WO2020162618A1 - Inspection device and inspection method - Google Patents

Inspection device and inspection method Download PDF

Info

Publication number
WO2020162618A1
WO2020162618A1 PCT/JP2020/004924 JP2020004924W WO2020162618A1 WO 2020162618 A1 WO2020162618 A1 WO 2020162618A1 JP 2020004924 W JP2020004924 W JP 2020004924W WO 2020162618 A1 WO2020162618 A1 WO 2020162618A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
unit
positions
threshold value
ultrasonic waves
Prior art date
Application number
PCT/JP2020/004924
Other languages
French (fr)
Japanese (ja)
Inventor
晃寛 奈良
誠人 寺岡
広樹 片山
笹岑 敬一郎
Original Assignee
ヤマハファインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハファインテック株式会社 filed Critical ヤマハファインテック株式会社
Priority to JP2020571307A priority Critical patent/JP7304083B2/en
Priority to KR1020217023822A priority patent/KR102680523B1/en
Publication of WO2020162618A1 publication Critical patent/WO2020162618A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/48Processing the detected response signal, e.g. electronic circuits specially adapted therefor by amplitude comparison
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4427Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with stored values, e.g. threshold values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4436Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a reference signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation

Definitions

  • FIG. 1 is a block diagram showing a configuration example of an ultrasonic inspection system 1 in the embodiment.
  • the ultrasonic inspection system 1 inspects the inspection target 40 using ultrasonic waves.
  • the ultrasonic inspection system 1 includes a display device 10, an ultrasonic inspection device 20, and a transfer device 30.
  • the peripheral edge portion which is the entire area of the peripheral edge, is the joining point.
  • the first example is whether or not there is peeling at the peripheral edge portion 41.
  • the second example is whether or not there are holes or scratches in the peripheral edge portion 41.
  • the third example is whether or not the peripheral edge portion 41 is joined in a state where no foreign matter is sandwiched.
  • the fourth example is whether or not the singular point in the peripheral edge portion 41 is at the defined position.
  • the singular point is, for example, a position where a hole, a drinking spout, a notch, a printing portion, etc. provided in the peripheral edge portion 41 are provided.
  • the operation unit 210 can be composed of a keyboard, a mouse, and the like.
  • the operation unit 210 receives an input operation of various kinds of information regarding an ultrasonic examination according to a user operation.
  • the operation unit 210 supplies various information according to the input operation to the control unit 22.
  • the signal control unit 230 may also perform signal processing such as phase detection on the acquired ultrasonic signal.
  • signal processing such as phase detection on the acquired ultrasonic signal.
  • the signal control unit 230 separates the ultrasonic waves having different phases from each other, whereby the accuracy of the determination can be improved.
  • the transmission unit 260 transmits the burst wave (ultrasonic wave) generated by the transmission control unit 240.
  • the receiving unit 280 receives the ultrasonic wave transmitted by the transmitting unit 260.
  • the reception unit 280 outputs the received reception signal to the reception processing unit 250.
  • the reception unit 280 may include an A/D conversion unit.
  • the camera 290 takes a bird's-eye view of the inspection object 40 placed on the transport device 30 and images it.
  • the camera 290 outputs the imaging result (image data) to the control unit 220.
  • the camera 290 may use either an area sensor (camera whose image pickup range is two-dimensional) or a line sensor.
  • the transmitter 260 and the receiver 280 are arranged at intervals in one direction (Z-axis direction).
  • the transmitter 260 and the receiver 280 are fixed to a base unit (not shown) in the ultrasonic inspection apparatus 20. As a result, the distance between the transmitter 260 and the receiver 280 is maintained.
  • the transmission unit 260 transmits ultrasonic waves toward the reception unit 280 from the transmission surface 261 facing the reception unit 280.
  • the receiving unit 280 receives the ultrasonic wave transmitted from the transmitting unit 260 on the receiving surface 281 facing the transmitting unit 260.
  • the conveyance direction of the inspection object 40 by the conveyance device 30 is the X-axis direction.
  • the X-axis direction is orthogonal to the arrangement direction (Z-axis direction) of the transmitter 260 and the receiver 280.
  • the end 411 of the inspection object 40 is an edge of the inspection object 40 that extends linearly when viewed from the Z-axis direction.
  • a boundary line 420 of the inspection object 40 indicates a boundary line between a joint portion and a non-joint portion.
  • the boundary line 420 is a line along the edge of the inspection object 40.
  • the positions of the end portion 411 and the boundary line 420 may be detected by image data obtained from a camera (for example, the camera 290) that looks down at the inspection object 40 and takes an image.
  • the inspection object 40 is arranged between the transmission unit 260 and the reception unit 280.
  • the ultrasonic waves transmitted by the transmission unit 260 reach the inspection target 40, and the ultrasonic waves transmitted through the inspection target 40 reach the reception unit 280 and are received.
  • the ultrasonic wave transmitted from the transmitter 260 is focused at a predetermined position.
  • the region where the ultrasonic waves are focused is the region S1 (see FIG. 2).
  • the inspection object 40 is conveyed on the XY plane passing through the area S1.
  • the invention is not limited to such a case.
  • the upper side, the right side, and the lower side of the peripheral portion 410 can be inspected. Further, after the inspection is performed at the position of the distance d1, the same packaging container 400 may be inspected at a distance different from the distance d1.
  • FIG. 4 is an overhead view showing the appearance of a packaging container 450 that is another example of the inspection object 40.
  • the packaging container 450 is arranged on the XY plane.
  • the packaging container 450 can accommodate food (fluid food, viscous food, dry matter, etc.), electronic components, stationery, and the like.
  • a hole 470 is provided at the left end of FIG. 4 of the peripheral portion 460 of the packaging container 450.
  • the hole 470 is provided in the approximate center of the peripheral edge portion 460 in the X-axis direction.
  • the hole 470 is used, for example, to hook the packaging container 450 on the hook of the display device.
  • At the peripheral portion 460 there is a printing portion 471.
  • control unit 220 includes a storage unit 221, a determination unit 222, and a threshold value calculation unit 223.
  • the control unit 220 may or may not include the edge detection unit 224.
  • the storage unit 221 stores reference data, threshold data, and determination data.
  • the storage unit 221 is a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Memory), a RAM (Random Access read/write), a ROM (Random Access read/write), a ROM (Random Access read/write), or a ROM (Random Access read/write). It is configured by an arbitrary combination of storage media.
  • a non-volatile memory can be used as the storage unit 221, for example.
  • FIG. 5 shows an example of measurement data and threshold values of an inspection target object 40A (reference work, standard target object, first standard target object, second standard target object) used as a reference for obtaining a threshold value. It is a figure explaining.
  • the inspection object 40A used as a reference is the inspection object 40 that has been confirmed to satisfy the inspection standard.
  • the measurement data of the inspection object 40A is referred to as reference data (reference data).
  • the measurement data is obtained by receiving the ultrasonic waves (the first plurality of ultrasonic waves, the second plurality of ultrasonic waves, and the third plurality of ultrasonic waves) transmitted to the inspection target region of the inspection target 40. The obtained reception intensity is shown for each of a plurality of positions in the inspection area.
  • the measurement data obtained from the inspection object 40A can be used as reference data.
  • a work that is not used as a reference in the inspection object 40 is an inspection object 40B (inspection work).
  • the measurement data obtained from the inspection object 40B can be used for determining whether the inspection object 40B satisfies the standard.
  • the specifications of the inspection object 40A and the inspection object 40B are the same.
  • the plurality of positions of the inspection target area may be different positions in the inspection target area.
  • the plurality of positions of the inspection target area may be different positions along the inspection direction within the inspection target area.
  • the plurality of positions may be arranged in the inspection target area of the inspection target 40A and in the direction in which the transmission unit 260 relatively moves with respect to the inspection target 40A.
  • the plurality of positions may be linearly arranged.
  • the reference data is written in the storage unit 221 by the control unit 220 based on the measurement data obtained from the signal control unit 230.
  • the horizontal axis of FIG. 5 represents the measurement time, and the vertical axis represents the reception intensity.
  • the measurement time represents the elapsed time from the start of measurement of the inspection object 40A to the end of measurement.
  • the reception intensity represents the signal intensity when the receiving unit 280 directly receives the ultrasonic wave emitted from the transmitting unit 260 or receives the ultrasonic wave through the inspection object 40A.
  • the inspection object 40A is not present between the reception unit 280 and the transmission unit 260, so the ultrasonic waves are not blocked by the inspection object 40A and the reception intensity is high.
  • the reception intensity decreases (time t1).
  • the reception intensity increases again (time t2). Therefore, the period from the time t1 to the time t2 is the section in which the inspection object 40A is being measured, and the positions p1 and p2 on the inspection object 40A corresponding to the times t1 and t2 are at both ends of the inspection object 40A ( The start position and the end position of the inspection).
  • the measurement position from the position p1 to p2 of the inspection object 40A is obtained from the speed of the transport device 30 and the measurement time.
  • the inspection object 40A when the inspection object 40A is conveyed at a speed of 1000 mm/sec in an inspection device that measures an ultrasonic reception signal every 1 millisecond, the reception signals are received at a plurality of 1 mm intervals on the inspection object 40A. To be measured. In this way, the measurement result obtained at each of different positions along the inspection direction can be used as reference data.
  • the transport device 30 moves at a constant speed, the horizontal axis indicates the time axis and the measurement position. In the following embodiments, it is assumed that the transport speed is constant and the horizontal axis is the measurement position.
  • the threshold value calculation unit 223 sets a threshold value that can be used for determining whether or not the inspection target object satisfies the standard for a plurality of positions in the inspection target region. Ask. For example, the threshold value calculation unit 223 obtains the first threshold value 510, the second threshold value 520, and the third threshold value 530. (About the first threshold) The threshold value calculation unit 223 obtains a threshold value for specifying an inspection section when inspecting the inspection object 40 based on the reference data 500.
  • the inspection section is a time section from when the inspection object 40 conveyed by the conveyance device 30 reaches the area S1 to when it passes through the area S1.
  • the signal in this inspection section is used to make a determination in the determination operation described below.
  • the section in which the reception intensity is less than the first threshold value 510 corresponds to the inspection section Sa.
  • the inspection section Sa is a section from the start position p1 to the end position p2.
  • the signal within the inspection section Sa is treated as measurement data from the inspection start position p1 to the inspection end position p2 of the inspection object 40.
  • the threshold calculation unit 223 obtains at least one of the second threshold 520 and the third threshold 530.
  • the second threshold value 520 indicates an upper limit threshold value used for inspection determination.
  • the third threshold value 530 represents a lower limit threshold value. That is, in the inspection of the inspection object 40, when the reception intensity is between the third threshold value and the second threshold value, it is determined that the inspection object 40 satisfies the standard.
  • the threshold value calculation unit 223 obtains the second threshold value 520 and the third threshold value 530 based on the reference data 500 included in the inspection section Sa among the reference data 500.
  • the threshold calculation unit 223 first obtains the average value of the reception intensity of the inspection section Sa. Then, the threshold value calculation unit 223 adds (adds or subtracts) a margin (expected variation width) with the average value as a reference, and determines the reception intensity having a value larger than the average value as the second threshold. The value 520 is obtained, and the reception strength having a value smaller than the average value is obtained as the third threshold value 530.
  • the second threshold value 520 and the third threshold value 530 may be obtained by adding a margin to the median value of the reception intensity of the inspection section Sa.
  • the second threshold value 520 and the third threshold value 530 may be obtained by selecting one of the reception intensities included in the inspection section Sa and adding a margin to the selected reception intensity.
  • a standard deviation value or a value obtained by multiplying the standard deviation value by a variable may be used.
  • a margin may be a specified value according to the material and thickness of the inspection object 40.
  • an average waveform may be used instead of the average value of the reception intensity.
  • the average waveform is a waveform obtained by averaging the waveforms represented by the plurality of reference data obtained by measuring the plurality of inspection objects 40A satisfying the inspection standard. In the example of FIG.
  • the control unit 220 acquires the reference data 500 output from the signal control unit 230 via the reception unit 280, the reception processing unit 250, and the signal control unit 230 (step S102).
  • the control unit 220 stores the acquired reference data in the storage unit 221 (step S103).
  • the control unit 220 obtains the first threshold value 510 based on the reference data (step S104).
  • the control unit 220 obtains the second threshold value 520 (step S105) and obtains the third threshold value 530 (step S106).
  • the control unit 220 stores each of the obtained threshold values in the storage unit 221 (step S107).
  • the control unit 220 determines whether or not there is measurement data having the second threshold value 520 or more for each of the measurement positions belonging to the inspection section (step S206). When there is measurement data having the second threshold value 520 or more, the control unit 220 determines that the inspection target 40B does not satisfy the inspection standard (step S210). Next, when there is no measurement data that is greater than or equal to the second threshold value 520, the control unit 220 determines whether there is measurement data that is less than the third threshold value 530 for each measurement position that belongs to the inspection section. It is determined whether or not (step S207). When there is measurement data that is less than the third threshold value 530, the control unit 220 determines that the inspection target 40B does not satisfy the inspection standard (step S210).
  • the control unit 220 determines that the inspection target 40B satisfies the inspection standard (step S208). Then, the control unit 220 associates the measurement data with the determination result and stores them in the storage unit 221 (step S209). By storing the measurement data and the determination result in association with each other in the storage unit 221, the inspection history can be saved.
  • the inspection object 40B that is determined to satisfy the inspection standard is determined to be a non-defective product if the inspection target 40B is determined to satisfy the inspection standard performed in the subsequent stage.
  • the determination unit 222 determines whether the measurement data is greater than or equal to the threshold value or less than the threshold value.
  • the determination unit 222 reads the threshold value from the storage unit 221.
  • the determination unit 222 compares the measurement data obtained from the inspection object 40B with a threshold value and determines the magnitude relationship with the threshold value.
  • the determination of the magnitude relation does not only mean performing both the determination as to whether it is large and the determination as to whether it is small. In the determination of the magnitude relationship, only the determination as to whether it is large or only the determination as to whether it is small may be performed.
  • the determination as to whether it is large may be a determination as to whether it is greater than or equal to a threshold value, or may be a determination as to whether or not the threshold value is exceeded. Further, the determination as to whether it is small may be a determination as to whether it is less than or equal to the threshold value, or may be a determination as to whether it is less than the threshold value.
  • the number of threshold values used for determination at one measurement position may be one or plural. When using a plurality of threshold values, for example, the first threshold value 510, the second threshold value 520, and the third threshold value 530 can be used. When using one threshold value, any one of the first threshold value 510, the second threshold value 520, and the third threshold value 530 may be used.
  • FIG. 8A is a diagram illustrating measurement data of the inspection object 40B that is determined to satisfy the inspection standard.
  • the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
  • the reception intensity indicated by the measurement data 600 is between the second threshold value 520 and the third threshold value 530 at any measurement position in the inspection section (section between the start position p1 and the end position p2). It is the value of the reception intensity.
  • the determination unit 222 determines that the inspection object 40B for which the measurement data 600 has been obtained satisfies the inspection standard.
  • FIG. 8B is a diagram illustrating measurement data of the inspection object 40B that is determined not to satisfy the inspection standard.
  • the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
  • the reception intensity of the measurement data 610 is a value less than the third threshold value 530 for the measurement data 611 at the position p11 in the inspection section (section between the start position p1 and the end position p2).
  • the measurement data 612 at the position p12 is a value equal to or greater than the second threshold value 520. Therefore, the determination unit 222 determines that the inspection standard is not satisfied for the inspection object 40B from which the measurement data 610 is obtained.
  • the ultrasonic inspection apparatus 20 is an inspection that inspects the inspection object arranged between the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit based on the ultrasonic wave reception intensity measured by the receiving unit.
  • the device is a device for acquiring reception intensity measured at a plurality of positions of a reference work, which is one of the inspection objects, as reference data, and based on the reference data, a threshold of the reception intensity for a plurality of positions is obtained.
  • a calculation unit a storage unit that stores a threshold value and a value that represents a plurality of positions in association with each other, measurement data that represents the reception intensity at a plurality of positions of the inspection object, and a magnitude relationship between the threshold value.
  • a determination unit for determining.
  • the threshold value calculation unit 223 determines the threshold value using the reference data, so that the threshold value can be easily obtained. Also, there is little effort in obtaining the threshold value. Further, the threshold value can be easily obtained even if the operator is not a skilled worker.
  • ultrasonic waves are emitted between the transmission unit 260 and the reception unit 280 while passing the inspection object 40, so that the inspection of the inspection object 40 can be performed without contact. It can be carried out.
  • FIG. 9A and FIG. 9B are views for explaining measurement data when the inspection target area includes a hole and a drinking spout.
  • 9A shows reference data 700 which is the measurement data of the inspection object 40A used as a reference
  • FIG. 9B shows the measurement data 800 of the inspection object 40B whose determination is to be satisfied.
  • 9A and 9B the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
  • the inspection section (the section from the start position p1 to the end position p2) is determined based on the first threshold value 511 (or the first threshold value 511 and the length of the inspection section).
  • a certain section from the start position p1 may be set as the inspection section.
  • the inspection section includes a section ps1 and a section ps2.
  • the reception intensity of the reference data 700 corresponding to the section ps1 is larger than that at other measurement positions.
  • the reception intensity of the reference data 700 corresponding to the section ps2 is smaller than that at other measurement positions.
  • the section ps1 corresponds to the position where there is a hole.
  • the ultrasonic waves transmitted from the transmission unit 260 directly reach the reception unit 280 without passing through the sheet member. Therefore, the reception intensity in the section ps1 shows a large value.
  • the section ps2 corresponds to the position where the drinking spout is located.
  • the ultrasonic wave transmitted from the transmitting unit 260 not only penetrates the sheet member, but also the members forming the drinking mouth, and then the receiving unit. Reach 280. Therefore, the reception intensity in the section ps2 shows a value smaller than that of the peripheral portion of the portion having no drinking mouth.
  • the threshold value calculation unit 223 sets the threshold value according to the inspection object 40 having at least one of a hole, a drinking spout, a notch, and a printing unit on the peripheral portion. ..
  • the reference data 700 represents the reception result of receiving ultrasonic waves with respect to the inspection object 40A having a hole and a mouthpiece provided in the peripheral portion.
  • the threshold value calculation unit 223 obtains a threshold value based on the reference data 700.
  • the threshold value calculation unit 223 obtains the second threshold value 521 and the third threshold value 531 by adding a margin to the reference data 700 belonging to the inspection section with reference to the reception intensity at each measurement position.
  • the second threshold value 521 and the third threshold value 531 are obtained for each measurement position in the section from the start position p1 to the end position p2.
  • the second threshold value 521 and the third threshold value 531 in the section ps1 are larger than the second threshold value 521 and the third threshold value 531 at the measurement positions before and after the section ps1, respectively. The reason is that, in the section ps1, the ultrasonic wave does not pass through the peripheral portion, but passes through the hole and is directly received by the receiving unit 280.
  • the second threshold value 521 and the third threshold value 531 have values corresponding to the shape and thickness of the inspection object 40A.
  • the second threshold value 521 and the third threshold value 531 in the section ps2 are smaller than the second threshold value 521 and the third threshold value 531 at the measurement positions before and after the section ps2, respectively. This is because in the section ps2, ultrasonic waves penetrate the sheet member and the mouthpiece.
  • the determination unit 222 can determine that this inspection object 40B satisfies the inspection standard.
  • the margin of the second threshold value 521 with respect to the reference data 700 changes according to the measurement position, but is not limited to such an example.
  • the margin of the second threshold value 521 with respect to the reference data 700 may be constant regardless of the measurement position.
  • the margin of the third threshold value 531 with respect to the reference data 700 changes according to the measurement position, but is not limited to such an example.
  • the margin of the third threshold value 531 with respect to the reference data 700 may be constant regardless of the measurement position.
  • the reception intensity of the measurement data 800 in the sections ps5 and ps6 is a value less than the third threshold value 531.
  • the section ps5 is a section corresponding to the position with the hole, the reception intensity in the section ps5 is less than the third threshold value 531.
  • the holes are not normally formed in this section ps5. For example, it is conceivable that when a hole is formed by punching or the like, a part to be punched out remains. In such a case, the determination unit 222 determines that this inspection object 40B does not satisfy the inspection standard. Further, since the section ps6 corresponds to the position of the drinking mouth, the reception intensity in the section ps6 decreases.
  • the determination unit 222 determines that the inspection object 40B does not satisfy the inspection standard.
  • FIG. 10 is a figure explaining the measurement data when the distance between the start position p1 and the end position p2 is measured shorter than the normal time about the test object 40B of the same kind as FIG. 9A.
  • the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
  • the waveform shape is shortened in the horizontal axis direction as shown in the measurement data 810.
  • the reason why the distance between the start position p1 and the end position p2 becomes shorter than in the normal time is, for example, that the actual transport speed of the transport device 30 is faster than the speed corresponding to the speed command value.
  • the determination unit 222 sets the measurement positions as a whole so that the interval between the start position p1 and the end position p2 matches the interval (distance) between the start position p1 and the end position p2 in the normal time. Correct so that it stretches.
  • the inspection can be performed using the threshold value stored in the storage unit 221.
  • the determination unit 222 reduces the measurement position as a whole so that the interval between the start position p1 and the end position p2 matches the interval between the start position p1 and the end position p2 in the normal time. Correct to.
  • the determination unit 222 sets the entire measurement position so that the interval (distance) between the start position p1 and the end position p2 matches the interval between the start position p1 and the end position p2 in the reference data. Correct so that it stretches. Thereby, the inspection can be performed using the threshold value stored in the storage unit 221.
  • FIG. 11 is a figure explaining the measurement data at the time of inspecting the test
  • the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
  • the upper graph of FIG. 11 represents the measurement data 820 when it is determined that the inspection object 40B satisfies the inspection standard.
  • the measurement data 830 of the inspection object 40B provided at the position where the position of the hole is out of the specified range.
  • the measurement position ps10 having the peak of the reception intensity is closer to the end position p2 than the measurement position (peak position) ps9 of the measurement data 820. That is, it is shown that the position of the hole in the peripheral portion of the inspection object 40B in the lower graph of FIG. 11 is located farther from the start position p1.
  • the intensity of the received signal corresponding to the measurement position ps9 of the measurement data 820 is almost the same as the measurement position ps10 of the measurement data 830.
  • the measurement data 830 at the measurement position ps9 is below the third threshold value 531 and the measurement data 830 at the measurement position ps10 is above the second threshold value 521. Therefore, the determination unit 222 determines that the inspection standard is not satisfied.
  • the determination unit 222 divides the measurement data 830 into a plurality of sections based on the measurement position, and sets the measurement position of the measurement data 830 for the divided section (division section) to the inspection direction (start position p1 direction or end). The position p2).
  • the determination unit 222 compares the measurement data 830 obtained by moving the measurement position in this way with each threshold value.
  • the determination unit 222 compares the measurement data 830 corresponding to the measurement position (predetermined position) included in the divided section with the threshold values 521 and 531 corresponding to the position deviated from the measurement position in the inspection direction.
  • the divided section including the measurement position ps10 is moved in the direction of the start position p1 by the distance d3.
  • the determination unit 222 determines When the divided section is moved, it is determined that the inspection standard is satisfied, and information indicating the determination result is stored.
  • the edge can be detected using the image data obtained from the camera 290, the edge can be detected without providing the transport device 30 with a sensor such as an encoder. Further, even if there is a change in the transport speed, the threshold value can be determined after correcting the start position of the measurement data.
  • a transmission sensor may be provided instead of the camera 290 and the detection result of the transmission sensor may be used to detect the edge of the inspection object 40.
  • the start position can be corrected. Therefore, if the measurement data has a value that does not satisfy the inspection standard, it is possible to specify the measurement position where the value that does not satisfy the inspection standard exists with the corrected start position as a reference. As a result, it is possible to accurately grasp at which position there is a possibility of malfunction.
  • the ultrasonic inspection apparatus 20 has been described with respect to the case where the inspection target 40 is moved relative to the transmitter 260 and the receiver 280 for inspection.
  • a plurality of sets of transmitters and receivers may be arranged in the inspection direction, and measurement may be performed at a plurality of measurement positions while the inspection object 40 is not relatively moved.
  • the transfer device 30 has described the case where the inspection target 40 is placed on the belt conveyor in a horizontal state and transferred.
  • the transport device 30 may grip a part of the inspection target 40 and transport the inspection target 40 in a vertically standing state.
  • the transmitting unit 260 and the receiving unit 280 are arranged so that ultrasonic waves can be emitted and received from the vertical direction of the peripheral edge of the inspection object 40.
  • the function of obtaining the threshold value may be installed in a device different from the ultrasonic inspection device 20.
  • the storage unit 221 and the threshold value calculation unit 223 may be configured as a threshold value calculation device, and may be configured as a device in a housing different from the ultrasonic inspection device 20.
  • the threshold value calculation device may include the edge detection unit 224.
  • the control unit 220 in the above embodiment may be realized by a computer.
  • the program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read by a computer system and executed.
  • the “computer system” mentioned here includes an OS and hardware such as peripheral devices.
  • the “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system.
  • the "computer-readable recording medium” means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system that serves as a server or a client in that case may hold a program for a certain period of time.
  • the program may be for realizing a part of the above-mentioned functions, or may be a program for realizing the above-mentioned functions in combination with a program already recorded in a computer system, It may be realized using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • the present invention may be applied to an inspection device and an inspection method.
  • Ultrasonic inspection system 20 Ultrasonic inspection device 220. Control part 221, Storage part 222... Judgment part 223... Threshold value calculation part 224... Edge detection part 260... Transmission part 280... Reception part 290... Camera 40... Inspection Object 41... peripheral part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Algebra (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

This inspection device has: a transmission unit that irradiates a plurality of different positions of a first standard object with ultrasonic waves; a reception unit that receives a plurality of first ultrasonic waves emitted by the transmission unit and transmitted through the positions; a calculation unit that calculates a plurality of threshold values corresponding to the positions on the basis of reception intensities of the first ultrasonic waves; and a storage unit that stores the threshold values and values indicating the positions in such a manner as to be associated with each other.

Description

検査装置、および検査方法Inspection device and inspection method
 本発明は、例えばシート部材を接合して形成された包装容器における接合箇所の剥離の有無を検査する検査装置、および検査方法に関する。
 この出願は、2019年2月8日に出願された日本国特願2019-022080を基礎とする優先権を主張し、その開示の全てをここに取り込む。
The present invention relates to an inspection device and an inspection method for inspecting the presence or absence of peeling at a joint portion in a packaging container formed by joining sheet members, for example.
This application claims the priority on the basis of Japanese Patent Application No. 2019-022080 for which it applied on February 8, 2019, and takes in those the indications of all here.
 内容物を収容する包装容器がある。内容物は、例えば、レトル卜食品、飲料水や、電子機器等である。このような包装容器は、内容物を密閉状態で収容することが求められる。
 包装容器は、シー卜部材(フィルム部材も含む)の周縁が溶着、接着などされることで、開口部が接合されて密閉状態となる。
 接合された箇所に剥離等が生じて接合が不十分であると、密閉状態を維持できない可能性がある。そのため、接合状態が基準を満たしているか否かの検査が行われる。
There is a packaging container that contains the contents. The contents are, for example, retort food, drinking water, electronic devices, and the like. Such a packaging container is required to contain the contents in a sealed state.
The packaging container is sealed by welding and bonding the peripheral edge of the sealing member (including the film member) and joining the openings.
If peeling or the like occurs at the joined portion and the joining is insufficient, the hermetically sealed state may not be maintained. Therefore, an inspection is performed as to whether or not the bonding state satisfies the standard.
 この検査を行う装置として、例えば超音波検査装置がある。超音波検査装置は、検査対象である包装容器(ワーク)に超音波を送信し、包装容器を透過した超音波を受信して解析する。超音波検査装置は、この解析結果を得ることで、接合箇所に剥離等があるか否かを判定する。
 このような判定は、受信した超音波の測定データと、しきい値とを比較することで行われる。しきい値は、一般に、検査を行う前に定められている。
 超音波検査装置の一例としては、特許文献1に記載された超音波検査装置がある。
As an apparatus for performing this inspection, there is an ultrasonic inspection apparatus, for example. The ultrasonic inspection device transmits ultrasonic waves to a packaging container (work) to be inspected, receives ultrasonic waves transmitted through the packaging container, and analyzes the ultrasonic waves. The ultrasonic inspection apparatus determines whether or not there is peeling or the like at the joint by obtaining this analysis result.
Such a determination is performed by comparing the received ultrasonic measurement data with a threshold value. The threshold is generally set before the inspection.
An example of the ultrasonic inspection device is the ultrasonic inspection device described in Patent Document 1.
米国特許第6920793号明細書US Pat. No. 6,920,793
 しきい値は、作業員の経験等に基づいて決定されていた。しかし、包装容器の素材、厚さ、形状などに応じて超音波の透過状況が異なるため、検査対象に適したしきい値を決定するには、熟練を要する。 Threshold was determined based on the experience of workers. However, since the ultrasonic wave transmission state varies depending on the material, thickness, shape, etc. of the packaging container, it takes skill to determine a threshold value suitable for the inspection target.
 本発明は、このような事情に鑑みてなされた。本発明の目的の例は、しきい値を簡単に設定することができる検査装置、および検査方法を提供することにある。 The present invention has been made in view of such circumstances. An example of an object of the present invention is to provide an inspection device and an inspection method capable of easily setting a threshold value.
 本発明の一態様にかかる検査装置は、超音波を、第1の標準対象物の互いに異なる複数の位置に照射する送信部と、前記送信部によって照射されるとともに前記複数の位置をそれぞれ透過した第1の複数の超音波を受信する受信部と、前記第1の複数の超音波それぞれの受信強度に基づいて、前記複数の位置それぞれに対応する複数のしきい値を求める演算部と、互いに対応付けられた状態で前記複数のしきい値と前記複数の位置を表す値とを記憶する記憶部と、を有する。 An inspection apparatus according to an aspect of the present invention is a transmitting unit that irradiates ultrasonic waves to a plurality of mutually different positions of a first standard object, and is transmitted by the transmitting unit while passing through the plurality of positions. A receiving unit that receives the first plurality of ultrasonic waves, and a calculation unit that obtains a plurality of threshold values corresponding to the plurality of positions based on the reception intensities of the first plurality of ultrasonic waves, respectively. A storage unit that stores the plurality of threshold values and the values that represent the plurality of positions in an associated state.
 本発明の一態様にかかる検査方法は、標準対象物の互いに異なる複数の位置をそれぞれ透過した複数の超音波を受信し、前記複数の超音波それぞれの受信強度に基づいて、前記複数の位置それぞれに対応する複数のしきい値を求め、互いに対応付けられた状態で前記複数のしきい値と前記複数の位置を表す値とを記憶部に記憶する、ことを含む。 The inspection method according to an aspect of the present invention receives a plurality of ultrasonic waves transmitted through a plurality of different positions of a standard object, respectively, based on the reception intensity of each of the plurality of ultrasonic waves, each of the plurality of positions. Determining a plurality of threshold values corresponding to, and storing the plurality of threshold values and the values indicating the plurality of positions in a storage unit in a state of being associated with each other.
 この発明の実施形態によれば、検査の基準を満たす検査対象物を検査した際の受信強度を用いることで、検査に用いられるしきい値を簡単に設定することができる。 According to the embodiment of the present invention, the threshold value used for the inspection can be easily set by using the reception intensity when the inspection target satisfying the inspection standard is used.
実施形態における超音波検査システム1の構成例を示すブロック図である。It is a block diagram showing an example of composition of ultrasonic inspection system 1 in an embodiment. 送信部260と受信部280と検査対象物40との位置関係について説明する図である。It is a figure explaining the positional relationship of the transmission part 260, the receiving part 280, and the test object 40. 検査対象物40の一例である検査対象物400の外観を示す俯瞰図である。FIG. 3 is a bird's-eye view showing an appearance of an inspection target object 400, which is an example of the inspection target object 40. 検査対象物40の他の一例である包装容器450の外観を示す俯瞰図である。FIG. 6 is an overhead view showing an appearance of a packaging container 450 which is another example of the inspection object 40. リファレンスデータとしきい値データの一例を説明する図である。It is a figure explaining an example of reference data and threshold data. 超音波検査装置20がしきい値を求める動作を説明するフローチャートである。7 is a flowchart illustrating an operation of the ultrasonic inspection apparatus 20 for obtaining a threshold value. 超音波検査装置20の判定動作を説明するフローチャートである。7 is a flowchart illustrating a determination operation of the ultrasonic inspection device 20. 検査基準を満たすと判定された検査対象物40Bの測定データを説明する図である。It is a figure explaining the measurement data of the inspection target object 40B determined with satisfy|filling an inspection standard. 検査基準を満たさないと判定された検査対象物40Bの測定データを説明する図である。It is a figure explaining the measurement data of the inspection target object 40B determined with not satisfy|filling an inspection standard. 検査対象領域に穴と飲み口が含まれる場合の測定データを説明する図である。It is a figure explaining the measurement data when a hole and a drinking mouth are included in an inspection target area. 検査対象領域に穴と飲み口が含まれる場合の測定データを説明する図である。It is a figure explaining the measurement data when a hole and a drinking mouth are included in an inspection target area. 開始位置p1と終了位置p2との間が、通常時に比べて短い場合について説明する図である。It is a figure explaining the case where the distance between the start position p1 and the end position p2 is shorter than the normal time. 周縁部に設けられる穴等の位置が規定の位置とは異なる位置に配置された検査対象物を検査する場合について説明する図である。It is a figure explaining the case where the position of a hole etc. provided in a peripheral part inspects an inspection target object arrange|positioned in a position different from a prescribed position.
 以下、本発明の実施の形態の1つについて詳細に説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。また、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。さらに、当業者であれば、以下に述べる各要素を均等なものに置換した実施の形態を採用することが可能であり、かかる実施の形態も本発明の範囲に含まれる。 Hereinafter, one of the embodiments of the present invention will be described in detail. The following embodiments are examples for explaining the present invention and are not intended to limit the present invention only to the embodiments. Further, the present invention can be variously modified without departing from the gist thereof. Further, those skilled in the art can adopt an embodiment in which each element described below is replaced with an equivalent one, and such an embodiment is also included in the scope of the present invention.
(実施形態)
 図1は、実施形態における超音波検査システム1の構成例を示すブロック図である。超音波検査システム1は、超音波を用いて検査対象物40を検査する。図1に示す例において、超音波検査システム1は、表示装置10、超音波検査装置20及び搬送装置30を備える。
(Embodiment)
FIG. 1 is a block diagram showing a configuration example of an ultrasonic inspection system 1 in the embodiment. The ultrasonic inspection system 1 inspects the inspection target 40 using ultrasonic waves. In the example shown in FIG. 1, the ultrasonic inspection system 1 includes a display device 10, an ultrasonic inspection device 20, and a transfer device 30.
 表示装置10は、超音波検査装置20に接続される。表示装置10は、超音波検査装置20から出力される各種情報を表示する。表示装置10として、例えば、液晶表示装置を用いることができる。 The display device 10 is connected to the ultrasonic inspection device 20. The display device 10 displays various information output from the ultrasonic inspection device 20. As the display device 10, for example, a liquid crystal display device can be used.
 超音波検査装置20は、表示装置10に接続される。超音波検査装置20は、検査対象物40に対して照射された超音波を受信し、受信結果に基づいて、検査対象物40の検査を行う。
 搬送装置30は、検査対象物40を搬送する。
 搬送装置30は、例えば、ベルトコンベヤである。搬送装置30のベルト32には、検査対象物40が載置される。搬送装置30では、ローラ31(ローラ31a、31b)を回転させる。これにより搬送装置30は、検査対象物40を検査方向に沿って搬送し、送信部260と受信部280との間にある所定の検査位置を通過させる。ローラ31の回転は、例えば、超音波検査装置20の駆動制御部(不図示)から出力される制御指令値により制御される。搬送装置30に対して検査対象物40が載置された位置は、位置補正機構によって補正されてもよい。位置補正機構は、超音波検査装置20に対する検査対象物40の位置が所定の位置となるように補正あるいは位置決めするガイドであってもよい。
The ultrasonic inspection device 20 is connected to the display device 10. The ultrasonic inspection device 20 receives the ultrasonic waves applied to the inspection object 40, and inspects the inspection object 40 based on the reception result.
The transfer device 30 transfers the inspection target 40.
The transport device 30 is, for example, a belt conveyor. The inspection object 40 is placed on the belt 32 of the transport device 30. In the transport device 30, the roller 31 (rollers 31a and 31b) is rotated. As a result, the transport device 30 transports the inspection object 40 along the inspection direction, and passes the inspection object 40 through a predetermined inspection position between the transmission unit 260 and the reception unit 280. The rotation of the roller 31 is controlled by, for example, a control command value output from a drive control unit (not shown) of the ultrasonic inspection device 20. The position where the inspection target 40 is placed on the transport device 30 may be corrected by the position correction mechanism. The position correction mechanism may be a guide that corrects or positions the inspection object 40 so that the position of the inspection object 40 with respect to the ultrasonic inspection apparatus 20 becomes a predetermined position.
 検査対象物40は、超音波検査装置20によって検査される。検査対象物40上の領域であって、検査が行われる対象となる部分を、検査対象領域という。例えば、検査対象物40の第1シート部材40aの周縁の全体と検査対象物40の第2シート部材40bの周縁の全体とが互いに接合(シール)されている。検査対象物40は、内周側に内容物を収容する空間を有する包装容器である。第1シート部材40aと第2シート部材40bは、いずれも可撓性がある。
 検査対象物40において、検査対象領域は、接合箇所である。接合箇所は、包装容器を構成する二つのシート部材が接合されるべき箇所である。検査対象物40では、周縁の全体にわたる領域である周縁部が、接合箇所である。
 検査項目の具体例について説明する。第1の例は、周縁部41において、剥離があるか否かである。第2の例は、周縁部41において、孔、傷があるか否かである。第3の例は、周縁部41において、異物を挟まない状態で接合されているか否かである。第4の例は、周縁部41における特異点が規定された位置にあるか否かである。特異点とは、例えば、周縁部41に設けられる穴、飲み口、ノッチ、印字部等が設けられる位置である。
The inspection object 40 is inspected by the ultrasonic inspection device 20. An area on the inspection object 40, which is an object to be inspected, is referred to as an inspection object area. For example, the entire periphery of the first sheet member 40a of the inspection object 40 and the entire periphery of the second sheet member 40b of the inspection object 40 are joined (sealed) to each other. The inspection object 40 is a packaging container having a space for containing contents on the inner peripheral side. Both the first sheet member 40a and the second sheet member 40b are flexible.
In the inspection target object 40, the inspection target area is a joint portion. The joining point is a point where the two sheet members constituting the packaging container are to be joined. In the inspection object 40, the peripheral edge portion, which is the entire area of the peripheral edge, is the joining point.
A specific example of the inspection item will be described. The first example is whether or not there is peeling at the peripheral edge portion 41. The second example is whether or not there are holes or scratches in the peripheral edge portion 41. The third example is whether or not the peripheral edge portion 41 is joined in a state where no foreign matter is sandwiched. The fourth example is whether or not the singular point in the peripheral edge portion 41 is at the defined position. The singular point is, for example, a position where a hole, a drinking spout, a notch, a printing portion, etc. provided in the peripheral edge portion 41 are provided.
〈超音波検査装置20の構成〉
 超音波検査装置20は、例えば、操作部210、制御部220、信号制御部230、送信制御部240、受信処理部250、送信部260、受信部280、及びカメラ(撮像装置)290を備える。
 超音波検査装置20は、少なくとも一部にコンピュータを含む。このコンピュータは、CPU(Central Processing Unit)等のプロセッサと、プロセッサが実行するプログラムを格納するプログラムメモリとを備える。超音波検査装置20において、各機能部(操作部210、制御部220、信号制御部230、送信制御部240、受信処理部250、送信部260、及び受信部280)は、例えばCPU(Central Processing Unit)などのプロセッサがプログラムメモリに格納されたプログラムを実行することにより実現される。また、これら各機能部のうち一部または全部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよい。
<Structure of ultrasonic inspection apparatus 20>
The ultrasonic inspection apparatus 20 includes, for example, an operation unit 210, a control unit 220, a signal control unit 230, a transmission control unit 240, a reception processing unit 250, a transmission unit 260, a reception unit 280, and a camera (imaging device) 290.
The ultrasonic inspection apparatus 20 includes a computer at least in part. This computer includes a processor such as a CPU (Central Processing Unit) and a program memory that stores a program executed by the processor. In the ultrasonic inspection apparatus 20, each functional unit (the operation unit 210, the control unit 220, the signal control unit 230, the transmission control unit 240, the reception processing unit 250, the transmission unit 260, and the reception unit 280) is, for example, a CPU (Central Processing). It is realized by a processor such as Unit) executing a program stored in the program memory. Further, some or all of these functional units may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array).
 操作部210は、キーボード、マウスなどで構成することが可能である。操作部210は、利用者の操作に応じて、超音波検査に関する各種情報の入力操作を受け付ける。操作部210は、入力操作に応じた各種情報を制御部22に供給する。 The operation unit 210 can be composed of a keyboard, a mouse, and the like. The operation unit 210 receives an input operation of various kinds of information regarding an ultrasonic examination according to a user operation. The operation unit 210 supplies various information according to the input operation to the control unit 22.
 制御部220は、超音波検査装置20の各部を制御する。制御部220は、例えば、操作部210から入力された各種情報、及び、後述する信号制御部230から得られる解析結果(例えば測定データ)や、判定部222によって判定された異状の有無等を示す結果を、表示装置10に出力する。表示装置10に出力される情報は、超音波検査に関する情報であり、例えば検査対象物40に関する情報、送信する超音波の波長や強度、検査対象物40を搬送する速度、受信された超音波の解析結果、及び剥離の有無を判定した判定結果等の情報である。
 また、制御部220は、検査対象領域に超音波を照射することができるように、送信部260及び受信部280を制御するとともに、送信部260及び受信部280に対する、検査対象物40の位置を制御する。この実施形態において検査対象領域は、検査対象物40における周縁部41のうち、少なくとも一部の領域であればよい。
The control unit 220 controls each unit of the ultrasonic inspection apparatus 20. The control unit 220 indicates, for example, various information input from the operation unit 210, an analysis result (for example, measurement data) obtained from the signal control unit 230 described below, and the presence/absence of abnormality determined by the determination unit 222. The result is output to the display device 10. The information output to the display device 10 is information related to ultrasonic inspection, and includes, for example, information related to the inspection object 40, the wavelength and intensity of the ultrasonic wave to be transmitted, the speed at which the inspection object 40 is conveyed, and the received ultrasonic wave. It is information such as the analysis result and the determination result of determining the presence or absence of peeling.
In addition, the control unit 220 controls the transmitting unit 260 and the receiving unit 280 so as to irradiate the inspection target area with ultrasonic waves, and controls the position of the inspection target 40 with respect to the transmitting unit 260 and the receiving unit 280. Control. In this embodiment, the inspection target area may be at least a part of the peripheral edge portion 41 of the inspection target object 40.
 信号制御部230は、送信する超音波を制御するための信号を生成する。送信する超音波は、例えば、バースト波である。信号制御部230は、送信する超音波の送信タイミングと強度に応じたバースト信号を生成する。信号制御部23は、生成した信号を送信制御部240に出力する。
 また、信号制御部230は、受信部280により受信された超音波の信号(受信信号)を、受信処理部250を介して取得する。信号制御部230は、取得した超音波の信号の強度や位相を解析し、解析結果(例えば測定データ)を制御部220に出力する。
The signal controller 230 generates a signal for controlling an ultrasonic wave to be transmitted. The ultrasonic waves to be transmitted are, for example, burst waves. The signal controller 230 generates a burst signal according to the transmission timing and intensity of the ultrasonic waves to be transmitted. The signal control unit 23 outputs the generated signal to the transmission control unit 240.
Further, the signal control unit 230 acquires the ultrasonic signal (reception signal) received by the reception unit 280 via the reception processing unit 250. The signal control unit 230 analyzes the intensity and phase of the acquired ultrasonic signal and outputs the analysis result (for example, measurement data) to the control unit 220.
 信号制御部230は、取得した超音波の信号の強度や位相を解析する場合に、所定の時間区間の信号を抽出し、抽出した信号を用いて強度や位相を解析するようにしてよい。超音波の状態が時系列にみて変化する場合、精度よく解析することができる時間区間の超音波を用いることで、判定の精度を向上させることが可能である。例えば、信号制御部230は、受信部280に受信された超音波のうち、受信が検出されてから所定の時間区間(例えば、送信された超音波の1波長に相当する時間区間)の超音波に相当する信号を抽出して波長や強度を解析する。 The signal control unit 230, when analyzing the intensity or phase of the acquired ultrasonic signal, may extract a signal in a predetermined time interval and analyze the intensity or phase using the extracted signal. When the state of ultrasonic waves changes in time series, the accuracy of determination can be improved by using ultrasonic waves in a time section that can be analyzed accurately. For example, the signal control unit 230, among the ultrasonic waves received by the receiving unit 280, an ultrasonic wave in a predetermined time period (for example, a time period corresponding to one wavelength of the transmitted ultrasonic wave) after reception is detected. The signal corresponding to is extracted and the wavelength and intensity are analyzed.
 また、信号制御部230は、取得した超音波の信号に対して位相検波などの信号処理を行ってもよい。超音波に、互いに位相が異なる超音波が混在している場合、信号制御部230が位相が異なる超音波を互いに分離することで、判定の精度を向上させることが可能である。 The signal control unit 230 may also perform signal processing such as phase detection on the acquired ultrasonic signal. When ultrasonic waves having different phases are mixed in the ultrasonic waves, the signal control unit 230 separates the ultrasonic waves having different phases from each other, whereby the accuracy of the determination can be improved.
 送信制御部240は、信号制御部230からのバースト信号に応じて、発振器(不図示)から出力される所定の周波数のバースト波を生成する。送信制御部240は、生成したバースト波を送信部260に出力する。
 受信処理部250は、受信部280により受信された受信信号を取得し、取得した受信信号を解析し易くするための処理を行う。例えば、受信処理部250は、取得した受信信号の振幅をアンプにより増幅させる。また、受信処理部250は、取得した超音波から、送信した超音波の波長とは異なる波長をフィルタにより除去するようにしてもよい。
The transmission control unit 240 generates a burst wave of a predetermined frequency output from an oscillator (not shown) according to the burst signal from the signal control unit 230. The transmission control unit 240 outputs the generated burst wave to the transmission unit 260.
The reception processing unit 250 acquires a reception signal received by the reception unit 280 and performs processing for facilitating analysis of the acquired reception signal. For example, the reception processing unit 250 amplifies the amplitude of the acquired reception signal with an amplifier. Further, the reception processing unit 250 may remove a wavelength different from the wavelength of the transmitted ultrasonic wave from the acquired ultrasonic wave by using a filter.
 送信部260は、送信制御部240により生成されたバースト波(超音波)を送信する。
 受信部280は、送信部260により送信された超音波を受信する。受信部280は、受信した受信信号を受信処理部250に出力する。受信部280は、A/D変換部を含んでもよい。
 カメラ290は、搬送装置30に載置された検査対象物40を俯瞰して撮像する。カメラ290は、撮像結果(画像データ)を制御部220に出力する。このカメラ290は、エリアセンサ(撮像範囲が二次元であるカメラ)またはラインセンサのいずれかを用いるようにしてもよい。
The transmission unit 260 transmits the burst wave (ultrasonic wave) generated by the transmission control unit 240.
The receiving unit 280 receives the ultrasonic wave transmitted by the transmitting unit 260. The reception unit 280 outputs the received reception signal to the reception processing unit 250. The reception unit 280 may include an A/D conversion unit.
The camera 290 takes a bird's-eye view of the inspection object 40 placed on the transport device 30 and images it. The camera 290 outputs the imaging result (image data) to the control unit 220. The camera 290 may use either an area sensor (camera whose image pickup range is two-dimensional) or a line sensor.
(超音波検査装置20と検査対象物40との位置関係)
 ここで、送信部260と受信部280と検査対象物40との位置関係について、図2を参照して説明する。
(Positional relationship between the ultrasonic inspection device 20 and the inspection object 40)
Here, the positional relationship among the transmitting unit 260, the receiving unit 280, and the inspection object 40 will be described with reference to FIG.
 図2に示すように、送信部260及び受信部280は、一方向(Z軸方向)に間隔をあけて配列される。送信部260及び受信部280は、超音波検査装置20におけるベース部(不図示)に固定される。これにより、送信部260と受信部280との間隔が保持される。送信部260は、受信部280に対向する送信面261から、超音波を受信部280に向けて送信する。受信部280は、送信部260に対向する受信面281において、送信部260から送信された超音波を受信する。
 図2において、搬送装置30による検査対象物40の搬送方向はX軸方向である。X軸方向は、送信部260及び受信部280の配列方向(Z軸方向)に対して直交する。
 検査対象物40の端部411は、Z軸方向から見て線状に延びる、検査対象物40の縁である。検査対象物40の境界線420は、接合箇所と非接合箇所との境界線を示す。この境界線420は、検査対象物40の縁に沿う線である。
 端部411及び境界線420の位置は、検査対象物40を俯瞰して撮像するカメラ(例えば、カメラ290)から得られる画像データによって検出されてもよい。
As shown in FIG. 2, the transmitter 260 and the receiver 280 are arranged at intervals in one direction (Z-axis direction). The transmitter 260 and the receiver 280 are fixed to a base unit (not shown) in the ultrasonic inspection apparatus 20. As a result, the distance between the transmitter 260 and the receiver 280 is maintained. The transmission unit 260 transmits ultrasonic waves toward the reception unit 280 from the transmission surface 261 facing the reception unit 280. The receiving unit 280 receives the ultrasonic wave transmitted from the transmitting unit 260 on the receiving surface 281 facing the transmitting unit 260.
In FIG. 2, the conveyance direction of the inspection object 40 by the conveyance device 30 is the X-axis direction. The X-axis direction is orthogonal to the arrangement direction (Z-axis direction) of the transmitter 260 and the receiver 280.
The end 411 of the inspection object 40 is an edge of the inspection object 40 that extends linearly when viewed from the Z-axis direction. A boundary line 420 of the inspection object 40 indicates a boundary line between a joint portion and a non-joint portion. The boundary line 420 is a line along the edge of the inspection object 40.
The positions of the end portion 411 and the boundary line 420 may be detected by image data obtained from a camera (for example, the camera 290) that looks down at the inspection object 40 and takes an image.
 検査対象物40は、送信部260と受信部280との間に配置される。送信部260により送信された超音波は、検査対象物40に到達し、検査対象物40を透過した超音波が受信部280に到達して受信される。送信部260から送信された超音波は、所定の位置でフォーカスされる。超音波のフォーカスされる領域が領域S1である(図2参照)。検査対象物40は、領域S1を通るXY平面上を搬送される。 The inspection object 40 is arranged between the transmission unit 260 and the reception unit 280. The ultrasonic waves transmitted by the transmission unit 260 reach the inspection target 40, and the ultrasonic waves transmitted through the inspection target 40 reach the reception unit 280 and are received. The ultrasonic wave transmitted from the transmitter 260 is focused at a predetermined position. The region where the ultrasonic waves are focused is the region S1 (see FIG. 2). The inspection object 40 is conveyed on the XY plane passing through the area S1.
 図3は、検査対象物40の一例である包装容器400の外観を示す俯瞰図である。図3の例は、包装容器400は、XY平面上に配置されている。
 包装容器400は、飲料または液体状の食品を収容可能である。包装容器400の周縁部410のうち、図3の左側端部には、飲み口423が設けられている。飲み口423は、X軸方向において周縁部410の略中央に設けられる。Y軸方向から見た飲み口423の形状は、略円形である。この飲み口423は、包装容器400の内部と外部との間で流通可能な経路である。飲み口423には、蓋425が取り付けられている。この蓋425が取り外されると、飲み口423の端部が露出し、包装容器400に収容された飲料等を飲むことが可能となる。
FIG. 3 is a bird's-eye view showing the appearance of a packaging container 400, which is an example of the inspection object 40. In the example of FIG. 3, the packaging container 400 is arranged on the XY plane.
The packaging container 400 can store a beverage or a liquid food product. A drinking port 423 is provided at the left end of FIG. 3 of the peripheral portion 410 of the packaging container 400. The drinking spout 423 is provided substantially in the center of the peripheral edge portion 410 in the X-axis direction. The shape of the drinking spout 423 viewed from the Y-axis direction is substantially circular. The drinking port 423 is a channel that can be distributed between the inside and the outside of the packaging container 400. A lid 425 is attached to the drinking spout 423. When the lid 425 is removed, the end of the drinking spout 423 is exposed, and it becomes possible to drink the beverage or the like contained in the packaging container 400.
 領域S1は、XY平面上における超音波の照射領域を示す。領域S1のY軸方向における位置は、図3において、包装容器400の左側端部から右に距離d1だけ離れた位置である。距離d1は、検査を行いたい領域(検査対象領域)に超音波が照射されるように、周縁部410の幅以下に設定される。距離d1は、検査目的や検査項目に応じて定められる。図3の例において、包装容器400の左側の接合箇所を検査する場合、検査対象領域は、検査方向430(X軸方向)に沿った帯状の領域である。 Area S1 indicates an ultrasonic wave irradiation area on the XY plane. The position of the region S1 in the Y-axis direction is a position separated by a distance d1 from the left end of the packaging container 400 to the right in FIG. The distance d1 is set to be equal to or less than the width of the peripheral portion 410 so that the ultrasonic wave is applied to the region to be inspected (inspection target region). The distance d1 is determined according to the inspection purpose and inspection item. In the example of FIG. 3, when inspecting the left joint portion of the packaging container 400, the inspection target region is a strip-shaped region along the inspection direction 430 (X-axis direction).
 包装容器400は、搬送装置30によって搬送されることで、超音波検査装置20に対してX軸方向に相対的に移動する。すると、超音波は、周縁部410に対して、検査方向430(X軸に沿う方向)に沿って照射される。受信部280は、この超音波を受信する。この受信信号に基づいて、検査方向430に沿った周縁部410の各位置について検査を行うことが可能である。この場合、検査は、周縁部410と飲み口423とを対象として行われる。 The packaging container 400 is moved by the transport device 30 and moves relative to the ultrasonic inspection device 20 in the X-axis direction. Then, the ultrasonic waves are applied to the peripheral portion 410 along the inspection direction 430 (direction along the X axis). The receiving unit 280 receives this ultrasonic wave. Based on this received signal, it is possible to inspect each position of the peripheral edge portion 410 along the inspection direction 430. In this case, the inspection is performed on the peripheral portion 410 and the drinking spout 423.
 周縁部410のうち左側の接合箇所を対象として検査する場合について説明したが、このような場合に限定されない。周縁部410のうち、上側、右側、下側を対象として検査することも可能である。
 また、距離d1の位置において検査を行ったのち、同じ包装容器400について、距離d1とは異なる距離において検査を行うこともある。
Although the case of inspecting the left-side joint portion of the peripheral portion 410 has been described, the invention is not limited to such a case. The upper side, the right side, and the lower side of the peripheral portion 410 can be inspected.
Further, after the inspection is performed at the position of the distance d1, the same packaging container 400 may be inspected at a distance different from the distance d1.
 図4は、検査対象物40の他の一例である包装容器450の外観を示す俯瞰図である。図4の例では、包装容器450は、XY平面上に配置されている。
 包装容器450は、食品(流動性のある食品、粘性のある食品、または乾物等)、電子部品、文房具等を収容可能である。包装容器450の周縁部460のうち、図4の左側端部には、穴470が設けられている。この穴470は、X軸方向において周縁部460の略中央に設けられる。穴470は、例えば、包装容器450を陳列器具のフックに引っかけるために用いられる。
 周縁部460において、印字部471がある。印字部471は、周縁部460にレーザープリンター、またはホットプリンター等で文字列が印字される部位である。印字部471に印字されると、その印字部471のZ軸方向における厚みは、周辺の周縁部460の厚みとは異なる。例えば、レーザープリンターによって刻印された場合の印字部471の厚みは、周囲の周縁部460の厚みよりも薄い。ホットプリンターによって刻印された場合の印字部471の厚みは、周囲の周縁部460の厚みよりも、印字テープの分だけ厚い。印字部471に印字される文字列は、製造ロットや製造ライン等を表す。
FIG. 4 is an overhead view showing the appearance of a packaging container 450 that is another example of the inspection object 40. In the example of FIG. 4, the packaging container 450 is arranged on the XY plane.
The packaging container 450 can accommodate food (fluid food, viscous food, dry matter, etc.), electronic components, stationery, and the like. A hole 470 is provided at the left end of FIG. 4 of the peripheral portion 460 of the packaging container 450. The hole 470 is provided in the approximate center of the peripheral edge portion 460 in the X-axis direction. The hole 470 is used, for example, to hook the packaging container 450 on the hook of the display device.
At the peripheral portion 460, there is a printing portion 471. The printing portion 471 is a portion where a character string is printed on the peripheral portion 460 by a laser printer, a hot printer, or the like. When printed on the printing portion 471, the thickness of the printing portion 471 in the Z-axis direction is different from the thickness of the peripheral edge portion 460. For example, the thickness of the printing section 471 when engraved by a laser printer is thinner than the thickness of the peripheral edge section 460. The thickness of the printing portion 471 when engraved by the hot printer is thicker than the thickness of the peripheral edge portion 460 by the amount of the printing tape. The character string printed on the printing unit 471 represents a manufacturing lot, a manufacturing line, or the like.
 図4において、領域S1のY軸方向における位置は、包装容器450の左側端部から右に距離d2だけ離れた位置である。距離d2は、周縁部460の幅以下に設定される。
 包装容器450は、搬送装置30によって搬送されることで、超音波検査装置20に対してX軸方向に相対的に移動する。すると、超音波は、周縁部460に対して、検査方向480(X軸に沿う方向)に沿って照射される。受信部280は、この超音波を受信する。この受信信号に基づいて、検査方向480に沿った周縁部460の各位置について検査を行うことが可能である。この場合、検査は、周縁部460と穴470と印字部471とを対象として行われる。
 搬送装置30に対して包装容器450を配置する向きを変えることで、検査方向472に沿って検査を行うことが可能である。例えば、図4の例において下側の接合箇所を検査する場合、包装容器450の検査対象領域は、ノッチ473を含む帯状の領域とすることもできる。すなわち、ノッチ473の有無と、ノッチ473の位置とについても検査が可能である。ノッチ473は、包装容器450の開封口である。
In FIG. 4, the position of the region S1 in the Y-axis direction is a position separated by a distance d2 from the left end of the packaging container 450 to the right. The distance d2 is set to be equal to or less than the width of the peripheral portion 460.
The packaging container 450 moves in the X-axis direction relative to the ultrasonic inspection device 20 by being conveyed by the conveying device 30. Then, the ultrasonic waves are applied to the peripheral edge portion 460 along the inspection direction 480 (direction along the X axis). The receiving unit 280 receives this ultrasonic wave. Based on this received signal, it is possible to inspect each position of the peripheral edge portion 460 along the inspection direction 480. In this case, the inspection is performed on the peripheral portion 460, the hole 470, and the printing portion 471.
It is possible to perform the inspection along the inspection direction 472 by changing the direction in which the packaging container 450 is arranged with respect to the transport device 30. For example, in the case of inspecting the lower joint portion in the example of FIG. 4, the inspection target region of the packaging container 450 may be a band-shaped region including the notch 473. That is, the presence or absence of the notch 473 and the position of the notch 473 can be inspected. The notch 473 is an opening of the packaging container 450.
(制御部220の構成)
 図1に戻り、制御部220は、記憶部221、判定部222、しきい値演算部223を有する。制御部220は、エッジ検出部224を含んでもよいが、含まなくてもよい。
 記憶部221は、リファレンスデータと、しきい値データと、判定データを記憶する。この記憶部221は、記憶媒体、例えば、HDD(Hard Disk Drive)、フラッシュメモリ、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access read/write Memory)、ROM(Read Only Memory)、またはこれらの記憶媒体の任意の組み合わせによって構成される。この記憶部221は、例えば、不揮発性メモリを用いることができる。
(Structure of control unit 220)
Returning to FIG. 1, the control unit 220 includes a storage unit 221, a determination unit 222, and a threshold value calculation unit 223. The control unit 220 may or may not include the edge detection unit 224.
The storage unit 221 stores reference data, threshold data, and determination data. The storage unit 221 is a storage medium, for example, an HDD (Hard Disk Drive), a flash memory, an EEPROM (Electrically Erasable Programmable Memory), a RAM (Random Access read/write), a ROM (Random Access read/write), a ROM (Random Access read/write), or a ROM (Random Access read/write). It is configured by an arbitrary combination of storage media. As the storage unit 221, for example, a non-volatile memory can be used.
 図5は、しきい値を求めるためのリファレンスとして用いられる検査対象物40A(リファレンスワーク、標準対象物、第1の標準対象物、第2の標準対象物)の測定データとしきい値の一例を説明する図である。リファレンスとして用いられる検査対象物40Aは、検査の基準を満たすことが確認されている検査対象物40である。検査対象物40Aの測定データをリファレンスデータ(基準データ)とよぶ。測定データは、検査対象物40の検査対象領域に対して送信された超音波(第1の複数の超音波、第2の複数の超音波、第3の複数の超音波)を受信することで得られる、検査対象領域の複数の位置毎の受信強度を表す。測定データのうち、検査対象物40Aから得られた測定データは、リファレンスデータとして用いることができる。検査対象物40のうち、リファレンスとして用いられないワークは、検査対象物40B(検査ワーク)である。この検査対象物40Bから得られた測定データは、検査対象物40Bが基準を満たすか否かの判定に用いることができる。なお、検査対象物40Aと検査対象物40Bの仕様は同じである。ここで、検査対象領域の複数の位置は、検査対象領域内の異なる位置であればよい。例えば、検査対象領域の複数の位置は、検査対象領域内であって検査方向に沿った異なる位置であってもよい。複数の位置は、検査対象物40Aの検査対象領域内であって、送信部260が検査対象物40Aに対して相対移動する方向に並んでいいてもよい。複数の位置は、直線状に並んでいてもよい。このリファレンスデータは、信号制御部230から得られる測定データに基づいて制御部220によって記憶部221に書き込まれる。
 図5の横軸は測定時間を表し、縦軸は受信強度を表す。
 測定時間は、検査対象物40Aの測定開始から測定終了までの経過時間を表す。受信強度は、受信部280が送信部260から照射された超音波を直接受信するか、検査対象物40Aを透過して受信した際の信号強度を表す。測定開始時には、受信部280と送信部260の間に検査対象物40Aがないため、超音波は検査対象物40Aによって遮られず、受信強度は大きい。検査対象物40Aが搬送装置30により搬送されて受信部280と送信部260の間に来ると、受信強度は下がる(時刻t1)。検査対象物40Aが受信部280と送信部260の間を通過し終わると、再び受信強度は大きくなる(時刻t2)。したがって、時刻t1から時刻t2までの間が検査対象物40Aを測定している区間であり、時刻t1、t2に対応する検査対象物40A上の位置p1、p2が、検査対象物40Aの両端(検査の開始位置と終了位置)である。
 ここで、搬送装置30の速度と測定時刻から、検査対象物40Aの位置p1からp2までの測定位置が求められる。一例として、1ミリ秒おきに超音波の受信信号を測定する検査装置において1000mm/秒の速度で検査対象物40Aを搬送する場合、検査対象物40A上に1mm間隔の複数の位置で受信信号が測定される。このようにして、検査方向に沿って異なる位置のそれぞれにおいて得られた測定結果をリファレンスデータとして用いることができる。
 なお、搬送装置30が等速で動く場合、横軸は時間軸を示すとともに測定位置を表すといえる。以下の実施形態においては搬送速度が等速であるとし、横軸を測定位置として説明する。
FIG. 5 shows an example of measurement data and threshold values of an inspection target object 40A (reference work, standard target object, first standard target object, second standard target object) used as a reference for obtaining a threshold value. It is a figure explaining. The inspection object 40A used as a reference is the inspection object 40 that has been confirmed to satisfy the inspection standard. The measurement data of the inspection object 40A is referred to as reference data (reference data). The measurement data is obtained by receiving the ultrasonic waves (the first plurality of ultrasonic waves, the second plurality of ultrasonic waves, and the third plurality of ultrasonic waves) transmitted to the inspection target region of the inspection target 40. The obtained reception intensity is shown for each of a plurality of positions in the inspection area. Among the measurement data, the measurement data obtained from the inspection object 40A can be used as reference data. A work that is not used as a reference in the inspection object 40 is an inspection object 40B (inspection work). The measurement data obtained from the inspection object 40B can be used for determining whether the inspection object 40B satisfies the standard. The specifications of the inspection object 40A and the inspection object 40B are the same. Here, the plurality of positions of the inspection target area may be different positions in the inspection target area. For example, the plurality of positions of the inspection target area may be different positions along the inspection direction within the inspection target area. The plurality of positions may be arranged in the inspection target area of the inspection target 40A and in the direction in which the transmission unit 260 relatively moves with respect to the inspection target 40A. The plurality of positions may be linearly arranged. The reference data is written in the storage unit 221 by the control unit 220 based on the measurement data obtained from the signal control unit 230.
The horizontal axis of FIG. 5 represents the measurement time, and the vertical axis represents the reception intensity.
The measurement time represents the elapsed time from the start of measurement of the inspection object 40A to the end of measurement. The reception intensity represents the signal intensity when the receiving unit 280 directly receives the ultrasonic wave emitted from the transmitting unit 260 or receives the ultrasonic wave through the inspection object 40A. At the start of measurement, the inspection object 40A is not present between the reception unit 280 and the transmission unit 260, so the ultrasonic waves are not blocked by the inspection object 40A and the reception intensity is high. When the inspection object 40A is conveyed by the conveying device 30 and comes between the receiving unit 280 and the transmitting unit 260, the reception intensity decreases (time t1). When the inspection object 40A finishes passing between the receiving unit 280 and the transmitting unit 260, the reception intensity increases again (time t2). Therefore, the period from the time t1 to the time t2 is the section in which the inspection object 40A is being measured, and the positions p1 and p2 on the inspection object 40A corresponding to the times t1 and t2 are at both ends of the inspection object 40A ( The start position and the end position of the inspection).
Here, the measurement position from the position p1 to p2 of the inspection object 40A is obtained from the speed of the transport device 30 and the measurement time. As an example, when the inspection object 40A is conveyed at a speed of 1000 mm/sec in an inspection device that measures an ultrasonic reception signal every 1 millisecond, the reception signals are received at a plurality of 1 mm intervals on the inspection object 40A. To be measured. In this way, the measurement result obtained at each of different positions along the inspection direction can be used as reference data.
When the transport device 30 moves at a constant speed, the horizontal axis indicates the time axis and the measurement position. In the following embodiments, it is assumed that the transport speed is constant and the horizontal axis is the measurement position.
 しきい値演算部223は、取得されたリファレンスデータ500に基づいて、検査対象領域における複数の位置に対して、検査対象物が基準を満たすか否かの判定に用いることか可能なしきい値を求める。例えば、しきい値演算部223は、第1しきい値510、第2しきい値520、第3しきい値530を求める。
(第1しきい値について)
 しきい値演算部223は、リファレンスデータ500に基づいて、検査対象物40を検査する際の検査区間を特定するためのしきい値を求める。検査区間は、搬送装置30によって搬送された検査対象物40が領域S1に到達してから通過し終えるまでの時間区間である。この検査区間内の信号を用いて、後述の判定動作における判定を行う。
 しきい値演算部223は、送信部260と受信部280との間に検査対象物40Aがない場合の受信強度(第1受信強度)と、送信部260と受信部280との間に検査対象物40Aがある場合の受信強度(第2受信強度)との間の値を第1しきい値510として求める。
 しきい値演算部223は、第1しきい値510を求める場合、第1受信強度と第2受信強度との平均値を求め、この平均値を第1しきい値510としてもよい。
Based on the acquired reference data 500, the threshold value calculation unit 223 sets a threshold value that can be used for determining whether or not the inspection target object satisfies the standard for a plurality of positions in the inspection target region. Ask. For example, the threshold value calculation unit 223 obtains the first threshold value 510, the second threshold value 520, and the third threshold value 530.
(About the first threshold)
The threshold value calculation unit 223 obtains a threshold value for specifying an inspection section when inspecting the inspection object 40 based on the reference data 500. The inspection section is a time section from when the inspection object 40 conveyed by the conveyance device 30 reaches the area S1 to when it passes through the area S1. The signal in this inspection section is used to make a determination in the determination operation described below.
The threshold value calculation unit 223 detects the reception intensity (first reception intensity) when the inspection target 40A is not present between the transmission unit 260 and the reception unit 280, and the inspection target between the transmission unit 260 and the reception unit 280. The value between the reception intensity (second reception intensity) when the object 40A is present is obtained as the first threshold value 510.
When obtaining the first threshold value 510, the threshold value calculation unit 223 may obtain an average value of the first reception intensity and the second reception intensity, and use this average value as the first threshold value 510.
 ここでは、リファレンスデータ500のうち、受信強度が第1しきい値510未満である区間が、検査区間Saに対応する。検査区間Saは、開始位置p1から終了位置p2までの区間である。検査区間Sa内の信号は、検査対象物40における検査の開始位置p1から終了位置p2までの測定データとして扱われる。 Here, in the reference data 500, the section in which the reception intensity is less than the first threshold value 510 corresponds to the inspection section Sa. The inspection section Sa is a section from the start position p1 to the end position p2. The signal within the inspection section Sa is treated as measurement data from the inspection start position p1 to the inspection end position p2 of the inspection object 40.
 また、しきい値演算部223は、第2しきい値520と第3しきい値530とのうち少なくとも一方のしきい値を求める。ここでは第2しきい値520と第3しきい値530との両方を求める場合について説明する。
 第2しきい値520は、検査の判定に用いられる上限しきい値を示す。第3しきい値530は下限しきい値を表す。すなわち、検査対象物40の検査において、受信強度が第3しきい値と第2しきい値の間にあるとき、その検査対象物40は基準を満たすと判定される。
 しきい値演算部223は、リファレンスデータ500のうち、検査区間Saに含まれるリファレンスデータ500に基づいて、第2しきい値520と第3しきい値530とを求める。例えば、しきい値演算部223は、まず、検査区間Saの受信強度の平均値を求める。そしてしきい値演算部223は、この平均値を基準として、マージン(予想されるばらつき幅)を加味(加算もしくは減算)して、その平均値よりも大きな値を有する受信強度を第2しきい値520として求め、その平均値よりも小さな値を有する受信強度を第3しきい値530として求める。または、検査区間Saの受信強度の中央値に対して、マージンを加味して、第2しきい値520および第3しきい値530を求めるようにしてもよい。また、検査区間Saに含まれる受信強度のいずれかを選択し、選択された受信強度に対してマージンを加味して、第2しきい値520および第3しきい値530を求めてもよい。マージンは、標準偏差値または、標準偏差値を変数倍した値を用いるようにしてもよい。また、検査対象物40の素材や厚さに応じた規定値をマージンとしてもよい。
 また、第2しきい値520を求めるにあたり、受信強度の平均値ではなく、平均波形を用いるようにしてもよい。平均波形とは、検査の基準を満たす複数の検査対象物40Aを測定した、複数のリファレンスデータが表す波形について、平均を求めることで得られる波形である。
 図5の例では、第2しきい値520と第3しきい値530は、それぞれ、いずれの測定位置においても、同じ値(一定値)が求められた場合を示している。
 しきい値演算部223は、しきい値(第1しきい値510、第2しきい値520、第3しきい値530)を求めると、求められたしきい値と、検査対象物40Aにおける測定位置を表す値とを対応付けて記憶部221に書き込む。測定位置を表す値は、検査対象物40Aの端部からの距離や、検査対象物40上のある基準点(たとえば角)に対する座標で表される。
Further, the threshold calculation unit 223 obtains at least one of the second threshold 520 and the third threshold 530. Here, a case where both the second threshold value 520 and the third threshold value 530 are obtained will be described.
The second threshold value 520 indicates an upper limit threshold value used for inspection determination. The third threshold value 530 represents a lower limit threshold value. That is, in the inspection of the inspection object 40, when the reception intensity is between the third threshold value and the second threshold value, it is determined that the inspection object 40 satisfies the standard.
The threshold value calculation unit 223 obtains the second threshold value 520 and the third threshold value 530 based on the reference data 500 included in the inspection section Sa among the reference data 500. For example, the threshold calculation unit 223 first obtains the average value of the reception intensity of the inspection section Sa. Then, the threshold value calculation unit 223 adds (adds or subtracts) a margin (expected variation width) with the average value as a reference, and determines the reception intensity having a value larger than the average value as the second threshold. The value 520 is obtained, and the reception strength having a value smaller than the average value is obtained as the third threshold value 530. Alternatively, the second threshold value 520 and the third threshold value 530 may be obtained by adding a margin to the median value of the reception intensity of the inspection section Sa. Alternatively, the second threshold value 520 and the third threshold value 530 may be obtained by selecting one of the reception intensities included in the inspection section Sa and adding a margin to the selected reception intensity. As the margin, a standard deviation value or a value obtained by multiplying the standard deviation value by a variable may be used. A margin may be a specified value according to the material and thickness of the inspection object 40.
Further, in obtaining the second threshold value 520, an average waveform may be used instead of the average value of the reception intensity. The average waveform is a waveform obtained by averaging the waveforms represented by the plurality of reference data obtained by measuring the plurality of inspection objects 40A satisfying the inspection standard.
In the example of FIG. 5, the second threshold value 520 and the third threshold value 530 show the case where the same value (constant value) is obtained at any measurement position.
When the threshold value calculation unit 223 obtains the threshold values (first threshold value 510, second threshold value 520, third threshold value 530), the obtained threshold value and the inspection object 40A The value indicating the measurement position is associated and written in the storage unit 221. The value indicating the measurement position is represented by a distance from the end of the inspection object 40A or coordinates with respect to a certain reference point (for example, a corner) on the inspection object 40.
(しきい値演算機能)
 次に、上述した超音波検査装置20がしきい値を求める動作について説明する。
 図6は、超音波検査装置20がしきい値を求める動作を説明するフローチャートである。
 まず、検査対象物40A、すなわち検査基準を満たすと判断された検査対象物40(リファレンスワーク)が搬送装置30に載置される。ここでは、飲み口、穴、ノッチ、印字部等がない領域を対象として検査する場合について説明する。
 送信部260は超音波を送信し、受信部280は超音波を受信する。
 搬送装置30は、検査対象物40Aを搬送する(ステップS101)。
 受信部280は、検査対象物40Aが領域S1に到達する前から通過した後までの期間において、超音波を順次受信する。
(Threshold calculation function)
Next, the operation of the ultrasonic inspection apparatus 20 described above to obtain the threshold value will be described.
FIG. 6 is a flowchart for explaining the operation of the ultrasonic inspection apparatus 20 for obtaining the threshold value.
First, the inspection target 40</b>A, that is, the inspection target 40 (reference work) determined to satisfy the inspection standard is placed on the transport device 30. Here, a case will be described in which an inspection is performed on a region without a mouth, a hole, a notch, a printing portion, or the like.
The transmitter 260 transmits ultrasonic waves, and the receiver 280 receives ultrasonic waves.
The transport device 30 transports the inspection object 40A (step S101).
The receiving unit 280 sequentially receives ultrasonic waves during a period from before the inspection object 40A reaches the area S1 to after passing the area S1.
 制御部220は、受信部280、受信処理部250、信号制御部230を介して、信号制御部230から出力されるリファレンスデータ500を取得する(ステップS102)。制御部220は、取得したリファレンスデータを記憶部221に記憶する(ステップS103)。そして制御部220は、リファレンスデータに基づいて、第1しきい値510を求める(ステップS104)。次に、制御部220は、第2しきい値520を求め(ステップS105)、第3しきい値530を求める(ステップS106)。そして、制御部220は、求められたそれぞれのしきい値をそれぞれ記憶部221に記憶する(ステップS107)。 The control unit 220 acquires the reference data 500 output from the signal control unit 230 via the reception unit 280, the reception processing unit 250, and the signal control unit 230 (step S102). The control unit 220 stores the acquired reference data in the storage unit 221 (step S103). Then, the control unit 220 obtains the first threshold value 510 based on the reference data (step S104). Next, the control unit 220 obtains the second threshold value 520 (step S105) and obtains the third threshold value 530 (step S106). Then, the control unit 220 stores each of the obtained threshold values in the storage unit 221 (step S107).
(判定機能)
 次に、上述した超音波検査装置20が行う判定動作について説明する。
 図7は、超音波検査装置20が行う判定動作を説明するフローチャートである。判定動作とは、検査対象物40Aの測定データ(リファレンスデータ)から求められたしきい値を用いて、他の検査対象物40Bが基準を満たすか否かを判定する動作である。
 送信部260は超音波を送信し、受信部280は超音波を受信する。
 搬送装置30は、検査対象物40Bを搬送する(ステップS201)。
 受信部280は、検査対象物40Bが領域S1に到達する前から通過した後までの期間において、超音波を順次受信する。
 制御部220は、受信処理部250と信号制御部230とを介することで、信号制御部230から出力される測定データを取得する(ステップS202)。制御部220は、取得した測定データを記憶部221に記憶する(ステップS203)。そして制御部220は、第1しきい値510を記憶部221から読み出した上で、測定データが第1しきい値510以上であるか否かを判定する(ステップS204)。制御部220は、第1しきい値510以上である測定データについては検査区間から除外し、越えていない測定データについては検査区間に属すると判定する。この判定により、測定データに対する検査区間が特定される(ステップS205)。
 次に、制御部220は、検査区間に属する測定位置のそれぞれに対して、第2しきい値520以上である測定データがあるか否かを判定する(ステップS206)。制御部220は、第2しきい値520以上である測定データがある場合には、その検査対象物40Bについては、検査基準を満たさないと判定する(ステップS210)。
 次に、制御部220は、第2しきい値520以上である測定データがない場合、検査区間に属する測定位置のそれぞれに対して、第3しきい値530未満である測定データがあるか否かを判定する(ステップS207)。制御部220は、第3しきい値530未満である測定データがある場合には、その検査対象物40Bについては、検査基準を満たさないと判定する(ステップS210)。
(Judgment function)
Next, the determination operation performed by the ultrasonic inspection device 20 described above will be described.
FIG. 7 is a flowchart illustrating the determination operation performed by the ultrasonic inspection device 20. The determination operation is an operation of determining whether or not another inspection object 40B satisfies the standard by using the threshold value obtained from the measurement data (reference data) of the inspection object 40A.
The transmitter 260 transmits ultrasonic waves, and the receiver 280 receives ultrasonic waves.
The transport device 30 transports the inspection object 40B (step S201).
The receiving unit 280 sequentially receives ultrasonic waves during a period from before the inspection object 40B reaches the region S1 to after passing the region S1.
The control unit 220 acquires the measurement data output from the signal control unit 230 via the reception processing unit 250 and the signal control unit 230 (step S202). The control unit 220 stores the acquired measurement data in the storage unit 221 (step S203). Then, the control unit 220 reads the first threshold value 510 from the storage unit 221, and then determines whether the measurement data is equal to or greater than the first threshold value 510 (step S204). The control unit 220 excludes the measurement data having the first threshold value 510 or more from the inspection section, and determines that the measurement data that does not exceed the first threshold value 510 belongs to the inspection section. By this determination, the inspection section for the measurement data is specified (step S205).
Next, the control unit 220 determines whether or not there is measurement data having the second threshold value 520 or more for each of the measurement positions belonging to the inspection section (step S206). When there is measurement data having the second threshold value 520 or more, the control unit 220 determines that the inspection target 40B does not satisfy the inspection standard (step S210).
Next, when there is no measurement data that is greater than or equal to the second threshold value 520, the control unit 220 determines whether there is measurement data that is less than the third threshold value 530 for each measurement position that belongs to the inspection section. It is determined whether or not (step S207). When there is measurement data that is less than the third threshold value 530, the control unit 220 determines that the inspection target 40B does not satisfy the inspection standard (step S210).
 一方、制御部220は、第3しきい値530未満である測定データがない場合には、その検査対象物40Bについては、検査基準を満たすと判定する(ステップS208)。そして、制御部220は、測定データと判定結果を対応づけて記憶部221に記憶する(ステップS209)。測定データと判定結果を対応づけて記憶部221に記憶することで、検査履歴として保存することができる。検査基準を満たすと判定された検査対象物40Bは、後段において実施される検査基準を満たす場合には、良品として判定される。 On the other hand, when there is no measurement data that is less than the third threshold value 530, the control unit 220 determines that the inspection target 40B satisfies the inspection standard (step S208). Then, the control unit 220 associates the measurement data with the determination result and stores them in the storage unit 221 (step S209). By storing the measurement data and the determination result in association with each other in the storage unit 221, the inspection history can be saved. The inspection object 40B that is determined to satisfy the inspection standard is determined to be a non-defective product if the inspection target 40B is determined to satisfy the inspection standard performed in the subsequent stage.
 この判定動作において、測定データがしきい値以上であるか、しきい値未満であるかの判定は、判定部222により行われる。
 判定部222は、しきい値を記憶部221から読み出す。判定部222は、検査対象物40Bから得られる測定データをしきい値と比較し、しきい値に対する大小関係を判定する。
 大小関係の判定は、この実施形態において、大であるかの判定と小であるかの判定との両方を行うことのみを意味するのではない。大小関係の判定は、大であるかの判定のみを行ってもよいし、小であるかの判定のみを行ってもよい。
 また、大であるかの判定は、しきい値以上であるかの判定であってもよいし、しきい値を越えているかの判定であってもよい。また、小であるかの判定は、しきい値以下であるかの判定であってもよいし、しきい値未満であるかの判定であってもよい。
 ここで、1つの測定位置において判定に用いるしきい値の数は、1つであってもよく、複数であってもよい。複数のしきい値を用いる場合、例えば、第1しきい値510と、第2しきい値520と、第3しきい値530を用いることができる。1つのしきい値を用いる場合、第1しきい値510、第2しきい値520、第3しきい値530のうちいずれか1つのしきい値を用いるようにしてもよい。
In this determination operation, the determination unit 222 determines whether the measurement data is greater than or equal to the threshold value or less than the threshold value.
The determination unit 222 reads the threshold value from the storage unit 221. The determination unit 222 compares the measurement data obtained from the inspection object 40B with a threshold value and determines the magnitude relationship with the threshold value.
In the present embodiment, the determination of the magnitude relation does not only mean performing both the determination as to whether it is large and the determination as to whether it is small. In the determination of the magnitude relationship, only the determination as to whether it is large or only the determination as to whether it is small may be performed.
Further, the determination as to whether it is large may be a determination as to whether it is greater than or equal to a threshold value, or may be a determination as to whether or not the threshold value is exceeded. Further, the determination as to whether it is small may be a determination as to whether it is less than or equal to the threshold value, or may be a determination as to whether it is less than the threshold value.
Here, the number of threshold values used for determination at one measurement position may be one or plural. When using a plurality of threshold values, for example, the first threshold value 510, the second threshold value 520, and the third threshold value 530 can be used. When using one threshold value, any one of the first threshold value 510, the second threshold value 520, and the third threshold value 530 may be used.
 図8Aは、検査基準を満たすと判定された検査対象物40Bの測定データを説明する図である。
 図8Aにおいて、横軸は測定位置を表し、縦軸は受信強度を表す。
 測定データ600が示す受信強度は、検査区間(開始位置p1と終了位置p2の間の区間)において、いずれの測定位置においても、第2しきい値520と第3しきい値530との間の受信強度の値である。この場合、判定部222は、この測定データ600が得られた検査対象物40Bについて、検査基準を満たすと判定する。
FIG. 8A is a diagram illustrating measurement data of the inspection object 40B that is determined to satisfy the inspection standard.
In FIG. 8A, the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
The reception intensity indicated by the measurement data 600 is between the second threshold value 520 and the third threshold value 530 at any measurement position in the inspection section (section between the start position p1 and the end position p2). It is the value of the reception intensity. In this case, the determination unit 222 determines that the inspection object 40B for which the measurement data 600 has been obtained satisfies the inspection standard.
 図8Bは、検査基準を満たさないと判定された検査対象物40Bの測定データを説明する図である。
 図8Bにおいて、横軸は測定位置を表し、縦軸は受信強度を表す。
 測定データ610の受信強度は、検査区間(開始位置p1と終了位置p2の間の区間)のうち、位置p11の測定データ611については、第3しきい値530未満の値である。さらに、位置p12の測定データ612については、第2しきい値520以上の値である。そのため、判定部222は、この測定データ610が得られた検査対象物40Bについて、検査基準を満たさないと判定する。
FIG. 8B is a diagram illustrating measurement data of the inspection object 40B that is determined not to satisfy the inspection standard.
In FIG. 8B, the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
The reception intensity of the measurement data 610 is a value less than the third threshold value 530 for the measurement data 611 at the position p11 in the inspection section (section between the start position p1 and the end position p2). Furthermore, the measurement data 612 at the position p12 is a value equal to or greater than the second threshold value 520. Therefore, the determination unit 222 determines that the inspection standard is not satisfied for the inspection object 40B from which the measurement data 610 is obtained.
 以上説明したように、実施形態の超音波検査装置20は、超音波の送信部と受信部の間に配置された検査対象物を、受信部により測定される超音波の受信強度により検査する検査装置であって、検査対象物の1つであるリファレンスワークの複数の位置で測定された受信強度をリファレンスデータとして取得し、リファレンスデータに基づいて、複数の位置に対する受信強度のしきい値を求める演算部と、しきい値と、複数の位置を表す値とを対応付けて記憶する記憶部と、検査対象物の複数の位置の受信強度を表す測定データと、しきい値との大小関係を判定する判定部とを有する。 As described above, the ultrasonic inspection apparatus 20 according to the embodiment is an inspection that inspects the inspection object arranged between the ultrasonic wave transmitting unit and the ultrasonic wave receiving unit based on the ultrasonic wave reception intensity measured by the receiving unit. The device is a device for acquiring reception intensity measured at a plurality of positions of a reference work, which is one of the inspection objects, as reference data, and based on the reference data, a threshold of the reception intensity for a plurality of positions is obtained. A calculation unit, a storage unit that stores a threshold value and a value that represents a plurality of positions in association with each other, measurement data that represents the reception intensity at a plurality of positions of the inspection object, and a magnitude relationship between the threshold value. And a determination unit for determining.
 上述した実施形態によれば、しきい値演算部223がリファレンスデータを用いてしきい値を求めるようにしたので、しきい値を簡単に得ることができる。また、しきい値を得るにあたり、手間が少ない。また、熟練した作業者ではなくても、しきい値を簡単に得ることができる。 According to the above-described embodiment, the threshold value calculation unit 223 determines the threshold value using the reference data, so that the threshold value can be easily obtained. Also, there is little effort in obtaining the threshold value. Further, the threshold value can be easily obtained even if the operator is not a skilled worker.
 また、上述した実施形態において、送信部260と受信部280との間に、検査対象物40を通過させつつ、超音波を照射するようにしたので、検査対象物40に対する検査を、非接触で行うことができる。 Further, in the above-described embodiment, ultrasonic waves are emitted between the transmission unit 260 and the reception unit 280 while passing the inspection object 40, so that the inspection of the inspection object 40 can be performed without contact. It can be carried out.
(第1変形例)
 次に、変形例について説明する。
 第1変形例においては、飲み口、穴、ノッチ、印字部等のうち、少なくともいずれか1つが検査対象領域に含まれる検査対象物40の検査について説明する。
 図9A及び図9Bは、検査対象領域に穴と飲み口が含まれる場合の測定データを説明する図である。図9Aは、リファレンスとして用いる検査対象物40Aの測定データであるリファレンスデータ700、図9Bは、基準を満たすか否かを判定したい検査対象物40Bの測定データ800を表す。
 図9A及び図9Bにおいて、横軸は測定位置を表し、縦軸は受信強度を表す。
 検査区間(開始位置p1から終了位置p2までの区間)は、第1しきい値511(又は、第1しきい値511と検査区間の長さ)に基づいて定まる。開始位置p1から一定の区間を検査区間と定めてもよい。検査区間は、区間ps1と、区間ps2とを含む。区間ps1に対応するリファレンスデータ700の受信強度は、他の測定位置に比べて大きい。区間ps2に対応するリファレンスデータ700の受信強度は他の測定位置に比べて小さい。
 区間ps1は、穴がある位置に対応する。検査対象物40A、40Bの周縁部に穴が設けられている場合、送信部260から送信された超音波は、シート部材を透過せずに直接、受信部280に到達する。そのため、区間ps1における受信強度は大きな値を示す。
 区間ps2は、飲み口部がある位置に対応する。検査対象物40A、40Bの周縁部に飲み口がある場合、送信部260から送信された超音波は、シート部材を透過するだけでなく、飲み口を構成する部材を透過した上で、受信部280に到達する。そのため、区間ps2における受信強度は、飲み口のない部分の周縁部よりも小さな値を示す。
 このような穴や飲み口が設けられた検査対象物40の場合、穴や飲み口のない部分には剥離がないかを検査でき、かつ、穴や飲み口が適切に設けられているかを検査できることが望ましい。そこで、本変形例において、しきい値演算部223は、周縁部に穴、飲み口、ノッチ、印字部のうち少なくともいずれか1つが設けられた検査対象物40に応じたしきい値を設定する。
 リファレンスデータ700は、周縁部に穴と飲み口が設けられた検査対象物40Aについて、超音波を受信した受信結果を表す。しきい値演算部223は、このリファレンスデータ700に基づいて、しきい値を求める。
(First modification)
Next, a modified example will be described.
In the first modification, the inspection of the inspection object 40 in which at least one of the drinking spout, the hole, the notch, the printing portion, and the like is included in the inspection target area will be described.
FIG. 9A and FIG. 9B are views for explaining measurement data when the inspection target area includes a hole and a drinking spout. 9A shows reference data 700 which is the measurement data of the inspection object 40A used as a reference, and FIG. 9B shows the measurement data 800 of the inspection object 40B whose determination is to be satisfied.
9A and 9B, the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
The inspection section (the section from the start position p1 to the end position p2) is determined based on the first threshold value 511 (or the first threshold value 511 and the length of the inspection section). A certain section from the start position p1 may be set as the inspection section. The inspection section includes a section ps1 and a section ps2. The reception intensity of the reference data 700 corresponding to the section ps1 is larger than that at other measurement positions. The reception intensity of the reference data 700 corresponding to the section ps2 is smaller than that at other measurement positions.
The section ps1 corresponds to the position where there is a hole. When holes are provided in the peripheral portions of the inspection objects 40A and 40B, the ultrasonic waves transmitted from the transmission unit 260 directly reach the reception unit 280 without passing through the sheet member. Therefore, the reception intensity in the section ps1 shows a large value.
The section ps2 corresponds to the position where the drinking spout is located. In the case where the inspection object 40A, 40B has a drinking mouth at the periphery, the ultrasonic wave transmitted from the transmitting unit 260 not only penetrates the sheet member, but also the members forming the drinking mouth, and then the receiving unit. Reach 280. Therefore, the reception intensity in the section ps2 shows a value smaller than that of the peripheral portion of the portion having no drinking mouth.
In the case of the inspection object 40 provided with such a hole or a mouth, it is possible to inspect whether there is no peeling in a portion without the hole or the mouth, and whether the hole or the mouth is properly provided. It is desirable to be able to. Therefore, in the present modification, the threshold value calculation unit 223 sets the threshold value according to the inspection object 40 having at least one of a hole, a drinking spout, a notch, and a printing unit on the peripheral portion. ..
The reference data 700 represents the reception result of receiving ultrasonic waves with respect to the inspection object 40A having a hole and a mouthpiece provided in the peripheral portion. The threshold value calculation unit 223 obtains a threshold value based on the reference data 700.
 しきい値演算部223は、検査区間に属するリファレンスデータ700について、各測定位置における受信強度を基準として、マージンを加味し、第2しきい値521と第3しきい値531とを求める。この第2しきい値521と第3しきい値531については、開始位置p1から終了位置p2までの区間におけるそれぞれの測定位置について求められる。
 図9Aにおいて、区間ps1における第2しきい値521と第3しきい値531は、それぞれ、区間ps1の前後の測定位置における第2しきい値521と第3しきい値531よりも大きい。その理由は、区間ps1では、超音波は、周縁部を透過するのではなく、穴を通過して直接受信部280に受信されるためである。このように、第2しきい値521および第3しきい値531は、検査対象物40Aの形状や厚みに対応した値を有する。
 区間ps2における第2しきい値521と第3しきい値531は、それぞれ、区間ps2の前後の測定位置における第2しきい値521と第3しきい値531よりも小さい。区間ps2では、超音波は、シート部材と飲み口とを透過するためである。
 これにより、検査対象物40Bを検査するにあたり、測定データがリファレンスデータ700と同等の波形形状である場合、その受信強度は、第2しきい値521と第3しきい値531との間に収まる。その場合、判定部222は、この検査対象物40Bについて、検査基準を満たすと判定することができる。
 図9Aの例において、リファレンスデータ700に対する第2しきい値521のマージンは測定位置に応じて変化しているが、このような例に限定されない。リファレンスデータ700に対する第2しきい値521のマージンは測定位置にかかわらず一定であってもよい。同様に、リファレンスデータ700に対する第3しきい値531のマージンは測定位置に応じて変化しているが、このような例に限定されない。リファレンスデータ700に対する第3しきい値531のマージンは測定位置にかかわらず一定であってもよい。
The threshold value calculation unit 223 obtains the second threshold value 521 and the third threshold value 531 by adding a margin to the reference data 700 belonging to the inspection section with reference to the reception intensity at each measurement position. The second threshold value 521 and the third threshold value 531 are obtained for each measurement position in the section from the start position p1 to the end position p2.
In FIG. 9A, the second threshold value 521 and the third threshold value 531 in the section ps1 are larger than the second threshold value 521 and the third threshold value 531 at the measurement positions before and after the section ps1, respectively. The reason is that, in the section ps1, the ultrasonic wave does not pass through the peripheral portion, but passes through the hole and is directly received by the receiving unit 280. In this way, the second threshold value 521 and the third threshold value 531 have values corresponding to the shape and thickness of the inspection object 40A.
The second threshold value 521 and the third threshold value 531 in the section ps2 are smaller than the second threshold value 521 and the third threshold value 531 at the measurement positions before and after the section ps2, respectively. This is because in the section ps2, ultrasonic waves penetrate the sheet member and the mouthpiece.
As a result, when the inspection object 40B is inspected, when the measurement data has a waveform shape equivalent to that of the reference data 700, the reception intensity thereof falls between the second threshold value 521 and the third threshold value 531. .. In that case, the determination unit 222 can determine that this inspection object 40B satisfies the inspection standard.
In the example of FIG. 9A, the margin of the second threshold value 521 with respect to the reference data 700 changes according to the measurement position, but is not limited to such an example. The margin of the second threshold value 521 with respect to the reference data 700 may be constant regardless of the measurement position. Similarly, the margin of the third threshold value 531 with respect to the reference data 700 changes according to the measurement position, but is not limited to such an example. The margin of the third threshold value 531 with respect to the reference data 700 may be constant regardless of the measurement position.
 図9Bにおいて、区間ps5と区間ps6における測定データ800の受信強度は、第3しきい値531未満の値である。区間ps5が穴がある位置に対応する区間であるにもかかわらず、区間ps5における受信強度は第3しきい値531未満である。この区間ps5においては、穴が正常に形成されていない可能性がある。例えば、パンチ等により穴を形成する際に、打ち抜きされるべき部位が残ってしまっている場合が考えられる。このような場合、判定部222は、この検査対象物40Bについて、検査の基準を満たさないと判定する。
 また、区間ps6が飲み口の位置に対応する区間であるため、区間ps6における受信強度が下がっている。しかし、測定データ800の受信強度が低下する区間ps6は、第3しきい値531の強度が低下する区間ps2よりも手前の位置であるため、区間ps6において受信強度が第3しきい値531を下回る。これは、飲み口の取付け不良のためと考えられる。この場合についても、判定部222は、この検査対象物40Bについて、検査の基準を満たさないとして判定する。
In FIG. 9B, the reception intensity of the measurement data 800 in the sections ps5 and ps6 is a value less than the third threshold value 531. Although the section ps5 is a section corresponding to the position with the hole, the reception intensity in the section ps5 is less than the third threshold value 531. There is a possibility that the holes are not normally formed in this section ps5. For example, it is conceivable that when a hole is formed by punching or the like, a part to be punched out remains. In such a case, the determination unit 222 determines that this inspection object 40B does not satisfy the inspection standard.
Further, since the section ps6 corresponds to the position of the drinking mouth, the reception intensity in the section ps6 decreases. However, since the section ps6 in which the reception intensity of the measurement data 800 decreases is located before the section ps2 in which the intensity of the third threshold value 531 decreases, the reception intensity falls below the third threshold value 531 in the section ps6. Fall below. This is considered to be due to improper mounting of the mouthpiece. Also in this case, the determination unit 222 determines that the inspection object 40B does not satisfy the inspection standard.
(第2変形例)
 次に、第2変形例について説明する。
 上述の実施形態においては、搬送装置30の搬送速度が一定である場合について説明した。しかし、搬送装置30は、速度指令値に従って駆動したとしても、外部要因(例えば電源の電圧が不安定等)の影響を受けた場合に、必ずしも一定速度を維持できない場合もある。このような場合、判定部222は、測定データにおける測定位置を補正することができる。
 図10は、図9Aと同じ種類の検査対象物40Bについて、開始位置p1と終了位置p2との間の距離が、通常時に比べて短く測定された場合の測定データを説明する図である。図10において、横軸は測定位置を表し、縦軸は受信強度を表す。
 開始位置p1と終了位置p2との間隔(距離)が、リファレンスデータ700に比べて短い場合には、測定データ810に示すように、横軸方向において短縮された波形形状となる。開始位置p1と終了位置p2との間が、通常時に比べて短くなる原因としては、例えば、搬送装置30の実際の搬送速度が、速度指令値に応じた速度よりも速い場合がある。
 このような場合、判定部222は、開始位置p1と終了位置p2との間隔が、通常時における開始位置p1と終了位置p2との間隔(距離)に一致するように、測定位置を全体的に伸張するように補正する。これにより、記憶部221に記憶されたしきい値を利用して検査を行うことができる。
 一方、搬送装置30の搬送速度が速度指令値に応じた速度よりも遅い場合には、開始位置p1と終了位置p2との間隔が、通常時に比べて長くなる。このような場合、判定部222は、開始位置p1と終了位置p2との間隔が、通常時における開始位置p1と終了位置p2との間隔に一致するように、測定位置を全体的に縮小するように補正する。すなわち、判定部222は、開始位置p1と終了位置p2との間隔と通常時における開始位置p1と終了位置p2との間隔(所定の間隔)との違いに応じて、測定位置を表す値を補正する。これにより、記憶部221に記憶されたしきい値を利用して検査を行うことができる。
 なお、搬送速度が速度指令値に応じた速度であったとしても、搬送装置30に対して載置された検査対象物40Bの向きに傾きがあった場合には、開始位置から終了位置までの距離が短く検出される場合もある。このような場合にも、判定部222は、開始位置p1と終了位置p2との間隔(距離)が、リファレンスデータにおける開始位置p1と終了位置p2との間隔に一致するように、測定位置を全体的に伸張するように補正する。これにより、記憶部221に記憶されたしきい値を利用して検査を行うことができる。
(Second modified example)
Next, a second modification will be described.
In the above embodiment, the case where the transport speed of the transport device 30 is constant has been described. However, even if the carrier device 30 is driven according to the speed command value, it may not always be possible to maintain a constant speed if it is affected by an external factor (for example, the voltage of the power source is unstable). In such a case, the determination unit 222 can correct the measurement position in the measurement data.
FIG. 10: is a figure explaining the measurement data when the distance between the start position p1 and the end position p2 is measured shorter than the normal time about the test object 40B of the same kind as FIG. 9A. In FIG. 10, the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
When the interval (distance) between the start position p1 and the end position p2 is shorter than the reference data 700, the waveform shape is shortened in the horizontal axis direction as shown in the measurement data 810. The reason why the distance between the start position p1 and the end position p2 becomes shorter than in the normal time is, for example, that the actual transport speed of the transport device 30 is faster than the speed corresponding to the speed command value.
In such a case, the determination unit 222 sets the measurement positions as a whole so that the interval between the start position p1 and the end position p2 matches the interval (distance) between the start position p1 and the end position p2 in the normal time. Correct so that it stretches. Thereby, the inspection can be performed using the threshold value stored in the storage unit 221.
On the other hand, when the transport speed of the transport device 30 is slower than the speed corresponding to the speed command value, the interval between the start position p1 and the end position p2 becomes longer than in the normal time. In such a case, the determination unit 222 reduces the measurement position as a whole so that the interval between the start position p1 and the end position p2 matches the interval between the start position p1 and the end position p2 in the normal time. Correct to. That is, the determination unit 222 corrects the value that represents the measurement position according to the difference between the interval between the start position p1 and the end position p2 and the interval between the start position p1 and the end position p2 in a normal time (predetermined interval). To do. Thereby, the inspection can be performed using the threshold value stored in the storage unit 221.
Even if the transport speed is the speed corresponding to the speed command value, if the inspection object 40B placed on the transport device 30 is tilted in the direction, the distance from the start position to the end position is increased. The distance may be detected as short. Even in such a case, the determination unit 222 sets the entire measurement position so that the interval (distance) between the start position p1 and the end position p2 matches the interval between the start position p1 and the end position p2 in the reference data. Correct so that it stretches. Thereby, the inspection can be performed using the threshold value stored in the storage unit 221.
(第3変形例)
 次に、第3変形例について説明する。
 第3変形例においては、周縁部に設けられる穴、飲み口、ノッチ、印字部等が、規定の位置からずれて配置された検査対象物40について検査する場合について説明する。
 図11は、第1変形例と同じ種類の、周縁部に穴と飲み口が設けられた検査対象物を検査する場合の測定データを説明する図である。
 図11において、横軸は測定位置を表し、縦軸は受信強度を表す。
 図11の上段のグラフは、検査対象物40Bが、検査の基準を満たすと判定された場合の測定データ820を表す。図11の下段のグラフは、穴の位置が規定とはずれた位置に設けられた検査対象物40Bの測定データ830を表す。
 測定データ830において、受信強度のピークがある測定位置ps10は、測定データ820の測定位置(ピーク位置)ps9よりも、終了位置p2側である。つまり、図11の下段のグラフにおける検査対象物40Bの周縁部における穴の位置が、開始位置p1に対してより離れた位置にあることを示している。ただし、測定データ820の測定位置ps9に対応する受信信号の強度は、測定データ830の測定位置ps10とほぼ同じである。
 測定位置ps9における測定データ830は第3しきい値531を下回り、測定位置ps10における測定データ830は第2しきい値521を上回っている。そのため、判定部222は、検査の基準を満たさないと判定する。ここで、判定部222は、測定データ830を測定位置に基づき複数の区間に分割し、分割された区間(分割区間)についての測定データ830の測定位置を、検査方向(開始位置p1方向または終了位置p2方向のいずれか)に移動させる。判定部222は、このように測定位置を移動させた測定データ830を各しきい値と比較する。すなわち、判定部222は、分割区間に含まれる測定位置(所定位置)に対応する測定データ830を、その測定位置よりも検査方向にずれた位置に対応するしきい値521,531と比較する。この実施例においては、測定位置ps10が含まれる分割区間を距離d3だけ開始位置p1方向に移動させる。分割区間を移動させて、移動後の分割区間に含まれる測定位置ps10の測定データ830が第2しきい値521と第3しきい値531との間の受信強度に収まる場合、判定部222は、分割区間を移動させた場合に検査の基準を満たしたと判定し、その判定結果を表す情報を記憶する。なお、分割区間を移動した距離d3が許容範囲以内かどうかをさらに判定してもよい。これにより、穴がずれた位置に形成された検査対象物40Bに対しても、穴が存在すること、及び穴のない場所に剥離がないことを検査できる。
(Third modification)
Next, a third modification will be described.
In the third modified example, a case will be described in which the inspection object 40 in which holes, spouts, notches, printing units, etc. provided in the peripheral portion are displaced from the prescribed positions is inspected.
FIG. 11: is a figure explaining the measurement data at the time of inspecting the test|inspection object of the same kind as a 1st modification which has a hole and a drinking mouth in the peripheral part.
In FIG. 11, the horizontal axis represents the measurement position and the vertical axis represents the reception intensity.
The upper graph of FIG. 11 represents the measurement data 820 when it is determined that the inspection object 40B satisfies the inspection standard. The graph in the lower part of FIG. 11 represents the measurement data 830 of the inspection object 40B provided at the position where the position of the hole is out of the specified range.
In the measurement data 830, the measurement position ps10 having the peak of the reception intensity is closer to the end position p2 than the measurement position (peak position) ps9 of the measurement data 820. That is, it is shown that the position of the hole in the peripheral portion of the inspection object 40B in the lower graph of FIG. 11 is located farther from the start position p1. However, the intensity of the received signal corresponding to the measurement position ps9 of the measurement data 820 is almost the same as the measurement position ps10 of the measurement data 830.
The measurement data 830 at the measurement position ps9 is below the third threshold value 531 and the measurement data 830 at the measurement position ps10 is above the second threshold value 521. Therefore, the determination unit 222 determines that the inspection standard is not satisfied. Here, the determination unit 222 divides the measurement data 830 into a plurality of sections based on the measurement position, and sets the measurement position of the measurement data 830 for the divided section (division section) to the inspection direction (start position p1 direction or end). The position p2). The determination unit 222 compares the measurement data 830 obtained by moving the measurement position in this way with each threshold value. That is, the determination unit 222 compares the measurement data 830 corresponding to the measurement position (predetermined position) included in the divided section with the threshold values 521 and 531 corresponding to the position deviated from the measurement position in the inspection direction. In this embodiment, the divided section including the measurement position ps10 is moved in the direction of the start position p1 by the distance d3. When the division section is moved and the measurement data 830 at the measurement position ps10 included in the moved division section falls within the reception strength between the second threshold value 521 and the third threshold value 531, the determination unit 222 determines When the divided section is moved, it is determined that the inspection standard is satisfied, and information indicating the determination result is stored. In addition, you may further determine whether the distance d3 which moved the division|segmentation area is within an allowable range. As a result, it is possible to inspect whether or not the inspection object 40B formed at the position where the hole is displaced has the hole and that there is no peeling in the place where the hole does not exist.
(第4変形例)
 上述した実施形態や変形例においては、検査区間における開始位置を、第1しきい値を用いて特定した。この第4の変形例では、カメラ290の撮像結果に基づいて、開始位置を特定する。
 エッジ検出部224は、カメラ290から得られる撮像結果から検査対象物40の位置を検出することにより、リファレンスデータの検査区間、および検査ワークの測定データの検査区間を決定する。
 エッジ検出部224は、カメラ290から得られる領域S1付近の撮像結果から、検査対象物40の端部が領域S1を通過する時刻を検出する。例えば、カメラ290の撮像周期を、送信部260の超音波発信周期に同期させることで、検査対象物40の端部がカメラ290により検出された時刻と、測定データにおける時刻との対応付けが可能である。
 撮像周期を超音波発信周期の整数倍とすると、より対応付けの精度を向上できる。この対応付けにより、第1しきい値510を用いて特定された検査区間Saの開始時刻t1を、エッジ検出部224により端部が検出された時刻に補正する。補正された時刻が開始位置(測定位置)p1に対応するとして、検査対象物40における複数の測定位置を決定する。検査対象物40における測定位置の間隔(例えば1mm)よりも、撮影画像の解像度が高い。このため、第1しきい値510を用いて検査区間Saの開始位置を特定する場合に比べて、高精度で測定位置を特定できる。
(Fourth modification)
In the above-described embodiments and modifications, the start position in the inspection section is specified using the first threshold value. In the fourth modified example, the start position is specified based on the imaging result of the camera 290.
The edge detection unit 224 determines the inspection section of the reference data and the inspection section of the measurement data of the inspection work by detecting the position of the inspection object 40 from the imaging result obtained from the camera 290.
The edge detection unit 224 detects the time when the edge of the inspection object 40 passes through the region S1 from the imaging result of the vicinity of the region S1 obtained from the camera 290. For example, by synchronizing the imaging cycle of the camera 290 with the ultrasonic wave transmission cycle of the transmission unit 260, it is possible to associate the time when the edge of the inspection object 40 is detected by the camera 290 with the time in the measurement data. Is.
When the imaging cycle is an integral multiple of the ultrasonic wave transmission cycle, the accuracy of association can be further improved. With this association, the start time t1 of the inspection section Sa identified using the first threshold value 510 is corrected to the time when the edge detection unit 224 detected the end portion. A plurality of measurement positions on the inspection object 40 are determined on the assumption that the corrected time corresponds to the start position (measurement position) p1. The resolution of the captured image is higher than the interval (for example, 1 mm) between the measurement positions on the inspection object 40. Therefore, the measurement position can be specified with higher accuracy than in the case where the start position of the inspection section Sa is specified using the first threshold value 510.
 また、カメラ290から得られた画像データを用いてエッジ(開始位置と終了位置)を検出することができるため、搬送装置30にエンコーダ等のセンサを設けことなく、エッジを検出することができる。また、搬送速度に変動があっても、測定データの開始位置を補正した上で、しきい値と判定することができる。
 なお、この変形例において、カメラ290の代わりに透過センサを設け、この透過センサの検出結果を用いて、検査対象物40のエッジの検出を行うようにしてもよい。
Further, since the edge (start position and end position) can be detected using the image data obtained from the camera 290, the edge can be detected without providing the transport device 30 with a sensor such as an encoder. Further, even if there is a change in the transport speed, the threshold value can be determined after correcting the start position of the measurement data.
In this modification, a transmission sensor may be provided instead of the camera 290 and the detection result of the transmission sensor may be used to detect the edge of the inspection object 40.
 また、この実施例においては、開始位置を補正することができる。このため、仮に測定データに、検査の基準を満たさない値があった場合に、補正された開始位置を基準として、検査の基準を満たさない値が存在する測定位置を特定することができる。これにより、具体的にどの位置において不具合の可能性があったかを正確に把握することができる。 Also, in this embodiment, the start position can be corrected. Therefore, if the measurement data has a value that does not satisfy the inspection standard, it is possible to specify the measurement position where the value that does not satisfy the inspection standard exists with the corrected start position as a reference. As a result, it is possible to accurately grasp at which position there is a possibility of malfunction.
 上述した実施形態及び変形例において、超音波検査装置20では、送信部260及び受信部280に対して、検査対象物40を相対的に移動させて検査する場合について説明した。しかし、送信部と受信部の組を検査方向に複数配置し、検査対象物40を相対移動させない状態において、複数の測定位置で測定するようにしてもよい。 In the above-described embodiments and modifications, the ultrasonic inspection apparatus 20 has been described with respect to the case where the inspection target 40 is moved relative to the transmitter 260 and the receiver 280 for inspection. However, a plurality of sets of transmitters and receivers may be arranged in the inspection direction, and measurement may be performed at a plurality of measurement positions while the inspection object 40 is not relatively moved.
 また、上述した実施形態において、搬送装置30は、ベルトコンベアに検査対象物40を水平に寝かせた状態で載置して搬送する場合について説明した。しかし、搬送装置30は、検査対象物40の一部を把持し、検査対象物40を垂直に立てた状態で搬送するようにしてもよい。この場合、送信部260及び受信部280は、検査対象物40の周縁部の垂直方向から超音波が照射及び受信できる位置関係となるように配置される。 In addition, in the above-described embodiment, the transfer device 30 has described the case where the inspection target 40 is placed on the belt conveyor in a horizontal state and transferred. However, the transport device 30 may grip a part of the inspection target 40 and transport the inspection target 40 in a vertically standing state. In this case, the transmitting unit 260 and the receiving unit 280 are arranged so that ultrasonic waves can be emitted and received from the vertical direction of the peripheral edge of the inspection object 40.
 なお、上述した実施形態において、しきい値を求める機能が超音波検査装置20に設けられている場合について説明したがこのような場合に限定されない。例えば、しきい値を求める機能を超音波検査装置20とは異なる装置に搭載するようにしてもよい。より具体的には、記憶部221、しきい値演算部223をしきい値演算装置として、超音波検査装置20とは別の筐体の装置として構成するようにしてもよい。この場合、しきい値演算装置が、エッジ検出部224を含むようにしてもよい。 In the above-described embodiment, the case where the ultrasonic inspection apparatus 20 is provided with the function of obtaining the threshold value has been described, but the present invention is not limited to such a case. For example, the function of obtaining the threshold value may be installed in a device different from the ultrasonic inspection device 20. More specifically, the storage unit 221 and the threshold value calculation unit 223 may be configured as a threshold value calculation device, and may be configured as a device in a housing different from the ultrasonic inspection device 20. In this case, the threshold value calculation device may include the edge detection unit 224.
 上述した実施形態における制御部220をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The control unit 220 in the above embodiment may be realized by a computer. In that case, the program for realizing this function may be recorded in a computer-readable recording medium, and the program recorded in this recording medium may be read by a computer system and executed. The “computer system” mentioned here includes an OS and hardware such as peripheral devices. The “computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, a CD-ROM, or a storage device such as a hard disk built in a computer system. Further, the "computer-readable recording medium" means to hold a program dynamically for a short time like a communication line when transmitting the program through a network such as the Internet or a communication line such as a telephone line. In this case, a volatile memory inside a computer system that serves as a server or a client in that case may hold a program for a certain period of time. Further, the program may be for realizing a part of the above-mentioned functions, or may be a program for realizing the above-mentioned functions in combination with a program already recorded in a computer system, It may be realized using a programmable logic device such as FPGA (Field Programmable Gate Array).
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 Although the embodiment of the present invention has been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and includes a design etc. within the scope not departing from the gist of the present invention.
 本発明は、検査装置、および検査方法に適用してもよい。 The present invention may be applied to an inspection device and an inspection method.
 1…超音波検査システム
20…超音波検査装置
220…制御部
221…記憶部
222…判定部
223…しきい値演算部
224…エッジ検出部
260…送信部
280…受信部
290…カメラ
40…検査対象物
41…周縁部
1... Ultrasonic inspection system 20... Ultrasonic inspection device 220... Control part 221, Storage part 222... Judgment part 223... Threshold value calculation part 224... Edge detection part 260... Transmission part 280... Reception part 290... Camera 40... Inspection Object 41... peripheral part

Claims (16)

  1.  超音波を、第1の標準対象物の互いに異なる複数の位置に照射する送信部と、
     前記送信部によって照射されるとともに前記複数の位置をそれぞれ透過した第1の複数の超音波を受信する受信部と、
     前記第1の複数の超音波それぞれの受信強度に基づいて、前記複数の位置それぞれに対応する複数のしきい値を求める演算部と、
     互いに対応付けられた状態で前記複数のしきい値と前記複数の位置を表す値とを記憶する記憶部と、
     を有する検査装置。
    A transmitter that radiates ultrasonic waves to different positions of the first standard object;
    A receiving unit that receives the first plurality of ultrasonic waves emitted by the transmitting unit and transmitted through each of the plurality of positions;
    An arithmetic unit that obtains a plurality of threshold values corresponding to each of the plurality of positions based on the reception intensity of each of the first plurality of ultrasonic waves;
    A storage unit that stores the plurality of threshold values and the values representing the plurality of positions in a state of being associated with each other,
    Inspection device having.
  2.  前記複数の位置は、前記第1の標準対象物の検査対象領域内であり、前記送信部が前記第1の標準対象物に対して相対移動する方向に並ぶ
     請求項1に記載の検査装置。
    The inspection device according to claim 1, wherein the plurality of positions are in an inspection target area of the first standard object, and are arranged in a direction in which the transmitting unit relatively moves with respect to the first standard object.
  3.  前記複数の位置は、直線状に並ぶ
     請求項1または2に記載の検査装置。
    The inspection device according to claim 1, wherein the plurality of positions are arranged in a straight line.
  4.  前記複数のしきい値は、互いに異なる複数の値を含む
     請求項1から請求項3のいずれか一項に記載の検査装置。
    The inspection apparatus according to claim 1, wherein the plurality of threshold values include a plurality of values that are different from each other.
  5.  前記互いに異なる複数の値は、前記第1の標準対象物の形状に対応した値を有する
     請求項4に記載の検査装置。
    The inspection apparatus according to claim 4, wherein the plurality of different values have values corresponding to the shape of the first standard object.
  6.  前記互いに異なる複数の値は、前記第1の標準対象物の厚みに対応した値を有する
     請求項4に記載の検査装置。
    The inspection apparatus according to claim 4, wherein the plurality of different values have values corresponding to the thickness of the first standard object.
  7.  前記演算部は、前記第1の複数の超音波それぞれの受信強度に対してマージンを加味して、前記複数のしきい値を求める
     請求項1から請求項6のいずれか一項に記載の検査装置。
    The inspection according to any one of claims 1 to 6, wherein the calculation unit obtains the plurality of threshold values by adding a margin to the reception intensity of each of the first plurality of ultrasonic waves. apparatus.
  8.  前記送信部は、超音波を、第2の標準対象物に照射し、
     前記受信部は、前記送信部によって照射されるとともに前記第2の標準対象物を透過した第2の複数の超音波を受信し、
     前記演算部は、前記第1の複数の超音波の受信強度と前記第2の複数の超音波の受信強度とに少なくとも基づいて、前記複数のしきい値を求める
     請求項1から請求項7のいずれか一項に記載の検査装置。
    The transmitting unit irradiates the second standard object with ultrasonic waves,
    The receiving unit receives a second plurality of ultrasonic waves that have been transmitted by the transmitting unit and transmitted through the second standard object,
    The calculation unit obtains the plurality of threshold values based on at least the reception intensities of the first plurality of ultrasonic waves and the reception intensities of the second plurality of ultrasonic waves. The inspection apparatus according to any one of claims.
  9.  前記演算部は、前記複数のしきい値として、前記複数の位置それぞれに対応する複数の上限のしきい値、および、前記複数の位置それぞれに対応する複数の下限のしきい値の少なくとも一方を求める
     請求項1から請求項8のいずれか一項に記載の検査装置。
    The arithmetic unit, as the plurality of thresholds, at least one of a plurality of upper limit thresholds corresponding to each of the plurality of positions, and a plurality of lower limit thresholds corresponding to each of the plurality of positions. The inspection apparatus according to any one of claims 1 to 8, which is required.
  10.  前記演算部は、前記複数の上限のしきい値、および、前記複数の下限のしきい値を求める
     請求項9に記載の検査装置。
    The inspection apparatus according to claim 9, wherein the calculation unit obtains the plurality of upper limit thresholds and the plurality of lower limit thresholds.
  11.  前記演算部は、検査を開始する位置を特定するためのしきい値として、前記送信部と前記受信部との間に前記第1の標準対象物がない状態で前記送信部によって照射されかつ前記受信部によって受信された超音波の強度の値よりも小さく、かつ、前記送信部と前記受信部との間に前記第1の標準対象物がある状態で前記送信部によって照射されかつ前記受信部によって受信された超音波の強度の値よりも大きい値を求める
     請求項1から請求項10のいずれか一項に記載の検査装置。
    The arithmetic unit is, as a threshold value for specifying a position to start an inspection, irradiated by the transmitting unit in a state where the first standard object is not present between the transmitting unit and the receiving unit, and The intensity of the ultrasonic wave received by the receiving unit is smaller than the value of the ultrasonic wave, and the first standard object is present between the transmitting unit and the receiving unit. The inspection device according to any one of claims 1 to 10, wherein a value larger than a value of the intensity of the ultrasonic wave received by is obtained.
  12.  検査対象物の複数の位置をそれぞれ透過した第3の複数の超音波の受信強度の大きさを、前記複数のしきい値の大きさと比較する判定部
     をさらに備える請求項1から請求項11のいずれか一項に記載の検査装置。
    The determination unit for comparing the magnitudes of the reception intensities of the third plurality of ultrasonic waves that have respectively passed through the plurality of positions of the inspection object with the magnitudes of the plurality of threshold values, further comprising: The inspection apparatus according to any one of claims.
  13.  前記送信部は、第1位置から第2位置まで移動しながら、超音波を照射し、
     前記判定部は、前記第1位置と前記第2位置との間隔と所定の間隔との違いに応じて、前記検査対象物の複数の位置を表す値を補正する
     請求項12に記載の検査装置。
    The transmitter emits ultrasonic waves while moving from the first position to the second position,
    The inspection apparatus according to claim 12, wherein the determination unit corrects a value representing a plurality of positions of the inspection target object according to a difference between an interval between the first position and the second position and a predetermined interval. ..
  14.  前記判定部は、前記検査対象物の複数の位置のうち所定位置を透過した超音波の受信強度の大きさを、前記複数のしきい値のうち前記所定位置からずれた位置に対応するしきい値の大きさと比較する
     請求項12または13に記載の検査装置。
    The determination unit is a threshold that corresponds to the position of the plurality of threshold values that deviates from the predetermined position among the plurality of positions of the reception intensity of the ultrasonic wave transmitted through the predetermined position. The inspection device according to claim 12 or 13, which compares with a magnitude of the value.
  15.  前記検査対象物の位置を撮像装置により検出するエッジ検出部をさらに有し、
     前記判定部は、前記検査対象物の複数の位置を、前記検出された前記検査対象物の位置に基づき決定する
     請求項11から請求項14のいずれか1項に記載の検査装置。
    Further having an edge detection unit for detecting the position of the inspection object by an imaging device,
    The inspection apparatus according to any one of claims 11 to 14, wherein the determination unit determines a plurality of positions of the inspection target object based on the detected positions of the inspection target object.
  16.  標準対象物の互いに異なる複数の位置をそれぞれ透過した複数の超音波を受信し、
     前記複数の超音波それぞれの受信強度に基づいて、前記複数の位置それぞれに対応する複数のしきい値を求め、
     互いに対応付けられた状態で前記複数のしきい値と前記複数の位置を表す値とを記憶部に記憶する、
     ことを含む検査方法。
    Receives multiple ultrasonic waves transmitted through multiple different positions of the standard object,
    Based on the reception intensity of each of the plurality of ultrasonic waves, obtain a plurality of threshold values corresponding to each of the plurality of positions,
    Storing the plurality of threshold values and the values representing the plurality of positions in a storage unit in a state of being associated with each other,
    Inspection method including that.
PCT/JP2020/004924 2019-02-08 2020-02-07 Inspection device and inspection method WO2020162618A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020571307A JP7304083B2 (en) 2019-02-08 2020-02-07 Inspection device and inspection method
KR1020217023822A KR102680523B1 (en) 2019-02-08 2020-02-07 Inspection device and inspection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019022080 2019-02-08
JP2019-022080 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162618A1 true WO2020162618A1 (en) 2020-08-13

Family

ID=71948063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004924 WO2020162618A1 (en) 2019-02-08 2020-02-07 Inspection device and inspection method

Country Status (3)

Country Link
JP (1) JP7304083B2 (en)
KR (1) KR102680523B1 (en)
WO (1) WO2020162618A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716224A (en) * 1993-06-30 1995-01-20 Shimadzu Corp Ultrasonic transmission inspection device
JPH09264880A (en) * 1996-03-28 1997-10-07 Sumitomo Metal Ind Ltd Plate wave ultrasonic flaw detection method
JP2002296249A (en) * 2001-03-29 2002-10-09 Kawasaki Steel Corp Method of detecting internal defect
JP2011047655A (en) * 2009-08-25 2011-03-10 Hitachi Engineering & Services Co Ltd Defect recognition method and defect recognition device using ultrasonic wave
US20130269438A1 (en) * 2010-12-21 2013-10-17 Franz Hepp Method of testing a weld between two plastic parts
WO2015045781A1 (en) * 2013-09-24 2015-04-02 ヤマハファインテック株式会社 Width measurement device and width measurement method
JP2017138180A (en) * 2016-02-03 2017-08-10 デュプロ精工株式会社 Folding and bonding device, bonding state detection method, and folding and bonding method
JP2019015530A (en) * 2017-07-04 2019-01-31 神鋼検査サービス株式会社 Thinning display method and thinning display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6840108B2 (en) * 2003-01-08 2005-01-11 Packaging Technologies & Inspection Llc Method and apparatus for airborne ultrasonic testing of package and container seals
JP6596795B2 (en) * 2016-09-30 2019-10-30 ヤマハファインテック株式会社 Ultrasonic image display method and ultrasonic image display system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716224A (en) * 1993-06-30 1995-01-20 Shimadzu Corp Ultrasonic transmission inspection device
JPH09264880A (en) * 1996-03-28 1997-10-07 Sumitomo Metal Ind Ltd Plate wave ultrasonic flaw detection method
JP2002296249A (en) * 2001-03-29 2002-10-09 Kawasaki Steel Corp Method of detecting internal defect
JP2011047655A (en) * 2009-08-25 2011-03-10 Hitachi Engineering & Services Co Ltd Defect recognition method and defect recognition device using ultrasonic wave
US20130269438A1 (en) * 2010-12-21 2013-10-17 Franz Hepp Method of testing a weld between two plastic parts
WO2015045781A1 (en) * 2013-09-24 2015-04-02 ヤマハファインテック株式会社 Width measurement device and width measurement method
JP2017138180A (en) * 2016-02-03 2017-08-10 デュプロ精工株式会社 Folding and bonding device, bonding state detection method, and folding and bonding method
JP2019015530A (en) * 2017-07-04 2019-01-31 神鋼検査サービス株式会社 Thinning display method and thinning display device

Also Published As

Publication number Publication date
KR102680523B1 (en) 2024-07-04
KR20210102449A (en) 2021-08-19
JPWO2020162618A1 (en) 2021-12-02
JP7304083B2 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
KR20090034920A (en) X-ray inspecting device, and x-ray inspecting program
JP5357507B2 (en) Test piece and foreign object detection device
JP2014145621A (en) Automatic analyzer
KR101838417B1 (en) Width measurement device and width measurement method
KR20210049757A (en) Ultrasonic inspection apparatus
WO2020162618A1 (en) Inspection device and inspection method
US11041715B2 (en) Optical measurement apparatus, measurement method, program, and recording medium
JP2012173174A (en) Device and method for detecting abnormality
US20200049663A1 (en) Ultrasonic inspection method and ultrasonic inspection device
JP2007192646A (en) Device and method for inspecting vessel
JP6466671B2 (en) Inspection device
US9869631B2 (en) Analysis device and method of determining mounted state of cartridge of the analysis device
JP4902170B2 (en) Inspection system
JP2018047668A (en) Back glue application amount inspection device
JP2004317184A (en) X-ray foreign matter inspection device
US20190285561A1 (en) X-ray utilized compound measuring apparatus
JP4339271B2 (en) Metal detector
JP2016024096A (en) Inspection device
JP6346831B2 (en) Inspection device
KR20190143149A (en) Image Correction TerahertzWave Object Inspection Apparatus
JPH10300436A (en) Lead frame inspection device
JP5623197B2 (en) Weighing device
JP2000266622A (en) Method for determining internal pressure of can and its device
JP2005188966A (en) Carrying speed detector, and image forming device provided therewith
JP2008026220A (en) Liquid level detector and autoanalyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752725

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217023822

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020571307

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20752725

Country of ref document: EP

Kind code of ref document: A1