WO2016102704A1 - Moteur à air comprimé et pompe comprenant un tel moteur - Google Patents

Moteur à air comprimé et pompe comprenant un tel moteur Download PDF

Info

Publication number
WO2016102704A1
WO2016102704A1 PCT/EP2015/081228 EP2015081228W WO2016102704A1 WO 2016102704 A1 WO2016102704 A1 WO 2016102704A1 EP 2015081228 W EP2015081228 W EP 2015081228W WO 2016102704 A1 WO2016102704 A1 WO 2016102704A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
piston
motor
rod
housing
Prior art date
Application number
PCT/EP2015/081228
Other languages
English (en)
Inventor
Benoit BATLLO
Boussif KHALDI
Original Assignee
Exel Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exel Industries filed Critical Exel Industries
Priority to JP2017533923A priority Critical patent/JP6717832B2/ja
Priority to CN201580071052.0A priority patent/CN107109940B/zh
Priority to KR1020177017551A priority patent/KR20170100533A/ko
Priority to EP15817872.3A priority patent/EP3237727B1/fr
Priority to US15/539,019 priority patent/US10385693B2/en
Publication of WO2016102704A1 publication Critical patent/WO2016102704A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B11/00Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type
    • F01B11/001Reciprocating-piston machines or engines without rotary main shaft, e.g. of free-piston type in which the movement in the two directions is obtained by one double acting piston motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L23/00Valves controlled by impact by piston, e.g. in free-piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • F01B17/025Engines using liquid air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L21/00Use of working pistons or pistons-rods as fluid-distributing valves or as valve-supporting elements, e.g. in free-piston machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L21/00Use of working pistons or pistons-rods as fluid-distributing valves or as valve-supporting elements, e.g. in free-piston machines
    • F01L21/04Valves arranged in or on piston or piston-rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • F04B7/06Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports the pistons and cylinders being relatively reciprocated and rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L2003/25Valve configurations in relation to engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/143Sealing provided on the piston

Definitions

  • Compressed air motor and pump comprising such an engine
  • the present invention relates to a compressed air motor comprising a piston and a housing, the piston being received in the housing and dividing the housing into two primary chambers of variable volume.
  • Compressed air motors are frequently used for driving reciprocating pumps. Such pumps are in particular used for pumping viscous products, such as putty, or liquid products, such as paint. Document FR 2 695 965 A1 describes such a pump comprising a compressed air motor.
  • Compressed air engines generally include a housing containing a piston.
  • the piston divides the housing into two chambers, commonly referred to as “upper chamber” and “lower chamber” which are alternately supplied with compressed air. It is the alternative injection of compressed air into each of the chambers that generates the reciprocating movement of the piston.
  • Compressed air engines are frequently equipped with a distributor, which alternately feeds the upper chamber and the lower chamber.
  • the distributor is, in general, controlled by external control devices, type switch or "switch".
  • Such engines have high reliability, but are expensive.
  • the use of external distribution and control components complicates the assembly and maintenance of an installation comprising such an engine.
  • document FR 484 199 A discloses a compressed air motor comprising two feed distributors of the high and low chambers carried by the same rod. The rod is moved by the piston between two positions to control the supply of the chambers.
  • compressed air motors in which the supply of the upper and lower chambers is controlled by two valves mounted on the same rod are known from EP 0 414 268 A1, DE 28 16 617 A1, DE 28 23 667 A1 and EP 0 319 341 A2.
  • Another type of compressed air motor in which the alternative supply of chambers is obtained by the movement of a rod is described in WO 2003/058072 A2.
  • valve actuator in which a movable jacket controls the supply of the high and low chambers of a cylinder is known from US 4,974,495 A.
  • the object of the invention is to provide a reliable compressed air motor having a simple structure, and not requiring an external control member of the supply of its compressed air chambers.
  • the invention relates to a compressed air motor of the aforementioned type, which comprises a first direct supply valve of a first primary chamber of the two primary chambers and a second direct supply valve of the another primary chamber, these two valves being movable each relative to at least one respective seat.
  • the first valve and the second valve are mounted on the same rod movable relative to the housing in a direction parallel to the direction of movement of the piston.
  • the rod is configured to be moved between a first position and a second position by displacement means activated by the piston.
  • the motor comprises one or more of the following characteristics, taken separately or in any technically possible combination:
  • the displacement means are activated by the piston when it reaches the top dead center or the bottom dead center of its trajectory;
  • the displacement means are elastic means
  • the elastic means comprise at least one spring.
  • the rod carries at least one pin, the spring being wound around the rod and adapted to exert on the pin a displacement force of the rod from its second position to its first position or vice versa.
  • the displacement means comprise at least one first displacement magnet and at least one second displacement magnet exerting on one another a repulsive magnetic force.
  • the piston is movable relative to the housing in a main direction and the rod extends in the main direction through a first primary chamber, the piston and a second primary chamber.
  • the engine further comprises means for holding the rod in at least one of its first and second positions.
  • the first and second valves are made at least partially of ferromagnetic material and in that the holding means comprise at least a first holding magnet adapted to exert a first retaining force on the first valve, a second holding magnet specific to exert a second retaining force on the first valve, a third holding magnet adapted to exert a third retaining force on the second valve and a fourth retaining magnet adapted to exert a fourth retaining force on the second valve.
  • the housing comprises a first secondary chamber having a first intake seat and a first evacuation seat and a second secondary chamber having a second intake seat and a second evacuation seat, the first valve being received in the first secondary chamber and the second valve being received in the second secondary chamber, the first valve is supported on the first discharge seat and the second valve is supported on the second intake seat, when the rod is in its first position and the first valve is supported on the first intake seat and the second valve is supported on the second discharge seat, when the rod is in its second position.
  • the housing comprises at least one yoke, and the rod comprises at least one sliding bearing seal in the cylinder head.
  • the invention also relates to a reciprocating pump comprising a motor as described above.
  • FIG. 1 is a longitudinal section of a compressed air motor according to the invention.
  • FIG. 2 is an enlarged view of detail II in FIG. 1;
  • - Figure 3 is an exploded perspective view of a motor shaft of Figures 1 and 2 and the organs that equip it;
  • FIG. 4 is an enlarged view of detail IV in FIG. 1;
  • FIG. 5 is a view on a larger scale of the detail V in FIG. 1;
  • FIG. 6 is a view on a larger scale of the detail VI in FIG. 1, in a first operating configuration of the compressed air motor of FIGS. 1 to 5;
  • Figure 7 is a view similar to Figure 6 when the compressed air motor is in a second operating configuration.
  • a reciprocating pump 6 comprises a pumping stage 8 and a compressed air motor 10.
  • the pumping stage 8 is capable of driving a fluid, such as a coating product, a putty or an adhesive.
  • the pumping stage 8 is actuated by the motor 10.
  • the air motor 10 comprises a housing 15, a piston 20 secured to a force transmission shaft 25, an inverting rod 30, a feed tube 35 and two silencers 40.
  • the housing 15 comprises a side wall 45, a first yoke 50 and a second yoke 55.
  • the side wall 45 is cylindrical and centered on a first axis A1, for example circular base.
  • the first axis A1 is oriented along a main direction Z of the engine 10.
  • the side wall 45 is made of a metallic material.
  • the side wall 45 is made of aluminum.
  • the side wall 45 is made of a composite or synthetic material.
  • the first cylinder head 50 and the second cylinder head 55 are provided to be fixed to the side wall 55 to form the housing 15.
  • the first cylinder head 50 comprises a first supply pipe 70, a first internal opening of the sealant, a first cavity 80, a first external opening 85, a first connecting pipe 90 and a first thread 95 for screwing a threaded stop 100
  • the first yoke 50 also carries a first end block 102 delimiting a first secondary chamber 103.
  • the first cylinder head 50 is cylindrical with a circular base and centered on a second axis A2.
  • the second axis A2 coincides with the first axis A1.
  • the first yoke 50 is delimited by a first outer face 60 and a first inner face 65.
  • the first face Inner 65 is oriented towards the second yoke 55.
  • the first yoke 50 has, in addition, a first lateral face 67.
  • the second yoke 55 is cylindrical with a circular base and centered on a third axis A3.
  • the third axis A3 coincides with the first axis A1.
  • the second yoke 55 is delimited by a second inner face 105 and a second outer face 1 10.
  • the second inner face 105 is oriented towards the first yoke 50.
  • the second yoke 55 has, in addition, a second side face 1 15.
  • the first and second yokes 50 and 55 are made of a metallic material, for example aluminum.
  • the second yoke 55 comprises a second feed duct 120, a second internal opening 125, a second cavity 130, a second external opening 135, a second connecting duct 140 and a second threaded receiving hole 145, a second stop
  • the second yoke 55 also carries a second end block 152 delimiting a second secondary chamber 153.
  • the second yoke 55 further comprises a first through hole 155 for receiving the shaft 25 and a first main bearing 160 disposed around the shaft 25 and wherein the shaft 25 slides when the motor 10 is operating.
  • the piston 20 is cylindrical and centered on a fourth axis A4.
  • the fourth axis A4.
  • A4 is preferably coincident with the first axis A1.
  • the piston 20 is cylindrical with a circular base.
  • the piston 20 is able to separate the housing 15 into a high primary chamber 165, or first primary chamber, and a low primary chamber 170, or second primary chamber.
  • the piston 20 is movable in translation relative to the housing 15, in the Z direction, between a top dead center and a bottom dead center.
  • the piston 20 is movable in translation along the main direction Z.
  • the piston 20 is made of a metallic material, preferably aluminum.
  • the piston 20 has a peripheral receiving groove 180 of a piston seal 175, a passage opening 185 of the rod 30 and sealing means 190 of the opening 185.
  • the piston 20 is fixed to the shaft 25 by means of a screw 252 engaged in an axial tapping 254 of the shaft 25.
  • the screw 252 passes through an opening orifice 202 formed in the center of the pison and centered on the axis A4 .
  • One end of the shaft 25 opposite the piston 20 is coupled to the pumping stage 8.
  • the shaft 25 is cylindrical and centered on a fifth axis A5, coinciding with the first axis A1.
  • the shaft 25 is received in the main bearing 160.
  • the shaft 25 is movable in translation, with the piston 20, in the main direction Z.
  • the inverting rod 30 has a first end portion 192, a central portion 193 and a second end portion 194 opposite the first end portion 192.
  • the inverting rod 30 carries a first valve 195, a second valve 200, first displacement means 205, second displacement means 210, a first bearing 212 (sometimes referred to as "coil”) and a second bearing 213.
  • the inverting rod 30 has a cylindrical symmetry around a sixth axis A6, parallel to the first axis A1 and radially offset relative thereto.
  • the inverting rod 30 is made of a metallic material, preferably steel.
  • the inverting rod 30 extends, in the main direction Z, through the first secondary chamber 103, the first external opening 85, the first inner opening 75, the high primary chamber 165, the piston 20, the low primary chamber 170, the second inner opening 125, the second outer opening 135 and the second secondary chamber 153.
  • the inverting rod 30 is movable in translation, in a secondary direction Z ', with respect to the housing 15.
  • the secondary direction Z' is parallel to the main direction Z.
  • the inverting rod 30 is movable between a first position, in which the first valve 195 closes the first external opening 85, and a second position, in which the second valve 200 closes the second external opening 135.
  • the feed tube 35 is adapted to guide a stream of compressed air F1 arriving from a compressor, not shown, and to deliver this flow of air F1 under pressure simultaneously to the first feed duct 70 and to the second duct. 120 power supply.
  • the feed tube 35 is for example made of a composite material.
  • the feed tube 35 is made of a metal, for example aluminum.
  • the first feed duct 70 is adapted to receive from the supply tube 35 the flow F1 of compressed air, and to deliver the flow of compressed air to the first internal opening 75.
  • the first supply duct 70 has a cylindrical symmetry around a seventh axis A7, perpendicular to the first axis A1. According to the seventh axis A7, the first supply duct 70 is delimited by the first lateral face 67 and by the first internal opening 75.
  • the first inner opening 75 is cylindrical with a circular base.
  • the central axis of the first interior aperture 75 is the sixth axis A6.
  • the first inner opening 75 is delimited by the first inner face 65 and by a first frustoconical wall 215.
  • the first cavity 80 is formed in the first outer face 60.
  • the first cavity 80 is cylindrical with a circular base.
  • the central axis of the first cavity 80 is the sixth axis A6.
  • a first intake seat 220, traversed by the first outer opening 85, and first holding means 225 are disposed in the first cavity 80.
  • the first cavity 80 is closed by the first end block 102 which is fixed on the first outer face 60, for example by screws.
  • the first end block 102 is preferably made of metal, for example aluminum.
  • the first end block 102 further carries a silencer 40.
  • the first cavity 80 and the first end block 102 together define the first secondary chamber 103.
  • the first outer opening 85 extends between the first frustoconical wall 215 and the first cavity 80.
  • the first outer opening 85 has a cylindrical symmetry around the sixth axis A6.
  • the first outer opening 85 is cylindrical with a circular base.
  • the first connecting pipe 90 extends between the first cavity 80 and the first inner face 65.
  • the first connecting pipe 90 is cylindrical with a circular base and centered on an eighth axis A8, parallel to the first axis A1 and radially offset relative thereto.
  • the first connecting pipe 90 is adapted to allow the passage of compressed air between the first secondary chamber 103 and the upper primary chamber 165 and vice versa.
  • the first stop 100 is configured so that the piston 20 bears on this stop when the piston 20 is at the top dead center of its trajectory.
  • the abutment 100 is, for example, made of a synthetic material.
  • the first end block 102 includes a first discharge opening 235 and a first evacuation seat 240 surrounding the first discharge opening 235.
  • the first end block 102 further comprises second holding means 242.
  • the second supply duct 120 is adapted to receive the stream F1 of compressed air from the supply tube 35 and to deliver the flow of compressed air to the second internal opening 125.
  • the second supply duct 120 has a cylindrical symmetry around a ninth axis A9.
  • the ninth axis A9 is perpendicular to the first axis A1. According to the ninth axis A9, the second supply duct 120 is delimited by the second lateral face 1 15 and by the second internal opening 125.
  • the second inner opening 125 is cylindrical with a circular base.
  • the central axis of the second inner opening 125 is the sixth axis A6.
  • the second inner opening 125 is delimited by the second inner face 105 and by a second frustoconical wall 245.
  • the second cavity 130 is formed in the second outer face 1 10.
  • the second cavity 130 is cylindrical with a circular base.
  • the central axis of the second cavity 130 is the sixth axis A6.
  • a second intake seat 250, traversed by the second outer opening 135, and third holding means 255 are arranged in the second cavity 130.
  • the second cavity 130 is closed by the second end block 152 which is fixed on the second outer face 1 10, for example by screws.
  • the second end block 152 is preferably made of metal, for example, aluminum.
  • the second end block 152 further carries a silencer 40.
  • the second cavity 130 and the second end block 152 together define a second secondary chamber 153.
  • the second outer opening 135 extends between the second frustoconical wall 245 and the second cavity 130.
  • the second cavity 130 has a cylindrical symmetry around the sixth axis A6.
  • the second cavity 130 is cylindrical with a circular base.
  • the second connecting duct 140 extends between the second cavity 130 and the second inner face 105.
  • the second connecting pipe 140 is cylindrical with a circular base and centered on a tenth axis A10 parallel to the first axis A1.
  • the tenth axis A10 coincides with the eighth axis A8.
  • the second connecting conduit 140 is suitable for allow the passage of compressed air between the first secondary chamber 153 and the lower primary chamber 170 and vice versa.
  • the second stop 150 is configured so that the piston 20 bears on this stop when the piston 20 is at the bottom dead center of its trajectory.
  • the second abutment screw 150 is, for example, made of a synthetic material.
  • the second end block 152 includes a second discharge opening 265, and a second exhaust seat 270 surrounding the second discharge opening 265.
  • the second end block 152 further comprises fourth retention means 272.
  • the first through hole 155 extends between the second inner face 105 and the second outer face 1 10.
  • the first through hole 155 is cylindrical with a circular base.
  • the central axis of the first through hole 155 is the first axis A1.
  • the first through hole 155 receives the first main bearing 160 adapted to allow the translation of the shaft 25 in the main direction Z.
  • the first main bearing 160 is further able to prevent the passage of compressed air between the second main chamber 170 and the outside of the housing 15.
  • the piston seal 175 is able to prevent the passage of compressed air between the upper primary chamber 165 and the lower primary chamber 170 at the side wall 45.
  • the piston seal 175 is for example an O-ring made of a synthetic material .
  • the passage opening 185 receives the central portion 193 of the inverting rod 30.
  • the opening 185 for passage of the inverting rod 30 is cylindrical with a circular base.
  • the central axis of the passage opening 185 is the sixth axis A6.
  • the sealing means 190 are able to prevent the passage of air under pressure through the passage opening 185 when the central portion 193 is received in the passage opening 185.
  • the sealing means 190 are able to allow the translation of the central portion 193 in the main direction Z with respect to the piston 20.
  • the sealing means 190 comprise a ring 230, two seals 232 and two covers 233.
  • the ring 230 is able to guide, in translation in the secondary direction Z ', the inverting rod 30.
  • the ring 230 is made in one synthetic material such as polyacetal.
  • the seals 232 are able to prevent the passage of compressed air between the upper primary chamber 165 and the lower primary chamber 170 when the central portion 193 is received in the passage opening 185.
  • Rod seals 232 are O-rings, for example plastics.
  • the two covers 233 are configured to hold the rod seals 232 and the ring 230 in position.
  • the two covers 233 are attached to the piston 20.
  • the two covers 233 are screwed to the piston.
  • the two covers 233 are, for example, made of a metal, such as aluminum.
  • the central portion 193 is cylindrical, preferably circular base, its central axis is the sixth axis A6.
  • the central portion 193 passes through the piston 20.
  • the first valve 195 is adapted to prevent the passage of compressed air from the first secondary chamber 103 to the first external opening 85, when the first valve 195 bears on the first intake seat 220.
  • the first valve 195 is able to prevent the passage of compressed air between the upper primary chamber 165 and the first discharge opening 235, when the first valve 195 bears on the first discharge seat 240.
  • the first valve 195 is housed in the first secondary chamber 103.
  • the first valve 195 is fixed, for example by screwing, to the first end portion 192.
  • the first valve 195 is made at least partially of a ferromagnetic material.
  • the first valve 195 comprises a core made of steel.
  • the first valve 195 is at least partially covered with a thermoplastic material.
  • the thermoplastic material is polyurethane.
  • the second valve 200 is able to prevent the passage of compressed air from the second secondary chamber 153 to the second external opening 135, when the second valve 200 bears on the second intake seat 250.
  • the second valve 200 is able to prevent the passage of compressed air between the low primary chamber 170 and the second discharge opening 265, when the second valve 200 bears on the second discharge seat 270.
  • the second valve 200 is housed in the second secondary chamber 153.
  • the second valve 200 is fixed, for example by screwing, to the second end portion 194.
  • the second valve 200 is made at least partially of a ferromagnetic material.
  • the second valve 200 comprises a core made of steel.
  • the second valve 200 is at least partially covered with a thermoplastic material.
  • the thermoplastic material is polyurethane.
  • the first displacement means 205 are able to cooperate with the piston 20 to move the inverting rod 30 between its second position shown in FIG. 7 and its first position shown in FIGS. 4 to 6.
  • the first displacement means 205 are for example elastic means.
  • the first resilient displacement means 205 comprise a spring 275, a nut 280, a pin 285, and a pin 290.
  • the first elastic displacement means 205 comprise a deformable block, in particular made of an elastomeric material.
  • the second displacement means 210 are able to cooperate with the piston 20 to move the inverting rod 30 between its first position and its second position.
  • the second displacement means 210 are for example elastic means.
  • the second elastic displacement means 210 are identical to the first elastic displacement means 205.
  • the second elastic displacement means 205 comprise an elastic block made of an elastomeric material.
  • the first bearing 212 guides the inverting rod 30 in translation in the internal opening 75 along the sixth axis A6.
  • the first bearing 212 is received in the first inner opening 75.
  • the first bearing 212 is, furthermore, able to prevent the passage of compressed air between the upper primary chamber 165 and the first feed conduit 70. This means that the first bearing 212 slide with seal in the first inner opening 75.
  • the second bearing 213 guides the inverting rod 30 in translation in the internal opening 125 along the sixth axis A6.
  • the second bearing 213 is received in the second inner opening 125.
  • the second bearing 213 is, furthermore, able to prevent the passage of compressed air between the low primary chamber 170 and the second supply conduit 120. This means that the second bearing 213 slides with a seal in the second inner opening 125.
  • the first and second bearings 212 and 213 each carry a bearing seal 295.
  • the first intake seat 220 is formed in the first cavity 80.
  • the first intake seat 220 is in the form of a cylindrical ring-shaped crown.
  • the axis of the first intake seat 220 is the sixth axis A6.
  • the first holding means 225 are adapted to exert a first retaining force E1 on the first valve 195.
  • the first holding means 225 are able to maintain the inverting rod 30 in its second position.
  • the first retaining force E1 is an attraction force
  • the first retaining force E1 has, for example, a value of between 2 and 4 decaNewtons (dN).
  • the first holding means 225 are formed by a first holding magnet 225.
  • the first holding magnet 225 is made in the form of cylindrical crown with circular base.
  • the axis of the first holding magnet 225 is the sixth axis A6.
  • the first holding magnet 225 surrounds the first intake seat 220 about the sixth axis A6.
  • the first discharge opening 235 has a cylindrical symmetry around the sixth axis A6.
  • the first evacuation seat 240 is formed in the first end block 102.
  • the first evacuation seat 240 is in the form of a cylindrical ring-shaped crown.
  • the axis of the first evacuation seat 240 is the sixth axis A6.
  • the second holding means 242 are adapted to exert a second retaining force E2 on the first valve 195.
  • the second holding means 242 are able to maintain the inverting rod 30 in its first position.
  • the second retaining force E2 is a pulling force.
  • the second retaining force E2 has, for example, a value of between 2 and 4 dN.
  • the second holding means 242 are formed by a second holding magnet 242.
  • the second holding magnet 242 is in the form of a cylindrical crown with a circular base.
  • the axis of the second holding magnet 242 is the sixth axis A6.
  • the second holding magnet 242 is preferably identical to the first holding magnet 225.
  • the second holding magnet 242 surrounds the first discharge seat 240 about the sixth axis A6.
  • the second intake seat 250 is formed in the second cavity 130.
  • the second intake seat 250 is made in the form of a cylindrical ring-shaped ring.
  • the third holding means 255 are adapted to exert a third retaining force E3 on the second valve 200.
  • the third holding means 255 are able to maintain the inverting rod 30 in its first position.
  • the third retaining force E3 is preferably an attraction force.
  • the third retaining force E3 has, for example, a value of between 2 and 4 dN.
  • the third holding means 255 are formed by a third holding magnet 255.
  • the third holding magnet 255 is in the form of a cylindrical ring-shaped ring.
  • the axis of the third holding magnet 255 is the sixth axis A6.
  • the third holding magnet 255 is preferably identical to the first holding magnet 225.
  • the second holding magnet 255 surrounds the second inlet seat 250 about the sixth axis A6.
  • the second discharge opening 265 has a cylindrical symmetry around the sixth axis A6.
  • the second evacuation seat 270 is in the form of a cylindrical crown with a circular base.
  • the axis of the second evacuation seat 270 is the sixth axis A6.
  • the fourth holding means 272 are adapted to exert a fourth retaining force E4 on the second valve 200.
  • the fourth retaining means 272 are able to maintain the inverting rod 30 in its second position.
  • the fourth retaining force E4 is preferably an attraction force.
  • the fourth retaining force E4 has, for example, a value between 2 and 4 dN.
  • the fourth holding means 272 are formed by a fourth holding magnet 272.
  • the fourth holding magnet 272 is made in the form of a cylindrical ring-shaped crown.
  • the axis of the fourth holding magnet 272 is the sixth axis A6.
  • the fourth holding magnet 272 is preferably identical to the first holding magnet 225.
  • the fourth holding magnet 272 surrounds the second discharge seat 270 about the sixth axis A6.
  • the spring 275 is wound around the inverting rod 30.
  • the spring 275 bears on the nut 280.
  • the nut 280 bears on the pin 285.
  • the pin 285 is received in a corresponding opening 302 of the inverting rod 30.
  • the pin 285 is configured to abut the nut 280 along the inverting rod 30.
  • the pin 290 passes through the pin 285.
  • the pin 290 prevents the pin 285 from being extracted from the corresponding opening of the inverting rod 30.
  • the first valve 195 is supported on the first discharge seat 240.
  • the first valve 195 is not supported on the first intake seat 220.
  • the second valve 200 bears on the second intake seat 250.
  • the second valve 200 is therefore not supported on the second exhaust seat 270.
  • the compressed air present in the second inner opening 125 exerts a first pressure force Ep1 on the second bearing.
  • the compressed air present in the second secondary chamber exerts a second pressure force Ep2 on the second valve 200.
  • the flow Secondary compressed air F1 'then passes through the first connecting conduit 90 to enter the upper primary chamber 165.
  • the compressed air therefore causes the piston 20 to move towards the bottom dead center.
  • the air contained in the low primary chamber 170 is expelled through the second connecting duct 140, the second secondary chamber 153, the second discharge opening 265 and the silencer 40, in the form of an air flow. evacuation F2 '.
  • the piston 20 then bears on the second displacement means 210.
  • the piston 20 compresses the spring 275.
  • the spring 275 exerts on the inverting rod 30 a first displacement force D1 tending to move the inverting rod 30 towards its end. second position.
  • the first displacement force D1 is less than the sum of the second retaining force E2, the third retaining force E3 and the first and second pressure forces Ep1 and Ep2. .
  • the inverting rod 30 thus remains in its first position.
  • the flow F1 of compressed air then no longer enters the upper primary chamber 165, but in the lower primary chamber 170 in the form of a secondary air flow F1 ".
  • the piston 20 is then set in motion from the neutral position. down to the top dead center.
  • the air contained in the upper primary chamber 165 escapes through the first connecting pipe 90, the first secondary chamber 103, and the first discharge opening 235, in the form of an evacuation air flow. F2 ".
  • the inverting rod 30 is moved from its second position to its first position, in a sequence opposite to that mentioned above.
  • the motor 10 is able to control the supply alternately of the upper primary chamber 165 and the lower primary chamber 170, without using an external device.
  • the engine 10 has a high reliability.
  • the pump 6 comprises two pumping stages 8.
  • the first yoke 50 then further comprises a second through hole for receiving the shaft 25 and a second main bearing disposed around the shaft 25 and wherein the shaft 25 slides when the motor 10 is running.
  • the second through hole extends between the first inner face 65 and the first outer face 60.
  • the second through hole is cylindrical with a circular base.
  • the central axis of the second through hole is the first axis A1.
  • the second through-hole receives the second main bearing adapted to allow the translation of the shaft 25 in the main direction Z.
  • the second main bearing is, moreover, able to prevent the passage of compressed air between the first primary chamber 165 and the first one. outside the housing 15.
  • the shaft 25 passes through the first cylinder head 50 and the second cylinder head 55.
  • Each end of the shaft 25 is coupled to a pumping stage 8.
  • the operation of the second example is identical to the operation of the first example.
  • the flow rate of the pump 6 is then increased.
  • the pump 6 comprises a first motor 10 comprising a first housing 15, a first piston 20, a first valve 195 and a second valve 200, and a second motor 10 comprising a second housing 15, a second piston 20, a third valve and a fourth valve.
  • the inverting rod 30 is common to the first motor 10 and to the second motor
  • the first housing 15 has a first cylinder head 50 and a second cylinder head
  • the first housing 15 is identical to the housing 15 described in the second example.
  • the first piston 20 divides the first housing 15 into a first primary chamber 165 and a second primary chamber 170.
  • the second housing 15 has a third yoke and a fourth yoke.
  • the second piston 20 divides the second housing 15 into a third primary chamber and a fourth primary chamber.
  • the second piston 20 is identical to the first piston 20.
  • the third yoke is identical to the first yoke described in the first example.
  • the fourth yoke is identical to the second yoke described in the first example.
  • the fourth bolt faces the first breech 165
  • the rod 30 extends in the main direction Z through the second primary chamber 165, the first piston 20, the second primary chamber 170, the first cylinder head 50, the fourth cylinder head, the fourth primary chamber, the second piston, the third primary chamber and the third breech.
  • the rod 30 carries the first valve 195, the second valve 200, the third valve and the fourth valve.
  • the rod 30 is movable between a first position and a second position.
  • the pistons 20 are both mounted on the same shaft 25.
  • the first primary chamber and the third primary chamber are supplied with compressed air.
  • the second primary chamber and the fourth primary chamber are supplied with compressed air.
  • the two pistons 20 are actuated simultaneously, and both drive the shaft
  • the pump 6 is therefore more powerful.
  • the first displacement means 205 and the second displacement means 210 are magnetic means.
  • the first displacement means comprise a first displacement magnet and a second displacement magnet.
  • the first displacement magnet is, for example, carried by the rod 30.
  • the second displacement magnet is, for example, carried by the piston 20.
  • the first and the second displacement magnet are able to exert one on the another a repulsive magnetic force.
  • the second moving means comprise a third displacement magnet and a fourth displacement magnet.
  • the third displacement magnet is, for example, carried by the rod 30.
  • the fourth displacement magnet is, for example, carried by the piston 20.
  • the third and fourth displacement magnet are able to exert one on the another a repulsive magnetic force.
  • the operation of the fourth example is identical to the operation of the first example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Compressor (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Moteur à air comprimé et pompe comprenant un tel moteur La présente invention concerne un moteur à air comprimé (10) comprenant un piston (20) et un boîtier (15), le piston (20) étant reçu dans le boîtier et divisant le boîtier en deux chambres primaires (165,170) de volume variable. Ce moteur comprend un premier clapet d'alimentation directe d'une première chambre primaire (165) parmi les deux chambres primaires et un deuxième clapet d'alimentation directe de l'autre chambre primaire (170), ces deux clapets étant chacun mobiles par rapport à au moins un siège respectif. Le premier clapet et le deuxième clapet sont montés sur une même tige (30) mobile par rapport au boîtier (15) selon une direction (A6) parallèle à la direction (Z) de déplacement du piston, et la tige est configurée pour être déplacée entre une première position et une deuxième position par des moyens de déplacement activés par le piston.

Description

Moteur à air comprimé et pompe comprenant un tel moteur
La présente invention concerne un moteur à air comprimé comprenant un piston et un boîtier, le piston étant reçu dans le boîtier et divisant le boîtier en deux chambres primaires de volume variable.
Les moteurs à air comprimé sont fréquemment utilisés pour l'entraînement de pompes à mouvement alternatif. De telles pompes sont en particulier utilisées pour le pompage de produits visqueux, tels que du mastic, ou de produits liquides, tels que de la peinture. Le document FR 2 695 965 A1 décrit une telle pompe comprenant un moteur à air comprimé.
Les moteurs à air comprimé comprennent en général un boîtier contenant un piston. Le piston divise le boîtier en deux chambres, couramment dénommées « chambre haute » et « chambre basse » qui sont alimentées alternativement en air comprimé. C'est l'injection alternative d'air comprimé dans chacune des chambres qui génère le mouvement alternatif du piston.
Les moteurs à air comprimé sont fréquemment équipés d'un distributeur, qui alimente alternativement la chambre haute et la chambre basse. Le distributeur est, en général, piloté par des organes de commande extérieurs, de type basculeur ou « switch ». De tels moteurs présentent une grande fiabilité, mais sont chers. De plus, l'utilisation d'organes de distribution et de commande extérieurs complexifie le montage et la maintenance d'une installation comprenant un tel moteur.
D'autres types de moteurs sont équipés d'un bloc inverseur intégré comportant un ressort rotatif. Ces moteurs sont d'une conception plus simple, mais présentent des problèmes de fiabilité.
D'autres types de moteurs à air comprimé ne nécessitent pas d'inverseur ni de distributeurs. On connaît, par exemple, du document FR 484 199 A un moteur à air comprimé comprenant deux distributeurs d'alimentation des chambres hautes et basses portés par une même tige. La tige est déplacée par le piston entre deux positions pour commander l'alimentation des chambres.
Le document DE 19 92 789 U décrit un moteur à air comprimé dans lequel deux joints portés par une tige commandent l'alimentation des chambres haute et basse.
Plusieurs exemples de moteurs à air comprimé dans lequel l'alimentation des chambres haute et basse est commandée par deux clapets montés sur une même tige sont connus des documents EP 0 414 268 A1 , DE 28 16 617 A1 , DE 28 23 667 A1 et EP 0 319 341 A2. Un autre type de moteur à air comprimé dans lequel l'alimentation alternative des chambres est obtenue par le mouvement d'une tige est décrit dans le document WO 2003/058072 A2.
Cependant, ces moteurs à air comprimé connus présentent souvent des problèmes de fiabilité, car dans un cas où la tige de commande serait arrêtée dans une position intermédiaire, les deux chambres sont susceptibles d'être alimentées en même temps et le moteur resterait alors bloqué. Des mécanismes permettant de maintenir la tige dans ses positions extrêmes existent mais rendent la structure du moteur plus complexe.
D'autres mécanismes de commande de l'alimentation des chambres haute et basse d'un cylindre moteur sont connus. Par exemple, un actionneur de valve dans lequel une chemise mobile commande l'alimentation des chambres hautes et basse d'un cylindre est connu du document US 4,974,495 A.
Le but de l'invention est de proposer un moteur à air comprimé fiable ayant une structure simple, et ne nécessitant pas d'organe extérieur de pilotage de l'alimentation de ses chambres en air comprimé.
A cet effet, l'invention a pour objet un moteur à air comprimé du type précité, qui comprend un premier clapet d'alimentation directe d'une première chambre primaire parmi les deux chambres primaires et un deuxième clapet d'alimentation directe de l'autre chambre primaire, ces deux clapets étant mobiles chacun par rapport à au moins un siège respectif. Le premier clapet et le deuxième clapet sont montés sur une même tige mobile par rapport au boîtier selon une direction parallèle à la direction de déplacement du piston. La tige est configurée pour être déplacée entre une première position et une deuxième position par des moyens de déplacement activés par le piston.
Suivant d'autres aspects avantageux de l'invention, le moteur comprend une ou plusieurs des caractéristiques suivantes, prises isolément ou selon toutes les combinaisons techniquement possibles :
- les moyens de déplacement sont activés par le piston lorsqu'il arrive au point mort haut ou au point mort bas de sa trajectoire ;
- les moyens de déplacement sont des moyens élastiques ;
- les moyens élastiques comprennent au moins un ressort.
- la tige porte au moins une goupille, le ressort étant enroulé autour de la tige et apte à exercer sur la goupille une force de déplacement de la tige de sa deuxième position vers sa première position ou réciproquement. - les moyens de déplacement comprennent au moins un premier aimant de déplacement et au moins un deuxième aimant de déplacement exerçant l'un sur l'autre une force magnétique répulsive.
- le piston est mobile par rapport au boîtier selon une direction principale et la tige s'étend dans la direction principale à travers une première chambre primaire, le piston et une deuxième chambre primaire.
- le moteur comprend, en outre, des moyens de maintien de la tige dans au moins une de ses première et deuxième positions.
- les premier et deuxième clapets sont réalisés au moins partiellement en matériau ferromagnétique et en ce que les moyens de maintien comprennent au moins un premier aimant de maintien propre à exercer un premier effort de retenue sur le premier clapet, un deuxième aimant de maintien propre à exercer un deuxième effort de retenue sur le premier clapet, un troisième aimant de maintien propre à exercer un troisième effort de retenue sur le deuxième clapet et un quatrième aimant de maintien propre à exercer un quatrième effort de retenue sur le deuxième clapet.
- le boîtier comprend une première chambre secondaire présentant un premier siège d'admission et un premier siège d'évacuation et une deuxième chambre secondaire présentant un deuxième siège d'admission et un deuxième siège d'évacuation, le premier clapet étant reçu dans la première chambre secondaire et le deuxième clapet étant reçu dans la deuxième chambre secondaire, le premier clapet est en appui sur le premier siège d'évacuation et le deuxième clapet est en appui sur le deuxième siège d'admission, lorsque la tige est dans sa première position et le premier clapet est en appui sur le premier siège d'admission et le deuxième clapet est en appui sur le deuxième siège d'évacuation, lorsque la tige est dans sa deuxième position.
- le boîtier comporte au moins une culasse, et la tige comporte au moins un palier coulissant à joint étanche dans la culasse.
L'invention a également pour objet une pompe à mouvement alternatif comprenant un moteur tel que décrit précédemment.
Les caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins annexés, sur lesquels :
- la figure 1 est une coupe longitudinale d'un moteur à air comprimé selon l'invention ;
- la figure 2 est une vue à plus grande échelle du détail II à la figure 1 ; - la figure 3 est une vue en perspective éclatée d'une tige du moteur des figures 1 et 2 et des organes qui l'équipent ;
- la figure 4 est une vue à plus grande échelle du détail IV à la figure 1 ;
- la figure 5 est une vue à plus grande échelle du détail V à la figure 1 ;
- la figure 6 est une vue à plus grande échelle du détail VI à la figure 1 , dans une première configuration de fonctionnement du moteur à air comprimé des figures 1 à 5 ; et
- la figure 7 est une vue analogue à la figure 6 lorsque le moteur à air comprimé est dans une deuxième configuration de fonctionnement.
Une pompe 6 à mouvement alternatif comporte un étage de pompage 8 et un moteur à air comprimé 10.
L'étage de pompage 8 est propre à entraîner un fluide, tel qu'un produit de revêtement, un mastic ou une colle. L'étage de pompage 8 est actionné par le moteur 10.
Un premier exemple de pompe 6 est représenté sur les figures 1 à 7.
Le moteur à air comprimé 10 comporte un boîtier 15, un piston 20 solidaire d'un arbre 25 de transmission d'effort, une tige inverseuse 30, un tube d'alimentation 35 et deux silencieux 40.
Le boîtier 15 comprend une paroi latérale 45, une première culasse 50 et une deuxième culasse 55.
La paroi latérale 45 est cylindrique et centrée sur un premier axe A1 , par exemple à base circulaire.
Le premier axe A1 est orienté selon une direction principale Z du moteur 10 La paroi latérale 45 est réalisée en un matériau métallique. Par exemple, la paroi latérale 45 est réalisée en aluminium. En variante, la paroi latérale 45 est réalisée en un matériau composite ou synthétique.
La première culasse 50 et la deuxième culasse 55 sont prévues pour être fixées à la paroi latérale 55 pour former le boîtier 15.
La première culasse 50 comprend un premier conduit d'alimentation 70, une première ouverture intérieure du mastic, une première cavité 80, une première ouverture extérieure 85, un premier conduit de liaison 90 et un premier taraudage 95 de vissage d'une butée filetée 100. La première culasse 50 porte également un premier bloc d'extrémité 102 délimitant une première chambre secondaire 103.
La première culasse 50 est cylindrique à base circulaire et centrée sur un deuxième axe A2. Le deuxième axe A2 est confondu avec le premier axe A1 .
Selon la direction principale Z, la première culasse 50 est délimitée par une première face extérieure 60 et une première face intérieure 65. La première face intérieure 65 est orientée vers la deuxième culasse 55. La première culasse 50 présente, en outre, une première face latérale 67.
La deuxième culasse 55 est cylindrique à base circulaire et centrée sur un troisième axe A3. De préférence, le troisième axe A3 est confondu avec le premier axe A1 .
Selon la direction principale Z, la deuxième culasse 55 est délimitée par une deuxième face intérieure 105 et une deuxième face extérieure 1 10. La deuxième face intérieure 105 est orientée vers la première culasse 50. La deuxième culasse 55 présente, en outre, une deuxième face latérale 1 15.
La première et la deuxième culasse 50 et 55 sont réalisées en un matériau métallique, par exemple en aluminium.
La deuxième culasse 55 comprend un deuxième conduit d'alimentation 120, une deuxième ouverture intérieure 125, une deuxième cavité 130, une deuxième ouverture extérieure 135, un deuxième conduit de liaison 140 et un deuxième trou de réception 145 fileté, d'une deuxième butée vissée 150. La deuxième culasse 55 porte également un deuxième bloc d'extrémité 152 délimitant une deuxième chambre secondaire 153.
La deuxième culasse 55 comprend, en outre, un premier trou traversant 155 de réception de l'arbre 25 et d'un premier palier principal 160 disposé autour de l'arbre 25 et dans lequel cet arbre 25 coulisse lorsque le moteur 10 fonctionne.
Le piston 20 est cylindrique et centré sur un quatrième axe A4. Le quatrième axe
A4 est, de préférence, confondu avec le premier axe A1 .
De préférence, le piston 20 est cylindrique à base circulaire.
Le piston 20 est propre à séparer le boîtier 15 en une chambre primaire haute 165, ou première chambre primaire, et une chambre primaire basse 170, ou deuxième chambre primaire.
Le piston 20 est mobile en translation par rapport au boîtier 15, selon la direction Z, entre un point mort haut et un point mort bas. Le piston 20 est mobile en translation selon la direction principale Z.
Le piston 20 est réalisé en un matériau métallique, de préférence en aluminium. Le piston 20 comporte une gorge périphérique de réception 180 d'un joint de piston 175, une ouverture de passage 185 de la tige 30 et des moyens d'étanchéité 190 de l'ouverture 185.
Le piston 20 est fixé à l'arbre 25 au moyen d'une vis 252 en prise dans un taraudage axial 254 de l'arbre 25. La vis 252 traverse un orifice débouchant 202 ménagé au centre du pison et centré sur l'axe A4. Deux rondelles 256 et 258, respectivement disposées dans la première chambre primaire 165 et dans la deuxième chambre primaire 170, sont serrées axialement autour de l'orifice 202 par la vis 252 et l'arbre 25.
Une extrémité de l'arbre 25, opposée au piston 20, est accouplée à l'étage de pompage 8.
L'arbre 25 est cylindrique et centré sur un cinquième axe A5, confondu avec le premier axe A1 . L'arbre 25 est reçu dans le palier principal 160. L'arbre 25 est mobile en translation, avec le piston 20, selon la direction principale Z. La tige inverseuse 30 présente une première partie d'extrémité 192, une partie centrale 193 et une deuxième partie d'extrémité 194 opposée à la première partie d'extrémité 192.
La tige inverseuse 30 porte un premier clapet 195, un deuxième clapet 200, des premiers moyens de déplacement 205, des deuxièmes moyens de déplacement 210, un premier palier 212 (parfois dénommé « bobine ») et un deuxième palier 213.
La tige inverseuse 30 présente une symétrie cylindrique autour d'un sixième axe A6, parallèle au premier axe A1 et décalé radialement par rapport à celui-ci. La tige inverseuse 30 est réalisée en un matériau métallique, de préférence en acier.
La tige inverseuse 30 s'étend, selon la direction principale Z, à travers la première chambre secondaire 103, la première ouverture extérieure 85, la première ouverture intérieure 75, la chambre primaire haute 165, le piston 20, la chambre primaire basse 170, la deuxième ouverture intérieure 125, la deuxième ouverture extérieure 135 et la deuxième chambre secondaire 153.
La tige inverseuse 30 est mobile en translation, selon une direction secondaire Z', par rapport au boîtier 15. La direction secondaire Z' est parallèle à la direction principale Z.
La tige inverseuse 30 est mobile entre une première position, dans laquelle le premier clapet 195 obture la première ouverture extérieure 85, et une deuxième position, dans laquelle le deuxième clapet 200 obture la deuxième ouverture extérieure 135.
Le tube d'alimentation 35 est propre à guider un flux d'air comprimé F1 arrivant d'un compresseur non représenté, et à délivrer ce flux d'air F1 sous pression simultanément au premier conduit d'alimentation 70 et au deuxième conduit d'alimentation 120.
Le tube d'alimentation 35 est par exemple réalisé en un matériau composite. En variante, le tube d'alimentation 35 est réalisé en un métal, par exemple en aluminium.
Le premier conduit d'alimentation 70 est propre à recevoir du tube d'alimentation 35 le flux F1 d'air comprimé, et à délivrer le flux d'air comprimé à la première ouverture intérieure 75. Le premier conduit d'alimentation 70 présente une symétrie cylindrique autour d'un septième axe A7, perpendiculaire au premier axe A1 . Selon le septième axe A7, le premier conduit d'alimentation 70 est délimité par la première face latérale 67 et par la première ouverture intérieure 75.
La première ouverture intérieure 75 est cylindrique à base circulaire. L'axe central de la première ouverture intérieure 75 est le sixième axe A6.
Selon la direction principale Z, la première ouverture intérieure 75 est délimitée par la première face intérieure 65 et par une première paroi tronconique 215.
La première cavité 80 est ménagée dans la première face extérieure 60. La première cavité 80 est cylindrique à base circulaire. L'axe central de la première cavité 80 est le sixième axe A6. Un premier siège d'admission 220, traversé par la première ouverture extérieure 85, et des premiers moyens de maintien 225 sont disposés dans la première cavité 80.
La première cavité 80 est obturée par le premier bloc d'extrémité 102 qui est fixé sur la première face extérieure 60, par exemple par des vis. Le premier bloc d'extrémité 102 est, de préférence, réalisé en métal, par exemple, en aluminium. Le premier bloc d'extrémité 102 porte en outre un silencieux 40. La première cavité 80 et le premier bloc d'extrémité 102 définissent ensemble la première chambre secondaire 103.
La première ouverture extérieure 85 s'étend entre la première paroi tronconique 215 et la première cavité 80.
La première ouverture extérieure 85 présente une symétrie cylindrique autour du sixième axe A6. Par exemple, la première ouverture extérieure 85 est cylindrique à base circulaire.
Le premier conduit de liaison 90 s'étend entre la première cavité 80 et la première face intérieure 65.
Le premier conduit de liaison 90 est cylindrique à base circulaire et centré sur un huitième axe A8, parallèle au premier axe A1 et décalé radialement par rapport à celui-ci. Le premier conduit de liaison 90 est apte à permettre le passage d'air comprimé entre la première chambre secondaire 103 et la chambre primaire haute 165 et vice versa.
La première butée 100 est configurée pour que le piston 20 soit en appui sur cette butée, lorsque le piston 20 est au point mort haut de sa trajectoire. La butée 100 est, par exemple, réalisée en un matériau synthétique.
Le premier bloc d'extrémité 102 comprend une première ouverture d'évacuation 235 et un premier siège d'évacuation 240 entourant la première ouverture d'évacuation 235. Le premier bloc d'extrémité 102 comprend, en outre, des deuxièmes moyens de maintien 242.
Le deuxième conduit d'alimentation 120 est propre à recevoir du tube d'alimentation 35 le flux F1 d'air comprimé et à délivrer le flux d'air comprimé à la deuxième ouverture intérieure 125.
Le deuxième conduit d'alimentation 120 présente une symétrie cylindrique autour d'un neuvième axe A9. Le neuvième axe A9 est perpendiculaire au premier axe A1 . Selon le neuvième axe A9, le deuxième conduit d'alimentation 120 est délimité par la deuxième face latérale 1 15 et par la deuxième ouverture intérieure 125.
La deuxième ouverture intérieure 125 est cylindrique à base circulaire. L'axe central de la deuxième ouverture intérieure 125 est le sixième axe A6.
Selon la direction principale Z, la deuxième ouverture intérieure 125 est délimitée par la deuxième face intérieure 105 et par une deuxième paroi tronconique 245.
La deuxième cavité 130 est ménagée dans la deuxième face extérieure 1 10.
La deuxième cavité 130 est cylindrique à base circulaire. L'axe central de la deuxième cavité 130 est le sixième axe A6.
Un deuxième siège d'admission 250, traversé par la deuxième ouverture extérieure 135, et des troisièmes moyens de maintien 255 sont disposés dans la deuxième cavité 130.
La deuxième cavité 130 est obturée par le deuxième bloc d'extrémité 152 qui est fixé sur la deuxième face extérieure 1 10, par exemple par des vis. Le deuxième bloc d'extrémité 152 est, de préférence, réalisé en métal, par exemple, en aluminium. Le deuxième bloc d'extrémité 152 porte, en outre, un silencieux 40. La deuxième cavité 130 et le deuxième bloc d'extrémité 152 définissent ensemble une deuxième chambre secondaire 153.
La deuxième ouverture extérieure 135 s'étend entre la deuxième paroi tronconique 245 et la deuxième cavité 130.
La deuxième cavité 130 présente une symétrie cylindrique autour du sixième axe A6. Par exemple, la deuxième cavité 130 est cylindrique à base circulaire.
Le deuxième conduit de liaison 140 s'étend entre la deuxième cavité 130 et la deuxième face intérieure 105.
Par exemple, le deuxième conduit de liaison 140 est cylindrique à base circulaire et centré sur un dixième axe A10 parallèle au premier axe A1 . Le dixième axe A10 est confondu avec le huitième axe A8. Le deuxième conduit de liaison 140 est apte à permettre le passage d'air comprimé entre la première chambre secondaire 153 et la chambre primaire basse 170 et vice-versa.
La deuxième butée 150 est configurée pour que le piston 20 soit en appui sur cette butée, lorsque le piston 20 est au point mort bas de sa trajectoire. La deuxième vis de butée 150 est, par exemple, réalisée en un matériau synthétique.
Le deuxième bloc d'extrémité 152 comprend une deuxième ouverture d'évacuation 265, et un deuxième siège d'évacuation 270 entourant la deuxième ouverture d'évacuation 265. Le deuxième bloc d'extrémité 152 comprend, en outre, des quatrièmes moyens de maintien 272.
Le premier trou traversant 155 s'étend entre la deuxième face intérieure 105 et la deuxième face extérieure 1 10.
Le premier trou traversant 155 est cylindrique à base circulaire. L'axe central du premier trou traversant 155 est le premier axe A1 .
Le premier trou traversant 155 reçoit le premier palier principal 160 apte à permettre la translation de l'arbre 25 selon la direction principale Z. Le premier palier principal 160 est, en outre, apte empêcher le passage d'air comprimé entre la deuxième chambre principale 170 et l'extérieur du boîtier 15.
Le joint de piston 175 est propre à empêcher le passage d'air comprimé entre la chambre primaire haute 165 et la chambre primaire basse 170 au niveau de la paroi latérale 45. Le joint de piston 175 est par exemple un joint torique en un matériau synthétique.
L'ouverture de passage 185 reçoit la partie centrale 193 de la tige inverseuse 30. L'ouverture 185 de passage de la tige inverseuse 30 est cylindrique à base circulaire. L'axe central de l'ouverture de passage 185 est le sixième axe A6. Les moyens d'étanchéité 190 sont aptes à empêcher le passage d'air sous pression à travers l'ouverture de passage 185 lorsque la partie centrale 193 est reçue dans l'ouverture de passage 185.
Les moyens d'étanchéité 190 sont aptes à permettre la translation de la partie centrale 193 selon la direction principale Z par rapport au piston 20.
Les moyens d'étanchéité 190 comprennent une bague 230, deux joints de tige 232 et deux couvercles 233. La bague 230 est apte à guider, en translation selon la direction secondaire Z', la tige inverseuse 30. La bague 230 est réalisée en un matériau synthétique tel qu'un polyacétal. Les joints de tige 232 sont aptes à empêcher le passage d'air comprimé entre la chambre primaire haute 165 et la chambre primaire basse 170 lorsque la partie centrale 193 est reçue dans l'ouverture de passage 185. Les joints de tige 232 sont des joints toriques, par exemple en matière plastique. Les deux couvercles 233 sont configurés pour maintenir en position les joints de tige 232 et la bague 230. Les deux couvercles 233 sont fixés au piston 20. Par exemple, les deux couvercles 233 sont vissés au piston. Les deux couvercles 233 sont, par exemple, réalisés en un métal, tel que l'aluminium.
La partie centrale 193 est cylindrique, de préférence à base circulaire, son axe central est le sixième axe A6. La partie centrale 193 traverse le piston 20.
Le premier clapet 195 est propre à empêcher le passage d'air comprimé de la première chambre secondaire 103 vers la première ouverture extérieure 85, lorsque le premier clapet 195 est en appui sur le premier siège d'admission 220.
Le premier clapet 195 est apte à empêcher le passage d'air comprimé entre la chambre primaire haute 165 et la première ouverture d'évacuation 235, lorsque le premier clapet 195 est en appui sur le premier siège d'évacuation 240.
Le premier clapet 195 est logé dans la première chambre secondaire 103. Le premier clapet 195 est fixé, par exemple par vissage, à la première partie d'extrémité 192. Le premier clapet 195 est réalisé au moins partiellement en un matériau ferromagnétique. Par exemple, le premier clapet 195 comprend une âme réalisée en acier. De préférence, le premier clapet 195 est recouvert au moins partiellement d'un matériau thermoplastique. Par exemple, le matériau thermoplastique est du polyuréthane.
Le deuxième clapet 200 est propre à empêcher le passage d'air comprimé de la deuxième chambre secondaire 153 vers la deuxième ouverture extérieure 135, lorsque le deuxième clapet 200 est en appui sur le deuxième siège d'admission 250.
Le deuxième clapet 200 est apte à empêcher le passage d'air comprimé entre la chambre primaire basse 170 et la deuxième ouverture d'évacuation 265, lorsque le deuxième clapet 200 est en appui sur le deuxième siège d'évacuation 270.
Le deuxième clapet 200 est logé dans la deuxième chambre secondaire 153. Le deuxième clapet 200 est fixé, par exemple par vissage, à la deuxième partie d'extrémité 194. Le deuxième clapet 200 est réalisé au moins partiellement en un matériau ferromagnétique. Par exemple, le deuxième clapet 200 comprend une âme réalisée en acier. De préférence, le deuxième clapet 200 est recouvert au moins partiellement d'un matériau thermoplastique. Par exemple, le matériau thermoplastique est du polyuréthane.
Les premiers moyens de déplacement 205 sont aptes à coopérer avec le piston 20 pour déplacer la tige inverseuse 30 entre sa deuxième position représentée à la figure 7 et sa première position représentée aux figures 4 à 6. Les premiers moyens de déplacement 205 sont par exemple des moyens élastiques. Les premiers moyens élastiques de déplacement 205 comportent un ressort 275, un écrou 280, une goupille 285, et une épingle 290.
En variante non représentée, les premiers moyens élastiques de déplacement 205 comprennent un bloc déformable, notamment réalisé en un matériau élastomère.
Les deuxièmes moyens de déplacement 210 sont aptes à coopérer avec le piston 20 pour déplacer la tige inverseuse 30 entre sa première position et sa deuxième position.
Les deuxièmes moyens de déplacement 210 sont par exemple des moyens élastiques. Les deuxièmes moyens élastiques de déplacement 210 sont identiques aux premiers moyens élastiques de déplacement 205.
En variante non représentée, les deuxièmes moyens élastiques de déplacement 205 comprennent un bloc élastique réalisé en un matériau élastomère.
Le premier palier 212 guide la tige inverseuse 30 en translation dans l'ouverture interne 75, suivant le sixième axe A6. Le premier palier 212 est reçu dans la première ouverture intérieure 75. Le premier palier 212 est, en outre, apte à empêcher le passage d'air comprimé entre la chambre primaire haute 165 et le premier conduit d'alimentation 70. Cela signifie que le premier palier 212 coulisse à joint étanche dans la première ouverture intérieure 75.
Le deuxième palier 213 guide la tige inverseuse 30 en translation dans l'ouverture interne 125, suivant le sixième axe A6. Le deuxième palier 213 est reçu dans la deuxième ouverture intérieure 125. Le deuxième palier 213 est, en outre, apte à empêcher le passage d'air comprimé entre la chambre primaire basse 170 et le deuxième conduit d'alimentation 120. Cela signifie que le deuxième palier 213 coulisse à joint étanche dans la deuxième ouverture intérieure 125.
Les premier et deuxième paliers 212 et 213 portent chacun un joint de palier 295.
Le premier siège d'admission 220 est ménagé dans la première cavité 80.
Le premier siège d'admission 220 est en forme de couronne cylindrique à base circulaire. L'axe du premier siège d'admission 220 est le sixième axe A6.
Les premiers moyens de maintien 225 sont propres à exercer un premier effort de retenue E1 sur le premier clapet 195. Les premiers moyens de maintien 225 sont aptes à maintenir la tige inverseuse 30 dans sa deuxième position.
Le premier effort de retenue E1 est un effort d'attraction Le premier effort de retenue E1 a, par exemple, une valeur comprise entre 2 et 4 décaNewtons (dN).
En pratique, les premiers moyens de maintien 225 sont formés par un premier aimant de maintien 225. Le premier aimant de maintien 225 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du premier aimant de maintien 225 est le sixième axe A6. Le premier aimant de maintien 225 entoure le premier siège d'admission 220 autour du sixième axe A6.
La première ouverture d'évacuation 235 présente une symétrie cylindrique autour du sixième axe A6. Le premier siège d'évacuation 240 est ménagé dans le premier bloc d'extrémité 102. Le premier siège d'évacuation 240 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du premier siège d'évacuation 240 est le sixième axe A6.
Les deuxièmes moyens de maintien 242 sont propres à exercer un deuxième effort de retenue E2 sur le premier clapet 195. Les deuxièmes moyens de maintien 242 sont aptes à maintenir la tige inverseuse 30 dans sa première position.
Le deuxième effort de retenue E2 est un effort d'attraction. Le deuxième effort de retenue E2 a, par exemple, une valeur comprise entre 2 et 4 dN.
En pratique, les deuxièmes moyens de maintien 242 sont formés par un deuxième aimant de maintien 242. Le deuxième aimant de maintien 242 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du deuxième aimant de maintien 242 est le sixième axe A6. Le deuxième aimant de maintien 242 est, de préférence, identique au premier aimant de maintien 225. Le deuxième aimant de maintien 242 entoure le premier siège d'évacuation 240 autour du sixième axe A6.
Le deuxième siège d'admission 250 est ménagé dans la deuxième cavité 130. Le deuxième siège d'admission 250 est réalisé en forme de couronne cylindrique à base circulaire.
Les troisièmes moyens de maintien 255 sont propres à exercer un troisième effort de retenue E3 sur le deuxième clapet 200. Les troisièmes moyens de maintien 255 sont aptes à maintenir la tige inverseuse 30 dans sa première position.
Le troisième effort de retenue E3 est, de préférence, un effort d'attraction. Le troisième effort de retenue E3 a, par exemple, une valeur comprise entre 2 et 4 dN.
Par exemple, les troisièmes moyens de maintien 255 sont formés par un troisième aimant de maintien 255. Le troisième aimant de maintien 255 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du troisième aimant de maintien 255 est le sixième axe A6. Le troisième aimant de maintien 255 est, de préférence, identique au premier aimant de maintien 225. Le deuxième aimant de maintien 255 entoure le deuxième siège d'admission 250 autour du sixième axe A6.
La deuxième ouverture d'évacuation 265 présente une symétrie cylindrique autour du sixième axe A6. Le deuxième siège d'évacuation 270 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du deuxième siège d'évacuation 270 est le sixième axe A6.
Les quatrièmes moyens de maintien 272 sont propres à exercer un quatrième effort de retenue E4 sur le deuxième clapet 200. Les quatrièmes moyens de maintien 272 sont aptes à maintenir la tige inverseuse 30 dans sa deuxième position.
Le quatrième effort de retenue E4 est, de préférence, un effort d'attraction. Le quatrième effort de retenue E4 a, par exemple, une valeur comprise entre 2 et 4 dN.
En pratique, les quatrièmes moyens de maintien 272 sont formés par un quatrième aimant de maintien 272.
Le quatrième aimant de maintien 272 est réalisé en forme de couronne cylindrique à base circulaire. L'axe du quatrième aimant de maintien 272 est le sixième axe A6. Le quatrième aimant de maintien 272 est, de préférence, identique au premier aimant de maintien 225. Le quatrième aimant de maintien 272 entoure le deuxième siège d'évacuation 270 autour du sixième axe A6.
Le ressort 275 est enroulé autour de la tige inverseuse 30. Le ressort 275 est en appui sur l'écrou 280. L'écrou 280 est en appui sur la goupille 285.
La goupille 285 est reçue dans une ouverture correspondante 302 de la tige inverseuse 30. La goupille 285 est configurée pour servir de butée à l'écrou 280 le long de la tige inverseuse 30.
L'épingle 290 traverse la goupille 285. L'épingle 290 empêche la goupille 285 d'être extraite de l'ouverture correspondante de la tige inverseuse 30.
Le fonctionnement du moteur 10 va maintenant être décrit. Sur la figure 6, la tige inverseuse 30 est dans sa première position.
Le premier clapet 195 est en appui sur le premier siège d'évacuation 240. Le premier clapet 195 n'est donc pas en appui sur le premier siège d'admission 220.
Le deuxième clapet 200 est en appui sur le deuxième siège d'admission 250. Le deuxième clapet 200 n'est donc pas en appui sur le deuxième siège d'évacuation 270.
L'air comprimé présent dans la deuxième ouverture intérieure 125 exerce un premier effort de pression Ep1 sur le deuxième palier. L'air comprimé présent dans la deuxième chambre secondaire exerce un deuxième effort de pression Ep2 sur le deuxième clapet 200.
Le flux F1 d'air comprimé, en provenance du tube d'alimentation 35, traverse le premier conduit d'alimentation 70 et pénètre dans la première chambre secondaire 103 par la première ouverture extérieure 85 sous la forme d'un flux d'air secondaire F1 ', ce qui est possible car le premier clapet 195 est éloigné du siège d'admission 220. Le flux secondaire d'air comprimé F1 ' traverse ensuite le premier conduit de liaison 90 pour pénétrer dans la chambre primaire haute 165.
L'air comprimé provoque donc le mouvement du piston 20 en direction du point mort bas. L'air contenu dans la chambre primaire basse 170 est expulsé à travers le deuxième conduit de liaison 140, la deuxième chambre secondaire 153, la deuxième ouverture d'évacuation 265 et le silencieux 40, sous la forme d'un flux d'air d'évacuation F2'.
Le piston 20 vient ensuite en appui sur les deuxièmes moyens de déplacement 210. En particulier, le piston 20 comprime le ressort 275. Le ressort 275 exerce sur la tige inverseuse 30 une première force de déplacement D1 tendant à déplacer la tige inverseuse 30 vers sa deuxième position. Lorsque le piston 20 n'est pas encore arrivé au point mort bas, la première force de déplacement D1 est inférieure à la somme du deuxième effort de retenue E2, du troisième effort de retenue E3 et des premiers et deuxièmes efforts de pression Ep1 et Ep2. La tige inverseuse 30 reste donc dans sa première position.
Lorsque le piston 20 atteint le point mort bas, la première force de déplacement D1 due au ressort 275 est supérieure à la somme des deuxième et troisième efforts de retenue E2 et E3 et des premiers et deuxièmes efforts de pression Ep1 et Ep2. La tige inverseuse 30 est alors déplacée de sa première position vers sa deuxième position pour atteindre la configuration de la figure 7.
Sur la figure 7, le premier clapet 195 est en appui sur le premier siège d'admission 220. Le deuxième clapet 200 est donc en appui sur le deuxième siège d'évacuation 270.
Le flux F1 d'air comprimé ne pénètre alors plus dans la chambre primaire haute 165, mais dans la chambre primaire basse 170 sous la forme d'un flux d'air secondaire F1 ". Le piston 20 est alors mis en mouvement du point mort bas vers le point mort haut.
L'air contenu dans la chambre primaire haute 165 s'échappe à travers le premier conduit de liaison 90, la première chambre secondaire 103, et la première ouverture d'évacuation 235, sous la forme d'un flux d'air d'évacuation F2".
Lorsque le piston 20 atteint le point mort haut, la tige inverseuse 30 est déplacée de sa deuxième position vers sa première position, selon une séquence inverse de celle mentionnée ci-dessus.
Le moteur 10 est apte à commander l'alimentation alternativement de la chambre primaire haute 165 et de la chambre primaire basse 170, sans utiliser de dispositif extérieur. De plus, le moteur 10 présente une grande fiabilité. Selon un deuxième exemple de réalisation non représenté, la pompe 6 comporte deux étages de pompage 8.
La première culasse 50 comporte alors en outre un deuxième trou traversant de réception de l'arbre 25 et d'un deuxième palier principal disposé autour de l'arbre 25 et dans lequel cet arbre 25 coulisse lorsque le moteur 10 fonctionne.
Le deuxième trou traversant s'étend entre la première face intérieure 65 et la première face extérieure 60.
Le deuxième trou traversant est cylindrique à base circulaire. L'axe central du deuxième trou traversant est le premier axe A1 .
Le deuxième trou traversant reçoit le deuxième palier principal apte à permettre la translation de l'arbre 25 selon la direction principale Z. Le deuxième palier principal est, en outre, apte empêcher le passage d'air comprimé entre la première chambre primaire 165 et l'extérieur du boîtier 15.
L'arbre 25 traverse la première culasse 50 et la deuxième culasse 55.
Chaque extrémité de l'arbre 25 est accouplée à un étage de pompage 8.
Le fonctionnement du deuxième exemple est identique au fonctionnement du premier exemple.
Le débit de la pompe 6 est alors augmenté.
Selon un troisième exemple de réalisation non représenté, la pompe 6 comporte un premier moteur 10 comportant un premier boîtier 15, un premier piston 20, un premier clapet 195 et un deuxième clapet 200, et un deuxième moteur 10 comportant un deuxième boîtier 15, un deuxième piston 20, un troisième clapet et un quatrième clapet.
La tige inverseuse 30 est commune au premier moteur 10 et au deuxième moteur
10.
Le premier boîtier 15 comporte une première culasse 50 et une deuxième culasse
55. Le premier boîtier 15 est identique au boîtier 15 décrit dans le deuxième exemple.
Le premier piston 20 partage le premier boîtier 15 en une première chambre primaire 165 et une deuxième chambre primaire 170.
Le deuxième boîtier 15 comporte une troisième culasse et une quatrième culasse. Le deuxième piston 20 partage le deuxième boîtier 15 en une troisième chambre primaire et une quatrième chambre primaire. Le deuxième piston 20 est identique au premier piston 20.
La troisième culasse est identique à la première culasse décrite dans le premier exemple. La quatrième culasse est identique à la deuxième culasse décrite dans le premier exemple. La quatrième culasse fait face à la première culasse 165
La tige 30 s'étend dans la direction principale Z à travers la deuxième chambre primaire 165, le premier piston 20, la deuxième chambre primaire 170, la première culasse 50, la quatrième culasse, la quatrième chambre primaire, le deuxième piston, la troisième chambre primaire et la troisième culasse.
La tige 30 porte le premier clapet 195, le deuxième clapet 200, le troisième clapet et le quatrième clapet.
La tige 30 est mobile entre une première position et une deuxième position.
Les pistons 20 sont montés tous les deux sur un même arbre 25.
Le fonctionnement de ce troisième exemple va maintenant être décrit.
Lorsque la tige 30 est dans la première position, la première chambre primaire et la troisième chambre primaire sont alimentées en air comprimé. Lorsque la tige 30 est dans la deuxième position, la deuxième chambre primaire et la quatrième chambre primaire sont alimentées en air comprimé.
Les deux pistons 20 sont actionnés simultanément, et entraînent tous deux l'arbre
25.
La pompe 6 est donc plus puissante.
Selon un quatrième exemple de réalisation, les premiers moyens de déplacement 205 et les deuxièmes moyens de déplacement 210 sont des moyens magnétiques.
Les premiers moyens de déplacement comportent un premier aimant de déplacement et un deuxième aimant de déplacement.
Le premier aimant de déplacement est, par exemple, porté par la tige 30. Le deuxième aimant de déplacement est, par exemple, porté par le piston 20. Le premier et le deuxième aimant de déplacement sont aptes à exercer l'un sur l'autre une force magnétique répulsive.
Les deuxièmes moyens de déplacement comportent un troisième aimant de déplacement et un quatrième aimant de déplacement.
Le troisième aimant de déplacement est, par exemple, porté par la tige 30. Le quatrième aimant de déplacement est, par exemple, porté par le piston 20. Le troisième et le quatrième aimant de déplacement sont aptes à exercer l'un sur l'autre une force magnétique répulsive.
Le fonctionnement du quatrième exemple est identique au fonctionnement du premier exemple.
La fabrication du moteur 10 est alors simplifiée. Les caractéristiques des modes de réalisation et variantes mentionnées ci-dessus peuvent être combinées pour générer de nouveaux modes de réalisation de l'invention.

Claims

REVENDICATIONS
1 . - Moteur (10) à air comprimé comprenant un piston (20) et un boîtier (15), le piston (20) étant reçu dans le boîtier (15) et divisant le boîtier en deux chambres primaires (165,170) de volume variable, le moteur (10) comprenant
• un premier clapet (195) d'alimentation directe d'une première chambre primaire (165) parmi les deux chambres primaires et un deuxième clapet (200) d'alimentation directe de l'autre chambre primaire (170), ces deux clapets étant mobiles chacun par rapport à au moins un siège (220, 240, 250, 270) respectif,
• des moyens (225, 242, 255, 272) de maintien de la tige (30) dans au moins une de ses première et deuxième positions,
le premier clapet (195) et le deuxième clapet (200) étant montés sur une même tige (30) mobile par rapport au boîtier (15) selon une direction (Ζ') parallèle à la direction (Z) de déplacement du piston (20) et la tige (30) étant configurée pour être déplacée entre une première position et une deuxième position par des moyens de déplacement (205,210) activés par le piston (20),
le moteur (10) étant caractérisé en ce que les premier et deuxième clapets (195,200) sont réalisés au moins partiellement en matériau ferromagnétique et en ce que les moyens de maintien (225, 242, 255, 272) comprennent au moins un premier aimant de maintien (225) propre à exercer un premier effort de retenue (E1 ) sur le premier clapet (195), un deuxième aimant de maintien (242) propre à exercer un deuxième effort de retenue (E2) sur le premier clapet (195), un troisième aimant de maintien (255) propre à exercer un troisième effort de retenue (E3) sur le deuxième clapet (200) et un quatrième aimant de maintien (272) propre à exercer un quatrième effort de retenue (E4) sur le deuxième clapet (200).
2. - Moteur (10) selon la revendication 1 , dans lequel les moyens de déplacement (205, 210) sont activés par le piston (20) lorsqu'il arrive au point mort haut ou au point mort bas de sa trajectoire.
3.- Moteur (10) selon l'une des revendications 1 ou 2, dans lequel les moyens de déplacement sont des moyens élastiques (205, 210).
4. - Moteur (10) selon la revendication 3, caractérisé en ce que les moyens élastiques (205,210) comprennent au moins un ressort (275).
5. - Moteur (10) selon la revendication 4, caractérisé en ce que la tige (30) porte au moins une goupille (285), le ressort (275) étant enroulé autour de la tige (30) et apte à exercer sur la goupille (285) une force (D1 ) de déplacement de la tige (30) de sa deuxième position vers sa première position ou réciproquement.
6. - Moteur (10) selon l'une des revendications 1 ou 2, dans lequel les moyens de déplacement (205, 210) comprennent au moins un premier aimant de déplacement et au moins un deuxième aimant de déplacement exerçant l'un sur l'autre une force magnétique répulsive.
7. - Moteur (10) selon l'une quelconque des revendications 1 à 6, dans lequel le piston (20) est mobile par rapport au boîtier (15) selon une direction principale (Z) et la tige (30) s'étend dans la direction principale (Z) à travers une première chambre primaire (165), le piston (20) et une deuxième chambre primaire (170).
8. - Moteur (10) selon l'une quelconque des revendications 1 à 7, dans lequel : - le boîtier (15) comprend une première chambre secondaire (103) présentant un premier siège d'admission (220) et un premier siège d'évacuation (240) et une deuxième chambre secondaire (153) présentant un deuxième siège d'admission (250) et un deuxième siège d'évacuation (270), le premier clapet (195) étant reçu dans la première chambre secondaire (103) et le deuxième clapet (200) étant reçu dans la deuxième chambre secondaire (153),
- le premier clapet (195) est en appui sur le premier siège d'évacuation (240) et le deuxième clapet (200) est en appui sur le deuxième siège d'admission (270), lorsque la tige (30) est dans sa première position et le premier clapet (195) est en appui sur le premier siège d'admission (220) et le deuxième clapet (200) est en appui sur le deuxième siège d'évacuation (270), lorsque la tige (30) est dans sa deuxième position.
9. - Moteur (10) selon l'une quelconque des revendications 1 à 8, dans lequel le boîtier (15) comporte au moins une culasse (50, 55), et la tige (30) comporte au moins un palier (212, 213) coulissant à joint étanche dans la culasse (50, 55).
10.- Pompe à mouvement alternatif comprenant un moteur (10) selon l'une quelconque des revendications 1 à 9.
PCT/EP2015/081228 2014-12-26 2015-12-24 Moteur à air comprimé et pompe comprenant un tel moteur WO2016102704A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017533923A JP6717832B2 (ja) 2014-12-26 2015-12-24 空気モータ及びそのようなモータを含むポンプ
CN201580071052.0A CN107109940B (zh) 2014-12-26 2015-12-24 空气马达和包括这种马达的泵
KR1020177017551A KR20170100533A (ko) 2014-12-26 2015-12-24 공기 모터 및 이러한 모터를 포함하는 펌프
EP15817872.3A EP3237727B1 (fr) 2014-12-26 2015-12-24 Moteur à air comprimé et pompe comprenant un tel moteur
US15/539,019 US10385693B2 (en) 2014-12-26 2015-12-24 Air motor and pump comprising such a motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463354A FR3031134B1 (fr) 2014-12-26 2014-12-26 Moteur a air comprime et pompe comprenant un tel moteur
FR1463354 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016102704A1 true WO2016102704A1 (fr) 2016-06-30

Family

ID=52684506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/081228 WO2016102704A1 (fr) 2014-12-26 2015-12-24 Moteur à air comprimé et pompe comprenant un tel moteur

Country Status (7)

Country Link
US (1) US10385693B2 (fr)
EP (1) EP3237727B1 (fr)
JP (1) JP6717832B2 (fr)
KR (1) KR20170100533A (fr)
CN (1) CN107109940B (fr)
FR (1) FR3031134B1 (fr)
WO (1) WO2016102704A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR484199A (fr) 1916-05-09 1917-09-12 Paul Bez Pompe à débit variable
DE1992789U (de) 1968-05-25 1968-08-29 Wilhelm Wagner Luftmotor fuer farbspritzgeraet, fettpressen u. dgl.
DE2816617A1 (de) 1978-04-17 1979-10-18 Erich Roser Druckluftmotor mit kolbenschieberventil
DE2823667A1 (de) 1978-05-31 1979-12-06 Erich Roser Druckluftmotor
EP0319341A2 (fr) 1987-12-03 1989-06-07 OAKLEIGH LIMITED (a Gibraltar company) Moteur actionné par fluide
US4974495A (en) 1989-12-26 1990-12-04 Magnavox Government And Industrial Electronics Company Electro-hydraulic valve actuator
EP0414268A1 (fr) 1989-08-24 1991-02-27 Novoles Tozd Sigmat Moteur pneumatique à distribution automatique, en particulier pour pulvérisateurs de peinture, pompes à graisse ou similaire
US5012643A (en) * 1989-12-07 1991-05-07 Masanobu Higami Pressure-driven engine
FR2695965A1 (fr) 1992-09-23 1994-03-25 Kremlin Pompe munie, sur une ou plusieurs tiges de pistons, d'un soufflet d'étanchéité.
WO2003058072A2 (fr) 2002-01-03 2003-07-17 Spin Master Ltd. Moteur hydraulique a piston

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US513601A (en) * 1894-01-30 Mechanism foe conteolling engines
US488763A (en) * 1892-12-27 William h
US791368A (en) * 1903-08-31 1905-05-30 M & P Co Fluid motor or meter.
US4240329A (en) * 1979-01-05 1980-12-23 Proteus Corporation Fluid pressure servo detent mechanism
DE3137937A1 (de) * 1981-09-24 1983-08-18 S. W. Hart & Co. Pty. Ltd., Welshpool Niedertemperaturwaermekraftmaschine
DE29710807U1 (de) * 1997-06-19 1997-08-28 WiWa Wilhelm Wagner GmbH & Co KG, 35633 Lahnau Druckluft-Kolbenmotor
CN102418798A (zh) * 2011-06-16 2012-04-18 重庆长江涂装设备有限责任公司 气动二位四通换向阀

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR484199A (fr) 1916-05-09 1917-09-12 Paul Bez Pompe à débit variable
DE1992789U (de) 1968-05-25 1968-08-29 Wilhelm Wagner Luftmotor fuer farbspritzgeraet, fettpressen u. dgl.
DE2816617A1 (de) 1978-04-17 1979-10-18 Erich Roser Druckluftmotor mit kolbenschieberventil
DE2823667A1 (de) 1978-05-31 1979-12-06 Erich Roser Druckluftmotor
EP0319341A2 (fr) 1987-12-03 1989-06-07 OAKLEIGH LIMITED (a Gibraltar company) Moteur actionné par fluide
EP0414268A1 (fr) 1989-08-24 1991-02-27 Novoles Tozd Sigmat Moteur pneumatique à distribution automatique, en particulier pour pulvérisateurs de peinture, pompes à graisse ou similaire
US5012643A (en) * 1989-12-07 1991-05-07 Masanobu Higami Pressure-driven engine
US4974495A (en) 1989-12-26 1990-12-04 Magnavox Government And Industrial Electronics Company Electro-hydraulic valve actuator
FR2695965A1 (fr) 1992-09-23 1994-03-25 Kremlin Pompe munie, sur une ou plusieurs tiges de pistons, d'un soufflet d'étanchéité.
WO2003058072A2 (fr) 2002-01-03 2003-07-17 Spin Master Ltd. Moteur hydraulique a piston

Also Published As

Publication number Publication date
EP3237727B1 (fr) 2019-05-01
CN107109940B (zh) 2020-01-31
FR3031134A1 (fr) 2016-07-01
KR20170100533A (ko) 2017-09-04
JP6717832B2 (ja) 2020-07-08
EP3237727A1 (fr) 2017-11-01
FR3031134B1 (fr) 2018-02-16
JP2018506673A (ja) 2018-03-08
US10385693B2 (en) 2019-08-20
US20170350247A1 (en) 2017-12-07
CN107109940A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
EP3686427B1 (fr) Pompe pour produit liquide comprenant un dispositif d'étanchéité et installation de pulvérisation comprenant une telle pompe
EP1949973B1 (fr) Pompe pour distribuer une dose de produit fluide et gamme comprenant de telles pompes
CN102812246B (zh) 具有带关节端的落管的空气马达
FR2967218A1 (fr) Doseur proportionnel d'un liquide auxiliaire dans un liquide principal.
EP2288814B1 (fr) Actionneur electrohydraulique a pompe integree dans le piston.
FR2464420A1 (fr) Robinet de dosage a commande magnetique
EP3237727B1 (fr) Moteur à air comprimé et pompe comprenant un tel moteur
WO2018105315A1 (fr) Ensemble tige et dispositif de pression hydraulique
WO2016062639A1 (fr) Injecteur de carburant
WO2017109329A1 (fr) Système de refroidissement et lubrification pour dispositif d'étanchéité pour piston
FR3045735A1 (fr) Pompe de pressurisation de fluide et systeme de pressurisation de fluide
EP2891825B1 (fr) Actionneur téléscopique
FR2910450A1 (fr) Pompe pour distribuer un produit fluide.
FR2889566A1 (fr) Actionneur mecanique et dispositif de passage de vitesses
EP3163076A1 (fr) Machine hydraulique à deux cylindrées et à valve de sécurité
FR3011588A1 (fr) Moteur diesel comportant une pompe de carburant integree
WO2020096544A3 (fr) Configuration de vérin à gaz à décharge via la tige du vérin à gaz
JP2015113001A (ja) 弁制御装置
EP1338373B1 (fr) Dispositif de réalisation d'un assemblage d'une queue de soupape et d'une coupelle
FR2555255A1 (fr) Pompe volumetrique
EP3775645B1 (fr) Vanne de regulation amelioree avec fonction de purge integree
FR2466640A1 (fr) Moteur a air comprime
FR2993623A1 (fr) Dispositif amortisseur hydraulique
FR2745353A1 (fr) Dispositif d'etancheite pour vanne a tournant spherique
WO2015044586A1 (fr) Dispositif de raccord hydraulique et système de transfert de fluide utilisant ce dispositif

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15817872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533923

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15539019

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177017551

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015817872

Country of ref document: EP