WO2016101590A1 - 接地调整方法及装置 - Google Patents

接地调整方法及装置 Download PDF

Info

Publication number
WO2016101590A1
WO2016101590A1 PCT/CN2015/083478 CN2015083478W WO2016101590A1 WO 2016101590 A1 WO2016101590 A1 WO 2016101590A1 CN 2015083478 W CN2015083478 W CN 2015083478W WO 2016101590 A1 WO2016101590 A1 WO 2016101590A1
Authority
WO
WIPO (PCT)
Prior art keywords
grounding
port
terminal
detected
parameter
Prior art date
Application number
PCT/CN2015/083478
Other languages
English (en)
French (fr)
Inventor
沈少武
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US15/538,914 priority Critical patent/US20170353590A1/en
Priority to EP15871664.7A priority patent/EP3240271A4/en
Publication of WO2016101590A1 publication Critical patent/WO2016101590A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/24Arrangements for testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/725Cordless telephones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2201/00Electronic components, circuits, software, systems or apparatus used in telephone systems
    • H04M2201/80Electronic components, circuits, software, systems or apparatus used in telephone systems line protection circuits such as current or overvoltage protection circuits

Definitions

  • the present invention relates to the field of communications, and in particular to a grounding adjustment method and apparatus.
  • the terminal eg, mobile phone
  • the complexity of the electronic device itself the aging, corrosion, and deformation of the conductive grounding material due to the looseness of the structure caused by the falling or rolling during the long-term use of the electronic device.
  • the grounding performance deteriorates. Therefore, the functional requirements of the detection and processing of the grounding performance become more important during the use of the smart mobile terminal.
  • the hardware circuit and antenna of the mobile phone are debugged based on a certain reference ground plane during the adjustment process.
  • a certain reference ground plane There are many grounding methods, such as single-point grounding and multi-point grounding. If the reference ground changes, the active efficiency of the mobile phone antenna will change, which will affect the antenna performance and the user's signal quality. Therefore, the ground plane consistency is referenced. It also seems very important.
  • grounding methods and detection methods for mobile phones are as follows: 1. Through special grounding measuring instruments, such as detection platform, detection system and detection device. 2. Monitoring of the grounding of transmission lines in the power system. 3. Detect the grounding device with a multimeter. 4. Fix the grounding of conductive foam or conductive cloth, copper foil, etc. 5. Ground the phone shrapnel or clip. 6. Ground directly or multi-point through the grounding wire. 7. Directly punch holes into the ground through small holes or large holes.
  • mode 1 the use of professional grounding detection devices, the system is relatively large, not portable.
  • mode 2 the connection in the general and professional power system is different from the grounding of the microelectronic terminal device.
  • Mode 3 the traditional multimeter measurement is used to detect the resistance for detection. The method is complicated and the use conditions are limited.
  • the grounding material is conductive foam or conductive cloth, etc., which has poor stability and is easily deformed.
  • mode 5 the grounding material is a metal dome or clip, which is bulky and harsh in use conditions.
  • modes 6 and 7 the grounding form is single and cannot be changed, and the grounding performance is appropriate.
  • the embodiment of the invention provides a grounding adjustment method and device to solve at least the problem that the grounding state of the terminal cannot be detected and adjusted in the related art.
  • a method for grounding adjustment includes: acquiring a grounding parameter of a port to be detected of a terminal, wherein the grounding parameter is used to reflect a grounding state of the port to be detected; If the parameter exceeds the predetermined threshold, it is determined that the grounding state of the port to be detected does not meet the preset requirement; and the to-be-detected does not satisfy the preset requirement according to the reason that the grounding state does not satisfy the preset requirement The port is adjusted.
  • acquiring the grounding parameter of the port to be detected includes: receiving a detection instruction on a user interface (User Interface, UI for short); acquiring the grounding parameter under the trigger of the detection instruction, and in the UI
  • UI User Interface
  • the obtaining the grounding parameter of the port to be detected includes: detecting a ground loop of the port to be detected; and acquiring the grounding parameter according to the detection result.
  • the method before detecting the ground loop of the port to be detected, includes: detecting, by detecting information of at least one of the following terminals, a port in the terminal that does not meet the preset requirement: a signal strength of the terminal The signal frequency of the terminal does not fall within the second threshold range, and the temperature of the terminal does not fall within the third threshold range.
  • the reason that the grounding state does not meet the preset requirement is determined by determining that the grounding state does not satisfy the preset according to the location of the to-be-detected port in the terminal and the grounding form of the to-be-detected port. The reason for the request.
  • adjusting the to-be-detected port that does not meet the preset requirement according to the reason that the grounding state does not meet the preset requirement includes at least one of: adjusting the detection port and/or the port near the detection port. Grounding position and/or grounding property; adjusting the grounding position of the detecting port, increasing the number of grounding ports on the shielding circuit; adjusting the grounding form of the detecting port; adjusting the antenna grounding feed point and/or the terminal of the terminal The antenna surrounding grounding circuit of the terminal.
  • grounding form includes at least one of the following: analog grounding, digital grounding, single point grounding, multi-point grounding, small hole grounding, large hole grounding, primary reference grounding, and non-primary reference grounding.
  • the grounding parameter includes at least one of the following: a grounding resistance, a grounding current, and a grounding voltage.
  • a grounding adjustment apparatus including: an obtaining module, configured to acquire a grounding parameter of a port to be detected of the terminal, wherein the grounding parameter is used to reflect the port to be detected a first determining module, configured to determine that the grounding state of the to-be-detected port does not meet a preset requirement if the grounding parameter exceeds a predetermined threshold; and the adjusting module is configured to not satisfy the grounding state according to the grounding state
  • the reason for the preset requirement is to adjust the port to be detected that does not satisfy the preset requirement.
  • the acquiring module includes: a first detecting unit configured to receive a detection instruction on the user interface UI; and a first acquiring unit configured to acquire the grounding parameter under the trigger of the detecting instruction, and The grounding parameter is displayed on the UI.
  • the acquiring module further includes: a second detecting unit configured to detect a ground loop of the port to be detected; and a second acquiring unit configured to acquire the grounding parameter according to the detection result.
  • the device includes: a second determining module, configured to determine, by detecting information of at least one of the following terminals, that the terminal has a port that does not meet the preset requirement: a signal strength of the terminal The signal frequency of the terminal does not fall within the second threshold range, and the temperature of the terminal does not fall within the third threshold range.
  • the first determining module is further configured to determine, according to a location of the to-be-detected port in the terminal and a grounding form of the port to be detected, that the grounding state does not satisfy a preset requirement.
  • the adjustment module includes: a first adjusting unit configured to adjust a grounding position and/or a grounding property of the detecting port and/or a port near the detecting port; and/or a second adjusting unit, configured to Adjusting a grounding position of the detecting port, and increasing a number of grounding ports on the shielding circuit; a third adjusting unit configured to adjust a grounding form of the detecting port; and a fourth adjusting unit configured to adjust an antenna grounding of the terminal The feed point and/or the antenna surrounding ground circuit of the terminal.
  • grounding form includes at least one of the following: analog grounding, digital grounding, single point grounding, multi-point grounding, small hole grounding, large hole grounding, primary reference grounding, and non-primary reference grounding.
  • the grounding parameter includes at least one of the following: a grounding resistance, a grounding current, and a grounding voltage.
  • the grounding parameter of the port to be detected is obtained, wherein the grounding parameter is used to reflect the grounding state of the port to be detected; if the grounding parameter exceeds a predetermined threshold, it is determined that the grounding state of the port to be detected does not satisfy the preset. Requirement; adjust the port to be detected that does not meet the preset requirement according to the reason that the grounding state does not meet the preset requirement.
  • the problem that the grounding state of the terminal cannot be detected and adjusted in the related art is solved. Furthermore, the intelligent grounding detection and calibration optimization processing of the terminal is realized, and the communication quality caused by the grounding problem is prevented, the heat is high, and the static electricity is discharged.
  • FIG. 1 is a flow chart of a ground adjustment method according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the structure of a grounding adjustment apparatus according to an embodiment of the present invention.
  • FIG. 3 is a structural block diagram (1) of a grounding adjustment apparatus according to an embodiment of the present invention.
  • FIG. 4 is a structural block diagram (2) of a grounding adjustment apparatus according to an embodiment of the present invention.
  • Figure 5 is a structural block diagram (3) of a grounding adjustment apparatus according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram (4) of a grounding adjustment apparatus according to an embodiment of the present invention.
  • FIG. 7 is a hardware structural diagram of implementing an intelligent ground terminal according to an embodiment of the present invention.
  • FIG. 8 is a specific operational flowchart of an adaptive ground adjustment terminal according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a grounding adjustment method according to an embodiment of the present invention. As shown in FIG. 1, the flow includes the following steps:
  • Step S102 Acquire a grounding parameter of a port to be detected of the terminal, where the grounding parameter is used to reflect a grounding state of the port to be detected;
  • Step S104 if the grounding parameter exceeds a predetermined threshold, determining that the grounding state of the port to be detected does not meet the preset requirement;
  • Step S106 Adjust the port to be detected that does not meet the preset requirement according to the reason that the ground state does not meet the preset requirement.
  • the grounding parameter exceeds a predetermined threshold, the grounding state of the port does not meet the preset requirement, and the predetermined requirement may not be met.
  • the port is adjusted to solve the problem that the grounding state of the terminal cannot be detected and adjusted in the related art, thereby realizing the intelligent grounding detection and calibration optimization processing of the terminal, preventing the communication quality from being poor due to the grounding problem, high heat generation, electrostatic discharge, etc. malfunction.
  • the foregoing step S102 involves obtaining the grounding parameter of the port to be detected.
  • the detection command is received on the user interface UI, and the grounding parameter is acquired under the trigger of the detection instruction, and the grounding parameter is displayed on the UI.
  • the UI detection window graphically and modularly displays the grounding positions and structures to realize the interactive display interface between the child window and the user. The user can activate the monitoring port by clicking the UI, and view specific parameters and adjustment methods.
  • the above step S102 involves obtaining the grounding parameter of the port to be detected.
  • the grounding parameter of the port can be obtained in various manners.
  • the ground loop of the port to be detected is detected, and the grounding parameter of the port to be detected is obtained through a ground loop of the port to be detected.
  • the signal strength of the terminal does not fall within the first threshold range, or the signal frequency of the terminal does not fall within the second threshold range, or the temperature of the terminal does not fall.
  • the grounding state does not meet the preset requirement according to the location of the port to be detected in the terminal and the grounding mode of the port to be detected. There are many reasons why the grounding state of the port to be detected does not meet the preset requirements, and is not limited thereto.
  • the foregoing step S106 involves adjusting the port to be detected that does not meet the preset requirement according to the reason that the grounding state does not meet the preset requirement.
  • the grounding position of the port near the detecting port and/or the detecting port may be adjusted. And/or grounding property; in another alternative embodiment, the grounding position of the detecting port can be adjusted and the number of grounding ports on the shielding rib can be increased; in another alternative embodiment, the grounding form of the detecting port can be adjusted
  • the antenna grounding feed point of the terminal and/or the antenna surrounding grounding circuit of the terminal may also be adjusted, wherein the antenna surrounding grounding circuit may be a grounding circuit around the antenna area or an associated grounding that affects the performance of the antenna. Circuit, grounded device or grounding material.
  • the grounding form includes at least one of the following: analog grounding, digital grounding, single point grounding, multi-point grounding, small hole grounding, large hole grounding, primary reference grounding, non-primary reference grounding.
  • the grounding parameter includes at least one of: a grounding resistance, a grounding current, and a grounding voltage.
  • a grounding adjustment device is also provided, which is configured to implement the above-described embodiments and preferred embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the apparatus includes: an obtaining module 22 configured to acquire a grounding parameter of a port to be detected of a terminal, wherein the grounding parameter is used to reflect Detecting the grounding state of the port; the first determining module 24 is configured to determine that the grounding state of the port to be detected does not meet the preset requirement if the grounding parameter exceeds a predetermined threshold; and the adjusting module 26 is configured to not satisfy the pre-determination according to the grounding state. Set the reason for the adjustment to the port to be detected that does not meet the preset requirements.
  • the acquisition module 22 includes: a first detecting unit 222 configured to receive a detection instruction on a user interface UI;
  • the unit 224 is configured to acquire a grounding parameter under the trigger of the detection instruction and display the grounding parameter on the UI.
  • the acquisition module 22 further includes: a second detecting unit 226 configured to detect a ground loop of the port to be detected; Unit 228 is configured to acquire a grounding parameter based on the detection result.
  • the apparatus further includes: a second determining module 52 configured to detect information of at least one of the following by using the terminal, Determining that the terminal has a port that does not meet the preset requirement: the signal strength of the terminal does not fall within the first threshold range, the signal frequency of the terminal does not fall within the second threshold range, and the temperature of the terminal does not fall within the third threshold range.
  • the first determining module 24 is further configured to determine, according to the location of the port to be detected in the terminal and the grounding form of the port to be detected, that the grounding state does not satisfy the preset requirement.
  • the adjustment module 26 includes: a first adjustment unit 262 configured to adjust the detection port and/or a port near the detection port. a grounding position and/or a grounding property; and/or a second adjusting unit 264 configured to adjust a grounding position of the detecting port and increase a number of grounding ports on the shielding circuit; and a third adjusting unit 266 configured to adjust the The grounding form of the detecting port is provided; the fourth adjusting unit 268 is configured to adjust the antenna grounding feed point of the terminal and/or the antenna surrounding grounding circuit of the terminal.
  • the grounding form includes at least one of the following: analog grounding, digital grounding, single point grounding, multi-point grounding, small hole grounding, large hole grounding, primary reference grounding, non-primary reference grounding.
  • the grounding parameter includes at least one of the following: a grounding resistance, a grounding current, and a grounding voltage.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are respectively located.
  • the first processor, the second processor, and the third processor In the first processor, the second processor, and the third processor.
  • the optional embodiment provides a safe, stable, intelligent and high-performance multi-mode grounding detection and calibration adjustment system for a mobile terminal, and a combination of various grounding modes built by the hardware module to ensure that the terminal can intelligently detect the grounding state. And take corresponding measures and modes to adjust the grounding performance.
  • the optional embodiment adopts the following technical solutions.
  • the system of the optional embodiment includes: a multi-point grounding terminal, a grounding detection module, a grounding processing control module, a baseband chip, a grounding diagnostic module, an adaptive adjustment control module, and a ground fault adjustment module.
  • UI User Interface
  • the basic process of the optional embodiment is as follows: when the user opens the grounding control module in the UI detection window, the mobile phone enters the grounding detection interface, and the user randomly activates each monitoring port by clicking each grounding graphical window on the UI interface.
  • the point-to-point grounding terminal of each monitoring port is turned on to form a grounding detection loop, the grounding detection loop tests the current grounding loop parameter, and the specific value is fed back to the baseband chip, and converted into a corresponding grounding parameter, and the grounding diagnostic module performs the type of the grounding parameter.
  • the specific judgment is compared with the standard value and the threshold. If the threshold is exceeded, the grounding of the port is deteriorated.
  • the adaptive adjustment control module is randomly activated to self-calibrate the change point.
  • the adjustment module will make the current grounding condition and the test value. Adjust in real time and retest until repaired. If the grounding status deteriorates and the hardware and software cannot be repaired directly, or the current mode cannot be directly repaired, the grounding status prompt message and suggestion will be displayed in the UI window. The user or the installed maintenance personnel can perform special disassembly of the bad grounding point according to the prompt information.
  • the mobile phone When the user turns on the adaptive grounding adjustment control mode, the mobile phone will detect the current received signal strength in real time, adjust the connection between the antenna and the relevant circuit ground terminal, and optimize the ground connection form in the direction of lifting performance.
  • the mobile phone When the mobile phone detects that the current signal-to-noise ratio of the mobile phone is deteriorating or the Ec/Io fluctuation is abnormal, the mobile phone also adjusts the grounding form of the grounding terminal of each shielding point to adjust the direction of improving the stability of the shielding performance of the mobile phone.
  • the mobile terminal includes a l1 multi-point grounding terminal, a l2 grounding detecting module, a l3 grounding control module, a l4 baseband chip, and a l5.
  • Grounding diagnostic module l6 adaptive adjustment control module, l7 grounding bad adjustment module, l8 shielding bad adjustment module, l9 grounding form switching module, l10 antenna grounding optimization module, 111 RF chip module, 112LCD display module, l13 antenna module, 114UI detection window.
  • the multi-point grounding terminal l1 is connected to the grounding detection module l2, the grounding processing control module l3 and the grounding adjustment modules l7-l10 described above, and is configured to complete the collection of the grounding parameters of the grounding points.
  • the mobile phone is provided with a multi-point grounding terminal at a critical part between the circuit board, the antenna and the structural member.
  • the front end of the terminal is connected to the grounding material or the grounding wire and the reference point on both sides, and the rear end is connected with a micro-switch, and the corresponding selection according to the number of the grounding contacts can be selected.
  • the low-insertion single-pole single-throw or single-pole multi-throw switch is connected to the baseband chip through the two-wire MIPI interface.
  • the grounding control module When the grounding control module is turned on, the user clicks on the corresponding grounding point in the UI check window on the LCD screen. After the terminal icon, the grounding detection module switches the corresponding grounding terminal to the conducting state, and the grounding parameter and the performance state of the point can be collected by the grounding detection module.
  • the grounding detection module 12 is connected to the multi-point grounding terminal l1, the grounding processing control module l3, and the baseband chip l4, and is configured to complete the detection of each grounding parameter.
  • the ground detection module passes both direct and indirect detection modes.
  • the grounding parameter can be grounding resistance, grounding current, and grounding voltage.
  • the direct ground detection mode detects the grounding parameter value in a single grounding loop, and transmits the result to the baseband chip for further analysis and conversion processing, thereby obtaining the grounding resistance value of the corresponding terminal.
  • the grounding detection module requires high detection accuracy, small error, and good frequency response characteristics, and can simultaneously monitor the grounding parameters in the high, medium, and low frequency bands of the radio frequency.
  • the specific method of detection is as follows: the grounding detection module first selects the nearest grounding loop, the detection loop first performs self-calibration, adjusts the test loop to a zero potential state, and detects whether the reference main ground terminal satisfies the requirement, and then turns on the test port, and tests the time.
  • the internal resistance value of the loop is adjusted according to the step precision requirement of the test, and the grounding resistance value is also switched at the reference grounding point position.
  • the final grounding resistance value is the average value of multiple loops and multiple measurements to prevent errors. Measure and improve detection accuracy.
  • the indirect grounding detection mode collects the frequency spurious signals of the current RF modules, sends them to the mobile phone RF chip for demodulation, and the baseband chip processes to obtain the corresponding signal strength amplitude.
  • This mode can collect the in-band of the mobile phone use frequency band. Out-of-band spurs, as well as multiplier and small-range harmonic signals, the mobile phone needs to switch to the broadband filter and the notch filter in this mode, and filter the main frequency to leave the signal to be detected. If it detects If the abnormal frequency or excessive spurious glitch signal is sent, the result can be sent to the ground diagnostic module for further processing.
  • the indirect grounding detection mode also detects key parameters reflecting the current signal quality of the mobile phone in real time, such as the received signal strength indication.
  • RSSI Received Signal Strength Indication
  • SNR Signal-to-Noise Ratio
  • Ec/Io Signal-to-Noise Ratio
  • the indirect grounding detection mode is also responsible for collecting the temperature parameters in the mobile phone. It is realized by a thermistor built in multiple high-heating zones in the mobile phone. The thermistor is placed near the grounding point of the high-heating area, and the thermistor will be collected. The parameters are sent to the baseband chip for further processing and converted to specific heating temperature values. If the temperature is abnormal, it exceeds the threshold set here, and it indicates that the grounding is poor here, and the grounding optimization adjustment is needed.
  • the grounding processing control module l3 and the multi-point grounding terminal l1, the grounding detecting module 12, the baseband chip l4, the grounding diagnostic module 15 and the adaptive adjustment module 16 are connected, and are set to complete the opening and closing of the entire grounding detection, diagnosis and adaptive processing.
  • the grounding control module first controls the baseband chip to switch between the detection mode and the normal working mode.
  • the entire mobile phone can work in a single normal mode, can also work in a single detection mode, and can work in the coexistence of the above two modes, detecting
  • the control module can be directly set by the user in the ground detection interface box on the UI interface.
  • the grounding treatment control module is also responsible for real-time monitoring of the dynamic changes of the grounding parameters of the currently collected grounding terminals, and controlling the adaptive adjustment module to take corresponding adjustment measures.
  • the baseband chip l4 is connected to the grounding detection module l2, the grounding processing control module l3, the grounding diagnostic module l5, the radio frequency chip module l11 and the LCD display module l12, and is mainly responsible for coordinated control and calculation of each module, and the number of data collected by the grounding detection module. deal with. Including calculation of grounding parameters, statistics of received signal strength of RSSI, statistics of received signal level of Received Signal Code Power (RXCP), statistics of signal-to-noise ratio parameters such as Ec/Io and SNR, and statistics The calculation result is sent to the grounding diagnosis module to track the current working status of each system parameter in real time.
  • RXCP Received Signal Code Power
  • the grounding diagnostic module l5 is connected to the baseband chip l4, the grounding processing control module l3, and the adaptive adjustment module 16 to complete detailed diagnosis and analysis of the grounding parameters of the terminals. Including grounding level assessment, grounding shielding effectiveness evaluation, grounding form rationality assessment, grounding impact on antenna performance evaluation.
  • the grounding diagnostic module first determines the location of the grounding terminal in the mobile phone according to the grounding data collected by the baseband chip, and determines the grounding between the components and the structural components, such as an LCD, a touch screen, a magnesium-aluminum alloy support plate, a camera, Universal Serial Bus (USB), etc., is also the grounding on the shielding ribs, the power circuit, the decoupling circuit in the circuit, the grounding of the key RF circuit, or the grounding of the antenna feed point and the clearance area.
  • the judgment result is transmitted to the adaptive control module to perform corresponding ground adjustment processing.
  • the grounding diagnostic module compares the grounded parameter to the nominal value of the part. If the threshold is exceeded, the diagnostic result is output.
  • the grounding diagnostic module can also determine the specific grounding type of the current grounding terminal, such as analog ground, digital ground, single point grounding, small hole grounding, large hole Grounding, main reference ground or non-primary reference ground, etc., and the grounding parameters and other signal parameters of the mobile phone to make specific diagnosis results and solutions.
  • the adaptive adjustment control module l6 is connected to the grounding diagnostic module 15 and the grounding phase adjustment modules l7-l10, and mainly performs adaptive adjustment control of each grounding module.
  • the adaptive adjustment control module starts the ground fault adjustment module to adjust if the grounding fault is caused by loose structure or poor assembly according to the output result of the grounding diagnostic module.
  • the warning prompt Displayed on the LCD corresponding window dynamically display the position node and specific grounding parameters; if it is determined that the shielding grounding is poor, start the poor shielding adjustment module, switch and change the grounding point, or increase the number of grounding terminals, so that the grounding point is The grounding force can be increased around the shielding rib; if it is determined that the critical circuit is grounded, the grounding mode switching module is activated, and the grounding mode is switched by monitoring the signal quality parameters of each mobile phone, and the dynamics are performed according to the reporting values of the radio frequency and the baseband chip. Optimization adjustment; if it is determined that the antenna is related to the grounding terminal, start the antenna optimization grounding module, adjust the grounding point position of the antenna feeding point, or multi-point grounding, and then adaptively monitor the current antenna performance related parameters. Feedback adjustment.
  • the ground fault adjustment module l7 is connected to the adaptive adjustment control module l6, the multi-point grounding terminal l1 and the LCD display module l12, and mainly performs optimization adjustment of the ground fault.
  • the mobile phone first attempts to adaptively switch the terminals near the bad grounding point, change the grounding position and attributes, and then test whether the requirements are met. If the threshold is not met, the adjustment mode will give other rectification suggestions. If the point is pressed, the screws are reinforced, or the repair structure is repaired, and the conductive materials such as foam, conductive cloth, copper foil, etc. are replaced or attached.
  • the shielding poor adjustment module l8 is connected to the adaptive adjustment control module l6, the multi-point grounding terminal l1 and the LCD display module l12, and mainly adjusts the grounding point with poor shielding.
  • the module receives the adjustment command of the adaptive adjustment control module, it then controls each port switch to switch the grounding position, change the grounding point, and increase the number of grounding terminals that are placed on the shielding ribs so that the grounding point can be around the shielding ribs. Increase the grounding force and display the adjustment result on the UI detection window of the LCD.
  • the grounding type switching module 19 is connected to the adaptive adjustment control module l6, the multi-point grounding terminal l1, and the LCD display module l12 to complete the switching of the grounding forms of the grounding terminals. Due to various grounding forms in mobile phone circuit systems, such as analog ground, digital ground, single point grounding, multi-point grounding, small hole grounding, large hole grounding, main reference ground or non-primary reference ground, etc., and different grounding forms for mobile phones The RF performance of the board and the whole machine have a great influence. The inappropriate grounding form is often not detected at the beginning of the board design, which affects the key indicators such as the sensitivity and signal-to-noise ratio of the mobile phone.
  • the influence of the grounding form is not the same, and the grounding form switching module can change the grounding form to a more suitable way for the performance of the mobile phone according to the real-time monitoring result of the adaptive adjustment control module, which can greatly prompt the overall calling capability and resistance of the mobile phone. Interference ability.
  • the method of switching the grounding mode is as follows: first determine the original grounding form according to the position of the corresponding circuit or the grounding line, and then adjust the grounding reflow.
  • Loop size or change the common impedance ground point change the original ground loop link path through the branches and switches set at the ground point, cut or connect, or switch the parallel single point and the series single point ground to each other, or Single-point grounding is changed to multi-point grounding, multi-point grounding is changed to single-point grounding, or grounding grounding is switched to grounding and directing grounding.
  • the grounding detection module is monitored to see if the calibration optimization adjustment is effective, so as to make the next adaptive control adjustment, and the adjustment result is displayed on the UI detection window of the LCD.
  • the antenna grounding optimization module l10 is connected to the adaptive adjustment control module l6, the multi-point grounding terminal l1, the antenna module 113 and the LCD display module l12 to complete the grounding optimization of the performance of each antenna.
  • the antenna grounding optimization module is mainly divided into two parts, which directly adjusts the antenna grounding feed point and adjusts the grounding environment around the antenna. For the former, by setting a plurality of ground loops on the antenna circuit of the mobile phone, the switch can be flexibly adjusted to be turned on or off. In actual debugging and user use, further optimization and adjustment can be made in combination with the current antenna form and needs. For the latter, when the grounding environment around the antenna is found to change, the performance of the mobile phone will be reduced.
  • the antenna grounding optimization module will detect the corresponding position of deterioration and turn on other auxiliary grounding circuits to improve the overall grounding performance and adjust the result. Displayed on the UI detection window of the LCD.
  • the radio frequency chip module l11 is connected to the baseband chip l4, the antenna module l13 and the grounding detection module 12, and mainly performs demodulation of each ground related radio frequency signal, and feeds back the collected radio frequency signal parameters to the baseband chip, and then the baseband chip grounds the detected ground.
  • the parameters and RF parameters are sent to the ground diagnostic module for system analysis to take the corresponding grounding adjustment measures.
  • the LCD display module l12 is connected to the baseband chip l4, the UI detection window and the grounding adjustment modules l7-l10, and cooperates with the signal quality detection in the baseband chip to complete the UI opening of the grounding control module, the distribution of the grounding detection points, and the grounding adjustment.
  • the test result of the module feedback shows and calibrates the corrective action prompt.
  • the UI detection window l14 is connected to the LCD display module l12, and is configured to turn on the ground processing control module and activate the grounding window of each ground terminal.
  • the mobile phone After the user opens the grounding control module in the UI detection window, the mobile phone enters the grounding detection interface, and the user randomly activates each monitoring port by clicking each grounding graphical window on the UI interface, and the mobile phone turns on the point-to-point grounding terminal of each monitoring port.
  • a grounding detection loop is formed, and the grounding detection loop tests the current grounding loop parameter, and the specific value is fed back to the baseband chip, converted into a corresponding grounding parameter, and the test value and other information are displayed on the UI corresponding sub-window.
  • FIG. 8 is a specific working flowchart of an adaptive grounding adjustment terminal according to an embodiment of the present invention.
  • the mobile terminal based on the structural function performs multi-mode grounding detection and adaptive adjustment, and the optional embodiment shown in FIG.
  • the workflow diagram based on adaptive grounding adjustment includes the following steps:
  • Step 802 after the user turns on the grounding control mode, the mobile phone switches to the grounding detection mode, and then proceeds to step 804;
  • Step 804 the mobile phone scans the grounding parameters of each grounding terminal through the grounding detection module, and waits for processing, and proceeds to step 806;
  • Step 806 The baseband chip digitally processes the grounding parameter tested by the grounding detection module, and further includes a spurious glitch signal, a RSSI received signal strength statistic, a RXCP received signal level statistic, an Ec/Io, a signal to noise ratio SNR, and a fever.
  • the statistics of the parameters such as the temperature, and the statistical calculation results are sent to the grounding diagnostic module, and then step 808;
  • Step 808 the grounding diagnostic module performs detailed diagnostic analysis on the grounding parameters of each terminal, and outputs the diagnostic result to the adaptive adjustment control module, and then proceeds to step 810;
  • Step 810 The adaptive adjustment control module adaptively optimizes and adjusts each grounding terminal and the requirement according to the output result of the grounding diagnostic module and the dynamic detection result of the grounding detection module. If the structural grounding is poor, step 812 is performed; if the shielding grounding is poor, step 814 is performed; if the critical circuit is poorly grounded, step 816 is performed; if the antenna related grounding is bad, step 818 is performed;
  • Step 812 The ground fault adjustment module first attempts to adaptively switch the terminals near the bad grounding point, change the grounding position and attributes, and then test whether the requirements are met. If the threshold requirement is not met, the adjustment mode will give other rectification suggestions. , the warning prompt is displayed on the corresponding window of the LCD, and then step 820 is performed;
  • Step 814 The shielding poor adjustment module controls the port switch near the shielding rib to switch the grounding position, change the grounding point, and increase the number of grounding terminals that are placed on the shielding rib, so that the grounding point can increase the grounding force around the shielding rib, and then execute Step 820;
  • Step 816 the grounding form switching module according to the real-time monitoring result of the adaptive adjustment control module, changing the grounding form of each port to a more suitable manner for the performance of the mobile phone itself, and then performing step 820;
  • Step 818 the antenna grounding optimization module directly adjusts the grounding mode of the antenna grounding feed point, and can also dynamically adjust the grounding environment around the antenna, and then step 820;
  • Step 820 The adaptive adjustment control module detects the current grounding change of the mobile phone in real time, collects and diagnoses each grounding parameter and various communication parameters of the mobile phone radio frequency, and dynamically adjusts the grounding network until the grounding parameters and the mobile phone performance indicators are qualified, and the process ends.
  • the invention adopts the system design of intelligent grounding monitoring, fully considers the interference and influence of various groundings, utilizes the existing circuits and systems of the current terminal, and is reasonably improved, portable and light, and can not only enable production to be able to be used for each terminal. Perform a comprehensive grounding check before leaving the factory. Users can also perform real-time intelligent detection of the grounding characteristics of each mobile phone according to the actual signal quality and network conditions. The mobile phone software performs real-time analysis on the measured grounding parameter changes. And processing, and make an adaptive ground calibration to adjust the various grounding states of the phone in real time. Allows end users to enjoy high-performance call quality and data services in a stable and secure manner under all circumstances.
  • the present invention changes the status quo that the traditional grounding state cannot be changed, and realizes intelligent and safe grounding monitoring and dynamic adjustment by using the existing internal hardware and software system of the mobile phone.
  • it is more scientific and reasonable in grounding treatment and evaluation. It can give different solutions for different types of abnormal grounding. It can help users and production testers, professional maintenance, and R&D personnel to check the grounding performance of mobile phones.
  • a storage medium is further provided, wherein the software includes the above-mentioned software, including but not limited to: an optical disk, a floppy disk, a hard disk, an erasable memory, and the like.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the grounding adjustment method and apparatus have the following beneficial effects: Compared with the prior art, the present invention changes the current state that the traditional grounding state cannot be changed, and realizes by using the existing internal hardware and software system of the mobile phone. Intelligent, secure ground monitoring and dynamic adjustment. At the same time, it is more scientific and reasonable in grounding treatment and evaluation. It can give different solutions for different types of abnormal grounding. It can help users and production testers, professional maintenance, and R&D personnel to check the grounding performance of mobile phones. Mobile phone signal strength, interference, shielding status, and mobile phone antenna performance status, real-time optimization and calibration, to improve user experience and communication quality.

Abstract

本发明公开了一种接地调整方法及装置,其中,该方法包括:获取终端的待检测端口的接地参数,其中,接地参数用于反映待检测端口的接地状态;在接地参数超出预定阈值的情况下,确定待检测端口的接地状态不满足预设要求;依据接地状态不满足预设要求的原因对不满足预设要求的待检测端口进行调整。通过本发明解决了相关技术中无法对终端的接地状态进行检测和调整的问题,进而实现了终端智能接地检测及校准优化处理,防止接地问题导致的通讯质量差,发热高,静电释放等故障。

Description

接地调整方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及接地调整方法及装置。
背景技术
随着终端(例如:手机)使用环境的多样性,电子设备自身结构的复杂性,电子设备在长期使用过程中,由于跌落或者翻滚造成的自身结构的松动,导电接地材料的老化,腐蚀,变形而导致接地性能恶化。因此,智能移动终端在使用过程中,接地性能的检测和处理的功能需求变得尤为重要。
同时,由于射频频段的多样性,手机内天线越来越多,手机内除了2G/3G/4G主射频天线外,还有其他无线天线如无线保真(Wireless Fidelity,简称为WiFi),BT,全球定位系统(Global Position System,简称为GPS),数字电视(Digital Television,简称为DTV),近场通信(Near Field Communication,简称为NFC)天线,而由于各种干扰的影响,如果手机接地屏蔽不好,会极大的影响到手机的发射接收性能,进而影响用户的呼通率,通话质量,上网速率。所以手机的屏蔽接地处理也是必要的。
另外,手机硬件电路及天线在调节过程中,是基于一定的参考地平面来调试的。而接地方式有很多种,如单点接地,多点接地,如果参考地发生改变,手机天线的有源效率就会改变,进而影响到天线性能及用户的信号质量,所以参考地平面的一致性也显得非常重要。
现如今,手机常用接地方式及检测方法有如下几种:1.通过专门的接地测量仪,如检测平台,检测系统,检测装置。2.电力系统中输电线接地的的监测。3.通过万用表检测接地装置。4.固定导电泡棉或导电布,铜箔等的接地。5.手机弹片或者夹子的接地。6.通过接地线直接单点或者多点接地。7.通过小孔或者大孔直接打孔到地。
对于方式1,专业接地检测装置的使用,系统比较庞大,不便携。对于方式2,一般也专业的电力系统中的接,不同于微电子终端设备的接地。对于方式3,采用的传统的万用表测量来检测电阻来检测,方法复杂,使用条件有局限性。对于方式4,接地材料为导电泡棉或者导电布等,稳定性差,极易变形。对于方式5,接地材料为金属弹片或者夹子,体积大,使用条件苛刻。对于方式6和7,接地形式单一,不可更改,接地性能是否合适未知。
针对相关技术中,无法对终端的接地状态进行检测和调整的问题,还未提出有效的解决方案。
发明内容
本发明实施例提供了一种接地调整方法及装置,以至少解决相关技术中无法对终端的接地状态进行检测和调整的问题。
根据本发明实施例的一个方面,提供了一种接地调整方法,包括:获取终端的待检测端口的接地参数,其中,该接地参数用于反映所述待检测端口的接地状态;在所述接地参数超出预定阈值的情况下,确定所述待检测端口的接地状态不满足预设要求;依据所述接地状态不满足所述预设要求的原因对不满足所述预设要求的所述待检测端口进行调整。
进一步地,获取所述待检测端口的接地参数包括:在用户界面(User Interface,简称为UI)上接收检测指令;在所述检测指令的触发下,获取所述接地参数,并在所述UI上显示所述接地参数。
进一步地,获取所述待检测端口的所述接地参数包括:检测所述待检测端口的接地回路;根据检测结果获取所述接地参数。
进一步地,检测所述待检测端口的接地回路之前包括:通过检测所述终端的以下至少之一的信息,确定所述终端中具有不满足所述预设要求的端口:所述终端的信号强度未落入第一阈值范围、所述终端的信号频率未落入第二阈值范围、所述终端的温度未落入第三阈值范围。
进一步地,所述接地状态不满足预设要求的原因通过以下方式确定:根据所述待检测端口在所述终端中的位置及所述待检测端口的接地形式确定所述接地状态不满足预设要求的原因。
进一步地,依据所述接地状态不满足预设要求的原因对不满足预设要求的所述待检测端口进行调整包括以下至少之一:调整所述检测端口和/或所述检测端口附近端口的接地位置和/或接地属性;调整所述检测端口的接地位置,并增加屏蔽电路上的接地端口的数量;调整所述检测端口的接地形式;调整所述终端的天线接地馈点和/或所述终端的天线周边接地电路。
进一步地,所述接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
进一步地,所述接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
根据本发明实施例的另一个方面,还提供了一种接地调整装置,包括:获取模块,设置为获取终端的待检测端口的接地参数,其中,该接地参数用于反映所述待检测端口的接地状态;第一确定模块,设置为在所述接地参数超出预定阈值的情况下,确定所述待检测端口的接地状态不满足预设要求;调整模块,设置为依据所述接地状态不满足所述预设要求的原因对不满足所述预设要求的所述待检测端口进行调整。
进一步地,所述获取模块包括:第一检测单元,设置为在用户界面UI上接收检测指令;第一获取单元,设置为在所述检测指令的触发下,获取所述接地参数,并在所述UI上显示所述接地参数。
进一步地,所述获取模块还包括:第二检测单元,设置为检测所述待检测端口的接地回路;第二获取单元,设置为根据检测结果获取所述接地参数。
进一步地,所述装置包括:第二确定模块,设置为通过检测所述终端的以下至少之一的信息,确定所述终端中具有不满足所述预设要求的端口:所述终端的信号强度未落入第一阈值范围、所述终端的信号频率未落入第二阈值范围、所述终端的温度未落入第三阈值范围。
进一步地,所述第一确定模块还设置为根据所述待检测端口在所述终端中的位置及所述待检测端口的接地形式确定所述接地状态不满足预设要求的原因。
进一步地,所述调整模块包括:第一调整单元,设置为调整所述检测端口和/或所述检测端口附近端口的接地位置和/或接地属性;和/或,第二调整单元,设置为调整所述检测端口的接地位置,并增加屏蔽电路上的接地端口的数量;第三调整单元,设置为调整所述检测端口的接地形式;第四调整单元,设置为调整所述终端的天线接地馈点和/或所述终端的天线周边接地电路。
进一步地,所述接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
进一步地,所述接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
通过本发明实施例,采用获取待检测端口的接地参数,其中,接地参数用于反映待检测端口的接地状态;在接地参数超出预定阈值的情况下,确定待检测端口的接地状态不满足预设要求;依据接地状态不满足预设要求的原因对不满足预设要求的待检测端口进行调整。解决了相关技术中无法对终端的接地状态进行检测和调整的问题, 进而实现了终端智能接地检测及校准优化处理,防止接地问题导致的通讯质量差,发热高,静电释放等故障。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的接地调整方法的流程图;
图2是根据本发明实施例的接地调整装置的结构框图;
图3是根据本发明实施例的接地调整装置的结构框图(1);
图4是根据本发明实施例的接地调整装置的结构框图(2);
图5是根据本发明实施例的接地调整装置的结构框图(3);
图6是根据本发明实施例的接地调整装置的结构框图(4);
图7是根据本发明实施例的实现智能接地终端的硬件结构图;
图8是根据本发明实施例的自适应接地调整终端的具体工作流程图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在本实施例中提供了一种一种接地调整方法,图1是根据本发明实施例的接地调整方法的流程图,如图1所示,该流程包括如下步骤:
步骤S102,获取终端的待检测端口的接地参数,其中,接地参数用于反映待检测端口的接地状态;
步骤S104,在接地参数超出预定阈值的情况下,确定待检测端口的接地状态不满足预设要求;
步骤S106,依据接地状态不满足预设要求的原因对不满足预设要求的待检测端口进行调整。
通过上述步骤,根据终端端口的接地参数,判断端口的接地状况是否出现异常,其中,在接地参数超出预定阈值的情况下,确定端口的接地状态不满足预设要求,从而可以对不满足预定要求的端口进行调整,解决了相关技术中无法对终端的接地状态进行检测和调整的问题,进而实现了终端智能接地检测及校准优化处理,防止接地问题导致的通讯质量差,发热高,静电释放等故障。
上述步骤S102涉及到获取待检测端口的接地参数,在一个可选实施例中,在用户界面UI上接收检测指令,在检测指令的触发下,获取接地参数,并在UI上显示接地参数。UI检测窗口,将各接地位置及架构图形化及模块化分布显示,实现子窗口和用户的交互显示界面,用户可以通过点触UI,激活监控端口,查看具体参数及调整方法。
上述步骤S102涉及到获取待检测端口的接地参数,需要说明的是,可以通过多种方式获取端口的接地参数,下面对此进行举例说明。在一个可选实施例中,检测待检测端口的接地回路,通过待检测端口的接地回路获取该待检测端口的接地参数。
检测待检测端口的接地回路之前,在一个可选实施例中,通过检测终端的信号强度未落入第一阈值范围,或者终端的信号频率未落入第二阈值范围,或者终端的温度未落入第三阈值范围,确定终端中具有不满足该预设要求的端口:
在一个可选实施例中,根据待检测端口在终端中的位置及待检测端口的接地形式确定接地状态不满足预设要求的原因。待检测端口的接地状态不满足预设要求的原因可以有很多种,并不限于此。
上述步骤S106涉及到依据接地状态不满足预设要求的原因对不满足预设要求的待检测端口进行调整,在一个可选实施例中,可以调整检测端口和/或检测端口附近端口的接地位置和/或接地属性;在另一个可选实施例中,可以调整检测端口的接地位置,并增加屏蔽筋上的接地端口的数量;在另一个可选实施例中,可以调整检测端口的接地形式;在另一个可选实施例中,还可以调整终端的天线接地馈点和/或终端的天线周边接地电路,其中天线周边接地电路可以是天线区域周边的接地电路,或影响天线性能的相关接地电路、接地器件或接地材料。
在一个可选实施例中,接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
在一个可选实施例中,接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
在本实施例中还提供了一种接地调整装置,该装置设置为实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的接地调整装置的结构框图,如图2所示,该装置包括:获取模块22,设置为获取终端的待检测端口的接地参数,其中,接地参数用于反映待检测端口的接地状态;第一确定模块24,设置为在接地参数超出预定阈值的情况下,确定待检测端口的接地状态不满足预设要求;调整模块26,设置为依据接地状态不满足该预设要求的原因对不满足预设要求的待检测端口进行调整。
图3是根据本发明实施例的接地调整装置的结构框图(1),如图3所示,获取模块22包括:第一检测单元222,设置为在用户界面UI上接收检测指令;第一获取单元224,设置为在检测指令的触发下,获取接地参数,并在UI上显示该接地参数。
图4是根据本发明实施例的接地调整装置的结构框图(2),如图4所示,获取模块22还包括:第二检测单元226,设置为检测待检测端口的接地回路;第二获取单元228,设置为根据检测结果获取接地参数。
图5是根据本发明实施例的接地调整装置的结构框图(3),如图5所示,该装置还包括:第二确定模块52,设置为通过检测该终端的以下至少之一的信息,确定终端中具有不满足该预设要求的端口:终端的信号强度未落入第一阈值范围、终端的信号频率未落入第二阈值范围、终端的温度未落入第三阈值范围。
可选地,第一确定模块24还设置为根据待检测端口在该终端中的位置及待检测端口的接地形式确定接地状态不满足预设要求的原因。
图6是根据本发明实施例的接地调整装置的结构框图(4),如图6所示,调整模块26包括:第一调整单元262,设置为调整该检测端口和/或该检测端口附近端口的接地位置和/或接地属性;和/或,第二调整单元264,设置为调整该检测端口的接地位置,并增加屏蔽电路上的接地端口的数量;第三调整单元266,设置为调整该检测端口的接地形式;第四调整单元268,设置为调整终端的天线接地馈点和/或终端的天线周边接地电路。
可选地,接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
可选地,接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述各个模块均位于同一处理器中;或者,上述各个模块分别位于第一处理器、第二处理器和第三处理器…中。
针对相关技术中存在的上述问题,下面结合可选实施例进行说明,在本可选实施例中结合了上述可选实施例及其可选实施方式。
本可选实施例提供了一种安全、稳定、智能及高性能的移动终端多模接地检测及校准调整系统,通过硬件模块搭建的多种接地模式的结合,以保证终端能智能的检测接地状态,并采取对应的措施和模式来调整接地性能。
本可选实施例采用以下技术方案,本可选实施例的系统包括:多点接地端子,接地检测模块、接地处理控制模块、基带芯片、接地诊断模块、自适应调整控制模块、接地不良调整模块、屏蔽不良调整模块、接地形式切换模块、天线接地优化模块、射频芯片模块、液晶显示器(Liquid Crystal Display的简称LCD)显示模块,天线模块,用户界面(User Interface,简称为UI)检测窗口。
本可选实施例的基本过程如下:当用户在UI检测窗口中开启接地处理控制模块后,手机进入接地检测界面,用户通过点击UI界面上的各接地图形化窗口,随机激活各监测端口,手机将各监测端口的点对点接地端子导通,形成接地检测回路,接地检测回路测试当前接地回路参数,并将具体数值反馈给基带芯片,转换为对应的接地参数,接地诊断模块对接地参数的类型做具体的判断,并和标准值及门限做比较,如果超出阈值门限,表明该端口接地恶化,随机启动自适应调整控制模块对改点进行自校准,调整模块会根据当前接地条件和测试值做出实时调整,并重新检测直到修复。如果接地状态恶化到不能直接软硬件修复,或当前的模式无法直接修复,UI窗口中会显示接地状态提示信息及建议,用户或装机维修人员可以根据提示信息针对不良接地点进行拆机专门修复。当用户开启自适应接地调整控制模式后,手机会实时检测当前接收信号强度,调整天线及相关电路接地端子的连接,向提升性能的方向优化接地连接形式。当手机监测到当前手机信噪比恶化或Ec/Io波动异常时,手机也会调整各屏蔽点接地端子的接地形式,向提高手机屏蔽性能稳定性的方向调整。
图7是根据本发明实施例的实现智能接地终端的硬件结构图,如图7所示,该移动终端包括l1多点接地端子,l2接地检测模块、l3接地处理控制模块、l4基带芯片、l5接地诊断模块、l6自适应调整控制模块、l7接地不良调整模块、l8屏蔽不良调整模块、l9接地形式切换模块、l10天线接地优化模块、111射频芯片模块、112LCD显示模块、l13天线模块、114UI检测窗口。
多点接地端子l1,与上面所述接地检测模块l2、接地处理控制模块l3及各接地调整模块l7-l10相连,设置为完成各接地点接地参数的采集。手机在电路板,天线及结构件之间的关键部位设置多点接地端子,端子前端至于接地材料或接地线与参考地点两侧,后端串联微型开关连接,根据接地触点的多少可以对应选择低插损的单刀单掷或单刀多掷开关,开关通过两线MIPI接口连接到基带芯片统一控制,当开启接地处理控制模块后,用户在LCD屏幕上的UI检查窗口中,点击选择对应接地点的端子图标后,接地检测模块将对应接地端子切换到导通状态,即可通过接地检测模块采集该点接地参数及性能状态。
接地检测模块l2和多点接地端子l1、接地处理控制模块l3及基带芯片l4相连,设置为完成各接地参数的检测。接地检测模块通过直接和间接两种检测模式。接地参数可以是接地电阻,接地电流,接地电压。
直接接地检测模式通过检测单个接地回路中的接地参数值,将其结果传输给基带芯片做进一步分析转换处理,从而得到对应端子的接地电阻值。接地检测模块要求检测精确度高,误差小,同时具备良好的频率响应特性,能够同时监测射频的高中低各频段中的接地参数。检测的具体方法如下:接地检测模块首先选取最近接地回路,检测回路先做自校准,将测试回路调整到零电位状态,并检测参考主地端子是否满足要求,然后接通测试端口,测试此时的电流或电压值,再跳过测试端子,通过可变电阻器调节电流或电压值到连接待测接地端子状态,则此时调节的最终的等效电阻就是待测的接地电阻。在检测电路中,会根据测试的步进精度要求调整回路内阻值,同时也会切换参考接地点位置采集接地电阻值,最终的接地电阻值是多个回路和多次测量均值,以防止误测并提高检测精度。
间接接地检测模式通过采集当前各射频模块的频点杂散信号,将其送入手机射频芯片解调,基带芯片处理,得到对应的信号强度幅值,此模式可以采集手机使用频段的带内,带外杂散,以及倍频及小范围内谐波信号,手机在此模式下需要切换到宽频滤波器及陷波器,将其主频滤去,紧留下待检测信号,如果检测到有异常频点或过量杂散毛刺信号,则可以将此结果发送给接地诊断模块,做进一步的处理。同时,间接接地检测模式还实时检测反映当前手机信号质量的关键参数,如接收的信号强度指示 (Received Signal Strength Indication简称为RSSI),信噪比(Signal Noise,简称为SNR),导频信号的信噪比Ec/Io等,通过收集这些信号的跳变规律和频率,并与存储的正常标称值和比较,以将这些异常信息传递给接地诊断模块,以作最终判定处理。
最后,间接接地检测模式还负责采集手机内温度参数,通过内置于手机内多个高发热地带的热敏电阻来实现,热敏电阻放置在高发热区域的接地点附近,热敏电阻将采集到的参数发送给基带芯片下一步处理,转换为具体的发热温度值,如果温度异常,超过此处设置的阈值,且表明此处接地不良,需要做接地优化调整。
接地处理控制模块l3和多点接地端子l1,接地检测模块l2,基带芯片l4、接地诊断模块l5及自适应调整模块l6相连,设置为完成整个接地检测、诊断及自适应处理的开启及关闭。接地处理控制模块首先控制基带芯片在检测模式和正常工作模式之间切换,整个手机可以在单一正常模式下工作,也可以在单一检测模式下工作,还能在上述两种模式共存下工作,检测控制模块可以由用户在UI界面上的接地检测界面框里直接设置。同时,接地处理控制模块也负责实时监控当前采集到的各接地端子的接地参数的动态变化,控制自适应调整模块采取对应的调整措施。
基带芯片l4与接地检测模块l2、接地处理控制模块l3、接地诊断模块l5,射频芯片模块l11及LCD显示模块l12相连,主要负责各模块的协调控制及计算,以及接地检测模块采集后数据的数字处理。包括接地参数的计算,RSSI接收信号强度的统计,接收信号码功率(Received Signal Code Power,简称为RXCP)接收信号电平的统计,Ec/Io及SNR等信噪比参数的统计,并将统计计算结果发送给接地诊断模块,实时跟踪当前各系统参数工作状态。
接地诊断模块l5与基带芯片l4,接地处理控制模块l3、自适应调整模块l6相连,完成对各端子接地参数的详细诊断分析。包括接地良好程度评估,接地屏蔽效果评估,接地形式合理性评估,接地对天线性能影响评估等。接地诊断模块根据基带芯片的采集到的接地数据首先判断接地端子的在手机中所处的部位,判断是各部件和结构件之间的接地,如LCD、触摸屏、镁铝合金支撑板,摄像头,通用串行总线(Universal Serial Bus,简称为USB)等,还是在屏蔽筋上的接地,还是电路中电源电路、去耦电路,关键射频电路的接地,或者是天线馈点及净空区域的接地,将判断结果传递给自适应控制模块,以做相应的接地调整处理。然后,接地诊断模块将测试到的接地参数和该部位的标称值相比较,如果超出阈值门限范围,则对其进行诊断结果输出,如某部位要求接地电阻小于0.5欧姆,则查过此值的接地都判定为不良。接地诊断模块还可以判段当前接地端子的具体接地类型,如模拟地,数字地,单点接地,小孔接地,大孔 接地,主参考地还是非主参考地等,并结果接地参数及手机其他信号参数做出具体的诊断结果及解决措施。
自适应调整控制模块l6与接地诊断模块l5及各接地相调整模块l7-l10相连,主要完成各接地模块的自适应调整控制。自适应调整控制模块根据接地诊断模块的输出结果,如果已经判断出是结构松动或者装配不良导致的接地不良,则启动接地不良调整模块进行调整,如果用户或装配人员整改后还是不良,则预警提示显示到LCD对应窗口上,动态显示该位置节点和具体接地参数;如果是已经判断出是屏蔽接地不良,则启动屏蔽不良调整模块,切换和更改接地点,或者增加接地端子数目,让接地点在屏蔽筋周围能加大接地力度;如果是已经判断出是关键电路接地,则启动接地模式切换模块,通过监测各手机信号质量参数,切换各接地模式,并根据射频及基带芯片的汇报值做动态的优化调整;如果是已经判断出是天线相关接地端子,则启动天线优化接地模块,调整天线地馈点的接地点位置,或者多点接地,再通过监测当前天线性能相关参数,做自适应的反馈调整。
接地不良调整模块l7与自适应调整控制模块l6,多点接地端子l1及LCD显示模块l12相连,主要完成接地不良的优化调整。当该模块启动后,手机先尝试去对不良接地点附近端子进行自适应切换调整,更改接地位置和属性,然后再测试是否满足要求,如果不能满足阈值要求,该调整模式会给出其他整改建议,如对该点进行压合,螺丝加固,或者送维修结构维修,更换或者加贴导电材料如泡棉,导电布,铜箔等。
屏蔽不良调整模块l8与自适应调整控制模块l6、多点接地端子l1及LCD显示模块l12相连,主要完成对屏蔽不良的接地点进行调整。当该模块收到自适应调整控制模块的调整指令后,随即控制各端口开关切换接地位置,更改接地点,同时增加导通置于屏蔽筋上的接地端子数目,让接地点在屏蔽筋周围能加大接地力度,并将调节结果显示在LCD的UI检测窗口上。
接地形式切换模块19与自适应调整控制模块l6、多点接地端子l1及LCD显示模块l12相连,完成对各接地端子接地形式的切换。由于手机电路系统中接地形式多样,如模拟地,数字地,单点接地,多点接地,小孔接地,大孔接地,主参考地还是非主参考地等,而不同接地形式对手机的单板及整机射频性能都有很大的影响,不合适的接地形式在单板设计之初往往不能发觉,进而影响到手机的灵敏度和信噪比等关键指标,而由于手机个体自身差异大,接地形式的影响也不尽相同,而接地形式切换模块可以根据自适应调整控制模块的实时监测结果,更改接地形式到更适合手机自身性能的方式上,可以极大的提示手机整体通话能力及抗干扰能力。接地形式切换的方法如下:先根据对应电路或者接地线路所处的位置判定原来接地形式,然后调整接地回流 环路大小或者更改公共阻抗接地点,通过设置在接地点的各个分支和开关,将原有的接地回路链路途径改变,切断或者连通,或将并联单点和串联单点接地相互切换,或者单点接地改成多点接地,多点接地改成单点接地,或者将地线接地切换成大小地孔直接接地等。再切换上述接地方式后,再通过监测接地检测模块,看校准优化调整是否有效,以做下一步自适应控制调整,并将调节结果显示在LCD的UI检测窗口上。
天线接地优化模块l10与自适应调整控制模块l6、多点接地端子l1,天线模块113及LCD显示模块l12相连,完成对各天线性能的接地优化。天线接地优化模块主要分为两部分,直接对天线接地馈点的调节和对天线周边接地环境的调节。对于前者,通过在手机天线电路上设置多个接地回路,通过开关灵活调节导通或者关闭,在实际调试和用户使用中,可以结合当前天线形式和需要,做进一步的优化调整。对于后者,当天线周边接地环境发现变化时,手机整机性能就会降低,天线接地优化模块会检测到恶化的对应位置,导通其他辅助接地回路,以提升整体接地性能,并将调节结果显示在LCD的UI检测窗口上。
射频芯片模块l11与基带芯片l4、天线模块l13及接地检测模块l2相连,主要完成各接地相关射频信号的解调,将采集到的射频信号参数反馈给基带芯片,然后基带芯片把检测到的接地参数和射频参数送给接地诊断模块做系统分析,以采取对应的接地调节措施。
LCD显示模块l12与基带芯片l4、UI检测窗口及各接地调整模块l7-l10相连,配合基带芯片内的信号质量检测,主要完成接地处理控制模块的UI开启,接地检测点分布显示,各接地调整模块反馈的检测结果显示及校准整改措施提示。
UI检测窗口l14与LCD显示模块l12相连,设置为开启接地处理控制模块及激活各接地端子图形化窗口。当用户在UI检测窗口中开启接地处理控制模块后,手机进入接地检测界面,用户通过点击UI界面上的各接地图形化窗口,随机激活各监测端口,手机将各监测端口的点对点接地端子导通,形成接地检测回路,接地检测回路测试当前接地回路参数,并将具体数值反馈给基带芯片,转换为对应的接地参数,并将测试值及其他信息显示在UI对应子窗口上。
图8是根据本发明实施例的自适应接地调整终端的具体工作流程图,基于上述结构功能的移动终端进行多模接地检测及自适应调整的过程,如图8所示的本可选实施例基于自适应接地调整的工作流程图包括如下步骤:
步骤802、当用户开启接地处理控制模式后,手机切换到接地检测模式,然后执行步骤804;
步骤804、手机通过接地检测模块扫描各接地端子的接地参数,等待处理,执行步骤806;
步骤806、基带芯片将接地检测模块测试出的接地参数进行数字处理,还包括杂散毛刺信号,RSSI接收信号强度的统计,RXCP接收信号电平的统计,Ec/Io、信噪比SNR及发热温度等参数的统计,并将统计计算结果发送给接地诊断模块,然后执行步骤808;
步骤808、接地诊断模块对各端子接地参数的做详细诊断分析,将诊断结果输出给自适应调整控制模块,然后执行步骤810;
步骤810、自适应调整控制模块根据接地诊断模块的输出结果,配合接地检测模块的动态检测结果,对各接地端子及需求进行自适应优化调整。如果是结构接地不良,执行步骤812;如果是屏蔽接地不良,则执行步骤814;如果是关键电路接地不良,则执行步骤816;如果是天线相关接地不良,则执行步骤818;
步骤812、接地不良调整模块先尝试去对不良接地点附近端子进行自适应切换调整,更改接地位置和属性,然后再测试是否满足要求,如果不能满足阈值要求,该调整模式会给出其他整改建议,预警提示显示到LCD对应窗口上,再执行步骤820;
步骤814、屏蔽不良调整模块控制屏蔽筋附近端口开关切换接地位置,更改接地点,同时增加导通置于屏蔽筋上的接地端子数目,让接地点在屏蔽筋周围能加大接地力度,再执行步骤820;
步骤816、接地形式切换模块根据自适应调整控制模块的实时监测结果,更改各端口接地形式到更适合手机自身性能的方式上,再执行步骤820;
步骤818、天线接地优化模块对天线接地馈点的接地方式进行直接调节,同时也可以对天线周边接地环境进行动态调节,再执行步骤820;
步骤820、自适应调整控制模块实时检测手机当前接地变化,采集诊断检测各接地参数及手机射频各项通讯参数,对接地网络进行动态调整,直到各接地参数及手机性能指标合格,流程结束。
综上所述,本发明采用智能接地监测的系统设计,充分考虑各种接地的干扰和影响,利用当前终端现有的电路及系统,合理改进,便携轻巧,不仅可以让生产能对每台终端进行出厂前做全面的接地检查,用户还能根据实际的信号质量和网络情况对每个手机的接地特性做实时的智能检测,手机软件对测试到的接地参数变化做实时分析 和处理,并做出自适应接地校准,实时调整手机各种接地状态。让终端用户可以任何情形下,都能稳定,安全地享受高性能的通话质量和数据业务。与现有技术相比较,本发明改变了传统接地状态不可更改的现状,利用手机现有内部硬软件系统实现智能,安全的接地监测和动态调整。同时,在接地处理及评估上更加科学合理,对于不同的异常接地类型能给出不同的解决方案,在帮忙用户和生产测试人员,专业维修,研发人员检查手机接地性能的同时,也能根据当前手机信号强度,干扰情况,屏蔽状态,以及手机天线性能状态,做出实时优化校准和调整,以提升用户体验感受及通信质量。
在另外一个实施例中,还提供了一种软件,该软件用于执行上述实施例及优选实施方式中描述的技术方案。
在另外一个实施例中,还提供了一种存储介质,该存储介质中存储有上述软件,该存储介质包括但不限于:光盘、软盘、硬盘、可擦写存储器等。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,本发明实施例提供的一种接地调整方法及装置具有以下有益效果:与现有技术相比较,本发明改变了传统接地状态不可更改的现状,利用手机现有内部硬软件系统实现智能,安全的接地监测和动态调整。同时,在接地处理及评估上更加科学合理,对于不同的异常接地类型能给出不同的解决方案,在帮忙用户和生产测试人员,专业维修,研发人员检查手机接地性能的同时,也能根据当前手机信号强度,干扰情况,屏蔽状态,以及手机天线性能状态,做出实时优化校准和调整,以提升用户体验感受及通信质量。

Claims (16)

  1. 一种接地调整方法,包括:
    获取终端的待检测端口的接地参数,其中,该接地参数用于反映所述待检测端口的接地状态;
    在所述接地参数超出预定阈值的情况下,确定所述待检测端口的接地状态不满足预设要求;
    依据所述接地状态不满足所述预设要求的原因对不满足所述预设要求的所述待检测端口进行调整。
  2. 根据权利要求1所述的方法,其中,获取所述待检测端口的接地参数包括:
    在用户界面UI上接收检测指令;
    在所述检测指令的触发下,获取所述接地参数,并在所述UI上显示所述接地参数。
  3. 根据权利要求1所述的方法,其中,获取所述待检测端口的所述接地参数包括:
    检测所述待检测端口的接地回路;
    根据检测结果获取所述接地参数。
  4. 根据权利要求3所述的方法,其中,检测所述待检测端口的接地回路之前包括:
    通过检测所述终端的以下至少之一的信息,确定所述终端中具有不满足所述预设要求的端口:
    所述终端的信号强度未落入第一阈值范围、所述终端的信号频率未落入第二阈值范围、所述终端的温度未落入第三阈值范围。
  5. 根据权利要求1所述的方法,其中,所述接地状态不满足预设要求的原因通过以下方式确定:
    根据所述待检测端口在所述终端中的位置及所述待检测端口的接地形式确定所述接地状态不满足预设要求的原因。
  6. 根据权利要求1所述的方法,其中,依据所述接地状态不满足预设要求的原因对不满足预设要求的所述待检测端口进行调整包括以下至少之一:
    调整所述检测端口和/或所述检测端口附近端口的接地位置和/或接地属性;
    调整所述检测端口的接地位置,并增加屏蔽电路上的接地端口的数量;
    调整所述检测端口的接地形式;
    调整所述终端的天线接地馈点和/或所述终端的天线周边接地电路。
  7. 根据权利要求5或6中任一项所述的方法,其中,包括:
    所述接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
  8. 根据权利要求1至6中任一项所述的方法,其中,所述接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
  9. 一种接地调整装置,包括:
    获取模块,设置为获取终端的待检测端口的接地参数,其中,该接地参数用于反映所述待检测端口的接地状态;
    第一确定模块,设置为在所述接地参数超出预定阈值的情况下,确定所述待检测端口的接地状态不满足预设要求;
    调整模块,设置为依据所述接地状态不满足所述预设要求的原因对不满足所述预设要求的所述待检测端口进行调整。
  10. 根据权利要求9所述的装置,其中,所述获取模块包括:
    第一检测单元,设置为在用户界面UI上接收检测指令;
    第一获取单元,设置为在所述检测指令的触发下,获取所述接地参数,并在所述UI上显示所述接地参数。
  11. 根据权利要求9所述的装置,其中,所述获取模块还包括:
    第二检测单元,设置为检测所述待检测端口的接地回路;
    第二获取单元,设置为根据检测结果获取所述接地参数。
  12. 根据权利要求11所述的装置,其中,所述装置包括:
    第二确定模块,设置为通过检测所述终端的以下至少之一的信息,确定所述终端中具有不满足所述预设要求的端口:
    所述终端的信号强度未落入第一阈值范围、所述终端的信号频率未落入第二阈值范围、所述终端的温度未落入第三阈值范围。
  13. 根据权利要求9所述的装置,其中,所述第一确定模块还设置为根据所述待检测端口在所述终端中的位置及所述待检测端口的接地形式确定所述接地状态不满足预设要求的原因。
  14. 根据权利要求9所述的装置,其中,所述调整模块包括:
    第一调整单元,设置为调整所述检测端口和/或所述检测端口附近端口的接地位置和/或接地属性;和/或,
    第二调整单元,设置为调整所述检测端口的接地位置,并增加屏蔽电路上的接地端口的数量;
    第三调整单元,设置为调整所述检测端口的接地形式;
    第四调整单元,设置为调整所述终端的天线接地馈点和/或所述终端的天线周边接地电路。
  15. 根据权利要求13或14中任一项所述的装置,其中,包括:
    所述接地形式包括以下至少之一:模拟接地、数字接地、单点接地、多点接地、小孔接地、大孔接地、主参考接地、非主参考接地。
  16. 根据权利要求9至14中任一项所述的装置,其中,所述接地参数包括以下至少之一:接地电阻、接地电流、接地电压。
PCT/CN2015/083478 2014-12-25 2015-07-07 接地调整方法及装置 WO2016101590A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/538,914 US20170353590A1 (en) 2014-12-25 2015-07-07 Method and Device for Grounding Adjustment
EP15871664.7A EP3240271A4 (en) 2014-12-25 2015-07-07 Grounding adjustment method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410830768.1A CN105791525B (zh) 2014-12-25 2014-12-25 接地调整方法及装置
CN201410830768.1 2014-12-25

Publications (1)

Publication Number Publication Date
WO2016101590A1 true WO2016101590A1 (zh) 2016-06-30

Family

ID=56149143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083478 WO2016101590A1 (zh) 2014-12-25 2015-07-07 接地调整方法及装置

Country Status (4)

Country Link
US (1) US20170353590A1 (zh)
EP (1) EP3240271A4 (zh)
CN (1) CN105791525B (zh)
WO (1) WO2016101590A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI656693B (zh) * 2015-12-31 2019-04-11 鴻海精密工業股份有限公司 通信裝置
CN107707861B (zh) * 2017-06-28 2020-02-07 联发科技(新加坡)私人有限公司 数据线、电子系统及传输mipi信号的方法
CN111901586B (zh) * 2020-07-29 2021-12-10 重庆市天实精工科技有限公司 摄像头接地智能测试系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036249A1 (en) * 2003-08-15 2005-02-17 Harvey Ronald C. Threshold adjustment accuracy for ground fault condition determination
CN1744476A (zh) * 2004-08-31 2006-03-08 中兴通讯股份有限公司 一种检测天线及馈线连接状态的方法和装置
CN102098243A (zh) * 2010-12-29 2011-06-15 中兴通讯股份有限公司 天线阻抗匹配装置及方法
CN102404015A (zh) * 2010-09-10 2012-04-04 索尼爱立信移动通讯有限公司 天线匹配结构、天线匹配方法以及无线通信终端
CN103391109A (zh) * 2013-07-30 2013-11-13 华为终端有限公司 一种终端设备和终端设备无线性能的提升方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10002537A1 (de) * 2000-01-21 2001-07-26 Volkswagen Ag Verfahren zur Detektion einer fehlerhaften Masseverbindung in einer elektrischen Einrichtung insbesondere eines Kraftfahrzeugs
US6930612B1 (en) * 2002-10-04 2005-08-16 Credence Technologies, Inc. Device and method of monitoring grounding of personnel and equipment in ESD-sensitive areas
EP1662569A4 (de) * 2003-08-22 2010-05-05 New Ind Res Organization Schaltung zum feststellen und messen von geräuschen in integrierten halbleiterschaltungen
JP2006261947A (ja) * 2005-03-16 2006-09-28 Toshiba Tec Corp アンテナ装置
US8184525B2 (en) * 2005-05-25 2012-05-22 Cisco Technology, Inc. Method and apparatus for detecting and fixing faults in an inline-power capable ethernet system
KR100817070B1 (ko) * 2006-10-30 2008-03-26 삼성전자주식회사 다중 그라운드 쉴딩 반도체 패키지, 그 패키지의 제조방법 및 그 그라운드 쉴딩을 이용한 노이즈 방지방법
CN101119119B (zh) * 2007-08-23 2010-12-22 华为技术有限公司 一种发射机开路故障的检测方法和装置
US9632622B2 (en) * 2009-07-16 2017-04-25 Apple Inc. Ground detection for touch sensitive device
CN102005640B (zh) * 2009-08-28 2015-04-15 深圳富泰宏精密工业有限公司 无线通信装置
US8180412B2 (en) * 2010-08-26 2012-05-15 Research In Motion Limited Mobile wireless communications device having frequency selective grounding and related method
US9000989B2 (en) * 2011-08-17 2015-04-07 Apple Inc. Test system with adjustable radio-frequency probe array
JP2013103538A (ja) * 2011-11-10 2013-05-30 Toyota Motor Corp 電力装置
US9397399B2 (en) * 2012-04-20 2016-07-19 Ethertronics, Inc. Loop antenna with switchable feeding and grounding points
DE102012019186B4 (de) * 2012-09-28 2018-10-31 Audi Ag Fahrzeug und Verfahren mit erhöhter Verlässlichkeit einer Masseanbindung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050036249A1 (en) * 2003-08-15 2005-02-17 Harvey Ronald C. Threshold adjustment accuracy for ground fault condition determination
CN1744476A (zh) * 2004-08-31 2006-03-08 中兴通讯股份有限公司 一种检测天线及馈线连接状态的方法和装置
CN102404015A (zh) * 2010-09-10 2012-04-04 索尼爱立信移动通讯有限公司 天线匹配结构、天线匹配方法以及无线通信终端
CN102098243A (zh) * 2010-12-29 2011-06-15 中兴通讯股份有限公司 天线阻抗匹配装置及方法
CN103391109A (zh) * 2013-07-30 2013-11-13 华为终端有限公司 一种终端设备和终端设备无线性能的提升方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240271A4 *

Also Published As

Publication number Publication date
CN105791525A (zh) 2016-07-20
CN105791525B (zh) 2020-03-17
EP3240271A1 (en) 2017-11-01
EP3240271A4 (en) 2018-02-07
US20170353590A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US9069037B2 (en) Methods for testing wireless electronic devices using automatic self-test mode
US8879998B2 (en) Assessing interference environment for wireless communication devices
US20150126132A1 (en) Methods and apparatus for radio co-existence testing and verification of wireless systems
CN105764024A (zh) 一种无线设备吞吐量的测试方法和装置
US20140162628A1 (en) Methods for Validating Radio-Frequency Test Systems Using Statistical Weights
US20130178203A1 (en) Methods for testing wireless electronic devices using short message service
WO2016101590A1 (zh) 接地调整方法及装置
US20070259625A1 (en) Integrated spectrum analyzer and vector network analyzer system
CN104635062B (zh) 一种环境电磁辐射监测系统
US8082006B2 (en) Base station, receiving apparatus, and receiver trouble diagnosing method
WO2008151488A1 (fr) Un dispositif et un procédé pour tester l'interférence rf entre des systèmes de communication sans fil
US8976889B2 (en) Wireless wide area network test method and test system
CN110011943A (zh) 电子产品调试设备的调试方法和装置
JP2012193975A (ja) 電気機器絶縁診断装置
CN110441621B (zh) 噪声系数的测量方法、装置、设备和存储介质
KR101470407B1 (ko) Lte rf 감시장치 및 이를 통한 감시시스템과 그 감시방법
CN116887075A (zh) 一种v2x可靠性测试自动化监控方法
CN107682022B (zh) 一种移动终端及天线匹配网络的调节方法
CN208739123U (zh) 一种短波预后选器内部自检系统
KR101942492B1 (ko) 이동통신 서비스 감시 장치 및 시스템
CN112557752B (zh) 一种电磁信号的监测系统、计算机存储介质
CN104485898B (zh) 双通道功率放大器的调试方法及系统
AU2013301581B2 (en) Improved selectivity test
CN112003652A (zh) 终端设备的射频调试方法、装置及计算机可读存储介质
JP2013165418A (ja) 電波環境測定装置、電波環境測定方法、及びその制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871664

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015871664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15538914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE