WO2016101918A1 - 一种电池均衡模块电压偏差检测修调系统 - Google Patents

一种电池均衡模块电压偏差检测修调系统 Download PDF

Info

Publication number
WO2016101918A1
WO2016101918A1 PCT/CN2015/099016 CN2015099016W WO2016101918A1 WO 2016101918 A1 WO2016101918 A1 WO 2016101918A1 CN 2015099016 W CN2015099016 W CN 2015099016W WO 2016101918 A1 WO2016101918 A1 WO 2016101918A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
module
equalization module
voltage deviation
adjustment
Prior art date
Application number
PCT/CN2015/099016
Other languages
English (en)
French (fr)
Inventor
周逊伟
华大授
奚淡基
王丽琴
Original Assignee
杭州协能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州协能科技股份有限公司 filed Critical 杭州协能科技股份有限公司
Priority to US15/629,637 priority Critical patent/US9971367B2/en
Publication of WO2016101918A1 publication Critical patent/WO2016101918A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a battery equalization module voltage deviation detection trimming system.
  • the prior art solution is a method and a device for automatically balancing and adjusting a series battery pack.
  • the device is composed of a DC/DC converter, the input end of which is connected to the positive and negative ends of the battery pack, and the N sets of identical DC output terminals are respectively connected.
  • the converter can directly distribute the power according to the voltage level of each battery, thereby realizing the power transfer from the high capacity battery to the low capacity battery, so that each battery The voltage and power are consistent and balanced.
  • This automatic equalization adjustment method can avoid overcharging and overdischarging of the battery pack during charging and discharging, protect the battery pack and prolong its service life.
  • the equalization module also has the following disadvantages: the traditional voltage offset detection and adjustment is mainly to adjust the voltage offset of the chip level, but when the chip is used for the module, it is adjusted due to the influence of the external circuit. The voltage bias will generate a new voltage error. Although the deviation is not very large under normal circumstances, battery equalization requires high voltage accuracy, especially for batteries with flat platform voltage, such as lithium iron phosphate battery. It is necessary to accurately adjust the voltage offset. Therefore, when the equalization module is completed, voltage deviation adjustment is needed to improve the voltage accuracy.
  • the voltage offset of the final product cannot be optimal, which will result in the production of the product.
  • the traditional voltage offset adjustment is difficult to calculate the final test result of the module, and it is also disadvantageous for the upgrade and development of the product, and the voltage adjustment process is irreversible. Once the adjustment is completed, the shape is determined, which is easy to cause damage and waste of the module.
  • the invention provides a battery equalization module voltage deviation detecting and adjusting system which is simple and easy to understand, fast in repairing speed, good in effect, can improve the product quality of the product and the balance effect of the battery, and prolong the life of the battery pack.
  • a battery equalization module voltage deviation detection trimming system comprising: a trimmed equalization module, wherein the equalization module is connected with an automatic adjustment voltage deviation main control board for trimming the output voltage thereof, the automatic adjustment The voltage deviation main control board is further connected with a DC programmable power supply for power supply, and the automatic adjustment voltage deviation main control board includes a single chip, and the input voltage and the output voltage of the equalization module are sampled and output to the single chip.
  • the working mode of the equalization module of the invention has an energy upload mode and an energy down mode.
  • the equalization module mainly equalizes the voltages of the upper and lower unit cells. When the voltage of the previous unit cell is greater than the voltage of the next unit cell, the equalization module operates under the energy.
  • the equalization module In the transmission mode, when the voltage of the next unit cell is greater than the voltage of the previous unit battery, the equalization module operates in the energy upload mode, and the voltage deviation main control board automatically samples the voltage value in the different working modes of the equalization module, and then passes the corresponding algorithm. The voltage deviation value is obtained, and then the output voltage of the equalization module is adjusted according to the voltage deviation value.
  • the invention directly adjusts the output voltage of the equalization module by automatically adjusting the voltage deviation main control board to make it consistent with the input voltage, thereby eliminating the The error introduced by the peripheral circuit reduces the error of the final product under the same component accuracy.
  • the equalization module is provided with a plurality of parallel boost fuses for bucking and then increasing the output voltage, and a plurality of parallel buck fuses for reducing the output voltage after the blow. If the input voltage of the equalization module is 3.30V and the output voltage value is 3.34V, it can be blown to a certain step-down fuse in the equalization module to reduce the voltage to 3.28V, and then burn a boost fuse in the equalization module. Raise it to 3.30V.
  • the boost value corresponding to each boost fuse is different, and the buck value corresponding to each buck fuse is also different, and can be set as needed.
  • the voltage adjustment module includes a voltage adjustment control module connected to the single chip microcomputer, and the voltage adjustment control module is connected with an input voltage adjustment mode switch controlled by the control mode, and is controlled by the control to select the equalization module according to the voltage deviation value.
  • the voltage adjustment control module After receiving the voltage deviation value signal sent by the single chip microcomputer, the voltage adjustment control module adjusts the voltage adjustment mode switch to the entry mode, and then selects the corresponding boost fuse or step-down fuse according to the voltage deviation value signal through the selection switch. Wire, finally, the blowout switch outputs a blow signal to the equalization module to blow the fuse selected by the selection switch to realize the equalization module bias adjustment.
  • the automatic adjustment voltage deviation main control board further includes a connection with the DC programmable power supply
  • the circuit power source is connected to the single chip microcomputer, the voltage sampling module and the voltage adjusting module respectively.
  • the automatic adjustment voltage deviation main control board is further provided with a dial switch for selecting the type of the equalization module and the working mode, and displaying a plurality of indicator lights and an alarm buzzer for the working state.
  • the indicator light is used to display the current status of the main control board. When the power supply part is normal, the VCC light will be on; when everything is ready, waiting for work, the Ready indicator will light; when the main control board is being adjusted When Burning's indicator light will be on; when the module is successfully adjusted, the pass indicator will light up.
  • the automatic adjustment voltage deviation main control board is also connected to a PC for printing display data and outputting an instruction thereto.
  • the automatic adjustment voltage deviation main control board sends the sampled input voltage and output voltage and voltage deviation value to the PC for display and save, so that the tester can view or release the work instruction.
  • the invention has the beneficial effects of directly adjusting the voltage of the equalization module, eliminating the error introduced by the peripheral circuit, and reducing the error of the final product under the same component precision.
  • a large amount of test data can be saved, and the voltage offset of the equalization module is counted, which is the original basis for product upgrade and effective utilization.
  • Figure 1 is a block diagram of the circuit of the present invention.
  • FIG. 2 is a block diagram showing the specific structure of the present invention.
  • Figure 3 is a flow chart of the operation of the present invention.
  • a battery equalization module voltage deviation detection trimming system includes a trimmed equalization module 1, and the equalization module 1 and an automatic adjustment voltage deviation main control board 2 for trimming the output voltage thereof Connected, the automatic adjustment voltage deviation main control board 2 is also connected with a DC programmable power supply 3 for power supply, the automatic adjustment voltage deviation main control board 2 includes a single chip microcomputer 21, and the single chip microcomputer 21 is connected with the equalization module 1
  • the input voltage and the output voltage are sampled and output to the voltage sampling module 22, and the voltage adjustment module that receives the obtained voltage deviation signal and adjusts the output voltage of the equalization module 1
  • the single chip 21 samples the received voltage After comparing the input voltage and the output voltage of the equalization module 1 sampled by the module 22, the output voltage deviation value signal is output to the voltage adjustment module, and the voltage adjustment module adjusts the output voltage of the equalization module 1 to be consistent with the input voltage according to the voltage deviation value.
  • the working mode of the equalization module 1 of the present invention has an energy upload mode and an energy downlink mode.
  • the equalization module 1 mainly equalizes the voltages of the upper and lower unit cells. When the voltage of the previous unit cell is greater than the voltage of the next unit cell, the equalization module 1 works. In the energy down mode, when the next cell voltage is greater than the voltage of the previous cell, the equalization module 1 operates in the energy upload mode, and the voltage deviation main control board 2 automatically samples the voltage values of the equalization module 1 in different working modes. Then, the voltage deviation value is obtained by the corresponding algorithm, and then the output voltage of the equalization module 1 is adjusted according to the voltage deviation value.
  • the present invention directly adjusts the output voltage of the equalization module 1 by automatically adjusting the voltage deviation main control board 2, so that the output voltage of the equalization module 1 is directly adjusted. It is consistent with the input voltage, eliminating the error introduced by the peripheral circuit and reducing the error of the final product under the same component accuracy.
  • the equalization module 1 of the present invention is provided with a plurality of parallel boosting fuses (not shown) for bucking and then increasing the output voltage, and a plurality of parallel step-down fuses for reducing the output voltage after being blown. (not shown in the figure). If the input voltage of the equalization module 1 is 3.30V and the output voltage value is 3.34V, the voltage can be reduced to 3.28V by blowing off a certain step-down fuse in the equalization module 1, and then burning a certain liter in the equalization module 1. The pressure fuse lifts it to 3.30V.
  • the boost value corresponding to each boost fuse is different, and the buck value corresponding to each buck fuse is also different, and can be set as needed.
  • the voltage adjustment module of the present invention comprises a voltage adjustment control module 23 connected to the single chip microcomputer 21, and the voltage adjustment control module 23 is connected with an entry voltage adjustment mode switch 24 controlled by the control mode into the adjustment mode, and is controlled according to the voltage deviation value. Select the corresponding boost fuse or step-down fuse in equalization module 1
  • the selection switch 25 controls the output blow signal to the equalization module 1 to blow the blow switch 26 of the corresponding fuse.
  • the voltage adjustment control module 23 After receiving the voltage deviation value signal sent by the single chip 21, the voltage adjustment control module 23 adjusts the incoming voltage adjustment mode switch 24 to the entry mode, and then selects the corresponding boosting fuse according to the voltage deviation value signal through the selection switch 25. Or step-down fuse, and finally the blow-off switch 26 outputs a blow signal to the equalization module 1 to blow the fuse selected by the selection switch to realize the bias adjustment of the equalization module 1.
  • the automatic adjustment voltage deviation main control board 2 of the embodiment further includes a plurality of power supply 27 connected to the DC programmable power supply 3, and the multiple power supply 27 is respectively connected to the single chip microcomputer 21, the voltage sampling module 22, and the voltage adjustment module.
  • the automatic adjustment voltage deviation main control board 2 is further provided with a dial switch (not shown) for selecting the type of the equalization module 1 and the working mode, and displaying multiple indicators of the working state (not shown in the figure) Marker and alarm buzzer (not shown). Before the adjustment, the type and working mode of the equalization module 1 need to be selected through the dial switch.
  • the indicator light is used to display the current status of the main control board. When the power supply part is normal, the VCC light will be on; when everything is ready, waiting for work, the Ready indicator will light; when the main control board is being adjusted When Burning's indicator light will be on; when the module is successfully adjusted, the pass indicator will light up.
  • the automatic adjustment voltage deviation main control board 2 of the embodiment is also connected to the PC 4 for printing display data and outputting an instruction thereto.
  • the automatic adjustment voltage deviation main control board 2 sends the sampled input voltage and the output voltage and voltage deviation value to the PC 4 for display and save, so that the tester can view or release the work instruction.
  • the type and working mode of the equalization module need to be selected through the dial switch before the power adjustment main control board 2 is automatically adjusted.
  • the voltage deviation main control board 4 is automatically adjusted, the system is initialized. After the initialization is completed, the system performs parameter configuration, then enters the test, and the external hardware button controls the voltage sampling, and the PC 4 prints the corresponding test result. After judging that the data is valid, it is necessary to calculate the voltage deviation when the equalization module 1 is working, and then adjust the voltage deviation by controlling the output of the optocoupler. Once the repair fails, the master chip of the equalization module 1 is replaced because the fuse is It cannot be recovered after being blown, and the master chip voltage trim of each module cannot be changed once it is finished.
  • Voltage input corresponding to different equalization modules 1 set different voltage values and current limit values.
  • the VCC lamp When the power is turned on, the VCC lamp will light up, indicating that the voltage deviation of the main control board 2 is automatically adjusted.
  • the indicator of the pass lights up, indicating that the equalization module 1 is successfully adjusted, and the buzzer is called. If the indicator of Fail is on, it indicates that the current equalization module 1 fails to be adjusted, and the buzzer sounds.
  • the equalization module 1 that failed the trimming is placed in the module recovery place for the second processing, and then the coordination of the next equalization module 1 is performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池均衡模块电压偏差检测修调系统,包括被修调的均衡模块,所述均衡模块与对其输出电压进行修调的自动调整电压偏差主控板连接,所述自动调整电压偏差主控板上还连接有供电用的直流可编程电源,所述自动调整电压偏差主控板包括单片机,所述单片机上连接有对均衡模块的输入电压和输出电压进行采样并输出给其的电压采样模块、接收其得到的电压偏差信号后对均衡模块的输出电压进行调整的电压调整模块,所述单片机将接收到的电压采样模块采样到的均衡模块的输入电压和输出电压比较后,输出电压偏差值信号给电压调整模块,电压调整模块根据电压偏差值将均衡模块的输出电压修调至与输入电压一致。

Description

一种电池均衡模块电压偏差检测修调系统 技术领域
本发明涉及一种电池均衡模块电压偏差检测修调系统。
背景技术
随着经济的快速发展和生活水平的不断提高,人类对能源的需求不断的扩大。传统能源给社会带来两大问题:一是能源危机——传统能源日益减少取之有尽,二是环境污染——传统能源对环境造成的危害日益突出。这时就需要能够有新型的能量来补充人类的能源结构,维持长远的可持续发展。锂电池以其独有的优势而成为人们重视的焦点。尤其在电动汽车上的应用,作为整车电源逐渐得到广泛的认可。为了得到所需的电压与电流,往往需要将锂电池大量的串并联起来作为一个整包使用,但单体锂电池之间存在着很大的差异,当对整包电池进行充放电时,由于单体的差异,将会大大的缩短电池的寿命和循环周期。正是基于这种状况,电池均衡就显得尤为重要,但是由于电池均衡模块本身电压偏差的一致性,这将直接影响到电池均衡效果的好坏,所以需要自动检测出它们的差异并调整相应的电压偏差。
现有技术方案是串联蓄电池组自动均衡调节方法及装置,该装置由一只DC/DC变换器构成,其输入端接电池组的正、负端,而N组完全相同的直流输出端分别接到对应的N只电池的正、负极,只要起动高频脉冲发生器工作,变换器就能根据各电池电压高低直接进行电量分配,实现由高容量电池向低容量电池的电量转移,使各电池电压、电量趋向一致,实现均衡。这种自动均衡调节方法可以避免电池组在充放电过程中发生过充电和过放电现象,保护电池组,延长其使用寿命。但该方案的设计比较理论化,实现起来非常困难,而且实现成本较高。但均衡模块也存在以下缺点:传统的电压偏置检测与调整主要是对芯片级的电压偏置调整,但是当芯片用于模块后,由于外部电路的影响,调整好 的电压偏置将会发生新的电压误差,虽然一般情况下这个偏差值并不会很大,但电池均衡对电压精度要求很高,特别是对平台电压比较平的电池,如磷酸铁锂电池,需要精确的调整电压偏置,所以,当均衡模块做好后,需要进行电压偏差调整,提高电压精度。如果像以往一样只在芯片中调整电压的话,由于应用电路中其他元件,如电子、电容等,精度的影响,最终产品的电压偏置是不能达到最佳状态的,会使生产出来的产品中混有不合格品,降低产品的成品率。若这样的产品应用在电池上,会导致单体电池被拉偏,从而影响整箱电池的寿命,甚至损坏电池,造成系统无法使用,比未加均衡还差。且传统的电压偏置调整难以统计模块最终的测试结果,对于产品的升级和发展亦有所不利,且电压调整过程是不可逆的,一旦调整完成即定型,这样很容易造成模块的损害与浪费。
发明内容
本发明提供了一种操作简便易懂,修调速度快,效果好,能提高产品的出厂质量和电池的均衡效果,延长电池组的寿命的电池均衡模块电压偏差检测修调系统。
本发明采用的技术方案是:
一种电池均衡模块电压偏差检测修调系统,其特征在于:包括被修调的均衡模块,所述均衡模块与对其输出电压进行修调的自动调整电压偏差主控板连接,所述自动调整电压偏差主控板上还连接有供电用的直流可编程电源,所述自动调整电压偏差主控板包括单片机,所述单片机上连接有对均衡模块的输入电压和输出电压进行采样并输出给其的电压采样模块、接收其得到的电压偏差信号后对均衡模块的输出电压进行调整的电压调整模块,所述单片机将接收到的电压采样模块采样到的均衡模块的输入电压和输出电压比较后,输出电压偏差值信号给电压调整模块,电压调整模块根据电压偏差值将均衡模块的输出电 压修调至与输入电压一致。本发明均衡模块的工作模式有能量上传模式和能量下传模式,均衡模块主要均衡上下两个单元电池的电压,当上一单元电池电压大于下一单元电池的电压时,均衡模块工作在能量下传模式,当下一单元电池电压大于上一单元电池的电压时,均衡模块工作在能量上传模式,自动调整电压偏差主控板对均衡模块不同工作模式下的电压值进行采样,再通过相应的算法得出电压偏差值,然后根据电压偏差值对均衡模块的输出电压进行调整,本发明是通过自动调整电压偏差主控板直接对均衡模块的输出电压进行调整,使其与输入电压一致,消除了外围电路引入的误差,在相同的元件精度下,减少最终产品的误差。
进一步,所述均衡模块内设置有用于烧断后调高输出电压的多个并联的升压熔丝和用于烧断后调低输出电压的多个并联的降压熔丝。假如均衡模块的输入电压为3.30V,输出电压值为3.34V,可以通过烧断均衡模块内某一降压熔丝,将电压降到3.28V,再烧断均衡模块内某一升压熔丝将它升到3.30V。每个升压熔丝对应的升压值是不同的,每个降压熔丝对应的降压值也是不同的,可以根据需要进行设置的。
进一步,所述电压调整模块包括与单片机连接的电压调整控制模块,所述电压调整控制模块上连接有由其控制进入调整模式的进入电压调整模式开关、由其控制根据电压偏差值选择均衡模块内相应升压熔丝或降压熔丝的选择开关、由其控制输出烧断信号给均衡模块烧断相应熔丝的烧断开关。电压调整模块在接收到单片机发送的电压偏差值信号后,电压调整控制模块将进入电压调整模式开关调整至进入模式,再通过选择开关根据电压偏差值信号选择相应的升压熔丝或降压熔丝,最后由烧断开关输出烧断信号给均衡模块烧断选择开关选择的熔丝,实现均衡模块偏压调整。
进一步,所述自动调整电压偏差主控板还包括与直流可编程电源连接的多 路电源,所述多路电源分别与单片机、电压采样模块、电压调整模块连接。
进一步,所述自动调整电压偏差主控板上还设置有选择均衡模块的类型及工作模式的拨码开关,显示其工作状态的多个指示灯和报警用的蜂鸣器。在修调前,需要先通过拨码开关来选择均衡模块的类型和工作模式。指示灯则用来显示主控板当前所处的状态,当供电部分正常时,VCC的灯会亮起来;当一切准备就绪,等待工作时,Ready的指示灯会亮;当主控板正在进行修调时,Burning的指示灯会亮;当模块修调成功后,pass的指示灯会亮起来。
进一步,所述自动调整电压偏差主控板还与用于打印显示数据并输出指令给其的PC机连接。自动调整电压偏差主控板将采样到的输入电压和输出电压及电压偏差值发送到PC机显示保存,以待测试人员查看或下达工作指令。
本发明的有益效果:直接对均衡模块进行的电压调整,消除了外围电路引入的误差,在相同的元件精度下,减少最终产品的误差。除了可提高电压精度外,也可保存大量的测试数据,对均衡模块电压偏置进行统计,为产品升级和有效利用率等作为原始依据。
附图说明
图1是本发明的电路原理框图。
图2是本发明的具体结构框图。
图3是本发明的工作流程图。
具体实施方式
下面结合具体实施例来对本发明进行进一步说明,但并不将本发明局限于这些具体实施方式。本领域技术人员应该认识到,本发明涵盖了权利要求书范围内所可能包括的所有备选方案、改进方案和等效方案。
参照图1-3,一种电池均衡模块电压偏差检测修调系统,包括被修调的均衡模块1,所述均衡模块1与对其输出电压进行修调的自动调整电压偏差主控板2 连接,所述自动调整电压偏差主控板2上还连接有供电用的直流可编程电源3,所述自动调整电压偏差主控板2包括单片机21,所述单片机21上连接有对均衡模块1的输入电压和输出电压进行采样并输出给其的电压采样模块22、接收其得到的电压偏差信号后对均衡模块1的输出电压进行调整的电压调整模块,所述单片机21将接收到的电压采样模块22采样到的均衡模块1的输入电压和输出电压比较后,输出电压偏差值信号给电压调整模块,电压调整模块根据电压偏差值将均衡模块1的输出电压修调至与输入电压一致。本发明均衡模块1的工作模式有能量上传模式和能量下传模式,均衡模块1主要均衡上下两单元电池的电压,当上一单元电池电压大于下一单元电池的电压时,均衡模块1工作在能量下传模式,当下一单元电池电压大于上一单元电池的电压时,均衡模块1工作在能量上传模式,自动调整电压偏差主控板2对均衡模块1不同工作模式下的电压值进行采样,再通过相应的算法得出电压偏差值,然后根据电压偏差值对均衡模块1的输出电压进行调整,本发明是通过自动调整电压偏差主控板2直接对均衡模块1的输出电压进行调整,使其与输入电压一致,消除了外围电路引入的误差,在相同的元件精度下,减少最终产品的误差。
本发明所述均衡模块1内设置有用于烧断后调高输出电压的多个并联的升压熔丝(图中未标示)和用于烧断后调低输出电压的多个并联的降压熔丝(图中未标示)。假如均衡模块1的输入电压为3.30V,输出电压值为3.34V,可以通过烧断均衡模块1内某一降压熔丝,将电压降到3.28V,再烧断均衡模块1内某一升压熔丝将它升到3.30V。每个升压熔丝对应的升压值是不同的,每个降压熔丝对应的降压值也是不同的,可以根据需要进行设置的。
本发明所述电压调整模块包括与单片机21连接的电压调整控制模块23,所述电压调整控制模块23上连接有由其控制进入调整模式的进入电压调整模式开关24、由其控制根据电压偏差值选择均衡模块1内相应升压熔丝或降压熔丝的 选择开关25、由其控制输出烧断信号给均衡模块1烧断相应熔丝的烧断开关26。电压调整模块在接收到单片机21发送的电压偏差值信号后,电压调整控制模块23将进入电压调整模式开关24调整至进入模式,再通过选择开关25根据电压偏差值信号选择相应的升压熔丝或降压熔丝,最后由烧断开关26输出烧断信号给均衡模块1烧断选择开关选择的熔丝,实现均衡模块1偏压调整。
本实施例所述自动调整电压偏差主控板2还包括与直流可编程电源3连接的多路电源27,所述多路电源27分别与单片机21、电压采样模块22、电压调整模块连接。
本实施例所述自动调整电压偏差主控板2上还设置有选择均衡模块1的类型及工作模式的拨码开关(图中未标示),显示其工作状态的多个指示灯(图中未标示)和报警用的蜂鸣器(图中未标示)。在修调前,需要先通过拨码开关来选择均衡模块1的类型和工作模式。指示灯则用来显示主控板当前所处的状态,当供电部分正常时,VCC的灯会亮起来;当一切准备就绪,等待工作时,Ready的指示灯会亮;当主控板正在进行修调时,Burning的指示灯会亮;当模块修调成功后,pass的指示灯会亮起来。
本实施例所述自动调整电压偏差主控板2还与用于打印显示数据并输出指令给其的PC机4连接。自动调整电压偏差主控板2将采样到的输入电压和输出电压及电压偏差值发送到PC机4显示保存,以待测试人员查看或下达工作指令。
本发明使用时,在自动调整电压偏差主控板2上电前需要通过拨码开关来选择均衡模块的类型和工作模式。当自动调整电压偏差主控板4上电后,系统初始化,初始化完成后,系统进行参数配置,然后进入测试,通过外部硬件按钮来控制电压采样,而PC机4会打印出相应的测试结果,当判断数据有效后,需要计算出均衡模块1工作时的电压偏差,再通过控制光耦输出相应的电平进行电压偏差调整。一旦修调失败,就要更换均衡模块1的主控芯片,因为熔丝一 经烧断就无法恢复了,每个模块的主控芯片电压修调一旦结束就无法更改。
本发明具体的操作步骤如下:
1.电压输入,对应不同的均衡模块1设置不同的电压值及限流值。开电源,此时VCC的灯会亮起来,表明自动调整电压偏差主控板2供电正常。
2.将测试治具上的连接线接到自动调整电压偏差主控板2上。
3.将示波器接上,看系统是否工作正常。
4.将拨码开关上标示为BOOT0,DEBUG的拨码拨上去即可,此时,Ready的指示灯亮,表明准备完毕,等待测试的开始。
5.将均衡模块1放到测试治具上。
6.按一下开始的按键,此时,Burning的指示灯亮起,表明正在检测修调,检测修调的结果通过串口打印到PC机上。
7.等待测试结果。
8.如果修调成功,此时,pass的指示灯亮起,表明均衡模块1修调成功,蜂鸣器叫一下。如果Fail的指示灯亮起,表明当前均衡模块1修调失败,蜂鸣器鸣叫。
9.将修调失败的均衡模块1放到模块回收处等待二次处理,然后进行下一个均衡模块1的协调。
10.从第5步开始进行下一个测试与修调工作。

Claims (6)

  1. 一种电池均衡模块电压偏差检测修调系统,其特征在于:包括被修调的均衡模块,所述均衡模块与对其输出电压进行修调的自动调整电压偏差主控板连接,所述自动调整电压偏差主控板上还连接有供电用的直流可编程电源,所述自动调整电压偏差主控板包括单片机,所述单片机上连接有对均衡模块的输入电压和输出电压进行采样并输出给其的电压采样模块、接收其得到的电压偏差信号后对均衡模块的输出电压进行调整的电压调整模块,所述单片机将接收到的电压采样模块采样到的均衡模块的输入电压和输出电压比较后,输出电压偏差值信号给电压调整模块,电压调整模块根据电压偏差值将均衡模块的输出电压修调至与输入电压一致。
  2. 如权利要求1所述的电池均衡模块电压偏差检测修调系统,其特征在于:所述均衡模块内设置有用于烧断后调高输出电压的多个并联的升压熔丝和用于烧断后调低输出电压的多个并联的降压熔丝。
  3. 如权利要求2所述的电池均衡模块电压偏差检测修调系统,其特征在于:所述电压调整模块包括与单片机连接的电压调整控制模块,所述电压调整控制模块上连接有由其控制进入调整模式的进入电压调整模式开关、由其控制根据电压偏差值选择均衡模块内相应升压熔丝或降压熔丝的选择开关、由其控制输出烧断信号给均衡模块烧断相应熔丝的烧断开关。
  4. 如权利要求1所述的电池均衡模块电压偏差检测修调系统,其特征在于:所述自动调整电压偏差主控板还包括与直流可编程电源连接的多路电源,所述多路电源分别与单片机、电压采样模块、电压调整模块连接。
  5. 如权利要求1所述的电池均衡模块电压偏差检测修调系统,其特征在于:所述自动调整电压偏差主控板上还设置有选择均衡模块的类型及工作模式的拨码开关,显示其工作状态的多个指示灯和报警用的蜂鸣器。
  6. 如权利要求1~5之一所述的电池均衡模块电压偏差检测修调系统,其特征在于:所述自动调整电压偏差主控板还与用于打印显示数据并输出指令给其的PC机连接。
PCT/CN2015/099016 2014-12-25 2015-12-25 一种电池均衡模块电压偏差检测修调系统 WO2016101918A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/629,637 US9971367B2 (en) 2014-12-25 2015-12-25 Voltage-deviation detecting and adjusting system for balance module of battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410822298.4A CN104577228B (zh) 2014-12-25 2014-12-25 一种电池均衡模块电压偏差检测修调系统
CN201410822298.4 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016101918A1 true WO2016101918A1 (zh) 2016-06-30

Family

ID=53092784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099016 WO2016101918A1 (zh) 2014-12-25 2015-12-25 一种电池均衡模块电压偏差检测修调系统

Country Status (3)

Country Link
US (1) US9971367B2 (zh)
CN (1) CN104577228B (zh)
WO (1) WO2016101918A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104577228B (zh) * 2014-12-25 2017-01-11 杭州协能科技股份有限公司 一种电池均衡模块电压偏差检测修调系统
CN105449740B (zh) * 2015-11-13 2018-09-04 中国东方电气集团有限公司 一种储能锂电池主动均衡控制系统及控制方法
CN106451752B (zh) * 2016-12-01 2023-10-03 佛山科学技术学院 一种适用于ups的电池均压电路
CN116578154B (zh) * 2023-06-13 2023-11-21 陕西四方华能电气设备有限公司 一种调压器的电压自动追踪方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119036A (zh) * 2007-07-23 2008-02-06 柏禄帕迅能源科技有限公司 用于电动汽车的电池管理系统
CN102593893A (zh) * 2012-02-01 2012-07-18 广州市香港科大霍英东研究院 一种实现电池组均衡放电的系统
CN104577228A (zh) * 2014-12-25 2015-04-29 杭州协能科技有限公司 一种电池均衡模块电压偏差检测修调系统
CN204361203U (zh) * 2014-12-25 2015-05-27 杭州协能科技有限公司 一种电池均衡模块电压偏差检测修调系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086656A (ja) * 1999-07-09 2001-03-30 Fujitsu Ltd バッテリ監視装置
JP2005160169A (ja) * 2003-11-21 2005-06-16 Texas Instr Japan Ltd バッテリ保護回路
JP2010246225A (ja) * 2009-04-03 2010-10-28 Sony Corp 電池パックおよび充電方法
TWM381824U (en) * 2009-09-03 2010-06-01 Tritan Technology Inc Wakeup device for power source variation in standby mode
CN201562994U (zh) * 2009-09-21 2010-08-25 深圳市今朝时代新能源技术有限公司 一种智能型单体并机充电系统
CN201532989U (zh) * 2009-10-15 2010-07-21 黎志平 新型智能蓄电池均衡器
CN201699442U (zh) * 2010-05-21 2011-01-05 西安交通大学 电池智能管理系统
CN102013722A (zh) * 2010-07-14 2011-04-13 陈赖容 铅酸蓄电池的充电优化管理器
DE102011002452A1 (de) * 2011-01-05 2012-07-05 Sb Limotive Company Ltd. Batterie mit autonomem Cell-Balancing
JP5964814B2 (ja) * 2011-03-28 2016-08-03 三洋電機株式会社 バッテリシステム、電動車両、移動体、電力貯蔵装置および電源装置
WO2012164761A1 (ja) * 2011-05-31 2012-12-06 日立ビークルエナジー株式会社 電池システム監視装置
CN103368217B (zh) * 2012-04-11 2015-06-17 上海中兴派能能源科技有限公司 应用于锂离子电池及锂离子电池组的充电管理系统
CN102904311B (zh) * 2012-10-22 2015-06-17 国网电力科学研究院 电动汽车电池感知装置、电动汽车电池及充放电方法
CN104282931A (zh) 2013-07-02 2015-01-14 国家电网公司 动力电池均衡模块的塑封方法及塑封动力电池均衡模块
CN103441542B (zh) * 2013-08-13 2015-02-11 天津谷泰科技有限公司 一种锂电池分布式充电均衡电路及其控制方法
KR101587358B1 (ko) * 2014-09-02 2016-02-02 엘에스산전 주식회사 하이브리드 차량
CN204389602U (zh) 2014-12-03 2015-06-10 杭州协能科技有限公司 电池均衡模块自动检测系统
CN104407302B (zh) 2014-12-03 2019-02-19 杭州协能科技股份有限公司 电池均衡模块成组自动检测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119036A (zh) * 2007-07-23 2008-02-06 柏禄帕迅能源科技有限公司 用于电动汽车的电池管理系统
CN102593893A (zh) * 2012-02-01 2012-07-18 广州市香港科大霍英东研究院 一种实现电池组均衡放电的系统
CN104577228A (zh) * 2014-12-25 2015-04-29 杭州协能科技有限公司 一种电池均衡模块电压偏差检测修调系统
CN204361203U (zh) * 2014-12-25 2015-05-27 杭州协能科技有限公司 一种电池均衡模块电压偏差检测修调系统

Also Published As

Publication number Publication date
US20180039294A1 (en) 2018-02-08
CN104577228A (zh) 2015-04-29
CN104577228B (zh) 2017-01-11
US9971367B2 (en) 2018-05-15

Similar Documents

Publication Publication Date Title
WO2016101918A1 (zh) 一种电池均衡模块电压偏差检测修调系统
WO2016086891A1 (zh) 电池均衡模块成组自动检测系统
CN109687548B (zh) 一种蓄电池组补充电式主动均衡装置
CN107422219A (zh) 一种新型能量回馈型电动汽车快速充电桩测试检测系统
CN202995453U (zh) 新能源汽车电池管理采集子系统
CN110988648A (zh) 一种pcba自动检测系统及方法
CN109490790A (zh) 采用补偿脉冲法的锂动力电池功率特性测试方法及装置
CN110661040A (zh) 一种退役磷酸铁锂动力电池分选方法和装置
CN108562860B (zh) 电能表双路辅助电源功耗自动测试系统及测试方法
CN107878243A (zh) 一种电池管理系统及方法
US20130154653A1 (en) Adaptive method for determining the power that can be maximally outputted or absorbed by a battery
CN204389602U (zh) 电池均衡模块自动检测系统
KR20150033081A (ko) 온도 별 저항 값을 이용한 전류 측정 장치 및 그 방법
CN104166057A (zh) 一种锂电池保护板测试系统
CN211785990U (zh) 汽车电池管理系统电流精度测试装置
CN204361203U (zh) 一种电池均衡模块电压偏差检测修调系统
CN215894917U (zh) 一种锂电池测试设备自动校准工装
CN106597085B (zh) 一种功耗测试方法、装置及系统
CN202548234U (zh) 光伏逆变器的测试设备
CN105116358B (zh) 电池识别系统及其识别方法
CN114624599A (zh) 多通道电池充放电系统及其控制方法
CN204256138U (zh) 电池均衡模块成组自动检测系统
CN113687287A (zh) 一种锂电池测试设备自动校准工装及方法
CN210090570U (zh) 一种电池管理系统工装检测系统
CN113075573A (zh) 一种低压bms测试系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15629637

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15871986

Country of ref document: EP

Kind code of ref document: A1