WO2016098913A1 - 차량 레이더 - Google Patents

차량 레이더 Download PDF

Info

Publication number
WO2016098913A1
WO2016098913A1 PCT/KR2014/012360 KR2014012360W WO2016098913A1 WO 2016098913 A1 WO2016098913 A1 WO 2016098913A1 KR 2014012360 W KR2014012360 W KR 2014012360W WO 2016098913 A1 WO2016098913 A1 WO 2016098913A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
vehicle radar
antennas
low noise
Prior art date
Application number
PCT/KR2014/012360
Other languages
English (en)
French (fr)
Inventor
김충환
Original Assignee
우리로광통신 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우리로광통신 주식회사 filed Critical 우리로광통신 주식회사
Priority to PCT/KR2014/012360 priority Critical patent/WO2016098913A1/ko
Publication of WO2016098913A1 publication Critical patent/WO2016098913A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver

Definitions

  • the present invention relates to a vehicle radar, and more particularly, to a vehicle radar for near field detection.
  • Radar technology was invented for military purposes by American physicists during World War II. Vehicle radar began in the 1970s and was first fitted to the Mercedes-Benz S-class Distronic model in 1999. Since then, it has been installed in luxury vehicles such as BMW series, AUDI, Volkswagen Parsers and Toyota Prius.In Korea, it has been installed in luxury cars such as Genesis and SsangYong Opirus. We are moving in the direction of mounting the radar.
  • Vehicle radar includes adaptive cruise control (ACC), forward / rear collision warning (FCW / RCW), blind spot detection, lane change assist (LCA), and parking It is used for various functions to prevent driver's convenience and safety accidents such as parking aide.
  • ACC adaptive cruise control
  • FCW / RCW forward / rear collision warning
  • LCDA lane change assist
  • parking It is used for various functions to prevent driver's convenience and safety accidents such as parking aide.
  • LRR long range radar
  • SRR short range radar
  • the remote vehicle radar has a sensing distance of 150m with a narrow angle of about 10 degrees and is used to perform an adaptive driving control function that detects obstacles such as a vehicle in front of the vehicle.
  • Near-field vehicle radar generally detects near-field distance of about 30m and, unlike long-range vehicle radar, requires wide-angle detection and angle discrimination of about 90 degrees.
  • a plurality of vehicle radars are generally used in a near vehicle radar, and thus, cost reduction is required as compared to a remote vehicle radar.
  • the technical problem to be solved by the present invention is to provide a vehicle radar capable of detecting the speed of the object, the distance to the object and the angle while minimizing the component to reduce the cost.
  • Vehicle radar includes a transmitting antenna for emitting a frequency modulated transmission signal; A plurality of receiving antennas each detecting the transmission signal reflected by an object and outputting a detection signal; A plurality of low noise amplifiers comprising a low noise amplifier configured in at least two stages and for low noise amplifying the detection signal; And a plurality of frequency downconverters for processing the low noise amplified detection signal to output a beat frequency signal, and analyzing the bit frequency signal to determine a speed, a distance, and an angle of the object.
  • the transmitting antenna and the plurality of receiving antennas are formed to have a long axis in a vertical direction in the form of a microstrip patch, and the plurality of receiving antennas are arranged to be spaced apart from each other in a horizontal direction, and the plurality of receiving antennas
  • the array of antennas and the transmit antennas are spaced apart from each other in the longitudinal direction, and a ground electrode is interposed between the array of the plurality of receive antennas and a gap spaced apart from the transmit antennas.
  • a signal generator for generating the transmission signal; And a power distribution unit for transmitting the transmission signal to the transmission antenna and the frequency down converter, wherein the frequency down converter may use the transmission signal as a demodulation reference signal.
  • the transmission signal may be a frequency modulated signal in a linear frequency-modulated continuous wave (LFMCW) manner.
  • LFMCW linear frequency-modulated continuous wave
  • An analog digital converter for digitizing the bit frequency signal and outputting a digital signal
  • DAC analog digital converter
  • FFT fast fourier transform
  • the digital signal processor may generate a quadrature phase signal by Hilbert transforming the digital signal, and analyze the bit frequency signal using the digital signal and the quadrature phase signal.
  • a ground electrode may be formed to surround the array of the plurality of receiving antennas and the transmitting antennas, respectively.
  • the plurality of receiving antennas may be spaced apart from each other by half a wavelength of a carrier signal.
  • a vehicle radar capable of detecting the speed of the object, the distance to the object and the angle while minimizing the components to reduce the cost.
  • FIG. 1 is a view showing a vehicle radar according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a connection state of an ADC and a digital signal processor.
  • FIG. 3 is a diagram for describing bit frequency analysis of a vehicle radar according to an exemplary embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an antenna array state of a vehicle radar according to an exemplary embodiment of the present invention.
  • FIG. 1 is a view showing a vehicle radar according to an embodiment of the present invention.
  • a vehicle radar may include a transmission antenna 100, a first reception antenna 200, a second reception antenna 210, a first low noise amplifier 300, and a second low noise.
  • the amplifier 310 includes a first frequency down converter 400, a second frequency down converter 410, a signal generator 500, and a power distributor 600.
  • the signal generator 500 generates a transmission signal 10 to be radiated through the transmission antenna 100.
  • the transmission signal 10 may be a frequency modulated signal in a linear frequency-modulated continuous wave (LFMCW) manner.
  • LFMCW linear frequency-modulated continuous wave
  • the signal generator 500 may use a conventional signaling integrated circuit (IC) configured to generate a carrier frequency and generate a ramp signal.
  • IC signaling integrated circuit
  • a single IC that can perform carrier frequency generation, ramp signal generation, carrier signal transmission, carrier signal reception, frequency downconversion, bit frequency generation, etc., is mostly used in remote vehicle radars and is very disadvantageous in terms of cost. Therefore, the present invention proposes a configuration of a near field vehicle radar which is advantageous in terms of cost.
  • the vehicle radar according to an embodiment of the present invention includes only one transmitting antenna 100. Including a plurality of transmit antennas 100 is not preferable in terms of cost since it is necessary to increase the transmit power to maintain a desired reception sensitivity and an additional power amplifier (PA) or PA IC is required.
  • PA power amplifier
  • At least two receiving antennas 200 and 210 are provided and spaced apart from each other at predetermined intervals. The arrangement of the antenna will be described in detail with reference to FIG. 4.
  • the vehicle radar includes only two receiving antennas 200 and 210, there may be a problem in that resolution decreases when the target is detected. This can be compensated for by resolving the algorithm to fit the number of receiving antennas.
  • the vehicle radar includes a first receiving antenna 200 and a second receiving antenna 210.
  • the first receiving antenna 200 and the second receiving antenna 210 detect the transmission signal 10 reflected by the object and output the detection signal 20, respectively.
  • the detection signal 20 is transmitted to the plurality of low noise amplifiers 300 and 310, respectively.
  • the plurality of low noise amplifiers 300 and 310 include at least two low noise amplifiers (LNAs) 350, 360, 370, and 380 sequentially connected to each of the plurality of receiving antennas 200 and 210. It is electrically connected and amplifies the detection signal 20 low noise.
  • LNAs low noise amplifiers
  • Other devices may be inductors, capacitors, resistors, transistors, and the like. Other devices can have a beneficial effect on the circuit by performing switching, filter roles, and the like in accordance with control signals.
  • the first low noise amplifier 300 includes two stages of low noise amplifiers 350 and 360, and the second low noise amplifier 310 also includes two stages of low noise amplifiers 370 and 380. ).
  • the low noise amplifiers 350, 360, 370, and 380 amplify the signals to minimize degradation of the signal to noise ratio (SNR) of the detection signal 20 received through the reception antennas 200 and 210.
  • SNR signal to noise ratio
  • the low noise amplifiers 350, 360, 370, and 380 having at least two stages are provided for each low noise amplifier 300 to increase the accuracy of detection. , 310).
  • the first and second frequency down converters 400 and 410 are electrically connected to the first and second low noise amplifiers 300 and 310, respectively, and process a low noise amplified signal to process a beat frequency signal. 450 and 460 are output.
  • bit frequency signal will be described in detail with reference to FIG. 3.
  • the first and second frequency down converters 400 and 410 may be implemented through a microstrip line on a printed circuit board (PCB).
  • PCB printed circuit board
  • the frequency downconversion function can be implemented by using a signal delay and a diode element according to the length of the microstrip line.
  • the power distributor 600 transmits the transmission signal 10 generated by the signal generator 500 to the transmission antenna 100 and the respective frequency down converters 400 and 410.
  • Each of the frequency down converters 400 and 410 may use the received transmission signal 10 as a demodulation reference signal.
  • the power distribution unit 600 may be implemented through a microstrip line on the PCB.
  • FIG. 2 is a diagram illustrating a connection state of an ADC and a digital signal processor.
  • a vehicle radar may include analog digital converters (ADCs) 700 and 710 and a digital signal processor (DSP) 800.
  • ADCs analog digital converters
  • DSP digital signal processor
  • the ADCs 700 and 710 receive the bit frequency signals 450 and 460, respectively, and digitize them to output digital signals.
  • the digital signal processor 800 receives such a digital signal and analyzes it by processing a fast fourier transform (FFT).
  • FFT fast fourier transform
  • the digital signal processor 800 may generate a quadrature phase signal by Hilbert transforming the digital signal.
  • the digital signal processor 800 of the present invention uses a digital signal that is an in-phase signal and a quadrature signal, even if one of the in-phase signal and the quadrature signal has an invalid point, The other will have a normal output value. Therefore, it is possible to prevent the occurrence of dead zones.
  • the configuration of the quadrature demodulation circuit is omitted, and the quadrature phase signal is generated and used by the digital signal processing unit 800.
  • FIG. 3 is a diagram for describing bit frequency analysis of a vehicle radar according to an exemplary embodiment of the present invention.
  • the transmission signal 10 and the detection signal 20 are illustratively shown in the upper graph in the time-frequency plane.
  • a bit frequency signal is exemplarily illustrated as the frequency difference between the transmission signal 10 and the detection signal 20.
  • the transmission signal 10 is frequency modulated according to the LFMCW scheme.
  • the transmission signal 10 may be swept according to the ramp execution time T1 to have a triangular waveform.
  • fr is the bit frequency due to the time delay until reflection
  • B is the frequency band
  • T1 is the ramp execution time
  • fv is the Doppler frequency
  • L is the wavelength of the carrier signal
  • c is the speed of light.
  • the angle of the object can also be measured by providing the first receiving antenna 200 and the second receiving antenna 210.
  • the first receiving antenna 200 and the second receiving antenna 210 receive the transmission signal 10 reflected from an object present in the horizontal direction x.
  • the first receiving antenna 200 and the second receiving antenna 210 are spaced apart from each other, as will be described later with reference to FIG. 4, and the phases of the respective detection signals 20 are different according to path differences. From this phase difference, the angle between the object and the vehicle radar can be known.
  • FIG. 4 is a diagram illustrating an antenna array state of a vehicle radar according to an exemplary embodiment of the present invention.
  • the transmitting antenna 100, the first receiving antenna 200, and the second receiving antenna 210 are in the form of a microstrip patch.
  • the furnace is formed to have a long axis in the longitudinal direction y.
  • Each of the transmitting antenna 100, the first receiving antenna 200, and the second receiving antenna 210 has contacts 101, 201, and 211 electrically connected to circuit portions of the vehicle radar.
  • the first receiving antenna 200 and the second receiving antenna 210 are arranged spaced apart from each other in the horizontal direction (x). In this case, the spaced interval may correspond to the half wavelength of the carrier signal.
  • the first receiving antenna 200 and the second receiving antenna 210 may be spaced apart from each other by 0.625 cm in the horizontal direction (x).
  • the arrangement of the receiving antennas 200 and 210 and the transmitting antenna 100 are spaced apart from each other in the longitudinal direction y.
  • Tx-to-Rx leakage problem is a problem in which the transmit signal 10 generates a DC or low frequency bit frequency signal due to leakage on the PCB toward the receiver or due to near reflection of a radome or the like.
  • the antenna has a constant product of the detection angle and the gain, and the longer the antenna is, the narrower the detection angle is in the longer direction. Circular antennas can be detected in all directions, but the gain is small.
  • first receiving antenna 200 and the second receiving antenna 210 are not spaced apart from each other in the vertical direction (y) but are spaced apart in the horizontal direction (x), they do not matter because they constitute the same receiving unit.
  • the ground electrode 910 is interposed between the arrangement of the receiving antennas 200 and 210 and the spaced apart interval of the transmitting antenna 100. do.
  • the ground electrode 910 may extend to surround the array of the receiving antennas 200 and 210 and the transmitting antenna 100, respectively (900).

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명의 차량 레이더는 주파수 변조된 송신 신호를 방사하는 송신 안테나; 물체에 반사된 상기 송신 신호를 검출하여 검출 신호를 각각 출력하는 복수의 수신 안테나; 적어도 2단으로 구성된 저잡음 증폭기를 포함하고, 상기 검출 신호를 저잡음 증폭하는 복수의 저잡음 증폭부; 및 저잡음 증폭된 상기 검출 신호를 처리하여 비트 주파수 신호(beat frequency signal)를 출력하는 복수의 주파수 하향 변환기를 포함하고, 상기 비트 주파수 신호를 분석함으로써 상기 물체의 속도, 상기 물체와의 거리 및 각도를 검출하며, 상기 송신 안테나 및 상기 복수의 수신 안테나는 마이크로스트립 패치(microstrip patch) 형태로 세로 방향의 장축을 갖도록 형성되고, 상기 복수의 수신 안테나는 가로 방향으로 서로 이격되어 배열되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나는 세로 방향으로 서로 이격되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나가 이격된 간격 사이에 접지 전극이 개재된다.

Description

차량 레이더
본 발명은 차량 레이더에 관한 것으로서, 더 구체적으로는 근거리 감지용 차량 레이더에 관한 것이다.
레이더 기술은 2차 세계대전 때 미국인 물리학자에 의하여 군사적인 목적으로 발명되었다. 차량 레이더는 1970년대부터 연구가 시작되었고, 1999년 메르세데스 벤츠 S-class Distronic 모델에 최초로 장착되었다. 그 후 BMW 시리즈, AUDI, 폭스바겐 파서트, 토요타 프리우스 등 고급 차량에 장착되었고, 국내에서는 2008년에 에쿠스에 장착을 시작으로 제너시스, 쌍용 오피러스 등의 고급 차종에 장착되었으며, 최근에는 일반 차종에도 차량 레이더가 장착되는 방향으로 나아가고 있다.
차량 레이더는 적응형 주행제어(adaptive cruise control, ACC), 전후방 충돌 경보(Forward/Rear collision warning, FCW/RCW), 사각 감지(blind spot detection), 차선 변경 지원(lane change assist, LCA), 주차 보조(parking aide) 등 운전자의 편의 및 안전사고 예방을 위해서 다양한 기능으로 사용되고 있다.
차량 레이더는 크게 원거리용 차량 레이더(long range radar, LRR)와 근거리용 차량 레이더(short range radar, SRR)의 두 가지로 분류 된다.
원거리용 차량 레이더는 일반적으로 10도 정도의 협각으로 150m의 감지거리를 가지며 차량 전방의 차량 등의 장애물을 감지하는 적응형 주행제어 기능을 수행하는데 사용된다.
근거리용 차량 레이더는 일반적으로 30m정도의 근거리를 감지하며, 원거리용 차량 레이더와는 달리 좌우 90도 정도의 광각 감지 및 각도 구분 기능이 필요하다. 상술한 다양한 기능을 수행하기 위해 근거리용 차량 레이더에는 일반적으로 복수 개의 차량 레이더가 사용되고, 따라서 원거리용 차량 레이더에 비해 비용 절감이 요구된다.
본 발명이 해결하고자 하는 기술적 과제는 구성요소를 최소화하여 비용 절감을 도모하면서 물체의 속도, 물체와의 거리 및 각도 검출이 가능한 차량 레이더를 제공하는 데 있다.
본 발명의 한 실시 예에 따른 차량 레이더는 주파수 변조된 송신 신호를 방사하는 송신 안테나; 물체에 반사된 상기 송신 신호를 검출하여 검출 신호를 각각 출력하는 복수의 수신 안테나; 적어도 2단으로 구성된 저잡음 증폭기를 포함하고, 상기 검출 신호를 저잡음 증폭하는 복수의 저잡음 증폭부; 및 저잡음 증폭된 상기 검출 신호를 처리하여 비트 주파수 신호(beat frequency signal)를 출력하는 복수의 주파수 하향 변환기를 포함하고, 상기 비트 주파수 신호를 분석함으로써 상기 물체의 속도, 상기 물체와의 거리 및 각도를 검출하며, 상기 송신 안테나 및 상기 복수의 수신 안테나는 마이크로스트립 패치(microstrip patch) 형태로 세로 방향의 장축을 갖도록 형성되고, 상기 복수의 수신 안테나는 가로 방향으로 서로 이격되어 배열되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나는 세로 방향으로 서로 이격되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나가 이격된 간격 사이에 접지 전극이 개재된다.
상기 송신 신호를 생성하는 신호 생성부; 및 상기 송신 신호를 상기 송신 안테나 및 상기 주파수 하향 변환기로 전달하는 전력 분배부를 더 포함하고, 상기 주파수 하향 변환기는 상기 송신 신호를 복조 기준 신호로 사용할 수 있다.
상기 송신 신호는 송신 신호는 LFMCW(linear frequency-modulated continuous wave) 방식으로 주파수 변조된 신호일 수 있다.
상기 비트 주파수 신호를 디지털화하여 디지털 신호를 출력하는 ADC(analog digital converter); 및 상기 디지털 신호를 FFT(fast fourier transform) 처리하여 분석하는 디지털 신호 처리부를 더 포함할 수 있다.
상기 디지털 신호 처리부는 상기 디지털 신호를 힐버트 변환(Hilbert transformation)하여 직교 위상 신호를 생성하고, 상기 디지털 신호와 상기 직교 위상 신호를 사용하여 상기 비트 주파수 신호를 분석할 수 있다.
상기 복수의 수신 안테나의 배열 및 상기 송신 안테나를 각각 둘러싸도록 접지 전극이 형성될 수 있다.
상기 복수의 수신 안테나는 캐리어 신호의 반 파장만큼 서로 이격될 수 있다.
본 발명의 실시예에 따르면 구성요소를 최소화하여 비용 절감을 도모하면서 물체의 속도, 물체와의 거리 및 각도 검출이 가능한 차량 레이더를 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 차량 레이더를 도시한 도면이다.
도 2는 ADC 및 디지털 신호 처리부의 연결 상태를 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 차량 레이더의 비트 주파수 분석을 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 차량 레이더의 안테나 배열 상태를 도시한 도면이다.
이하 본 발명의 바람직한 실시 예를 첨부한 도면을 참조하여 상세히 설명한다. 다만, 하기의 설명 및 첨부된 도면에서 본 발명의 요지를 흐릴 수 있는 공지 기능 또는 구성에 대한 상세한 설명은 생략한다. 또한, 도면 전체에 걸쳐 동일한 구성 요소들은 가능한 한 동일한 도면 부호로 나타내고 있음에 유의하여야 한다.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위한 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. 또한 제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하기 위해 사용하는 것으로, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용될 뿐, 상기 구성요소들을 한정하기 위해 사용되지 않는다.
도 1은 본 발명의 일 실시예에 따른 차량 레이더를 도시한 도면이다.
도 1을 참조하면 본 발명의 일 실시예에 따른 차량 레이더는 송신 안테나(100), 제1 수신 안테나(200), 제2 수신 안테나(210), 제1 저잡음 증폭부(300), 제2 저잡음 증폭부(310), 제1 주파수 하향 변환기(400), 제2 주파수 하향 변환기(410), 신호 생성부(500) 및 전력 분배부(600)을 포함한다.
신호 생성부(500)는 송신 안테나(100)를 통해 방사될 송신 신호(10)를 생성한다. 송신 신호(10)는 LFMCW(linear frequency-modulated continuous wave) 방식으로 주파수 변조된 신호일 수 있다.
신호 생성부(500)는 캐리어 주파수(carrier frequency)를 생성하고 램프 신호(ramp signal)를 발생시키도록 구성된 기존의 신호발생 IC(integrated circuit)를 사용할 수 있다.
캐리어 주파수 생성, 램프 신호 발생, 캐리어 신호 전송, 캐리어 신호 수신, 주파수 하향 변환, 비트 주파수 생성 등을 모두 수행할 수 있는 단일 IC는 대부분 원거리용 차량 레이더에 사용되는 것이며 비용 측면에서 매우 불리하다. 따라서 본 발명에서는 비용 측면에서 유리한 근거리용 차량 레이더의 구성을 제안한다.
본 발명의 일 실시예에 따른 차량 레이더는 송신 안테나(100)를 하나만 포함한다. 송신 안테나(100)를 복수 개 포함하게 되면, 원하는 수신 감도를 유지하기 위해 송신 전력을 키울 필요가 있어 추가의 PA(power amplifier) 또는 PA IC가 필요하게 되므로 비용 측면에서 바람직하지 않다.
수신 안테나(200, 210)는 적어도 2개가 구비되며 서로 소정 간격으로 이격되어 있다. 안테나의 배치에 대해서는 도 4에서 상세히 설명한다.
다만, 차량 레이더가 수신 안테나(200, 210)를 2개만 구비하는 경우, 타겟 감지 시에 분해능이 떨어지는 문제가 있을 수 있다. 이는 수신 안테나의 개수에 맞도록 알고리즘을 고안함으로써 분해능을 보완할 수 있다.
본 발명의 일 실시예에 따른 차량 레이더는 제1 수신 안테나(200) 및 제2 수신 안테나(210)를 포함한다. 제1 수신 안테나(200) 및 제2 수신 안테나(210)는 물체에 반사된 송신 신호(10)를 검출하여 검출 신호(20)를 각각 출력한다. 이러한 검출 신호(20)는 복수의 저잡음 증폭부(300, 310)로 각각 전달된다.
복수의 저잡음 증폭부(300, 310)는 순차적으로 연결된 적어도 2개의 저잡음 증폭기(Low Noise Amplifier, LNA)(350, 360, 370, 380)를 포함하고, 복수의 수신 안테나(200, 210) 각각에 전기적으로 연결되고, 검출 신호(20)를 저잡음 증폭한다.
본 발명에서 두 소자가 전기적으로 "연결"된다는 것은, "직접 연결"된다고 명시되지 않은 이상, 두 소자가 전선으로 직접 연결되는 경우뿐만 아니라 두 소자 사이에 다른 소자가 개재될 수 있음을 의미한다.
다른 소자란 인덕터, 커패시터, 저항, 트랜지스터 등이 될 수 있다. 다른 소자는 제어 신호에 따른 스위칭, 필터 역할 등을 행함으로써 회로에 유익한 효과를 줄 수 있다.
본 발명의 일 실시예에서 제1 저잡음 증폭부(300)는 2단으로 구성된 저잡음 증폭기(350, 360)를 포함하고, 제2 저잡음 증폭부(310) 또한 2단으로 구성된 저잡음 증폭기(370, 380)를 포함한다.
저잡음 증폭기(350, 360, 370, 380)는 수신 안테나(200, 210)을 통해 수신되는 검출 신호(20)의 SNR(Signal to Noise Ratio)의 저하를 최소화하도록 신호를 증폭한다.
본 발명의 실시예에서는 송신 신호(10)가 PA를 거치지 않고 방사되기 때문에, 검출의 정확도를 높이기 위해서 적어도 2단으로 구성된 저잡음 증폭기(350, 360, 370, 380)가 각각의 저잡음 증폭부(300, 310)에 포함된다.
제1 및 제2 주파수 하향 변환기(400, 410)는 제1 및 제2 저잡음 증폭부(300, 310) 각각에 전기적으로 연결되고, 저잡음 증폭된 신호를 처리하여 비트 주파수 신호(beat frequency signal)(450, 460)를 출력한다.
비트 주파수 신호에 대해서는 도 3에서 상세히 설명한다.
제1 및 제2 주파수 하향 변환기(400, 410)는 PCB(printed circuit board) 상에서 마이크로스트립(microstrip) 선로를 통해 구현될 수 있다.
마이크로스트립 선로의 길이에 따른 신호의 지연과 다이오드 소자를 이용하여 주파수 하향 변환 기능을 구현할 수 있다.
전력 분배부(600)는 신호 생성부(500)에 의해 생성된 송신 신호(10)를 송신 안테나(100) 및 각각의 주파수 하향 변환기(400, 410)로 전달한다.
각각의 주파수 하향 변환기(400, 410)는 전달받은 송신 신호(10)를 복조 기준 신호로 사용할 수 있다.
전력 분배부(600) 또한 주파수 하향 변환기(400, 410)와 마찬가지로 PCB 상에서 마이크로스트립 선로를 통해 구현될 수 있다.
도 2는 ADC 및 디지털 신호 처리부의 연결 상태를 도시한 도면이다.
도 2를 참조하면 본 발명의 일 실시예에 따른 차량 레이더는 ADC(analog digital converter)(700, 710) 및 디지털 신호 처리부(digital signal processor, DSP)(800)를 포함할 수 있다.
ADC(700, 710)는 비트 주파수 신호(450, 460)를 각각 전달받아 샘플링(sampling)함으로써 디지털화하여 디지털 신호를 출력한다.
디지털 신호 처리부(800)는 이러한 디지털 신호를 전달받아 FFT(fast fourier transform) 처리하여 분석한다.
또한 디지털 신호 처리부(800)는 이러한 디지털 신호를 힐버트 변환(Hilbert transformation)하여 직교 위상 신호를 생성할 수 있다.
차량 레이더의 검출 신호 분석에서 특정 거리에 따라 진폭이 작아지는 무효점(null-point)이 있을 수 있다. 이러한 경우, 거리에 따라 주기적으로 타겟 감지가 되지 않는 데드존(dead zone)이 발생하게 된다.
본 발명의 디지털 신호 처리부(800)는 동위상 신호(in-phase signal)인 디지털 신호와 직교 위상 신호(quadrature signal)를 사용하므로, 동위상 신호와 직교 위상 신호 중 어느 하나가 무효점을 가지더라도 다른 하나는 정상적인 출력값을 가지게 된다. 따라서 데드존 발생의 예방이 가능하다.
차량 레이더의 수신부에 직교 복조 회로(quadrature demodulation circuit)를 구비하는 경우 또한 데드존의 발생을 예방가능하나, I 신호(in-phase signal) 및 Q 신호(quadrature signal)의 배선을 별도 구비하는 등 구성이 복잡하고 비용 측면에서 불리하게 된다.
따라서 본 발명에서는 이러한 직교 복조 회로의 구성을 생략하고, 디지털 신호 처리부(800)에서 직교 위상 신호를 생성하여 사용한다.
도 3은 본 발명의 일 실시예에 따른 차량 레이더의 비트 주파수 분석을 설명하기 위한 도면이다.
도 3을 참조하면 송신 신호(10) 및 검출 신호(20)가 시간-주파수 평면에서 상부 그래프에 예시적으로 도시되어 있다. 하부 그래프에는 송신 신호(10)와 검출 신호(20)의 주파수 차이로서 비트 주파수 신호가 예시적으로 도시되어 있다.
도 3에서 송신 신호(10)는 LFMCW 방식에 따라 주파수 변조된다. 송신 신호(10)는 램프 수행 시간(T1)에 따라 스위프(sweep)되어 삼각형의 파형을 가질 수 있다.
거리가 R이고, 상대 속도 V로 움직이는 물체가 있을 때, 도 3에 도시된 변수 및 아래 수학식 1 및 2를 사용하여 물체와의 거리 및 상대 속도를 알 수 있다.
이때 fr은 반사될 때 까지의 시간 지연으로 인한 비트 주파수, B는 주파수 대역, T1은 램프 수행 시간, fv는 도플러 주파수(Doppler frequency), L은 캐리어 신호의 파장, c는 빛의 속도이다.
[수학식 1]
Figure PCTKR2014012360-appb-I000001
[수학식 2]
Figure PCTKR2014012360-appb-I000002
제1 수신 안테나(200)와 제2 수신 안테나(210)를 구비함으로써 물체의 각도 또한 측정이 가능하다.
제1 수신 안테나(200)와 제2 수신 안테나(210)는 가로 방향(x)의 범위에 존재하는 물체로부터 반사된 송신 신호(10)를 수신한다.
제1 수신 안테나(200)와 제2 수신 안테나(210)는 도 4에서 후술하듯이 서로 이격되어 있고, 경로 차이에 따라서 각각의 검출 신호(20)의 위상에 차이가 있다. 이러한 위상 차이로부터 물체와 차량 레이더 간의 각도를 알 수 있다.
도 4는 본 발명의 일 실시예에 따른 차량 레이더의 안테나 배열 상태를 도시한 도면이다.
도 4를 참조하면 본 발명의 일 실시예에 따른 차량 레이더의 안태나 배열에는 송신 안테나(100), 제1 수신 안테나(200) 및 제2 수신 안테나(210)가 마이크로스트립 패치(microstrip patch) 형태로 세로 방향(y)의 장축을 갖도록 형성되어 있다.
송신 안테나(100), 제1 수신 안테나(200) 및 제2 수신 안테나(210) 각각은 차량 레이더의 회로부와 전기적으로 연결되는 접점(101, 201, 211)을 구비한다.
제1 수신 안테나(200)와 제2 수신 안테나(210)는 가로 방향(x)으로 서로 이격되어 배열된다. 이때 이격되는 간격은 캐리어 신호의 반 파장에 대응될 수 있다.
캐리어 신호가 24GHz의 주파수를 가진다면 캐리어 신호의 파장은 공기 중에서 근사적으로 1.25cm이다. 따라서 제1 수신 안테나(200)와 제2 수신 안테나(210)는 가로 방향(x)으로 0.625cm만큼 서로 이격될 수 있다.
본 발명의 실시예에서 수신 안테나(200, 210)의 배열과 송신 안테나(100)는 세로 방향(y)으로 서로 이격된다.
FMCW 방식의 레이더의 단점 중 하나는 송신-수신 누설 문제(Tx-to-Rx leakage problem)이다. 이는 송신 신호(10)가 PCB 상에서 수신부쪽으로 누설되거나 레이돔(radome) 등의 근접 반사로 인하여 DC 또는 저주파 비트 주파수 신호를 생성하는 문제이다.
안테나의 특성을 고려하자면, 안테나는 감지 각도와 이득의 곱이 일정하고, 안테나의 길이가 길어지면 길어진 방향으로 감지 각도가 좁아진다. 원형의 안테나는 모든 방향으로 감지가 가능하나 이득이 작다.
따라서 도 4와 같이, 수신 안테나(200, 210)의 배열과 송신 안테나(100)가 장축 방향인 세로 방향(y)으로 서로 이격하게되면, 차량 레이더의 송신 신호 및 검출 신호에의 영향을 최소화할 수 있다.
제1 수신 안테나(200)와 제2 수신 안테나(210)는 서로 세로 방향(y)으로 이격되지 않고, 가로 방향(x)으로 이격되지만, 동일한 수신부를 구성하므로 문제되지 않는다.
또한 상술한 송신-수신 누설 문제를 더 효과적으로 해결하기 위해, 본 발명의 실시예에서는, 수신 안테나(200, 210)의 배열과 송신 안테나(100)가 이격된 간격 사이에 접지 전극(910)을 개재한다.
접지 전극(910)은 연장되어 수신 안테나(200, 210)의 배열과 송신 안테나(100)를 각각 둘러 싸도록 형성될 수 있다(900).
지금까지 참조한 도면과 기재된 발명의 상세한 설명은 단지 본 발명의 예시적인 것으로서, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
부호의 설명
100: 송신 안테나
200: 제1 수신 안테나
210: 제2 수신 안테나
300: 제1 저잡음 증폭부
310: 제2 저잡음 증폭부
400: 제1 주파수 하향 변환기
410: 제2 주파수 하향 변환기
500: 신호 생성부
600: 전력 분배부
900, 910: 접지 전극

Claims (7)

  1. 주파수 변조된 송신 신호를 방사하는 송신 안테나;
    물체에 반사된 상기 송신 신호를 검출하여 검출 신호를 각각 출력하는 복수의 수신 안테나;
    적어도 2단으로 구성된 저잡음 증폭기를 포함하고, 상기 검출 신호를 저잡음 증폭하는 복수의 저잡음 증폭부; 및
    저잡음 증폭된 상기 검출 신호를 처리하여 비트 주파수 신호(beat frequency signal)를 출력하는 복수의 주파수 하향 변환기를 포함하고,
    상기 비트 주파수 신호를 분석함으로써 상기 물체의 속도, 상기 물체와의 거리 및 각도를 검출하며,
    상기 송신 안테나 및 상기 복수의 수신 안테나는 마이크로스트립 패치(microstrip patch) 형태로 세로 방향의 장축을 갖도록 형성되고, 상기 복수의 수신 안테나는 가로 방향으로 서로 이격되어 배열되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나는 세로 방향으로 서로 이격되고, 상기 복수의 수신 안테나의 배열과 상기 송신 안테나가 이격된 간격 사이에 접지 전극이 개재되는
    차량 레이더.
  2. 제1 항에 있어서,
    상기 송신 신호를 생성하는 신호 생성부; 및
    상기 송신 신호를 상기 송신 안테나 및 상기 주파수 하향 변환기로 전달하는 전력 분배부를 더 포함하고,
    상기 주파수 하향 변환기는 상기 송신 신호를 복조 기준 신호로 사용하는
    차량 레이더.
  3. 제2 항에 있어서,
    상기 송신 신호는 LFMCW(linear frequency-modulated continuous wave) 방식으로 주파수 변조된 신호인
    차량 레이더.
  4. 제1 항에 있어서,
    상기 비트 주파수 신호를 디지털화하여 디지털 신호를 출력하는 ADC(analog digital converter); 및
    상기 디지털 신호를 FFT(fast fourier transform) 처리하여 분석하는 디지털 신호 처리부를 더 포함하는
    차량 레이더.
  5. 제4 항에 있어서,
    상기 디지털 신호 처리부는 상기 디지털 신호를 힐버트 변환(Hilbert transformation)하여 직교 위상 신호를 생성하고,
    상기 디지털 신호와 상기 직교 위상 신호를 사용하여 상기 비트 주파수 신호를 분석하는
    차량 레이더.
  6. 제1 항에 있어서,
    상기 복수의 수신 안테나의 배열 및 상기 송신 안테나를 각각 둘러싸도록 접지 전극이 형성되는
    차량 레이더.
  7. 제1 항에 있어서,
    상기 복수의 수신 안테나는 캐리어 신호의 반 파장만큼 서로 이격되어 있는
    차량 레이더.
PCT/KR2014/012360 2014-12-15 2014-12-15 차량 레이더 WO2016098913A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012360 WO2016098913A1 (ko) 2014-12-15 2014-12-15 차량 레이더

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/012360 WO2016098913A1 (ko) 2014-12-15 2014-12-15 차량 레이더

Publications (1)

Publication Number Publication Date
WO2016098913A1 true WO2016098913A1 (ko) 2016-06-23

Family

ID=56126785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012360 WO2016098913A1 (ko) 2014-12-15 2014-12-15 차량 레이더

Country Status (1)

Country Link
WO (1) WO2016098913A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125697A1 (en) * 2017-12-20 2019-06-27 Waymo Llc Multiple polarization radar unit
CN112368591A (zh) * 2018-08-02 2021-02-12 日立汽车系统株式会社 雷达装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095362A (ko) * 2005-02-28 2006-08-31 엘지이노텍 주식회사 Tx/Rx단이 격리된 프론트 앤드 모듈
KR100750967B1 (ko) * 2006-05-02 2007-08-22 한국전기연구원 가상 배열형 안테나 시스템 기반의 근거리 고해상도 차량용레이더 시스템
US20090033538A1 (en) * 2007-08-01 2009-02-05 Volker Winkler Ramp Linearization for FMCW Radar Using Digital Down-Conversion of a Sampled VCO Signal
KR101167906B1 (ko) * 2011-02-28 2012-07-30 국방과학연구소 차량용 레이더시스템 및 차량용 레이더 시스템의 표적탐지 방법
KR101239166B1 (ko) * 2012-03-08 2013-03-05 국방과학연구소 Fmcw 근접 센서

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060095362A (ko) * 2005-02-28 2006-08-31 엘지이노텍 주식회사 Tx/Rx단이 격리된 프론트 앤드 모듈
KR100750967B1 (ko) * 2006-05-02 2007-08-22 한국전기연구원 가상 배열형 안테나 시스템 기반의 근거리 고해상도 차량용레이더 시스템
US20090033538A1 (en) * 2007-08-01 2009-02-05 Volker Winkler Ramp Linearization for FMCW Radar Using Digital Down-Conversion of a Sampled VCO Signal
KR101167906B1 (ko) * 2011-02-28 2012-07-30 국방과학연구소 차량용 레이더시스템 및 차량용 레이더 시스템의 표적탐지 방법
KR101239166B1 (ko) * 2012-03-08 2013-03-05 국방과학연구소 Fmcw 근접 센서

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019125697A1 (en) * 2017-12-20 2019-06-27 Waymo Llc Multiple polarization radar unit
CN111480090A (zh) * 2017-12-20 2020-07-31 伟摩有限责任公司 多极化雷达单元
US10852390B2 (en) 2017-12-20 2020-12-01 Waymo Llc Multiple polarization radar unit
CN112368591A (zh) * 2018-08-02 2021-02-12 日立汽车系统株式会社 雷达装置

Similar Documents

Publication Publication Date Title
WO2017039161A1 (ko) 레이더 모듈 및 이를 포함하는 차량용 레이더 장치
US10247819B2 (en) Radar system
WO2019216469A1 (ko) 자동차 레이더 시스템에서 탐지된 타겟들의 클러스터링 방법 및 이를 위한 장치
CN114280593B (zh) 一种雷达系统及车辆
US10042050B2 (en) Vehicle radar system with blind spot detection
US10162052B2 (en) Pre-warning method and vehicle radar system
JP7319827B2 (ja) センサ装置およびシステムならびに生体センシング方法およびシステム
US11275145B2 (en) Antenna device and target detecting device
US7864099B2 (en) Low cost short range radar
US7006033B2 (en) Pulse radar apparatus
US20130088380A1 (en) Radar device
US20180284267A1 (en) A modular vehicle radar
WO2016098913A1 (ko) 차량 레이더
US20200003887A1 (en) Speed measurement device and speed measurement method
EP3964853A1 (en) System and method for local oscillator drift estimation and compensation in cascaded sensors
KR200483456Y1 (ko) 차량 레이더
US20220283284A1 (en) Frequency Division Multiplexing with Polyphase Shifters
WO2014104299A1 (ja) 車載レーダ装置
WO2011027969A1 (en) Missile warning radar system
KR20220006063A (ko) 특히 차량에서 사용하기 위한 일관된 멀티-스태틱 레이더 시스템
CN112368591A (zh) 雷达装置
WO2021210116A1 (ja) レーダ信号処理装置、レーダ信号処理方法、レーダ装置及び車載装置
RU2757328C1 (ru) Устройство для обнаружения и отслеживания металлосодержащего протяженного подводного объекта с борта автономного необитаемого подводного аппарата
US11796672B2 (en) Frequency division multiplexing with polyphase shifters
CN216485477U (zh) 雷达稀疏阵天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908479

Country of ref document: EP

Kind code of ref document: A1