なお、この位相ずれは、検査電磁波と反射電磁波との間の位相のずれを意味する。ここで、検査電磁波の周波数と位相ずれの相関を理解するために、図6に、各周波数の検査電磁波を利用したときの位相ずれの推移を示している。具体的には、図6の(a)~(e)のそれぞれは、検査電磁波の周波数が22GHz、24GHz、26GHz、28GHz、30GHzに対応しており、線L5が、フィルタ1でのカプセル1aの配置状態が正常配置状態である場合の位相ずれ推移であり、線L6が、フィルタ1でのカプセル1aの配置状態が異常配置状態である場合の位相ずれ推移である。
<Modification 1>
In the above embodiment, the inspection regarding the arrangement state of the capsule 1a in the filter 1 is performed based on the reception intensity of the reflected electromagnetic wave. However, instead of this aspect, the inspection is performed based on the phase shift of the reflected electromagnetic wave. You may go. This phase shift means a phase shift between the inspection electromagnetic wave and the reflected electromagnetic wave. Here, in order to understand the correlation between the frequency and the phase shift of the inspection electromagnetic wave, FIG. 6 shows the transition of the phase shift when the inspection electromagnetic wave of each frequency is used. Specifically, each of (a) to (e) of FIG. 6 corresponds to the frequency of the inspection electromagnetic wave of 22 GHz, 24 GHz, 26 GHz, 28 GHz, and 30 GHz, and the line L5 is the capsule 1a of the filter 1 It is a phase shift transition when the placement state is a normal placement state, and a line L6 is a phase shift transition when the placement state of the capsule 1a in the filter 1 is an abnormal placement state.
 図6から理解できるように、位相ずれを利用して正常配置状態と異常配置状態とを分別するには、検査電磁波の周波数が26GHz又は28GHzの場合に、正常配置状態に対応する位相ずれと異常配置状態に対応する位相ずれとの差異が大きくなることを見出せる。そこで、好ましくは26GHz又は28GHzの検査電磁波を利用して位相ずれに基づくカプセル1aの配置状態に関する検査処理を行う。なお、この検査処理のための好適な検査電磁波の周波数は、カプセル1aやフィルタ1の形状、大きさ、カプセル1a内の香料液体の成分やフィルタ1の材質等によって変動すると考えられるため、これらの要素を考慮して適宜、検査電磁波の周波数を設定すればよい。 As can be understood from FIG. 6, in order to separate the normal arrangement state and the abnormal arrangement state using the phase deviation, when the frequency of the inspection electromagnetic wave is 26 GHz or 28 GHz, the phase deviation and abnormality corresponding to the normal arrangement state It can be found that the difference from the phase shift corresponding to the arrangement state becomes large. Therefore, preferably, inspection processing relating to the arrangement state of the capsule 1a based on the phase shift is performed using inspection electromagnetic waves of 26 GHz or 28 GHz. In addition, since it is thought that the frequency of the suitable test | inspection electromagnetic wave for this test | inspection process changes with the shape of the capsule 1a and the filter 1, a magnitude | size, the component of the fragrance | flavor liquid in the capsule 1a, the material of the filter 1, etc., these The frequency of the inspection electromagnetic wave may be set as appropriate in consideration of factors.
1    フィルタ
1a  カプセル
20  制御装置
23  プローブアンテナ
30  ドラム
31  ドラム本体
31a      金属側面
1 Filter 1a Capsule 20 Control Device 23 Probe Antenna 30 Drum 31 Drum Body 31a Metal Side

Claims (9)

  1.  喫煙物品用フィルタ内に配置されるべき所定配置物の配置状態に関する良否を検査するフィルタ検査装置であって、
     所定周波数の検査電磁波を、検査の対象となる前記喫煙物品用フィルタである対象フィルタに対して照射する照射部と、
     前記照射部によって照射された前記検査電磁波による、前記対象フィルタからの反射電磁波を受信する受信部と、
     前記対象フィルタに対向するように配置され、前記検査電磁波と前記反射電磁波を伝搬させるアンテナ部と、
     前記受信部によって得られた反射信号に基づいて、前記対象フィルタ内の所定配置物の配置状態に関連する該反射信号の強度、又は該反射信号の位相ずれに関する所定情報を取得する取得部と、
     前記取得部によって取得された前記所定情報に基づいて、前記対象フィルタに配置された前記所定配置物の配置状態の良否を判定する判定部と、
     を備える、フィルタ検査装置。
    A filter inspection device for inspecting pass / fail regarding the arrangement state of a predetermined object to be arranged in a filter for smoking articles,
    An irradiation unit that irradiates a target filter that is a filter for a smoking article to be inspected with an inspection electromagnetic wave having a predetermined frequency;
    A receiving unit that receives a reflected electromagnetic wave from the target filter by the inspection electromagnetic wave irradiated by the irradiation unit;
    An antenna unit that is disposed to face the target filter and propagates the inspection electromagnetic wave and the reflected electromagnetic wave,
    Based on the reflection signal obtained by the reception unit, an acquisition unit that acquires predetermined information regarding the intensity of the reflection signal related to the arrangement state of the predetermined arrangement in the target filter, or the phase shift of the reflection signal;
    Based on the predetermined information acquired by the acquisition unit, a determination unit that determines pass / fail of the arrangement state of the predetermined arrangement arranged in the target filter;
    A filter inspection apparatus.
  2.  前記アンテナ部は、同一のアンテナ筐体において前記検査電磁波を前記対象フィルタに送信するとともに前記反射電磁波を該対象フィルタから受信するように形成される、
     請求項1に記載のフィルタ検査装置。
    The antenna unit is formed to transmit the inspection electromagnetic wave to the target filter and receive the reflected electromagnetic wave from the target filter in the same antenna housing.
    The filter inspection apparatus according to claim 1.
  3.  前記所定周波数は、10GHz~100GHzの範囲に属する周波数である、
     請求項1又は請求項2に記載のフィルタ検査装置。
    The predetermined frequency is a frequency belonging to a range of 10 GHz to 100 GHz.
    The filter inspection apparatus according to claim 1 or 2.
  4.  前記所定周波数は、20GHz~30GHzの範囲に属する周波数である、
     請求項1又は請求項2に記載のフィルタ検査装置。
    The predetermined frequency is a frequency belonging to a range of 20 GHz to 30 GHz.
    The filter inspection apparatus according to claim 1 or 2.
  5.  前記アンテナ部とは反対側の、前記対象フィルタの背部に配置され、照射された前記検査電磁波の一部であって該対象フィルタを透過した透過電磁波を再び該対象フィルタ側に反射するように形成された反射部を、更に備え、
     前記受信部は、前記対象フィルタからの反射電磁波に加えて、前記透過電磁波が前記反射部によって反射された電磁波である二次反射電磁波を受信するように構成される、
     請求項1から請求項4の何れか1項に記載のフィルタ検査装置。
    Arranged on the back of the target filter on the side opposite to the antenna unit, and formed so that the transmitted electromagnetic wave that is a part of the irradiated inspection electromagnetic wave and transmitted through the target filter is reflected again to the target filter side And further comprising a reflected portion,
    In addition to the reflected electromagnetic wave from the target filter, the receiving unit is configured to receive a secondary reflected electromagnetic wave that is an electromagnetic wave reflected by the reflective unit.
    The filter inspection apparatus according to any one of claims 1 to 4.
  6.  複数の前記喫煙物品用フィルタを搬送台に載せた状態で搬送する搬送装置であって、該搬送装置によって搬送される喫煙物品用フィルタに含まれる前記対象フィルタに対して前記検査電磁波が照射されるように、前記アンテナ部に対して配置される搬送装置を、更に備え、
     前記反射部は、前記搬送台に含まれる、金属製の所定部材である、
     請求項5に記載のフィルタ検査装置。
    A transport device that transports a plurality of filters for smoking articles on a transport stand, wherein the inspection electromagnetic wave is irradiated to the target filter included in the filter for smoking articles transported by the transport device And further comprising a transfer device arranged with respect to the antenna unit,
    The reflecting portion is a predetermined metal member included in the transport table.
    The filter inspection apparatus according to claim 5.
  7.  前記所定情報は、前記反射信号の強度に関する情報であって、
     前記所定周波数の検査電磁波が前記所定配置物を内部に配置されていない喫煙物品用フィルタである基準フィルタに対して照射されることで予め得られた基準信号強度に関する情報に基づいて、前記取得部によって取得された前記所定情報を補正する補正部を、更に備え、
     前記判定部は、前記補正部によって補正された前記所定情報に基づいて、前記対象フィルタに配置された前記所定配置物の配置状態の良否を判定する、
     請求項1から請求項6の何れか1項に記載のフィルタ検査装置。
    The predetermined information is information on the intensity of the reflected signal,
    Based on the information on the reference signal strength obtained in advance by irradiating the reference electromagnetic wave having the predetermined frequency with respect to the reference filter, which is a filter for smoking articles, in which the predetermined arrangement is not arranged, the acquisition unit A correction unit that corrects the predetermined information acquired by:
    The determination unit determines pass / fail of an arrangement state of the predetermined arrangement arranged in the target filter based on the predetermined information corrected by the correction unit.
    The filter inspection apparatus according to any one of claims 1 to 6.
  8.  搬送されている前記対象フィルタに対して、前記照射部からの前記検査電磁波の照射が行われ、
     前記照射部による前記検査電磁波の照射及び前記受信部による反射電磁波の受信が可能となるように設定された所定の照射範囲を、前記対象フィルタが通過している間に、前記取得部は、前記反射信号の強度に関する情報、又は前記反射信号の位相ずれに関する情報を複数回取得し、該取得された強度情報、又は該位相ずれ情報の中から、該検査電磁波に対する変化が最大の強度情報、又は該検査電磁波に対する変化が最大の位相ずれ情報を前記所定情報として取得する、
     請求項1から請求項7の何れか1項に記載のフィルタ検査装置。
    Irradiation of the inspection electromagnetic wave from the irradiation unit is performed on the target filter being conveyed,
    While the target filter passes through a predetermined irradiation range set so as to enable the irradiation of the inspection electromagnetic wave by the irradiation unit and the reception of the reflected electromagnetic wave by the reception unit, the acquisition unit Information on the intensity of the reflected signal, or information on the phase shift of the reflected signal is acquired a plurality of times, and the intensity information with the maximum change in the inspection electromagnetic wave from the acquired intensity information or the phase shift information, or Obtaining the phase shift information having the maximum change with respect to the inspection electromagnetic wave as the predetermined information;
    The filter inspection apparatus according to any one of claims 1 to 7.
  9.  前記所定配置物は、所定の香料液体が充填された液充填カプセルである、
     請求項1から請求項8の何れか1項に記載のフィルタ検査装置。
    The predetermined arrangement is a liquid-filled capsule filled with a predetermined perfume liquid.
    The filter inspection apparatus according to any one of claims 1 to 8.
PCT/JP2014/084599 2014-12-26 2014-12-26 Filter inspection apparatus WO2016103477A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2014/084599 WO2016103477A1 (en) 2014-12-26 2014-12-26 Filter inspection apparatus
EP14909081.3A EP3238552B8 (en) 2014-12-26 2014-12-26 Filter inspection apparatus
JP2016565821A JP6367369B2 (en) 2014-12-26 2014-12-26 Filter inspection device
PL14909081T PL3238552T3 (en) 2014-12-26 2014-12-26 Filter inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084599 WO2016103477A1 (en) 2014-12-26 2014-12-26 Filter inspection apparatus

Publications (1)

Publication Number Publication Date
WO2016103477A1 true WO2016103477A1 (en) 2016-06-30

Family

ID=56149562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084599 WO2016103477A1 (en) 2014-12-26 2014-12-26 Filter inspection apparatus

Country Status (4)

Country Link
EP (1) EP3238552B8 (en)
JP (1) JP6367369B2 (en)
PL (1) PL3238552T3 (en)
WO (1) WO2016103477A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033636A1 (en) * 2019-08-20 2021-02-25 日本たばこ産業株式会社 Production method and production device for cylindrical heating-type smoking article

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580533A (en) * 2018-11-30 2019-04-05 深圳市太赫兹科技创新研究院有限公司 Cigaratte filter monitoring method and system
CN110496794B (en) * 2019-08-28 2021-06-29 贵州大学 Bead blasting quality detection control system and control method for bead blasting cigarette filter tip
CN110604337B (en) * 2019-10-17 2021-07-13 浙江中烟工业有限责任公司 Detection device and detection method for cigarette bead blasting

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131375A (en) * 1983-01-17 1984-07-28 住友ゴム工業株式会社 Golf ball sorting apparatus
JPH041437U (en) * 1990-04-17 1992-01-08
JP2003219855A (en) * 2002-01-24 2003-08-05 G D Spa Method for detecting/eliminating foreign matter in tobacco flow
JP2005516181A (en) * 2001-05-31 2005-06-02 インテルスキャン オーバイルグジュタエクニ イーエイチエフ. Apparatus and method for microwave measurement of at least one physical parameter of an object
JP2005351678A (en) * 2004-06-09 2005-12-22 Pal Giken:Kk Foreign matter inspection method and device
JP2006090802A (en) * 2004-09-22 2006-04-06 Jt Engineering Inc Defect inspection device
JP2008131856A (en) * 2005-02-28 2008-06-12 Japan Tobacco Inc Apparatus for inspecting multiple filter rod
JP2011518544A (en) * 2008-02-01 2011-06-30 アール・ジエイ・レイノルズ・タバコ・カンパニー System for analyzing filter elements associated with smoking articles and related methods
JP2012063324A (en) * 2010-09-17 2012-03-29 Kanazawa Univ Foreign matter detection system, foreign matter sensor, and detection device
JP2014178117A (en) * 2011-07-06 2014-09-25 Japan Tobacco Inc Capsule inspection device and capsule inspection method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145163A1 (en) * 2012-03-28 2013-10-03 日本たばこ産業株式会社 Cigarette filter inspection device and inspection method thereof
US9664570B2 (en) * 2012-11-13 2017-05-30 R.J. Reynolds Tobacco Company System for analyzing a smoking article filter associated with a smoking article, and associated method
DE102013201512A1 (en) * 2013-01-30 2014-08-14 Hauni Maschinenbau Ag Measuring device, machine and process of the tobacco processing industry

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131375A (en) * 1983-01-17 1984-07-28 住友ゴム工業株式会社 Golf ball sorting apparatus
JPH041437U (en) * 1990-04-17 1992-01-08
JP2005516181A (en) * 2001-05-31 2005-06-02 インテルスキャン オーバイルグジュタエクニ イーエイチエフ. Apparatus and method for microwave measurement of at least one physical parameter of an object
JP2003219855A (en) * 2002-01-24 2003-08-05 G D Spa Method for detecting/eliminating foreign matter in tobacco flow
JP2005351678A (en) * 2004-06-09 2005-12-22 Pal Giken:Kk Foreign matter inspection method and device
JP2006090802A (en) * 2004-09-22 2006-04-06 Jt Engineering Inc Defect inspection device
JP2008131856A (en) * 2005-02-28 2008-06-12 Japan Tobacco Inc Apparatus for inspecting multiple filter rod
JP2011518544A (en) * 2008-02-01 2011-06-30 アール・ジエイ・レイノルズ・タバコ・カンパニー System for analyzing filter elements associated with smoking articles and related methods
JP2012063324A (en) * 2010-09-17 2012-03-29 Kanazawa Univ Foreign matter detection system, foreign matter sensor, and detection device
JP2014178117A (en) * 2011-07-06 2014-09-25 Japan Tobacco Inc Capsule inspection device and capsule inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033636A1 (en) * 2019-08-20 2021-02-25 日本たばこ産業株式会社 Production method and production device for cylindrical heating-type smoking article
JP6889346B1 (en) * 2019-08-20 2021-06-18 日本たばこ産業株式会社 Manufacturing method and manufacturing equipment for cylindrical heated smoking articles

Also Published As

Publication number Publication date
JPWO2016103477A1 (en) 2017-05-25
EP3238552A1 (en) 2017-11-01
EP3238552A4 (en) 2018-08-08
EP3238552B8 (en) 2021-10-27
PL3238552T3 (en) 2021-12-06
EP3238552B1 (en) 2021-07-14
JP6367369B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP6367369B2 (en) Filter inspection device
EP1330961B1 (en) A method of detecting and eliminating foreign bodies in a flow of tobacco
JP6435126B2 (en) Apparatus and method for inspecting bar-shaped articles in the tobacco processing industry
US6768317B2 (en) Method of and apparatus for testing a first material for potential presence of second materials
EP0935136B1 (en) Method for determining the moisture content of a bulk material
KR100794907B1 (en) Hybrid type foreign matter detector and its traceability-use system
CN104000304B (en) Measuring method and measuring system and machine for detection object position
JP4633830B2 (en) Metal detector
JP2017524350A (en) Microwave measuring apparatus, arrangement apparatus and method for checking rod-shaped articles or industrial material rods for processing tobacco and industrial machines for processing tobacco
JP2012073251A (en) Device and method for processing and measuring properties of moving rod of material
JP5357507B2 (en) Test piece and foreign object detection device
EP2183985B1 (en) Determining track origin
JP4948145B2 (en) Gas detector
US7027148B2 (en) Method and apparatus for determining the triacetin content in filter plugs
CN104792705A (en) Laser power fluctuation monitoring and compensating device and method for photoacoustic spectrum measurement
EP3806666A1 (en) Detection unit and method for the tobacco industry
JP4902170B2 (en) Inspection system
WO2021059681A1 (en) Inspection device
WO2017057715A1 (en) Foreign-matter inspection device and foreign-matter inspection system
EP4350342A1 (en) Ultrasonic inspection device
KR20210050336A (en) Inspection apparatus for pressure vessel
JP2005014927A (en) Apparatus for inspecting existence of content and method for inspecting existence of content
EP3765837A1 (en) An inspection unit and method for quality control of disposable cartridges for electronic cigarettes
WO2020162618A1 (en) Inspection device and inspection method
JP7343169B2 (en) Gas concentration measurement method and gas concentration measurement device for sealed packaging containers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909081

Country of ref document: EP