WO2016098269A1 - Aqueous acrylamide solution and method for producing acrylamide polymer - Google Patents

Aqueous acrylamide solution and method for producing acrylamide polymer Download PDF

Info

Publication number
WO2016098269A1
WO2016098269A1 PCT/JP2015/004086 JP2015004086W WO2016098269A1 WO 2016098269 A1 WO2016098269 A1 WO 2016098269A1 JP 2015004086 W JP2015004086 W JP 2015004086W WO 2016098269 A1 WO2016098269 A1 WO 2016098269A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylamide
aqueous solution
polymer
magnesium
oxazole
Prior art date
Application number
PCT/JP2015/004086
Other languages
French (fr)
Japanese (ja)
Inventor
加納 誠
典史 萩谷
隆文 山口
美知子 高橋
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to CN201580054822.0A priority Critical patent/CN106795227B/en
Priority to JP2015543205A priority patent/JP6020741B1/en
Publication of WO2016098269A1 publication Critical patent/WO2016098269A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems

Definitions

  • Oxazole is sometimes added as a stabilizer in acrylonitrile, which is a raw material for acrylamide.
  • Oxazole is contained in acrylonitrile, there is a problem that acrylonitrile is colored over time and acrylamide obtained by hydrating acrylonitrile is also colored. That is, conventionally, it has been considered that the smaller the content of oxazole, both in acrylamide and in acrylonitrile, which is the raw material, is preferable.
  • an amount of oxazole obtained by subtracting the amount of oxazole contained in the acrylamide aqueous solution to be used from the target oxazole content in the acrylamide aqueous solution to be used may be added to.
  • a commercially available oxazole may be used, and oxazoles produced by various methods may be used. Examples of the synthesis method of oxazole include Robinson-Gabriel synthesis, Fischer oxazole synthesis, Bredereck reaction and the like.
  • Magnesium may be contained as a compound, and its form and type are not limited.
  • magnesium sulfate, magnesium chloride, magnesium phosphate, magnesium acetate and the like can be mentioned. Among these, magnesium sulfate, magnesium chloride and the like are preferable.
  • the silicon content is preferably 120 mg or less, more preferably 100 mg or less, and even more preferably 80 mg or less with respect to 1 kg of acrylamide.
  • a high-viscosity acrylamide polymer can be obtained by setting the silicon content to 120 mg or less relative to 1 kg of acrylamide.
  • Silicon in the present specification includes silicon alone, silicic acid represented by [SiO x (OH) 4-2x ] n (which may be either insoluble silicic acid or soluble silicic acid), silicon dioxide, silicon oxide, and the like. Including silicon contained, the form is not limited.
  • the aqueous acrylamide solution preferably has a content of hydrocyanic acid of 1.5 mg or less per 1 kg of acrylamide.
  • a content of hydrocyanic acid of 1.5 mg or less with respect to 1 kg of acrylamide.
  • the method for removing or reducing hydrocyanic acid in acrylonitrile is not particularly limited, and can be performed by a known method.
  • a method using an anion exchange resin a method for extracting hydrocyanic acid with an aqueous alkali solution (Japanese Patent Laid-Open No. 2001-288256), a method for adding hydrocyanic acid to acrylonitrile by adding an alkali (Japanese Patent Laid-Open No. 11-123098), etc. Can be mentioned.
  • acrylamide aqueous solution a commercially available one may be used, or one prepared by various methods may be used.
  • the method for producing acrylamide include a sulfuric acid hydration method, a copper catalyst method, a microbial method using a biocatalyst, or an enzyme method.
  • fungus body examples include, for example, Nocardia, Corynebacterium, Bacillus, Pseudomonas, Micrococcus, Rhodococcus, and Rhodococcus ) Genus, Xanthobacter genus, Streptomyces genus, Rhizobium genus, Klebsiella genus, Enterobacter genus, Erwiniaon genus, Erwiniaon genus Citrobacter genus, Chromo Citrobacter (Achromobacter) genus, Agrobacterium (Agrobacterium) genus or microorganisms belonging to the shoe de Nocardia (Pseudonocardia) genus, and the like. Among these, it is more preferable to use microorganisms belonging to the genus Rhodococcus and Pseudonocardia.
  • the inclusion method which is one of the immobilization methods, is a method in which cells or enzymes are wrapped in a fine lattice of a polymer gel or covered with a semipermeable membrane.
  • the crosslinking method is a method in which an enzyme is crosslinked with a reagent having two or more functional groups (polyfunctional crosslinking agent).
  • the carrier binding method is a method of binding an enzyme to a water-insoluble carrier.
  • the immobilization carrier used for immobilization include glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid, agar, and gelatin.
  • the acrylamide aqueous solution may contain a biocatalyst or may have a biocatalyst removed.
  • the biocatalyst is preferably contained in an amount of 1 to 14000 mg by dry weight with respect to 1 kg of the acrylamide aqueous solution.
  • the aqueous acrylamide solution contains this amount of biocatalyst, the effect of preventing polymerization of acrylamide is enhanced when the aqueous acrylamide solution is stored or stored.
  • the method for producing the acrylamide polymer is not particularly limited, and can be appropriately selected according to the type of monomer used. Examples include aqueous solution polymerization and emulsion polymerization.
  • the polymerization temperature is usually preferably in the range of ⁇ 3 to 120 ° C., more preferably in the range of ⁇ 3 to 90 ° C. when a single polymerization initiator is used.
  • the polymerization temperature does not always need to be maintained at a constant temperature, and can be appropriately changed as the polymerization proceeds. As the polymerization proceeds, heat of polymerization is generated and the reaction temperature tends to increase, so that it can be cooled as necessary.
  • the atmosphere at the time of polymerization is not particularly limited, but from the viewpoint of rapidly proceeding the polymerization, it is preferable to polymerize in an inert gas atmosphere such as nitrogen gas.
  • the polymerization time is not particularly limited, but can usually be in the range of 1 to 20 hours.
  • reaction vessel was stirred so that the catalyst was uniformly dispersed, and the reaction solution and the catalyst were accompanied with each other even in the overflow portion.
  • the immobilized cells were removed with a 180 mesh wire net to produce an acrylamide aqueous solution. This reaction was continued for 10 days, and 50% acrylamide aqueous solution was collected from about 5 days after the reaction was stabilized (about 25 L).
  • the obtained 50% aqueous acrylamide solution was diluted 4 times with pure water, and the concentration of oxazole in the diluted aqueous acrylamide solution was measured with a gas chromatograph (DV225 (manufactured by Argentent Technologies)). Of 10 mg.
  • Example 1 Reagent oxazole (Sigma-Aldrich) was added to a 50% acrylamide aqueous solution to adjust to contain 30 mg of oxazole per 1 kg of acrylamide.
  • the aqueous solution was cooled and adjusted to ⁇ 2 ° C., bubbled with nitrogen gas to remove oxygen in the solution, the temperature was 0 ⁇ 1 ° C., and transferred to a dewar.
  • Example 2 In the same manner as in Example 1, except that magnesium sulfate heptahydrate was added to the 50% aqueous acrylamide solution used in Example 1 so that 0.5 mg of magnesium was contained in 1 kg of acrylamide. Was polymerized.
  • ⁇ Comparative example 2> The same procedure as in Example 2 was performed except that an acrylamide aqueous solution containing 20 mg of oxazole per 1 kg of acrylamide was used. That is, the reagent oxazole (Sigma Aldrich) was added to the 50% acrylamide aqueous solution obtained in Preparation Example 2 so that 20 mg of oxazole was contained per 1 kg of acrylamide.
  • the polymer by containing a predetermined amount of oxazole in the acrylamide aqueous solution, the polymer can be obtained in a shorter time without deteriorating the quality (color tone, molecular weight) of the acrylamide polymer. Therefore, it can be effectively used to improve productivity in industrial production of acrylamide polymers.

Abstract

Provided, as a technique for obtaining a high-quality acrylamide polymer in a short time, is a method for polymerizing acrylamide in an aqueous acrylamide solution, which is characterized in that the aqueous acrylamide solution contains 25 mg or more of oxazole per 1 kg of acrylamide. The aqueous acrylamide solution may additionally contain a magnesium compound. In addition, it is preferable that acrylamide is produced by hydrating acrylonitrile in the presence of a biological catalyst.

Description

アクリルアミド水溶液及びアクリルアミド系重合体の製造方法Method for producing acrylamide aqueous solution and acrylamide polymer
 本発明は、アクリルアミド水溶液及びアクリルアミド系重合体を製造する方法に関する。より詳しくは、オキサゾールを高濃度で含むアクリルアミド水溶液と、該水溶液を用いたアクリルアミドの重合反応によってアクリルアミド系重合体を製造する方法に関する。 The present invention relates to a method for producing an acrylamide aqueous solution and an acrylamide polymer. More specifically, the present invention relates to an acrylamide aqueous solution containing oxazole at a high concentration and a method for producing an acrylamide polymer by a polymerization reaction of acrylamide using the aqueous solution.
 アクリルアミド系重合体は、高分子凝集剤、製紙用薬剤、土壌改良剤、石油回収剤、掘削泥水溶増粘剤及び高分子吸収体などの多くの用途に使用されている。これらのいずれの用途においても、高分子量のアクリルアミド系重合体が望まれている。また、工業的には、生産性を向上させるため、より短時間でアクリルアミド系重合体を製造することが望まれている。 Acrylamide polymers are used in many applications such as polymer flocculants, papermaking chemicals, soil conditioners, oil recovery agents, drilling mud water thickeners and polymer absorbers. In any of these applications, a high molecular weight acrylamide polymer is desired. Moreover, industrially, in order to improve productivity, it is desired to manufacture an acrylamide polymer in a shorter time.
 アクリルアミド系重合体を短時間で製造する方法としては、例えば、アクリルアミド中にマンガン化合物を添加する方法が知られている(特許文献1)。 As a method for producing an acrylamide polymer in a short time, for example, a method of adding a manganese compound into acrylamide is known (Patent Document 1).
特開2003-306506号公報JP 2003-306506 A
 しかしながら、マンガン化合物として一般に使用されている硫酸マンガンは、潮解性があり取扱いが難しいだけでなく、アクリルアミド系重合体の着色の原因となり、アクリルアミド系重合体の品質が低下するという欠点があった。 However, manganese sulfate generally used as a manganese compound is not only difficult to handle because of deliquescence, but also has the disadvantage that it causes coloration of the acrylamide polymer and lowers the quality of the acrylamide polymer.
 従って、本発明は、高品質なアクリルアミド系重合体を短時間で得るための技術を提供することを主な目的とする。 Therefore, the main object of the present invention is to provide a technique for obtaining a high-quality acrylamide polymer in a short time.
 本発明者は、鋭意検討を行った結果、アクリルアミド水溶液中にオキサゾールを所定量含有させることにより、マンガン化合物を用いることなく、短時間で高品質なアクリルアミド系重合体が得られることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventor has found that a high-quality acrylamide polymer can be obtained in a short time without using a manganese compound by containing a predetermined amount of oxazole in an acrylamide aqueous solution. The invention has been completed.
 すなわち、本発明は、以下の[1]~[10]を提供するものである。
[1]アクリルアミド1kgに対して25mg以上のオキサゾールを含む、アクリルアミド水溶液。
[2]アクリルアミド1kgに対してマグネシウム金属換算で0.2~40mgのマグネシウムを含む、[1]のアクリルアミド水溶液。
[3]アクリルアミド1kgに対する珪素の含有量が120mg以下である、[1]又は[2]のアクリルアミド水溶液。
[4]アクリルアミド濃度が25~60質量%である、[1]~[3]のいずれかのアクリルアミド水溶液。
[5]アクリルアミドが、生体触媒の存在下でアクリロニトリルを水和して生成させたアクリルアミドである、[1]~[4]のいずれかのアクリルアミド水溶液。
[6]アクリルアミド水溶液中に含まれるアクリルアミドを重合させてアクリルアミド系重合体を製造する方法において、アクリルアミド水溶液としてアクリルアミド1kgに対して25mg以上のオキサゾールを含むアクリルアミド水溶液を用いる、アクリルアミド系重合体の製造方法。
[7]アクリルアミド水溶液としてアクリルアミド1kgに対してマグネシウム金属換算で0.2~40mgのマグネシウムを含むアクリルアミド水溶液を用いる、[6]のアクリルアミド系重合体の製造方法。
[8]アクリルアミド水溶液としてアクリルアミド1kgに対する珪素の含有量が120mg以下であるアクリルアミド水溶液を用いる、[6]又は[7]のアクリルアミド系重合体の製造方法。
[9]アクリルアミド水溶液中のアクリルアミド濃度が25~60質量%である、[6]~[8]のいずれかのアクリルアミド系重合体の製造方法。
[10]アクリルアミドが、生体触媒の存在下でアクリロニトリルを水和して生成させたものである、[6]~[9]のいずれかのアクリルアミド系重合体の製造方法。
That is, the present invention provides the following [1] to [10].
[1] An aqueous acrylamide solution containing 25 mg or more of oxazole per 1 kg of acrylamide.
[2] The acrylamide aqueous solution of [1] containing 0.2 to 40 mg of magnesium in terms of magnesium metal per 1 kg of acrylamide.
[3] The acrylamide aqueous solution according to [1] or [2], wherein the silicon content relative to 1 kg of acrylamide is 120 mg or less.
[4] The acrylamide aqueous solution according to any one of [1] to [3], wherein the acrylamide concentration is 25 to 60% by mass.
[5] The acrylamide aqueous solution according to any one of [1] to [4], wherein the acrylamide is acrylamide formed by hydrating acrylonitrile in the presence of a biocatalyst.
[6] Method for producing acrylamide polymer by polymerizing acrylamide contained in acrylamide aqueous solution to produce acrylamide polymer, using acrylamide aqueous solution containing 25 mg or more oxazole per 1 kg of acrylamide as acrylamide aqueous solution .
[7] The method for producing an acrylamide polymer according to [6], wherein an acrylamide aqueous solution containing 0.2 to 40 mg of magnesium in terms of magnesium metal is used per 1 kg of acrylamide as the acrylamide aqueous solution.
[8] The method for producing an acrylamide polymer according to [6] or [7], wherein an acrylamide aqueous solution having a silicon content of 120 mg or less relative to 1 kg of acrylamide is used as the acrylamide aqueous solution.
[9] The method for producing an acrylamide polymer according to any one of [6] to [8], wherein an acrylamide concentration in the acrylamide aqueous solution is 25 to 60% by mass.
[10] The method for producing an acrylamide polymer according to any one of [6] to [9], wherein acrylamide is produced by hydrating acrylonitrile in the presence of a biocatalyst.
 本発明によれば、高品質なアクリルアミド系重合体を短時間で得るための技術が提供される。 According to the present invention, a technique for obtaining a high-quality acrylamide polymer in a short time is provided.
 オキサゾールは、アクリルアミドの原料であるアクリロニトリル中に安定剤として添加されることがある。しかし、アクリロニトリル中にオキサゾールが含まれると、アクリロニトリルが経時的に着色し、アクリロニトリルを水和して得られるアクリルアミドにも着色が生じてしまうという問題があった。すなわち、従来、オキサゾールの含有量は、アクリルアミド中においても、その原料であるアクリロニトリル中においても、少ない程好ましいと考えられている。 Oxazole is sometimes added as a stabilizer in acrylonitrile, which is a raw material for acrylamide. However, when oxazole is contained in acrylonitrile, there is a problem that acrylonitrile is colored over time and acrylamide obtained by hydrating acrylonitrile is also colored. That is, conventionally, it has been considered that the smaller the content of oxazole, both in acrylamide and in acrylonitrile, which is the raw material, is preferable.
 このような技術常識に反して、本発明者らは、あえて高濃度のオキサゾールをアクリルアミド水溶液中に添加することにより、マンガン化合物を用いることなく、短時間で高品質のアクリルアミド系重合体を製造できることを予想外にも見出した。 Contrary to such common technical knowledge, the present inventors can manufacture a high-quality acrylamide polymer in a short time without using a manganese compound by adding a high concentration of oxazole to an acrylamide aqueous solution. Unexpectedly found.
(1)アクリルアミド水溶液
(1-1)アクリルアミド
 アクリルアミド水溶液中のアクリルアミドの濃度は特に限定されず、25~60質量%であることが好ましく、30~55質量%であることがより好ましく、40~55質量%であることがさらに好ましい。
(1) Acrylamide aqueous solution (1-1) Acrylamide The concentration of acrylamide in the acrylamide aqueous solution is not particularly limited and is preferably 25 to 60% by mass, more preferably 30 to 55% by mass, and 40 to 55%. More preferably, it is mass%.
 アクリルアミド濃度を25質量%以上とすることにより、貯蔵や保管に用いるタンク容積を小型化でき、また、輸送コストも低減できるので工業的には経済面で有利となる。また、アクリルアミド濃度を60質量%以下とすることにより、常温付近でアクリルアミドの結晶が析出するのを防げるため、アクリルアミド水溶液を温調する装置が不要となり、設備コストの低減だけでなく温度管理の操作性にも優れる。 By setting the acrylamide concentration to 25% by mass or more, the tank volume used for storage and storage can be reduced, and the transportation cost can be reduced, which is industrially advantageous from an economic viewpoint. In addition, by setting the acrylamide concentration to 60% by mass or less, it is possible to prevent acrylamide crystals from precipitating at around room temperature, eliminating the need for a device for controlling the temperature of the acrylamide aqueous solution. Excellent in properties.
 アクリルアミド水溶液のpH(25℃)は特に限定されず、アクリルアミドの品質に影響しない範囲であればよい。pHは、4~10とするのが好ましく、5~9とするのがより好ましく、6~8とするのがさらに好ましい。 The pH (25 ° C.) of the acrylamide aqueous solution is not particularly limited as long as it does not affect the quality of acrylamide. The pH is preferably 4 to 10, more preferably 5 to 9, and even more preferably 6 to 8.
 アクリルアミドは、公知の方法により製造されたアクリルアミドであってよいが、生体触媒の存在下でアクリロニトリルを水和して生成したアクリルアミドが、反応副生物が少なく純度が高いために好ましい。 Acrylamide may be acrylamide produced by a known method, but acrylamide produced by hydrating acrylonitrile in the presence of a biocatalyst is preferable because it has few reaction by-products and high purity.
(1-2)オキサゾール
 本発明のアクリルアミド水溶液は、アクリルアミド1kgに対してオキサゾールを25mg以上含む。オキサゾールの含有量は、アクリルアミド1kgに対して26~100mgとするのが好ましく、28~80mgとするのがより好ましく、30~60mgとするのがさらに好ましい。
(1-2) Oxazole The acrylamide aqueous solution of the present invention contains 25 mg or more of oxazole per 1 kg of acrylamide. The content of oxazole is preferably 26 to 100 mg, more preferably 28 to 80 mg, and even more preferably 30 to 60 mg per 1 kg of acrylamide.
 オキサゾールの含有量をアクリルアミド1kgに対して25mg以上とすることにより、アクリルアミドを重合してアクリルアミド系重合体を得る際の重合時間を短くすることができ(短時間でアクリルアミドを重合させることができ)、生産効率を向上させることができる。一方、アクリルアミド水溶液中のオキサゾールの含有量をアクリルアミド1kgに対して100mg以下とすることにより、アクリルアミドを重合して得られるアクリルアミド系重合体の不溶解分の増加を抑制することができ、アクリルアミド系重合体の品質低下を防ぐことができる。 By setting the content of oxazole to 25 mg or more per 1 kg of acrylamide, the polymerization time for polymerizing acrylamide to obtain an acrylamide polymer can be shortened (acrylamide can be polymerized in a short time). , Production efficiency can be improved. On the other hand, by setting the content of oxazole in the acrylamide aqueous solution to 100 mg or less with respect to 1 kg of acrylamide, it is possible to suppress an increase in the insoluble content of the acrylamide polymer obtained by polymerizing acrylamide. It is possible to prevent deterioration in quality of coalescence.
 オキサゾールの含有量を上述した範囲に調整するためには、目的とするオキサゾールの含有量から、使用するアクリルアミド水溶液中に含まれているオキサゾールの量を差し引いた分量のオキサゾールを、使用するアクリルアミド水溶液中に添加すればよい。オキサゾールは市販されているものを用いてもよく、種々の方法で製造したものを使用してもよい。オキサゾールの合成法としては、ロビンソン・ガブリエル合成、フィッシャーオキサゾール合成、ブレデレク反応等を挙げることができる。 In order to adjust the content of oxazole to the above-mentioned range, an amount of oxazole obtained by subtracting the amount of oxazole contained in the acrylamide aqueous solution to be used from the target oxazole content in the acrylamide aqueous solution to be used. It may be added to. A commercially available oxazole may be used, and oxazoles produced by various methods may be used. Examples of the synthesis method of oxazole include Robinson-Gabriel synthesis, Fischer oxazole synthesis, Bredereck reaction and the like.
 アクリルアミド水溶液中のオキサゾール濃度は、ガスクロマトグラフ法(例えば、DV225(アリジェントテクノロジー社製)カラムを使用)によって定量することができる。 The concentration of oxazole in the acrylamide aqueous solution can be quantified by a gas chromatographic method (for example, using a DV225 (manufactured by Argent Technologies) column).
(1-3)マグネシウム
 アクリルアミド水溶液は、さらに、マグネシウムを含んでいても良い。アクリルアミド水溶液がさらにマグネシウムを含むことにより、本発明の効果をより高めることができる。
(1-3) Magnesium The acrylamide aqueous solution may further contain magnesium. When the acrylamide aqueous solution further contains magnesium, the effect of the present invention can be further enhanced.
 本明細書において、マグネシウムの含有量は、マグネシウム金属換算として示す。マグネシウム金属換算とは、マグネシウム化合物に含有されるマグネシウム金属の質量を示す。マグネシウムの含有量は、特に限定されないが、例えば、アクリルアミド1kgに対して0.2~40mgとすることが好ましく、0.6~20mgとするのがより好ましく、1.0~10mgとするのがさらに好ましい。 In the present specification, the content of magnesium is shown in terms of magnesium metal. Magnesium metal conversion means the mass of magnesium metal contained in the magnesium compound. The content of magnesium is not particularly limited. For example, it is preferably 0.2 to 40 mg, more preferably 0.6 to 20 mg, and more preferably 1.0 to 10 mg per 1 kg of acrylamide. Further preferred.
 アクリルアミド1kgに対して、マグネシウムを0.2mg以上含ませることにより、アクリルアミドの重合時間をさらに短縮することができる。また、マグネシウム含有量をアクリルアミド1kgに対して40mg以下とするのは、それ以上の飛躍的な効果の向上が得られにくくなるからである。 Acrylamide polymerization time can be further shortened by adding 0.2 mg or more of magnesium to 1 kg of acrylamide. Moreover, the reason why the magnesium content is 40 mg or less with respect to 1 kg of acrylamide is that it is difficult to obtain a further dramatic improvement in effect.
 マグネシウムは化合物として含有されていてもよく、その形態や種類等は限定されない。例えば、硫酸マグネシウム、塩化マグネシウム、リン酸マグネシウム、酢酸マグネシウム等が挙げられ、これらの中でも、硫酸マグネシウム、塩化マグネシウム等が好ましい。 Magnesium may be contained as a compound, and its form and type are not limited. For example, magnesium sulfate, magnesium chloride, magnesium phosphate, magnesium acetate and the like can be mentioned. Among these, magnesium sulfate, magnesium chloride and the like are preferable.
 マグネシウム化合物は市販されているものを用いても良いし、公知の方法によって合成されたものを用いてもよい。アクリルアミド水溶液への添加量が極微量となる場合は、添加しやすいように、あらかじめマグネシウム化合物を溶解又は分散させた液を添加することもできる。その際、希釈液には水を使用しても良いが、マグネシウム化合物希釈液添加によるアクリルアミド濃度の低下が好ましくない場合は、マグネシウム化合物を所望の濃度のアクリルアミド水溶液に希釈し、この希釈液をアクリルアミド水溶液に添加しても良い。 A commercially available magnesium compound may be used, or a magnesium compound synthesized by a known method may be used. When the addition amount to the acrylamide aqueous solution is extremely small, a solution in which a magnesium compound is dissolved or dispersed in advance can be added so that the addition is easy. At this time, water may be used as the diluent, but if it is not preferable to reduce the acrylamide concentration by adding the magnesium compound diluent, the magnesium compound is diluted in an aqueous acrylamide solution of the desired concentration, and this diluted solution is added to the acrylamide. You may add to aqueous solution.
 アクリルアミド水溶液中のマグネシウムの含有量は、例えば、イオンクロマトグラフィーを使用して得られるマグネシウム濃度を元に算出することができる。より詳細には、以下のようにして算出することができる。
・使用カラム:TSKgel IC-Cation
・溶離液:5mMHNO+0.5mMヒスチジン
・標準溶液:陽イオン混合標準溶液II(関東化学株式会社)マグネシウム濃度:5mg/L
・測定操作:(イ)試料を脱イオン水で1/10に希釈する。(ロ)希釈資料と陽イオン混合標準溶液IIをカラムに加え分析する。(ハ)得られた希釈試料のマグネシウム由来のピーク面積と陽イオン混合標準溶液IIに含有するマグネシウム由来のピーク面積を比較し試料中のマグネシウム濃度を計算する。
The magnesium content in the acrylamide aqueous solution can be calculated based on the magnesium concentration obtained by using ion chromatography, for example. More specifically, it can be calculated as follows.
-Column used: TSKgel IC-Cation
Eluent: 5 mM HNO 3 +0.5 mM histidine Standard solution: Cation mixed standard solution II (Kanto Chemical Co., Inc.) Magnesium concentration: 5 mg / L
Measurement operation: (a) Dilute the sample to 1/10 with deionized water. (B) Add diluted data and cation mixed standard solution II to the column for analysis. (C) The magnesium-derived peak area of the obtained diluted sample is compared with the magnesium-derived peak area contained in the cation mixed standard solution II, and the magnesium concentration in the sample is calculated.
(1-4)珪素
 アクリルアミド水溶液は、珪素の含有量をアクリルアミド1kgに対して120mg以下とするのが好ましく、100mg以下とするのがより好ましく、80mg以下とするのがさらに好ましい。アクリルアミド水溶液において、珪素の含有量をアクリルアミド1kgに対して120mg以下とすることにより、高粘度のアクリルアミド系重合体を得ることができる。
(1-4) Silicon In the acrylamide aqueous solution, the silicon content is preferably 120 mg or less, more preferably 100 mg or less, and even more preferably 80 mg or less with respect to 1 kg of acrylamide. In the acrylamide aqueous solution, a high-viscosity acrylamide polymer can be obtained by setting the silicon content to 120 mg or less relative to 1 kg of acrylamide.
 本明細書中でいう珪素は、珪素単体、[SiO(OH)4-2x]で表される珪酸(不溶性の珪酸又は溶解性の珪酸のどちらでもよい)、二酸化珪素、酸化珪素等に含まれる珪素を含み、その形態については限定されない。 Silicon in the present specification includes silicon alone, silicic acid represented by [SiO x (OH) 4-2x ] n (which may be either insoluble silicic acid or soluble silicic acid), silicon dioxide, silicon oxide, and the like. Including silicon contained, the form is not limited.
 アクリルアミド水溶液中の珪素濃度の測定方法は特に限定されず、モリブデン青色法等の公知の方法を使用することができる。モリブデン青色法は、以下の通りである。珪素は水中で一部珪酸となる。珪酸はpH1.2~1.5の酸性溶液中でモリブデン酸と反応して黄色のケイモリブデン酸錯体を生成する。このケイモリブデン酸錯体をアスコルビン酸等の還元剤で還元すると、濃い青色を呈色し、吸光度により濃度を計測できる。 The method for measuring the silicon concentration in the acrylamide aqueous solution is not particularly limited, and a known method such as a molybdenum blue method can be used. The molybdenum blue method is as follows. Silicon partially becomes silicic acid in water. Silicic acid reacts with molybdic acid in an acidic solution having a pH of 1.2 to 1.5 to form a yellow silicomolybdic acid complex. When this silicomolybdic acid complex is reduced with a reducing agent such as ascorbic acid, it produces a deep blue color and the concentration can be measured by absorbance.
 珪素を低減させる方法は特に限定されず、フィルター、イオン交換樹脂、逆浸透膜、電気脱イオン、活性炭から選ばれる1以上の精製手段を使用することができる。アニオン交換樹脂としては、例えば、ゲル型強塩基性アニオン交換樹脂(三菱化学社製SA10A,CI形)、マクロポーラス型(ハイポーラス型)強塩基性アニオン交換樹脂(三菱化学社製HPA25,CI型)等が挙げられる。これらの精製は、1又は複数を組み合わせて行っても良く、1度又は複数回(2度以上)行っても良い。また、このような精製工程を必要としない珪素濃度の低い原料を使用してもよい。 The method for reducing silicon is not particularly limited, and one or more purification means selected from a filter, an ion exchange resin, a reverse osmosis membrane, electrodeionization, and activated carbon can be used. Examples of the anion exchange resin include gel type strongly basic anion exchange resin (SA10A, CI type manufactured by Mitsubishi Chemical Corporation), macroporous type (high porous type) strongly basic anion exchange resin (HPA25, CI type manufactured by Mitsubishi Chemical Corporation). ) And the like. These purifications may be performed in combination of one or more, and may be performed once or a plurality of times (twice or more). Moreover, you may use the raw material with a low silicon concentration which does not require such a refinement | purification process.
(1-5)青酸
 アクリルアミド水溶液は、青酸の含有量をアクリルアミド1kgに対して1.5mg以下とするのが好ましい。青酸の含有量をアクリルアミド1kgに対して1.5mg以下とすることにより、アクリルアミドを重合して得られたアクリルアミド系重合体が着色し、品質が低下するのを防ぐことができる。
(1-5) Cyanic acid The aqueous acrylamide solution preferably has a content of hydrocyanic acid of 1.5 mg or less per 1 kg of acrylamide. By setting the content of hydrocyanic acid to 1.5 mg or less with respect to 1 kg of acrylamide, it is possible to prevent the acrylamide polymer obtained by polymerizing acrylamide from being colored and deteriorating in quality.
 アクリルアミド水溶液中の青酸は、その原料であるアクリロニトリルの不純物として持ち込まれる。一般に市販されているアクリロニトリル中には、アクリロニトリル1kgに対して0.1~5mgの青酸が含まれるため、アクリロニトリルを水和して生成させたアクリルアミド1kgに対して、青酸は0.07~3.7mg含まれることになる。 Cyanic acid in acrylamide aqueous solution is brought in as an impurity of acrylonitrile which is the raw material. In general, commercially available acrylonitrile contains 0.1 to 5 mg of hydrocyanic acid with respect to 1 kg of acrylonitrile. Therefore, with respect to 1 kg of acrylamide formed by hydrating acrylonitrile, 0.07 to 3. It will contain 7 mg.
 従って、アクリルアミド水溶液中の青酸濃度を除去または低減させるためには、原料アクリロニトリル中の青酸を、アクリロニトリル1kgに対して青酸を1.5mg以下に除去または低減させることが好ましい。 Therefore, in order to remove or reduce the hydrocyanic acid concentration in the acrylamide aqueous solution, it is preferable to remove or reduce the hydrocyanic acid in the raw material acrylonitrile to 1.5 mg or less with respect to 1 kg of acrylonitrile.
 アクリロニトリル中の青酸を除去または低減する方法は特に限定されず、公知の方法で行うことができる。例えば、陰イオン交換樹脂を用いる方法、アルカリ水溶液で青酸を抽出する方法(特開2001-288256号)及びアルカリを添加することでアクリロニトリルに青酸を付加させる方法(特開平11-123098号)等が挙げられる。 The method for removing or reducing hydrocyanic acid in acrylonitrile is not particularly limited, and can be performed by a known method. For example, a method using an anion exchange resin, a method for extracting hydrocyanic acid with an aqueous alkali solution (Japanese Patent Laid-Open No. 2001-288256), a method for adding hydrocyanic acid to acrylonitrile by adding an alkali (Japanese Patent Laid-Open No. 11-123098), etc. Can be mentioned.
 アクリルアミド水溶液中の青酸の濃度は、NPD検出器(例えばアリジェントテクノロジー社製)を備えたキャピラリーガスクロマトグラフ(例えば、DV225(アリジェントテクノロジー社製)カラム)により測定できる。また、青酸濃度は、原料アクリロニトリル中の青酸濃度を測定し、アクリロニトリルとアクリルアミドの分子量比から算出することもできる。さらに、青酸濃度の測定方法として、アクリロニトリルをアルカリ水溶液に抽出した後、硝酸銀水溶液で滴定する方法(ASTM1178-87)も挙げられる。 The concentration of hydrocyanic acid in the acrylamide aqueous solution can be measured by a capillary gas chromatograph (for example, DV225 (manufactured by Argent Technologies)) equipped with an NPD detector (for example, Argent Technologies). Further, the concentration of hydrocyanic acid can also be calculated from the molecular weight ratio of acrylonitrile and acrylamide by measuring the hydrocyanic acid concentration in the raw material acrylonitrile. Further, as a method for measuring the concentration of hydrocyanic acid, a method (ASTM 1178-87) in which acrylonitrile is extracted into an aqueous alkali solution and then titrated with an aqueous silver nitrate solution can be mentioned.
(2)アクリルアミド水溶液の調製
 アクリルアミド水溶液は、市販のものを用いてもよく、種々の方法で製造したものを用いてもよい。アクリルアミドを製造する方法としては、硫酸水和法、銅触媒法、生体触媒を用いる微生物法または酵素法が挙げられる。
(2) Preparation of acrylamide aqueous solution As the acrylamide aqueous solution, a commercially available one may be used, or one prepared by various methods may be used. Examples of the method for producing acrylamide include a sulfuric acid hydration method, a copper catalyst method, a microbial method using a biocatalyst, or an enzyme method.
 アクリルアミド水溶液は、いずれの製法で製造されたアクリルアミドを用いて調製されたものでもよいが、反応副生物が少なく高純度なアクリルアミドが得られるので、生体触媒の存在下でアクリロニトリルを水和する製法で生成したアクリルアミドを使用することが好ましい。 The acrylamide aqueous solution may be prepared using acrylamide produced by any of the production methods. However, since acrylamide with a high degree of reaction by-products can be obtained, acrylonitrile is hydrated in the presence of a biocatalyst. It is preferred to use the acrylamide produced.
 本明細書において、生体触媒とは、目的とする反応を触媒する酵素を含有する動物細胞、植物細胞、細胞小器官、菌体(生菌体又は死滅体)もしくはその処理物が含まれる。処理物としては、細胞、細胞小器官又は菌体から抽出された粗酵素又は精製酵素、さらに動物細胞、植物細胞、細胞小器官、菌体(生菌体又は死滅体)又は酵素自体を包括法、架橋法、担体結合法等で固定化したものが挙げられる。 In the present specification, the biocatalyst includes animal cells, plant cells, cell organelles, microbial cells (live cells or dead cells) containing the enzyme that catalyzes the target reaction, or processed products thereof. Processed products include crude enzymes or purified enzymes extracted from cells, cell organelles or fungus bodies, animal cells, plant cells, cell organelles, fungus bodies (live or dead) or enzymes themselves. And those immobilized by a crosslinking method, a carrier binding method or the like.
 動物細胞としては、サル細胞COS-7、Vero、CHO細胞、マウスL細胞、ラットGH3、ヒトFL細胞等を挙げることができる。植物細胞としては、タバコBY-2細胞等を挙げることができる。 Examples of animal cells include monkey cells COS-7, Vero, CHO cells, mouse L cells, rat GH3, and human FL cells. Examples of plant cells include tobacco BY-2 cells.
 菌体としては、例えば、ノカルディア(Nocardia)属、コリネバクテリウム(Corynebacterium)属、バチルス(Bacillus)属、シュードモナス(Pseudomonas)属、ミクロコッカス(Micrococcus)属、ロドコッカス(Rhodococcus)属、アシネトバクター(Acinetobacter)属、キサントバクター(Xanthobacter)属、ストレプトマイセス(Streptomyces)属、リゾビウム(Rhizobium)属、クレブシエラ(Klebsiella)属、エンテロバクター(Enterobacter)属、エルウィニア(Erwinia)属、エアロモナス(Aeromonas)属、シトロバクター(Citrobacter)属、アクロモバクター(Achromobacter)属、アグロバクテリウム(Agrobacterium)属又はシュードノカルディア(Pseudonocardia)属に属する微生物等が挙げられる。これらの中でも、ロドコッカス属、シュードノカルディア属等に属する微生物を使用するのがより好ましい。 Examples of the fungus body include, for example, Nocardia, Corynebacterium, Bacillus, Pseudomonas, Micrococcus, Rhodococcus, and Rhodococcus ) Genus, Xanthobacter genus, Streptomyces genus, Rhizobium genus, Klebsiella genus, Enterobacter genus, Erwiniaon genus, Erwiniaon genus Citrobacter genus, Chromo Citrobacter (Achromobacter) genus, Agrobacterium (Agrobacterium) genus or microorganisms belonging to the shoe de Nocardia (Pseudonocardia) genus, and the like. Among these, it is more preferable to use microorganisms belonging to the genus Rhodococcus and Pseudonocardia.
 これらの動物細胞、植物細胞、細胞小器官又は菌体には、野生型のものだけでなく遺伝子が改変されたものも含まれる。 These animal cells, plant cells, organelles or fungus bodies include not only wild-type cells but also those in which genes are modified.
 固定化の方法の1つである包括法とは、菌体又は酵素を高分子ゲルの微細な格子の中に包み込むか、半透膜性の高分子の皮膜によって被覆する方法である。架橋法とは、酵素を2個又はそれ以上の官能基を持った試薬(多官能性架橋剤)で架橋する方法である。担体結合法とは、水不溶性の担体に酵素を結合させる方法である。固定化に用いる固定化担体としては、例えば、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸、寒天、ゼラチン等が挙げられる。 The inclusion method, which is one of the immobilization methods, is a method in which cells or enzymes are wrapped in a fine lattice of a polymer gel or covered with a semipermeable membrane. The crosslinking method is a method in which an enzyme is crosslinked with a reagent having two or more functional groups (polyfunctional crosslinking agent). The carrier binding method is a method of binding an enzyme to a water-insoluble carrier. Examples of the immobilization carrier used for immobilization include glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid, agar, and gelatin.
 酵素としては、例えば、前記微生物等が産生するニトリルヒドラターゼが挙げられる。生体触媒の存在下でアクリロニトリルを水和してアクリルアミドを生成させる方法は、特に限定されず、水又は水溶液の環境下で、アクリロニトリルと酵素とを接触させればよい。例えば、WO2009/113654に記載された方法でアクリルアミドを製造することができる。 Examples of the enzyme include nitrile hydratase produced by the microorganism and the like. A method for producing acrylamide by hydrating acrylonitrile in the presence of a biocatalyst is not particularly limited, and acrylonitrile and an enzyme may be contacted in an environment of water or an aqueous solution. For example, acrylamide can be produced by the method described in WO2009 / 113654.
 アクリルアミド水溶液は、生体触媒を含んでいてもよく、生体触媒を除去したものでも良い。アクリルアミド水溶液中に生体触媒を含有させる場合は、アクリルアミド水溶液1kgに対して、生体触媒を乾燥重量で1~14000mg含むことが好ましい。アクリルアミド水溶液がこの量の生体触媒を含むことによって、アクリルアミド水溶液を貯蔵または保管する際に、アクリルアミドの重合を防止する効果が高くなる。 The acrylamide aqueous solution may contain a biocatalyst or may have a biocatalyst removed. When the biocatalyst is contained in the acrylamide aqueous solution, the biocatalyst is preferably contained in an amount of 1 to 14000 mg by dry weight with respect to 1 kg of the acrylamide aqueous solution. When the aqueous acrylamide solution contains this amount of biocatalyst, the effect of preventing polymerization of acrylamide is enhanced when the aqueous acrylamide solution is stored or stored.
 アクリルアミド系重合体を製造する際に、アクリルアミド水溶液に生体触媒が存在することが好ましくないような場合は、アクリルアミド水溶液から生体触媒を分離すればよい。アクリルアミド水溶液から生体触媒を分離する方法としては、遠心分離、膜ろ過、ケークろ過、凝集分離、活性炭処理等が挙げられる。 When producing an acrylamide polymer, if it is not preferable that the biocatalyst is present in the acrylamide aqueous solution, the biocatalyst may be separated from the acrylamide aqueous solution. Examples of the method for separating the biocatalyst from the acrylamide aqueous solution include centrifugation, membrane filtration, cake filtration, coagulation separation, and activated carbon treatment.
(3)アクリルアミド系重合体の製造
 上記のオキサゾール等を含んだアクリルアミド水溶液中のアクリルアミドを重合することにより、アクリルアミド系重合体を得ることができる。アクリルアミド系重合体は、アクリルアミドを単独重合させたものであっても良いし、アクリルアミドと共重合可能な少なくとも一種の不飽和単量体とを共重合させたものであっても良い。
(3) Production of acrylamide polymer An acrylamide polymer can be obtained by polymerizing acrylamide in an acrylamide aqueous solution containing the above oxazole or the like. The acrylamide polymer may be obtained by homopolymerizing acrylamide, or may be obtained by copolymerizing at least one unsaturated monomer copolymerizable with acrylamide.
 アクリルアミドと共重合可能な不飽和単量体としては、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマル酸などの不飽和カルボン酸およびそれらの塩;アクリルアミド誘導体、アクリレート誘導体、アクリロニトリル、メタクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、エチレン、プロピレン、ブテンなどのオレフィン類;スチレン;α―メチルスチレン;ブタジエン;イソプレンなどが挙げられる。これらの単量体は1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of unsaturated monomers copolymerizable with acrylamide include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid and their salts; acrylamide derivatives, acrylate derivatives, acrylonitrile, methacrylates. Examples include olefins such as nitrile, vinyl acetate, vinyl chloride, vinylidene chloride, ethylene, propylene, and butene; styrene; α-methylstyrene; butadiene; isoprene. These monomers may be used individually by 1 type, and may use 2 or more types together.
 アクリルアミド系重合体を製造する方法は特に限定されず、用いる単量体の種類等に応じて適宜選択することができる。例えば、水溶液重合、乳化重合等を挙げることができる。 The method for producing the acrylamide polymer is not particularly limited, and can be appropriately selected according to the type of monomer used. Examples include aqueous solution polymerization and emulsion polymerization.
 重合開始剤としては、ラジカル重合開始剤を用いることができる。ラジカル重合開始剤としては、過硫酸カリウム、過硫酸アンモニウム、過酸化水素、過酸化ベンゾイル等の過酸化物;アゾビスイソブチロニトリル、アゾビス-(2-アミジノプロパン)ジクロリド等のアゾ系遊離基開始剤;上記過酸化物と重亜硫酸ナトリウム、トリエタノールアミン、硫化第一鉄アンモニウム等の還元剤を併用するいわゆるレドックス系触媒が挙げられる。上述した重合開始剤は1種を単独で使用してもよいし、2種以上を併用してもよい。 As the polymerization initiator, a radical polymerization initiator can be used. As radical polymerization initiators, peroxides such as potassium persulfate, ammonium persulfate, hydrogen peroxide, benzoyl peroxide; azo-based free radical initiation such as azobisisobutyronitrile, azobis- (2-amidinopropane) dichloride, etc. Agents: So-called redox catalysts using the above-mentioned peroxides in combination with reducing agents such as sodium bisulfite, triethanolamine, and ferrous ammonium sulfide. The above-mentioned polymerization initiators may be used alone or in combination of two or more.
 重合開始剤の量(複数の重合開始剤を使用する場合は、その合計量)は、単量体の総質量に対し、0.001~5質量%の範囲とすることができ、好ましくは0.05~1質量%の範囲である。 The amount of the polymerization initiator (the total amount when a plurality of polymerization initiators is used) can be in the range of 0.001 to 5% by mass, preferably 0, based on the total mass of the monomers. The range is from 0.05 to 1% by mass.
 重合温度は単一の重合開始剤を使用する場合には、通常-3~120℃の範囲が好ましく、より好ましくは-3~90℃の範囲である。重合温度は常に一定の温度に保つ必要はなく、重合の進行に伴い適宜変更することもできる。重合の進行に伴って重合熱が発生して反応温度が上昇する傾向にあるため、必要に応じて冷却することができる。 The polymerization temperature is usually preferably in the range of −3 to 120 ° C., more preferably in the range of −3 to 90 ° C. when a single polymerization initiator is used. The polymerization temperature does not always need to be maintained at a constant temperature, and can be appropriately changed as the polymerization proceeds. As the polymerization proceeds, heat of polymerization is generated and the reaction temperature tends to increase, so that it can be cooled as necessary.
 重合時の雰囲気は特に限定はないが、重合を速やかに進行する観点からは、例えば窒素ガスなどの不活性ガス雰囲気下で重合することが好ましい。重合時間は特に限定はないが、通常1~20時間の範囲とすることができる。 The atmosphere at the time of polymerization is not particularly limited, but from the viewpoint of rapidly proceeding the polymerization, it is preferable to polymerize in an inert gas atmosphere such as nitrogen gas. The polymerization time is not particularly limited, but can usually be in the range of 1 to 20 hours.
 重合時の水溶液のpHも特に限定はなく、必要に応じて調整し重合してもよい。その場合使用可能なpH調整剤としては、水酸化ナトリウム、水酸化カリウム、アンモニア等のアルカリ;リン酸、硫酸、塩酸などの鉱酸;ギ酸、酢酸等の有機酸などが挙げられる。 The pH of the aqueous solution at the time of polymerization is not particularly limited and may be adjusted and polymerized as necessary. Examples of pH adjusters that can be used in this case include alkalis such as sodium hydroxide, potassium hydroxide and ammonia; mineral acids such as phosphoric acid, sulfuric acid and hydrochloric acid; organic acids such as formic acid and acetic acid.
 以下、本発明の実施例を挙げより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の「%」は質量%を示す。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to these examples. The following “%” indicates mass%.
<調製例1:生体触媒の調製>
 ニトリルヒドラターゼ活性を有するロドコッカス・ロドクロス J-1株(Rhodococcus rhodochrous J-1:FERM BP-1478)(特公平6-55148号公報)を、グルコース2%、尿素1%、ペプトン0.5%、酵母エキス0.3%、塩化コバルト0.05%を含む培地(pH7.0)により好気的に培養した。
<Preparation Example 1: Preparation of biocatalyst>
Rhodococcus rhodochros J-1 strain having nitrile hydratase activity (Rhodococcus rhodochrous J-1: FERM BP-1478) (Japanese Patent Publication No. 6-55148), glucose 2%, urea 1%, peptone 0.5%, The cells were aerobically cultured in a medium (pH 7.0) containing 0.3% yeast extract and 0.05% cobalt chloride.
 50mMリン酸緩衝液(pH7.0)にて洗浄して得られた菌体懸濁液(乾燥菌体換算20%)500gに、アクリルアミドを20%、メチレンビスアクリルアミドを2%及び2-ジメチルアミノプロピルメタクリルアミドを2%含むモノマー混合溶液500gを加え、よく懸濁した。 500 g of a cell suspension obtained by washing with 50 mM phosphate buffer (pH 7.0) (20% in terms of dry cells), 20% acrylamide, 2% methylenebisacrylamide and 2-dimethylamino 500 g of a monomer mixed solution containing 2% propylmethacrylamide was added and well suspended.
 これに5%の過硫酸アンモニウム2g、50%のN,N,N’,N’-テトラメチルエチレンジアミン2gを加え、重合、ゲル化させた。これを0.5~1mm角の立方体に切断した後、0.5%の硫酸ナトリウム1Lで5回洗浄することにより、アクリルアミド製造触媒である固定化菌体粒子を得た。 To this, 2 g of 5% ammonium persulfate and 2 g of 50% N, N, N ′, N′-tetramethylethylenediamine were added for polymerization and gelation. This was cut into 0.5-1 mm square cubes, and then washed 5 times with 1 L of 0.5% sodium sulfate to obtain immobilized microbial cell particles as an acrylamide production catalyst.
<調製例2:アクリルアミド水溶液の調製>
 内容積1Lのジャケットつき攪拌槽4個と内容積5Lのジャケットつき攪拌槽1個を、オーバーフローした反応液が次槽に入るように直列に繋いだ。各反応槽中の反応液の温度が20℃となるように制御した。
<Preparation Example 2: Preparation of acrylamide aqueous solution>
Four jacketed stirring tanks with an inner volume of 1 L and one jacketed stirring tank with an inner volume of 5 L were connected in series so that the overflowed reaction liquid entered the next tank. It controlled so that the temperature of the reaction liquid in each reaction tank might be 20 degreeC.
 原料水としては、フィルターろ過膜(オルガノ社製PFエレメント5μm)に透過させた純水にアクリル酸濃度が100ppmとなるようにアクリル酸ナトリウム水溶液(pH7.0)を添加したものを使用した。 As raw material water, water in which a sodium acrylate aqueous solution (pH 7.0) was added to pure water permeated through a filter membrane (organo PF element 5 μm) so as to have an acrylic acid concentration of 100 ppm was used.
 第1槽目に、原料水、調製例1で調製した固定化菌体粒子、アクリロニトリル(三菱レイヨン社製)を各々、120mL/hr、0.4g/hr、40mL/hrで連続的に添加した。更に第2槽、第3槽、第4槽にはアクリロニトリルのみを各々30mL/hr、10mL/hr、10mL/hrで添加した。第5槽目には何も添加せず第4槽から流入してくる触媒を伴った反応液を攪拌した。 In the first tank, the raw water, the immobilized bacterial cell particles prepared in Preparation Example 1 and acrylonitrile (manufactured by Mitsubishi Rayon Co., Ltd.) were continuously added at 120 mL / hr, 0.4 g / hr and 40 mL / hr, respectively. . Furthermore, only acrylonitrile was added to the 2nd tank, the 3rd tank, and the 4th tank at 30 mL / hr, 10 mL / hr, and 10 mL / hr, respectively. Nothing was added to the fifth tank, and the reaction liquid with the catalyst flowing in from the fourth tank was stirred.
 各反応槽は触媒が均一に分散するように攪拌し、オーバーフロー部でも反応液と触媒が区別なく同伴していた。第5槽目から流出してくる反応液は180メッシュの金網で固定化菌体を除去し、アクリルアミド水溶液を製造した。この反応を10日間継続し、反応が安定した5日後から50%アクリルアミド水溶液を採取した(約25L)。 Each reaction vessel was stirred so that the catalyst was uniformly dispersed, and the reaction solution and the catalyst were accompanied with each other even in the overflow portion. In the reaction solution flowing out from the fifth tank, the immobilized cells were removed with a 180 mesh wire net to produce an acrylamide aqueous solution. This reaction was continued for 10 days, and 50% acrylamide aqueous solution was collected from about 5 days after the reaction was stabilized (about 25 L).
 得られた50%アクリルアミド水溶液を純水で4倍に希釈し、希釈したアクリルアミド水溶液中のオキサゾール濃度をガスクロマトグラフ(DV225(アリジェントテクノロジー社製)カラム)で測定したところ、アクリルアミド1kgに対してオキサゾールが10mg含まれていた。 The obtained 50% aqueous acrylamide solution was diluted 4 times with pure water, and the concentration of oxazole in the diluted aqueous acrylamide solution was measured with a gas chromatograph (DV225 (manufactured by Argentent Technologies)). Of 10 mg.
<実施例1>
 50%アクリルアミド水溶液に試薬オキサゾール(シグマアルドリッチ社)を添加して、アクリルアミド1kgに対してオキサゾールが30mg含まれるように調整した。
<Example 1>
Reagent oxazole (Sigma-Aldrich) was added to a 50% acrylamide aqueous solution to adjust to contain 30 mg of oxazole per 1 kg of acrylamide.
 50%のアクリルアミド水溶液中のマグネシウム濃度をイオンクロマトグラフィーにより測定したところ、検出限界以下(アクリルアミド1kgに対して0.2mg未満)であった。 When the magnesium concentration in a 50% acrylamide aqueous solution was measured by ion chromatography, it was below the detection limit (less than 0.2 mg with respect to 1 kg of acrylamide).
 50%のアクリルアミド水溶液中の珪素濃度をHACH吸光光度計(HACH社製;DR5000)シリカ測定キット(HACK社製;シリカHR,HACH1087)を用いて測定し、得られた二酸化ケイ素濃度から珪素量を換算したところ、アクリルアミド1kgに対して5mgであった。 The silicon concentration in a 50% acrylamide aqueous solution was measured using a HACH absorptiometer (manufactured by HACH; DR5000) silica measurement kit (manufactured by HACK; silica HR, HACH1087), and the silicon content was determined from the obtained silicon dioxide concentration. When converted, it was 5 mg per 1 kg of acrylamide.
 アクリルアミド水溶液を384g(アクリルアミド純分は192g)取り、これにイオン交換水を加えて、全量が790gとなるようにした。4%亜リン酸二ナトリウム溶液を4mL、2%エチレンジアミンテトラ酢酸四ナトリウム塩溶液を1.9mL添加し、撹拌した。 384 g of acrylamide aqueous solution (192 g of pure acrylamide) was taken, and ion exchange water was added thereto so that the total amount became 790 g. 4 mL of 4% disodium phosphite solution and 1.9 mL of 2% ethylenediaminetetraacetic acid tetrasodium salt solution were added and stirred.
 この水溶液を冷却して-2℃に調整し、窒素ガスでバブリングし溶液中の酸素を除いた後の温度を0±1℃とし、ジュワー瓶へ移した。 The aqueous solution was cooled and adjusted to −2 ° C., bubbled with nitrogen gas to remove oxygen in the solution, the temperature was 0 ± 1 ° C., and transferred to a dewar.
 その後、10%の2,2’-アゾビス(2-アミジノプロパン)二塩酸塩溶液を1.6mL添加し、30秒後、1%パーブチルH69溶液0.34mLを添加した。 Thereafter, 1.6 mL of 10% 2,2'-azobis (2-amidinopropane) dihydrochloride solution was added, and after 30 seconds, 0.34 mL of 1% perbutyl H69 solution was added.
 その後、1%亜ニチオン酸ナトリウム溶液を0.17mL添加し、25秒後、0.1%硫酸第一鉄溶液0.38mLを添加した。重合は断熱的に進行し、ピーク温度(約70℃)に達してから約70分間静置した。 Thereafter, 0.17 mL of a 1% sodium nithionite solution was added, and after 25 seconds, 0.38 mL of a 0.1% ferrous sulfate solution was added. The polymerization proceeded adiabatically and allowed to stand for about 70 minutes after reaching the peak temperature (about 70 ° C.).
〔物性評価〕
 (1)重合時間
 重合開始時(硫酸第一鉄溶液を添加した時点)を0分として、横軸に重合時間[分]、縦軸に重合液の液温[℃]を取って重合挙動を記録した。重合液の液温が50℃と60℃の2点を直線で結び、該直線を延長した線と重合時の最高液温を横軸に並行に引いた線との交点の時間を重合時間θ[分]と定義した。
〔Evaluation of the physical properties〕
(1) Polymerization time The polymerization behavior is shown by taking the polymerization time [min] on the horizontal axis and the liquid temperature [° C.] on the vertical axis, with 0 minutes at the start of polymerization (when ferrous sulfate solution is added). Recorded. The temperature of the polymerization liquid is 50 ° C. and 60 ° C. are connected by a straight line. It was defined as [minutes].
 重合時間θは15.5分であった。 The polymerization time θ was 15.5 minutes.
 (2)色調・粘度
 得られたアクリルアミドポリマーの含水ゲルを小隗に分け、目皿5mmφの解砕機ですりつぶし、60℃に設定した送風乾燥機で14時間乾燥した。乾燥後、目皿2mmφの高速回転刃粉砕機で粉砕して乾燥粉末状のアクリルアミドポリマーを得た。さらにこれを目開き1mmの篩にかけ、1mm以上の粉末を除去した。
(2) Color tone / viscosity The obtained acrylamide polymer hydrogel was divided into small bowls, ground with a crusher of 5 mmφ, and dried with an air dryer set at 60 ° C. for 14 hours. After drying, the mixture was pulverized with a high-speed rotary blade pulverizer having a diameter of 2 mmφ to obtain a dry powdery acrylamide polymer. Further, this was passed through a sieve having an opening of 1 mm to remove a powder of 1 mm or more.
 アクリルアミドポリマーの粉末を目視で観察した結果、白色であり、色調は良好であった。 As a result of visual observation of the acrylamide polymer powder, it was white and the color tone was good.
 500mLビーカーに純水を488g秤量し、撹拌速度240rpmで撹拌しながら、乾燥粉末状のアクリルアミドポリマーを5.10g添加し、室温で4時間撹拌した。B型粘度計を用いて25℃にて粘度測定を行った。粘度は重合物の分子量の指標となる。 488 g of pure water was weighed in a 500 mL beaker, and 5.10 g of dry powdery acrylamide polymer was added while stirring at a stirring speed of 240 rpm, followed by stirring at room temperature for 4 hours. Viscosity was measured at 25 ° C. using a B-type viscometer. Viscosity is an indicator of the molecular weight of the polymer.
 アクリルアミドポリマーの粘度は3590[mPa・S]であり、良好な値であった。 The viscosity of the acrylamide polymer was 3590 [mPa · S], which was a good value.
<実施例2>
 実施例1で使用した50%のアクリルアミド水溶液に、硫酸マグネシウム・七水和物を添加してアクリルアミド1kgに対してマグネシウムが0.5mg含まれるように調整した以外は、実施例1と同様にアクリルアミドを重合した。
<Example 2>
In the same manner as in Example 1, except that magnesium sulfate heptahydrate was added to the 50% aqueous acrylamide solution used in Example 1 so that 0.5 mg of magnesium was contained in 1 kg of acrylamide. Was polymerized.
 実施例1と同様に重合時間θを測定したところ、5.7分であった。 When the polymerization time θ was measured in the same manner as in Example 1, it was 5.7 minutes.
 実施例1と同様にアクリルアミドポリマーの粉末を目視で観察した結果、白色であり、色調は良好であった。 As in Example 1, the acrylamide polymer powder was visually observed to be white and the color tone was good.
 実施例1と同様にアクリルアミドポリマーの粘度を測定したところ、3625[mPa・S]であり、良好な値であった。 When the viscosity of the acrylamide polymer was measured in the same manner as in Example 1, it was 3625 [mPa · S], which was a good value.
<比較例1>
 アクリルアミド1kgに対して10mgのオキサゾールを含むアクリルアミド水溶液を使用したこと(すなわち、調製例2で得られたアクリルアミド水溶液を、オキサゾールを添加せずに用いた)以外は、実施例2と同様に行った。 
<Comparative Example 1>
The same procedure as in Example 2 was performed except that an acrylamide aqueous solution containing 10 mg of oxazole per 1 kg of acrylamide was used (that is, the acrylamide aqueous solution obtained in Preparation Example 2 was used without adding oxazole). .
 実施例1と同様に重合時間θを測定したところ、45.6分であり、実施例1,2に比して重合の進行が遅かった。 When the polymerization time θ was measured in the same manner as in Example 1, it was 45.6 minutes, and the progress of the polymerization was slower than in Examples 1 and 2.
 実施例1と同様にアクリルアミドポリマーの粉末を目視で観察した結果、白色であり、色調は問題なかった。 As a result of visually observing the acrylamide polymer powder in the same manner as in Example 1, it was white and there was no problem with the color tone.
 実施例1と同様にアクリルアミドポリマーの粘度を測定したところ、3570[mPa・S]であり、問題のない値であった。 When the viscosity of the acrylamide polymer was measured in the same manner as in Example 1, it was 3570 [mPa · S], which was a value with no problem.
<比較例2>
 アクリルアミド1kgに対して20mgのオキサゾールを含むアクリルアミド水溶液を使用した以外は、実施例2と同様に行った。即ち、調製例2で得られた50%アクリルアミド水溶液に試薬オキサゾール(シグマアルドリッチ社)を添加して、アクリルアミド1kgに対してオキサゾールが20mg含まれるように調整した。
<Comparative example 2>
The same procedure as in Example 2 was performed except that an acrylamide aqueous solution containing 20 mg of oxazole per 1 kg of acrylamide was used. That is, the reagent oxazole (Sigma Aldrich) was added to the 50% acrylamide aqueous solution obtained in Preparation Example 2 so that 20 mg of oxazole was contained per 1 kg of acrylamide.
 実施例1と同様に重合時間θを測定したところ、36.0分であり、実施例1,2に比して重合の進行が遅かった。 When the polymerization time θ was measured in the same manner as in Example 1, it was 36.0 minutes, and the progress of polymerization was slower than in Examples 1 and 2.
 実施例1と同様にアクリルアミドポリマーの粉末を目視で観察した結果、白色であり、色調は問題なかった。 As a result of visually observing the acrylamide polymer powder in the same manner as in Example 1, it was white and there was no problem with the color tone.
 実施例1と同様にアクリルアミドポリマーの粘度を測定したところ、3570[mPa・S]であり、問題のない値であった。 When the viscosity of the acrylamide polymer was measured in the same manner as in Example 1, it was 3570 [mPa · S], which was a value with no problem.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明によれば、アクリルアミド水溶液に所定量のオキサゾールを含むことにより、アクリルアミド系重合物の品質(色調、分子量)を低下させることなく、より短時間で重合物を得ることができる。よって、アクリルアミド系重合体の工業生産における生産性向上に有効に利用できる。 According to the present invention, by containing a predetermined amount of oxazole in the acrylamide aqueous solution, the polymer can be obtained in a shorter time without deteriorating the quality (color tone, molecular weight) of the acrylamide polymer. Therefore, it can be effectively used to improve productivity in industrial production of acrylamide polymers.

Claims (10)

  1.  アクリルアミド1kgに対して25mg以上のオキサゾールを含む、アクリルアミド水溶液。 Acrylamide aqueous solution containing 25 mg or more of oxazole per 1 kg of acrylamide.
  2.  アクリルアミド1kgに対してマグネシウム金属換算で0.2~40mgのマグネシウムを含む、請求項1記載のアクリルアミド水溶液。 The aqueous acrylamide solution according to claim 1, comprising 0.2 to 40 mg of magnesium in terms of magnesium metal per 1 kg of acrylamide.
  3.  アクリルアミド1kgに対する珪素の含有量が120mg以下である、請求項1又は2記載のアクリルアミド水溶液。 The acrylamide aqueous solution according to claim 1 or 2, wherein the content of silicon with respect to 1 kg of acrylamide is 120 mg or less.
  4.  アクリルアミド濃度が25~60質量%である、請求項1~3のいずれか一項に記載のアクリルアミド水溶液。 The aqueous acrylamide solution according to any one of claims 1 to 3, wherein the acrylamide concentration is 25 to 60% by mass.
  5.  アクリルアミドが、生体触媒の存在下でアクリロニトリルを水和して生成させたアクリルアミドである、請求項1~4のいずれか一項に記載のアクリルアミド水溶液。 The acrylamide aqueous solution according to any one of claims 1 to 4, wherein the acrylamide is acrylamide formed by hydrating acrylonitrile in the presence of a biocatalyst.
  6.  アクリルアミド水溶液中に含まれるアクリルアミドを重合させてアクリルアミド系重合体を製造する方法において、
    アクリルアミド水溶液としてアクリルアミド1kgに対して25mg以上のオキサゾールを含むアクリルアミド水溶液を用いる、アクリルアミド系重合体の製造方法。
    In the method of producing an acrylamide polymer by polymerizing acrylamide contained in an acrylamide aqueous solution,
    A method for producing an acrylamide polymer, wherein an acrylamide aqueous solution containing 25 mg or more of oxazole per 1 kg of acrylamide is used as the acrylamide aqueous solution.
  7.  アクリルアミド水溶液としてアクリルアミド1kgに対してマグネシウム金属換算で0.2~40mgのマグネシウムを含むアクリルアミド水溶液を用いる、請求項6記載のアクリルアミド系重合体の製造方法。 The method for producing an acrylamide polymer according to claim 6, wherein an acrylamide aqueous solution containing 0.2 to 40 mg of magnesium in terms of magnesium metal with respect to 1 kg of acrylamide is used as the acrylamide aqueous solution.
  8.  アクリルアミド水溶液としてアクリルアミド1kgに対する珪素の含有量が120mg以下であるアクリルアミド水溶液を用いる、請求項6又は7に記載のアクリルアミド系重合体の製造方法。 The method for producing an acrylamide polymer according to claim 6 or 7, wherein an acrylamide aqueous solution having a silicon content of 120 mg or less relative to 1 kg of acrylamide is used as the acrylamide aqueous solution.
  9.  アクリルアミド水溶液中のアクリルアミド濃度が25~60質量%である、請求項6~8のいずれか一項に記載のアクリルアミド系重合体の製造方法。 The method for producing an acrylamide polymer according to any one of claims 6 to 8, wherein an acrylamide concentration in the acrylamide aqueous solution is 25 to 60% by mass.
  10.  アクリルアミドが、生体触媒の存在下でアクリロニトリルを水和して生成させたものである、請求項6~9のいずれか一項に記載のアクリルアミド系重合体の製造方法。 The method for producing an acrylamide polymer according to any one of claims 6 to 9, wherein the acrylamide is produced by hydrating acrylonitrile in the presence of a biocatalyst.
PCT/JP2015/004086 2014-12-17 2015-08-18 Aqueous acrylamide solution and method for producing acrylamide polymer WO2016098269A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580054822.0A CN106795227B (en) 2014-12-17 2015-08-18 The manufacturing method of acrylamide aqueous solution and acrylamide polymer
JP2015543205A JP6020741B1 (en) 2014-12-17 2015-08-18 Method for producing acrylamide aqueous solution and acrylamide polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014254813 2014-12-17
JP2014-254813 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016098269A1 true WO2016098269A1 (en) 2016-06-23

Family

ID=56126185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004086 WO2016098269A1 (en) 2014-12-17 2015-08-18 Aqueous acrylamide solution and method for producing acrylamide polymer

Country Status (3)

Country Link
JP (1) JP6020741B1 (en)
CN (1) CN106795227B (en)
WO (1) WO2016098269A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022219778A1 (en) * 2021-02-10 2023-06-22 Mitsubishi Chemical Corporation Improvement of reactivity of nitrile hydratase by aldehyde

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177210A (en) * 1978-07-05 1979-12-04 The Dow Chemical Company Hydration of acrylonitrile to acrylamide
JPS6123927B2 (en) * 1980-03-24 1986-06-09 Nauchino Isusuredo* Inst Ho Pererabotoke Isukususutobennuifu I Shintechichesukiifu Borokon
JP2003306506A (en) * 2002-04-15 2003-10-31 Daiyanitorikkusu Kk Production method of acrylamide water-soluble high molecular weight polymer
WO2004090148A1 (en) * 2003-04-10 2004-10-21 Dia-Nitrix Co. Ltd. Process for producing high-quality acrylamide polymer with enzyme
WO2014129144A1 (en) * 2013-02-19 2014-08-28 三菱レイヨン株式会社 Method for producing amide compound

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3683916B2 (en) * 1993-07-23 2005-08-17 三井化学株式会社 Method for producing acrylamide
US5476883A (en) * 1993-07-23 1995-12-19 Mitsui Toatsu Chemicals, Inc. Preparation process of acrylamide from purified acrylonitrile
JP3908803B2 (en) * 1996-02-20 2007-04-25 三井化学株式会社 Method for producing acrylamide
JP2002080443A (en) * 2000-06-20 2002-03-19 Mitsubishi Chemicals Corp Acrylonitrile and method for producing the same
JP2003277416A (en) * 2002-03-22 2003-10-02 Daiyanitorikkusu Kk Aqueous acrylamide solution containing saccharides
JP4375986B2 (en) * 2003-03-25 2009-12-02 ダイヤニトリックス株式会社 Production method of high quality (meth) acrylamide polymer using biocatalyst
US20090171051A1 (en) * 2005-10-07 2009-07-02 Mitsui Chemicals, Inc. Method For Producing Amide Compound
EP2003208A4 (en) * 2006-04-06 2012-03-28 Mitsui Chemicals Inc Method of producing acrylamide
JP2008138089A (en) * 2006-12-01 2008-06-19 Mitsui Chemicals Inc Manufacturing method of (meth)acrylamide polymer of high quality
JP2008247979A (en) * 2007-03-29 2008-10-16 Mitsui Chemicals Inc Method for producing high-quality (meth)acrylamide polymer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4177210A (en) * 1978-07-05 1979-12-04 The Dow Chemical Company Hydration of acrylonitrile to acrylamide
JPS6123927B2 (en) * 1980-03-24 1986-06-09 Nauchino Isusuredo* Inst Ho Pererabotoke Isukususutobennuifu I Shintechichesukiifu Borokon
JP2003306506A (en) * 2002-04-15 2003-10-31 Daiyanitorikkusu Kk Production method of acrylamide water-soluble high molecular weight polymer
WO2004090148A1 (en) * 2003-04-10 2004-10-21 Dia-Nitrix Co. Ltd. Process for producing high-quality acrylamide polymer with enzyme
WO2014129144A1 (en) * 2013-02-19 2014-08-28 三菱レイヨン株式会社 Method for producing amide compound

Also Published As

Publication number Publication date
CN106795227A (en) 2017-05-31
CN106795227B (en) 2018-10-02
JPWO2016098269A1 (en) 2017-04-27
JP6020741B1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
JP4970276B2 (en) Method for producing amide compound
KR101289148B1 (en) Acrylamide methacrylamide production method
JP4999686B2 (en) Method for preparing monomers and polymers thereof
WO2009113617A1 (en) Method for stabilization of aqueous acrylamide solution
JP6020741B1 (en) Method for producing acrylamide aqueous solution and acrylamide polymer
JPWO2004090148A1 (en) Method for producing high-quality acrylamide polymer using enzyme
JP5430659B2 (en) Method for producing treated bacterial cells
JP2008247979A (en) Method for producing high-quality (meth)acrylamide polymer
JP4959683B2 (en) Method for producing acrylamide
JP4975735B2 (en) Method for producing acrylamide
JP2008138089A (en) Manufacturing method of (meth)acrylamide polymer of high quality
JP5295622B2 (en) Method for producing target compound using bacterial cell catalyst
JP4255730B2 (en) Method for producing ammonium carboxylate using biocatalyst
JP2004283128A (en) Method for producing high-quality (meth)acrylamide polymer using biocatalyst
AU2011239258B2 (en) Method for producing amide compound
JPWO2016140045A1 (en) Surfactant-containing amide compound aqueous solution

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015543205

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869485

Country of ref document: EP

Kind code of ref document: A1