JP4255730B2 - Method for producing ammonium carboxylate using biocatalyst - Google Patents

Method for producing ammonium carboxylate using biocatalyst Download PDF

Info

Publication number
JP4255730B2
JP4255730B2 JP2003101199A JP2003101199A JP4255730B2 JP 4255730 B2 JP4255730 B2 JP 4255730B2 JP 2003101199 A JP2003101199 A JP 2003101199A JP 2003101199 A JP2003101199 A JP 2003101199A JP 4255730 B2 JP4255730 B2 JP 4255730B2
Authority
JP
Japan
Prior art keywords
biocatalyst
ammonium carboxylate
reaction
weight
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003101199A
Other languages
Japanese (ja)
Other versions
JP2004305062A (en
Inventor
誠 岡本
修 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2003101199A priority Critical patent/JP4255730B2/en
Publication of JP2004305062A publication Critical patent/JP2004305062A/en
Application granted granted Critical
Publication of JP4255730B2 publication Critical patent/JP4255730B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,ニトリラーゼ活性を有する触媒を用いてカルボン酸アンモニウムを製造する方法に関する。
【0002】
【従来の技術】
酵素活性を持つ生体触媒を利用して目的の化合物を合成する方法は、反応条件が穏和であるため反応プロセスが簡略化できる、あるいは副生成物が少なく高純度の反応生成物を取得できる等の利点があるため、近年、様々な化合物の製造に用いられている。カルボン酸アンモニウムの製造においても、ニトリル化合物からカルボン酸アンモニウムに変換する酵素、ニトリラーゼが見いだされて以来、そのカルボン酸アンモニウム製造法への適用もいくつか検討されている。例えば、特許文献1〜4等が挙げられる。
【0003】
しかしながら、生体触媒で製造したカルボン酸アンモニウムの水溶液は、高純度の反応液が得られるにも拘わらず、反応液に生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が混入してしまう欠点を有しており、反応途中で反応液が粘調になる(特許文献1)等の問題点を有していた。或いは、例えばこのカルボン酸アンモニウムの水溶液をポリマー原料にする場合、該バッファー由来の不純物(例えばリン酸イオン等)、及び/又は該生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が、後の重合工程で支障を来す等の実用上の問題点を有していた。
【0004】
解決法として、これら不純物を許容範囲まで低下させるため精製系を設けることが考えられるが、多大なコストが必要となる。例えば、リン酸イオンや多価金属イオンについては、イオン交換樹脂を用いたイオン交換で除去することが可能であるが、該リン酸イオンや多価金属イオン濃度が高い場合、イオン交換樹脂の破過を早め、頻繁な樹脂交換を必要とし、運転コストが大きくなってしまう。
【0005】
一方蛋白質等の有機不純物についてはUF膜等の膜で除去する方法が一般的であるが、反応液中の蛋白質等の有機不純物が多い場合、UF膜が短時間に閉塞し、頻繁なUF膜の再生処理の発生や、濾過面積を大きくする必要がある等の不利益を生じ、運転コストや設備費が大きくなってしまう。また、例えばポリアクリロニトリル繊維を用いる方法は、蛋白質等の有機不純物の吸着容量が少ない上に再生が困難である。また、例えば活性炭を用いる方法は、活性炭の再生処理が難しく、さらに活性炭の持つ反応性により目的化合物が変性する場合もある。
【0006】
このように、生体触媒で製造したカルボン酸アンモニウムを工業的に使用するにあたっては、該不純物を許容範囲まで低下させるためのコストの高い操作が必要であり、工業的に実施するうえで満足できるものではなかった。
【0007】
【特許文献1】
特公昭63−2596号公報
【特許文献2】
特開昭63−129988号公報
【特許文献3】
特開昭63−209592号公報
【特許文献4】
特表2000−501610号公報
【0008】
【発明が解決しようとする課題】
本発明は、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、製造されるカルボン酸アンモニウム水溶液中の生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物 (例えば多価金属イオンや蛋白質等の有機不純物)が低減でき、その精製コストを大幅に削減できる高純度カルボン酸アンモニウムの製造法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者はこのような工業的諸問題を解決するため、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)を、多大なエネルギーやコストを掛けることなく、精製系への負荷をできるだけ抑制し、しかも製品の品質上、許容できる範囲まで低減できる、生体触媒を用いたニトリル化合物からのカルボン酸アンモニウムの製造法を鋭意検討したところ、驚くべきことに製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒重量を1/2000以下、及び該生体触媒を懸濁させるバッファー濃度を0.03M以下、及び反応温度を氷点〜30℃、及び反応液pHを6〜13にすることにより、あるいは反応系内のニトリル化合物濃度を2重量%以下にコントロールすることにより、多大なエネルギーやコストを掛けることなく、精製系への負荷をできるだけ抑制し、しかも製品の品質上、許容できる範囲まで該バッファー由来の不純物(例えばリン酸イオン等)、及び/又は該生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が低減された、高純度カルボン酸アンモニウムが製造できることを見出し、本発明を完成するに至った。
【0010】
即ち、本発明は、以下のとおりである。
(1)アシネトバクター エスピー AK226またはアシネトバクター エスピー AK227由来のニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造する方法において、製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒量を1/2000以下、及び該生体触媒を懸濁させるバッファー濃度を0.03M以下、及び反応温度を氷点〜30℃、及び反応液pHを6〜13、及び反応系内のニトリル化合物濃度を2重量%以下にコントロール、及び製造されるカルボン酸アンモニウムの反応液中の濃度が20重量%以上であることを特徴とするカルボン酸アンモニウムの製造方法。
(2)生体触媒が、固定化菌体あるいは固定化酵素であることを特徴とする(1)に記載のカルボン酸アンモニウムの製造方法。
(3)ニトリル化合物が、アクリロニトリル、メタクリロニトリル、又は3−シアノピリジンであることを特徴とする(1)〜(2)のいずれかに記載のカルボン酸アンモニウムの製造方法。
(4)ニトリル化合物がアクリロニトリルであることを特徴とする(1)〜(3)のいずれかに記載のカルボン酸アンモニウムの製造方法。
【0014】
【発明の実施の形態】
本発明について、以下具体的に説明する。
本発明でいうニトリラーゼ活性を有する生体触媒とは、ニトリラーゼ酵素を保有している触媒であれば如何なる形態のものでも良い。ニトリラーゼ酵素の由来としては、微生物・動植物細胞が挙げられるが、重量当たりの酵素発現量や取り扱いの容易性から、微生物菌体を使用することが好ましい。
【0015】
微生物種としては、多くのものが知られているが、例えばニトリラーゼ高活性を有するものとして、ロドコッカス属、アシネトバクター属、アルカリゲネス属等の微生物菌体が挙げられる。本発明においてはこの中でも、特にグラム陰性菌であるアシネトバクター属、アルカリゲネス属が好ましいが、これらに限定するものではない。
具体的には、アシネトバクター エスピー AK226(FERM BP−2451)、アシネトバクター エスピー AK227(微工研菌寄8272号)、ロドコッカス マリス BP−479−9(FERM BP−5219)である。これらの菌株は、特開平7−303496、特開昭63−129988、特開昭63−209592、特公昭63−2596号公報に記載されている。
【0016】
また、天然のあるいは人為的に改良したニトリラーゼ遺伝子を遺伝子工学的手法により組み込んだ微生物、あるいはそこから取り出した酵素であっても構わない。しかしながら、ニトリラーゼの発現量が少ない微生物あるいはニトリル化合物からカルボン酸アンモニウムへの変換活性の低いニトリラーゼを発現した微生物を少量用いてカルボン酸アンモニウムを製造するにはより多くの反応時間を要するため、可能な限りニトリラーゼを高発現した微生物、及び/又は変換活性の高いニトリラーゼを発現する微生物あるいはそこから取り出した酵素を用いることが望ましい。
【0017】
生体触媒の形態としては、微生物・動植物細胞等をそのまま用いても構わないが、好ましくは精製コストを削減するという観点から、そのものをあるいは破砕等の処理をしたものを、あるいは微生物等からニトリラーゼ酵素を取り出したものを、一般的な包括法、架橋法、担体結合法等で固定化したものを用いる方が好ましい。固定化する際の固定化担体の例としては、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸等が挙げられるが、これらに限定されるものではない。
【0018】
微生物・動植物細胞等をそのまま用いる場合、通常、浸透圧の関係からバッファー液に懸濁させて使用する。また、固定化したものを用いる場合、固定化時に使用する微生物・動植物細胞等も、通常、浸透圧の関係からバッファー液に懸濁させている。この時のバッファー液濃度は、低ければ低いほど反応液中不純物は低減され、精製コストは削減され、品質も向上する。不純物濃度が問題とならないのは通常0.03M以下であり、好ましくは0.02M以下である。下限値に特に制限はないが、バッファー液濃度が0(蒸留水)になると、浸透圧の関係から生体触媒の安定性、ライフに悪影響が出る等の問題が生じる。
【0019】
反応温度が低すぎると反応活性が低くなり、高濃度のカルボン酸アンモニウムを製造する場合、より多くの反応時間を必要とする。一方、反応温度が高すぎると生体触媒のライフが低下するため、目的とするカルボン酸濃度に到達させる前に、フレッシュな生体触媒を追添する等の使用生体触媒量を多くする操作が必要となり、本発明の指向から外れるので好ましくない。よって、通常、反応温度は氷点〜30℃が良く、好ましくは5℃〜25℃、更に好ましく10℃〜20℃が良い。
【0020】
反応液pHは使用する菌体由来ニトリラーゼの至適pHにすることが好ましく、通常、反応液pHは6〜13が良く、好ましくは9〜11が良い。
【0021】
本発明で使用されるニトリル化合物とは、ニトリラーゼの触媒作用により対応するカルボン酸アンモニウムに変換される限り、特に限定されない。例えば、アセトニトリル、プロピオニトリル、サクシノニトリル、アジポニトリルのような脂肪族飽和ニトリル、アクリロニトリル、メタクリロニトリルのような脂肪族不飽和ニトリル、ベンゾニトリル、フタロジニトリルのような芳香族ニトリル及び3−シアノピリジン、2−シアノピリジンのような複素環式ニトリルが挙げられる。経済的な問題として、生体触媒を用いたカルボン酸アンモニウムの製造に適している代表的なものはプロピオニトリル、アクリロニトリル、メタクリロニトリル、3−シアノピリジン、2−シアノピリジンであるが、特にアクリロニトリル、メタクリロニトリル、3−シアノピリジンが好適である。
【0022】
製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒重量は、少なければ少ないほど反応液中不純物は低減され、精製コストは削減され、品質も向上する。しかし、不純物濃度が問題とならないのは1/2000以下であり、好ましくは1/3000、更に好ましくは1/4000以下である。生体触媒使用量の下限値は特に制限されないが、現実的には1/5000では大きなリアクターが必要となる、あるいは反応速度が低下するため高濃度のカルボン酸アンモニウムを製造する方法としては適さない等の問題が生じる。
【0023】
製造されるカルボン酸アンモニウムの反応液中の濃度は20重量%以上であるが、経済的な理由から高濃度であるほど良く、生成物阻害の影響が出ない範囲で、好ましくは30重量%以上、更に好ましくは40重量%以上が良い。
【0024】
カルボン酸アンモニウムを製造する反応方法は、固定床、移動層、流動層、撹拌槽等、いずれでも良く、また回分反応でも連続反応でも良い。反応基質、反応液、目的化合物の物性や生産規模により反応形式は選ばれ、任意の反応装置が設計される。
【0025】
また、反応系内のニトリル化合物の濃度を2重量%以下とすることによっても高純度のカルボン酸アンモニウムを製造することができる。ニトリル化合物の濃度を2重量%以下とすることでニトリル化合物による強い基質阻害を抑制でき、その他酵素による副反応に由来する不純物の生成を抑制でき、高純度のカルボン酸アンモニウムを製造することができる。また、下限値としては、特に制限はないが、現実的には低すぎると反応速度が低下するため。大きなリアクターが必要になる等の不利益が生じる。
【0026】
【実施例】
以下、実施例を挙げて本発明を説明する。なお、本発明は、これらの実施例に限定されるものでは無く、その要旨を越えない限り、様々な変更、修飾などが可能である。
【0027】
固定化してない微生物菌体液中の乾燥菌体重量の測定法は、以下のごとく実施した。まず、適当な濃度の微生物菌体懸濁液を適量取り、−80℃まで冷却した後、凍結乾燥機を用いて完全に乾燥し、菌体懸濁液濃度を算出した。既知濃度となった菌体懸濁液を適当な複数の濃度に希釈し、濁度計にて濁度を測定し、濁度計の検量線を作成し、ファクターを算出した。該濁度計の濁度指示値から任意の微生物菌体懸濁液の乾燥菌体濃度を算出した。
【0028】
菌体を固定化したものを生体触媒とする場合は、固定化する前の菌体懸濁液の乾燥菌体濃度を測定し、固定化担体と菌体の混合比に基づき固定化触媒中の固定化担体を差し引いた生体由来成分の乾燥重量を算出した。
【0029】
反応液の分析は、基質であるニトリル化合物についてはガスクロマトグラフィー(島津GC−14B)で測定した。カラムはキャピラリーの強極性カラム(信和化工ULBON HR−20M 0.25mmI.D.×30mL 0.25μm)、検出器はFIDで検出した。また、生成物であるカルボン酸アンモニウムは、ホルマリン処理でアンモニウムイオンをヘキサメチレンテトラミンとしてトラップした後、中和滴定にて定量した。また、品質の評価法となるリン酸イオンや多価金属イオンの分析はICP(理学 JY138)で実施した。蛋白質の定量については特に実施していないが、反応後の精製工程であるUF膜(旭化成ペンシル型モジュールSIP−0013)処理における目詰まりに由来する圧力上昇までの処理量を持って評価した。
【0030】
実施例1
生体触媒の調製
ニトリラーゼ活性を有するアシネトバクター エスピー AK226(FERM BP−2451)を、塩化ナトリウム0.1%、リン酸2水素カリウム0.1%、硫酸マグネシウム7水和物0.05%、硫酸鉄7水和物0.005%、硫酸マンガン5水和物0.005%、硫酸アンモニウム0.1%、硝酸カリウム0.1%(いずれも重量%)を含む水溶液をpH=7に調整した培地で、栄養源としてアセトニトリル0.5重量%を添加し、30℃で好気的に培養した。これを30mMリン酸バッファー(pH=7.0)にて洗浄し菌体懸濁液(乾燥菌体15重量%)を得た。続いてアクリルアミド、メチレンビスアクリルアミド、5%N,N,N’,N’−テトラメチルエチレンジアミン水溶液、菌体懸濁液、30mMリン酸緩衝液の混合液に、2.5%過硫酸カリウム水溶液を混合して重合物を得た。最終的な組成は、乾燥菌体濃度3%、30mMリン酸バッファー(pH=7)52%、アクリルアミド18%、メチレンビスアクリルアミド1%、5%N,N,N’,N’−テトラメチルエチレンジアミン水溶液12%、2.5%過硫酸カリウム水溶液14%(何れも重量%)とした。該重合物を約1×3×3mm角の粒子に裁断し固定化菌体を得た。この固定化菌体を30mMリン酸バッファー(pH=7)で洗浄し固定化菌体触媒とした。
【0031】
固定化菌体触媒による反応1
内容積500mlの三角フラスコに蒸留水400gを入れ、これに前述の固定化菌体触媒1g(乾燥菌体0.03gに相当)を金網かごに入れたものを液中にセットし、ゴム栓で封をした後、恒温水槽に浸けて内温を30℃に保ち、スターラーで撹拌した。
アクリロニトリルを間欠的に2重量%分フィード(アクリロニトリル濃度は0.5重量%以上で管理)し、アクリル酸アンモニウムの蓄積反応を行ったところ20重量%まで蓄積できた(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/2700)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.1ppm、S:ND、K:0.05ppm、Mg:0.3ppm、Fe:ND、Mn:0.04ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、目詰まり等の現象は見られず、全液量を処理することができ、高純度の20重量%アクリル酸アンモニウム水溶液を得た。
【0032】
実施例2
固定化菌体触媒による反応2
実施例1で調製した固定化菌体触媒を用いて、反応温度を20℃にする以外は実施例1と同様に、アクリル酸アンモニウムの蓄積反応を行ったところ30重量%になるまで蓄積できた (使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/4000)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.06ppm、S:ND、K:0.03ppm、Mg:0.2ppm、Fe:ND、Mn:0.02ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、目詰まり等の現象は見られず、全液量を処理することができ、高純度の30重量%アクリル酸アンモニウム水溶液を得た。
【0033】
比較例1
固定化菌体触媒による反応3
固定化菌体触媒使用量を2.7g(乾燥菌体0.08g)にする以外は実施例2と同様にアクリル酸アンモニウム濃度が30重量%になるまで蓄積反応を行った(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/1500)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.5ppm、S:ND、K:0.1ppm、Mg:0.8ppm、Fe:ND、Mn:0.2ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、処理量3Lの時点で目詰まりによる圧力上昇が観測され、それ以上のUF膜処理は継続できなかった。そのため、一度逆洗処理を施した後UF膜処理を実施し、30重量%アクリル酸アンモニウム水溶液を得た。
【0034】
比較例2
固定化菌体触媒による反応4
実施例1と同様の方法で培養し、得られたアシネトバクター エスピー AK226を50mMリン酸バッファー (pH=7.0)にて洗浄し菌体懸濁液(乾燥菌体15重量%)を得た。続いて、実施例1と同様にして、約1×3×3mm角の粒子に裁断した固定化菌体を得、50mMリン酸バッファー (pH=7)で洗浄し固定化菌体触媒とした。実施例2と同様に、アクリル酸アンモニウムの蓄積反応を行ったところ30重量%になるまで蓄積できた(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/4000)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.2ppm、S:ND、K:0.1ppm、Mg:0.2ppm、Fe:ND、Mn:0.03ppmであった。
【0035】
【発明の効果】
本発明は、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が少なく、精製コストが低い高純度カルボン酸アンモニウムの製造法を提供できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ammonium carboxylate using a catalyst having nitrilase activity.
[0002]
[Prior art]
A method of synthesizing a target compound using a biocatalyst having enzyme activity can simplify the reaction process because the reaction conditions are mild, or can obtain a high-purity reaction product with few byproducts. Due to its advantages, it has recently been used in the production of various compounds. Also in the production of ammonium carboxylate, since the discovery of an enzyme, nitrilase, which converts nitrile compounds to ammonium carboxylate, several applications to the ammonium carboxylate production method have been studied. For example, patent documents 1-4 are mentioned.
[0003]
However, an aqueous solution of ammonium carboxylate produced with a biocatalyst is free from impurities (for example, phosphate ions) derived from a buffer that suspends the biocatalyst in the reaction solution, although a high-purity reaction solution is obtained, and / or Or there is a defect that impurities derived from biocatalyst (for example, organic impurities such as polyvalent metal ions and proteins) are mixed, and the reaction solution becomes viscous during the reaction (Patent Document 1). Had. Alternatively, for example, when an aqueous solution of ammonium carboxylate is used as a polymer raw material, impurities derived from the buffer (for example, phosphate ions) and / or impurities derived from the biocatalyst (for example, organic impurities such as polyvalent metal ions and proteins) However, it has practical problems such as hindering the subsequent polymerization process.
[0004]
As a solution, it is conceivable to provide a purification system in order to reduce these impurities to an acceptable range, but a great cost is required. For example, phosphate ions and polyvalent metal ions can be removed by ion exchange using an ion exchange resin, but if the phosphate ion or polyvalent metal ion concentration is high, the ion exchange resin is broken. This speeds up the operation, requires frequent resin replacement, and increases the operating cost.
[0005]
On the other hand, it is common to remove organic impurities such as proteins with a membrane such as a UF membrane. However, when there are many organic impurities such as proteins in the reaction solution, the UF membrane clogs in a short time, and frequent UF membranes. As a result, there are disadvantages such as the occurrence of the regeneration process and the necessity of increasing the filtration area, resulting in an increase in operating cost and equipment cost. For example, the method using polyacrylonitrile fiber has a small adsorption capacity for organic impurities such as proteins and is difficult to regenerate. Further, for example, in the method using activated carbon, it is difficult to regenerate activated carbon, and the target compound may be modified due to the reactivity of activated carbon.
[0006]
Thus, in industrial use of ammonium carboxylate produced with a biocatalyst, a high-cost operation is required to reduce the impurities to an acceptable range, which is satisfactory for industrial implementation. It wasn't.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 63-2596 [Patent Document 2]
Japanese Patent Laid-Open No. 63-129988 [Patent Document 3]
Japanese Patent Laid-Open No. 63-209592 [Patent Document 4]
JP 2000-501610 A [0008]
[Problems to be solved by the invention]
The present invention relates to impurities derived from a buffer that suspends a biocatalyst in an aqueous solution of ammonium carboxylate when producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity (eg, phosphate ions). And / or biocatalyst-derived impurities (for example, organic impurities such as polyvalent metal ions and proteins) can be reduced, and a method for producing a high-purity ammonium carboxylate that can greatly reduce the purification cost is provided. .
[0009]
[Means for Solving the Problems]
In order to solve such industrial problems, the present inventor, when producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, impurities derived from a buffer in which the biocatalyst is suspended (for example, phosphoric acid) Ions) and / or impurities derived from biocatalysts (for example, organic impurities such as polyvalent metal ions and proteins), while reducing the load on the purification system as much as possible without enormous energy and cost. As a result of intensive studies on a method for producing ammonium carboxylate from a nitrile compound using a biocatalyst that can be reduced to an acceptable level in terms of quality, surprisingly, the weight of dry biocatalyst used for the produced ammonium carboxylate is reduced to 1 / 2000 or less, and the buffer concentration for suspending the biocatalyst is 0.03 M or less, and By adjusting the reaction temperature to the freezing point to 30 ° C. and the reaction solution pH to 6 to 13, or by controlling the concentration of the nitrile compound in the reaction system to 2% by weight or less, without enormous energy and cost, Improves the load on the purification system as much as possible, and further allows impurities derived from the buffer (for example, phosphate ions) and / or impurities derived from the biocatalyst (for example, polyvalent metal ions and proteins) to an acceptable level in product quality. The present inventors have found that a high-purity ammonium carboxylate with reduced organic impurities) can be produced, and the present invention has been completed.
[0010]
That is, the present invention is as follows.
(1) In the method for producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity derived from Acinetobacter sp. AK226 or Acinetobacter sp. AK227, the amount of dry biocatalyst used for the produced carboxylate is 1/2000 or less. And the buffer concentration for suspending the biocatalyst is controlled to 0.03M or less, the reaction temperature to freezing point to 30 ° C., the reaction solution pH to 6 to 13, and the nitrile compound concentration in the reaction system to 2% by weight or less. And the density | concentration in the reaction liquid of ammonium carboxylate manufactured is 20 weight% or more, The manufacturing method of ammonium carboxylate characterized by the above-mentioned .
(2) The method for producing ammonium carboxylate according to (1), wherein the biocatalyst is an immobilized microbial cell or an immobilized enzyme.
(3) The method for producing ammonium carboxylate according to any one of (1) to (2), wherein the nitrile compound is acrylonitrile, methacrylonitrile, or 3-cyanopyridine.
(4) The method for producing ammonium carboxylate according to any one of (1) to (3), wherein the nitrile compound is acrylonitrile.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
The biocatalyst having nitrilase activity as referred to in the present invention may be in any form as long as it is a catalyst having a nitrilase enzyme. The origin of the nitrilase enzyme includes microorganisms and animal and plant cells, but it is preferable to use microbial cells in view of the amount of enzyme expression per weight and ease of handling.
[0015]
Many types of microorganisms are known. Examples of microorganisms having high nitrilase activity include microorganisms such as Rhodococcus, Acinetobacter, and Alkagenes. Among them, the genus Acinetobacter and the genus Algigenes are particularly preferred in the present invention, but are not limited thereto.
Specifically, they are Acinetobacter sp. AK226 (FERM BP-2451), Acinetobacter sp. AK227 (Microtechnological Laboratories No. 8272), Rhodococcus maris BP-479-9 (FERM BP-5219). These strains are described in JP-A-7-303496, JP-A-63-129988, JP-A-63-209592 and JP-B-62-2596.
[0016]
Further, it may be a microorganism into which a natural or artificially improved nitrilase gene has been incorporated by a genetic engineering technique, or an enzyme extracted therefrom. However, production of ammonium carboxylate using a small amount of microorganisms with low nitrilase expression or microorganisms expressing nitrilase with low conversion activity from nitrile compounds to ammonium carboxylate requires a longer reaction time, which is possible. It is desirable to use a microorganism that highly expresses nitrilase and / or a microorganism that expresses nitrilase with high conversion activity or an enzyme extracted therefrom.
[0017]
As a form of the biocatalyst, microorganisms, animal and plant cells, etc. may be used as they are, but from the viewpoint of reducing purification costs, nitrilase enzyme from itself or those subjected to treatment such as crushing, or from microorganisms etc. It is preferable to use a product obtained by immobilizing the product by immobilization by a general inclusion method, a crosslinking method, a carrier binding method or the like. Examples of the immobilization carrier used for immobilization include, but are not limited to, glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid and the like.
[0018]
When microorganisms, animal and plant cells, etc. are used as they are, they are usually used after being suspended in a buffer solution because of osmotic pressure. Moreover, when using what was immobilized, microorganisms, animal and plant cells, etc. used at the time of immobilization are usually suspended in a buffer solution due to osmotic pressure. At this time, as the buffer solution concentration is lower, impurities in the reaction solution are reduced, purification costs are reduced, and quality is improved. It is usually 0.03M or less, preferably 0.02M or less, that the impurity concentration does not matter. The lower limit is not particularly limited, but when the buffer solution concentration becomes 0 (distilled water), problems such as adverse effects on the stability and life of the biocatalyst occur due to osmotic pressure.
[0019]
If the reaction temperature is too low, the reaction activity becomes low, and more reaction time is required to produce a high concentration of ammonium carboxylate. On the other hand, if the reaction temperature is too high, the life of the biocatalyst is reduced, so an operation to increase the amount of biocatalyst used, such as adding a fresh biocatalyst, is required before reaching the target carboxylic acid concentration. This is not preferable because it deviates from the direction of the present invention. Therefore, the reaction temperature is usually from the freezing point to 30 ° C, preferably from 5 ° C to 25 ° C, more preferably from 10 ° C to 20 ° C.
[0020]
The reaction solution pH is preferably adjusted to the optimum pH of the bacterial cell-derived nitrilase to be used. Usually, the reaction solution pH is 6 to 13, preferably 9 to 11.
[0021]
The nitrile compound used in the present invention is not particularly limited as long as it is converted into the corresponding ammonium carboxylate by the catalytic action of nitrilase. For example, aliphatic saturated nitriles such as acetonitrile, propionitrile, succinonitrile, adiponitrile, aliphatic unsaturated nitriles such as acrylonitrile, methacrylonitrile, aromatic nitriles such as benzonitrile, phthalodinitrile, and 3- Examples include heterocyclic nitriles such as cyanopyridine and 2-cyanopyridine. As economic problems, typical ones suitable for the production of ammonium carboxylate using a biocatalyst are propionitrile, acrylonitrile, methacrylonitrile, 3-cyanopyridine, 2-cyanopyridine, and in particular acrylonitrile. , Methacrylonitrile and 3-cyanopyridine are preferred.
[0022]
The smaller the used dry biocatalyst weight for the ammonium carboxylate produced, the more impurities in the reaction solution are reduced, the purification cost is reduced, and the quality is improved. However, it is 1/2000 or less that the impurity concentration is not a problem, preferably 1/3000, and more preferably 1/4000 or less. The lower limit of the amount of biocatalyst used is not particularly limited, but in reality, a large reactor is required at 1/5000, or the reaction rate decreases, so it is not suitable as a method for producing a high concentration ammonium carboxylate. Problem arises.
[0023]
The concentration of the ammonium carboxylate produced in the reaction solution is 20% by weight or more, but for economic reasons, the higher the concentration, the better, and within the range not affecting the product inhibition, preferably 30% by weight or more. More preferably, it is 40% by weight or more.
[0024]
The reaction method for producing ammonium carboxylate may be any of a fixed bed, moving bed, fluidized bed, stirring tank and the like, and may be a batch reaction or a continuous reaction. The reaction format is selected according to the physical properties and production scale of the reaction substrate, reaction solution, target compound, and an arbitrary reaction apparatus is designed.
[0025]
High purity ammonium carboxylate can also be produced by setting the concentration of the nitrile compound in the reaction system to 2% by weight or less. By setting the concentration of the nitrile compound to 2% by weight or less, strong substrate inhibition by the nitrile compound can be suppressed, generation of impurities derived from side reactions by other enzymes can be suppressed, and high-purity ammonium carboxylate can be produced. . Further, the lower limit is not particularly limited, but in reality, if it is too low, the reaction rate decreases. There are disadvantages such as the need for a large reactor.
[0026]
【Example】
Hereinafter, the present invention will be described with reference to examples. In addition, this invention is not limited to these Examples, A various change, modification, etc. are possible unless it exceeds the summary.
[0027]
The method for measuring the weight of dry cells in a non-immobilized microbial cell solution was performed as follows. First, an appropriate amount of a microbial cell suspension having an appropriate concentration was taken, cooled to −80 ° C., and completely dried using a freeze dryer, and the concentration of the microbial cell suspension was calculated. The bacterial cell suspension having a known concentration was diluted to a suitable concentration, the turbidity was measured with a turbidimeter, a calibration curve for the turbidimeter was created, and the factor was calculated. The dry cell concentration of an arbitrary microbial cell suspension was calculated from the turbidity indication value of the turbidimeter.
[0028]
When using a biocatalyst with immobilized cells, measure the dry cell concentration of the cell suspension before immobilization, and determine the concentration of the immobilized catalyst in the immobilized catalyst based on the mixing ratio of the immobilized carrier and cells. The dry weight of the component derived from the living body minus the immobilization carrier was calculated.
[0029]
In the analysis of the reaction solution, the nitrile compound as a substrate was measured by gas chromatography (Shimadzu GC-14B). The column was a capillary strong polarity column (Shinwa Kako ULBON HR-20M 0.25 mm ID × 30 mL 0.25 μm), and the detector was detected by FID. The product ammonium carboxylate was quantified by neutralization titration after trapping ammonium ions as hexamethylenetetramine by formalin treatment. Moreover, the analysis of the phosphate ion and polyvalent metal ion used as the quality evaluation method was implemented by ICP (Science JY138). Protein quantification was not particularly carried out, but the evaluation was performed with the amount of treatment up to the pressure increase resulting from clogging in the UF membrane (Asahi Kasei pencil type module SIP-0013) treatment, which is a purification step after the reaction.
[0030]
Example 1
Preparation of biocatalyst Acinetobacter sp. AK226 (FERM BP-2451) having nitrilase activity was prepared by adding 0.1% sodium chloride, 0.1% potassium dihydrogen phosphate, 0.05% magnesium sulfate heptahydrate, iron sulfate 7 A medium containing an aqueous solution containing 0.005% hydrate, 0.005% manganese sulfate pentahydrate, 0.1% ammonium sulfate, and 0.1% potassium nitrate (all by weight) adjusted to pH = 7. 0.5% by weight of acetonitrile was added as a source and cultured aerobically at 30 ° C. This was washed with 30 mM phosphate buffer (pH = 7.0) to obtain a cell suspension (dry cell 15% by weight). Subsequently, 2.5% potassium persulfate aqueous solution was added to a mixture of acrylamide, methylenebisacrylamide, 5% N, N, N ′, N′-tetramethylethylenediamine aqueous solution, cell suspension, and 30 mM phosphate buffer. The polymer was obtained by mixing. The final composition is 3% dry cell concentration, 52% 30 mM phosphate buffer (pH = 7), 18% acrylamide, 1% methylenebisacrylamide, 5% N, N, N ′, N′-tetramethylethylenediamine. An aqueous solution of 12% and a 2.5% potassium persulfate aqueous solution of 14% (both by weight) were used. The polymer was cut into about 1 × 3 × 3 mm square particles to obtain immobilized cells. The immobilized cells were washed with 30 mM phosphate buffer (pH = 7) to obtain an immobilized cell catalyst.
[0031]
Reaction 1 with immobilized bacterial cell catalyst
Place 400 g of distilled water in an Erlenmeyer flask with an internal volume of 500 ml, put 1 g of the above immobilized bacterial cell catalyst (corresponding to 0.03 g of dry bacterial cells) in a wire mesh basket, and set it in a liquid stopper. After sealing, it was immersed in a thermostatic water bath to keep the internal temperature at 30 ° C. and stirred with a stirrer.
Acrylonitrile was intermittently fed by 2% by weight (the acrylonitrile concentration was controlled at 0.5% by weight or more), and when accumulating ammonium acrylate was conducted, it was possible to accumulate up to 20% by weight (weight of dry cells used / production Ammonium acrylate weight = 1/2700).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, it was P: 0.1 ppm, S: ND, K: 0.05 ppm, Mg: 0.3 ppm, Fe: ND, Mn: 0.04 ppm. In addition, when 5 L of a reaction solution under the same conditions was prepared and purified using a UF membrane (Asahi Kasei Pencil type module SIP-0013), clogging and other phenomena were not observed, and the entire liquid volume could be processed. And a high-purity 20% by weight ammonium acrylate aqueous solution was obtained.
[0032]
Example 2
Reaction 2 with immobilized bacterial cell catalyst
Using the immobilized bacterial cell catalyst prepared in Example 1, except that the reaction temperature was set to 20 ° C., an accumulation reaction of ammonium acrylate was carried out in the same manner as in Example 1, and it was possible to accumulate up to 30% by weight. (Used dry cell weight / produced ammonium acrylate weight = 1/4000).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, it was P: 0.06 ppm, S: ND, K: 0.03 ppm, Mg: 0.2 ppm, Fe: ND, Mn: 0.02 ppm. In addition, when 5 L of a reaction solution under the same conditions was prepared and purified using a UF membrane (Asahi Kasei Pencil type module SIP-0013), clogging and other phenomena were not observed, and the entire liquid volume could be processed. And a high-purity 30 wt% ammonium acrylate aqueous solution was obtained.
[0033]
Comparative Example 1
Reaction 3 by immobilized cell catalyst
Except that the amount of immobilized cell catalyst used was 2.7 g (0.08 g of dry cells), an accumulation reaction was carried out until the ammonium acrylate concentration reached 30% by weight (the dry cell used). Weight / product ammonium acrylate weight = 1/1500).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, it was P: 0.5 ppm, S: ND, K: 0.1 ppm, Mg: 0.8 ppm, Fe: ND, Mn: 0.2 ppm. In addition, when 5 L of a reaction solution under the same conditions was prepared and purified using a UF membrane (Asahi Kasei Pencil type module SIP-0013), a pressure increase due to clogging was observed at a treatment amount of 3 L, and more The UF membrane treatment could not be continued. Therefore, after a backwash treatment was performed once, a UF membrane treatment was performed to obtain a 30 wt% ammonium acrylate aqueous solution.
[0034]
Comparative Example 2
Reaction 4 by immobilized cell catalyst
Cultivation was carried out in the same manner as in Example 1, and the resulting Acinetobacter sp. AK226 was washed with 50 mM phosphate buffer (pH = 7.0) to obtain a cell suspension (dry cell 15% by weight). Subsequently, in the same manner as in Example 1, immobilized bacterial cells cut into approximately 1 × 3 × 3 mm square particles were obtained, washed with 50 mM phosphate buffer (pH = 7), and used as an immobilized bacterial cell catalyst. In the same manner as in Example 2, when accumulation reaction of ammonium acrylate was performed, accumulation was achieved until 30% by weight (weight of dry cells used / weight of produced ammonium acrylate = 1/4000).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of the ICP analysis, P: 0.2 ppm, S: ND, K: 0.1 ppm, Mg: 0.2 ppm, Fe: ND, Mn: 0.03 ppm.
[0035]
【The invention's effect】
In the present invention, in producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, impurities derived from a buffer in which the biocatalyst is suspended (for example, phosphate ions) and / or impurities derived from the biocatalyst It is possible to provide a method for producing high-purity ammonium carboxylate with less (for example, organic impurities such as polyvalent metal ions and proteins) and low purification costs.

Claims (4)

アシネトバクター エスピー AK226またはアシネトバクター エスピー AK227由来のニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造する方法において、製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒量を1/2000以下、及び該生体触媒を懸濁させるバッファー濃度を0.03M以下、及び反応温度を氷点〜30℃、及び反応液pHを6〜13、及び反応系内のニトリル化合物濃度を2重量%以下にコントロール、及び製造されるカルボン酸アンモニウムの反応液中の濃度が20重量%以上であることを特徴とするカルボン酸アンモニウムの製造方法。 In the method for producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity derived from Acinetobacter sp. AK226 or Acinetobacter sp. AK227, the amount of dry biocatalyst used relative to the produced ammonium carboxylate is 1/2000 or less, and Control and production of buffer concentration for suspending biocatalyst to 0.03M or less, reaction temperature to freezing point to 30 ° C., reaction solution pH to 6 to 13, and nitrile compound concentration in reaction system to 2% by weight or less A method for producing ammonium carboxylate , wherein the concentration of ammonium carboxylate in the reaction solution is 20% by weight or more . 生体触媒が、固定化菌体あるいは固定化酵素であることを特徴とする請求項に記載のカルボン酸アンモニウムの製造方法。The method for producing ammonium carboxylate according to claim 1 , wherein the biocatalyst is an immobilized microbial cell or an immobilized enzyme. ニトリル化合物が、アクリロニトリル、メタクリロニトリル、又は3−シアノピリジンであることを特徴とする請求項1〜のいずれかに記載のカルボン酸アンモニウムの製造方法。The method for producing ammonium carboxylate according to any one of claims 1 to 2 , wherein the nitrile compound is acrylonitrile, methacrylonitrile, or 3-cyanopyridine. ニトリル化合物がアクリロニトリルであることを特徴とする請求項1〜のいずれかに記載のカルボン酸アンモニウムの製造方法。The method for producing ammonium carboxylate according to any one of claims 1 to 3 , wherein the nitrile compound is acrylonitrile.
JP2003101199A 2003-04-04 2003-04-04 Method for producing ammonium carboxylate using biocatalyst Expired - Fee Related JP4255730B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003101199A JP4255730B2 (en) 2003-04-04 2003-04-04 Method for producing ammonium carboxylate using biocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003101199A JP4255730B2 (en) 2003-04-04 2003-04-04 Method for producing ammonium carboxylate using biocatalyst

Publications (2)

Publication Number Publication Date
JP2004305062A JP2004305062A (en) 2004-11-04
JP4255730B2 true JP4255730B2 (en) 2009-04-15

Family

ID=33465074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003101199A Expired - Fee Related JP4255730B2 (en) 2003-04-04 2003-04-04 Method for producing ammonium carboxylate using biocatalyst

Country Status (1)

Country Link
JP (1) JP4255730B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2202249A1 (en) 2006-03-31 2010-06-30 Asahi Kasei Chemicals Corporation Water-absorbing resin particle agglomerates
ES2821376T3 (en) 2012-03-30 2021-04-26 Bd Kiestra Bv Automatic microorganism selection and identification using MALDI

Also Published As

Publication number Publication date
JP2004305062A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
EP3411339B1 (en) Process for aerobic nitritation of ammonia
RU2182928C2 (en) Method of preparing (meth)acrylic acid or its salt aqueous solution
JP4970276B2 (en) Method for producing amide compound
KR101289148B1 (en) Acrylamide methacrylamide production method
EP1352965B1 (en) Process for producing amide compound by using microbial catalyst
EP2540700B1 (en) Stable aqueous acrylamide solution
JP4255730B2 (en) Method for producing ammonium carboxylate using biocatalyst
Li et al. Reversible, selective immobilization of nuclease P1 from a crude enzyme solution on a weak base anion resin activated by polyethylenimine
AU2012256707B2 (en) Method for producing aqueous acrylamide solution
RU2279480C2 (en) Continuous method for production of amide compound such as acrylamide or nicotineamide
WO2011148867A1 (en) Method for manufacturing an amide compound
JP4959059B2 (en) Method for purifying amide compounds
JP4553242B2 (en) Method for producing carboxylic acid (ammonium) using biocatalyst
WO2004090147A1 (en) Method of purifying aqueous amide compound solution and process for producing amide compound
EP1116789B1 (en) Immobilised enzyme and method for synthesizing an optically active cyanohydrin
JP2005176639A (en) Method for producing nicotinic acid compounds
JP2001299376A (en) Method for producing amido compound using biocatalyst
JP4709186B2 (en) Method for producing amide compound using microbial catalyst
KR101894617B1 (en) Method for producing acrylamide aqueous solution
JP2012062268A (en) Method for purifying amide compound
JP2007295933A (en) Method for producing amide compound by using microorganism catalyst
JP5165393B2 (en) Method for producing glycolic acid or ammonium glycolate
JP2012031126A (en) Method for purification of amide compound
WO2005095626A1 (en) Immobilized biocatalyst and process for producing organic acid salt with the same
JP2004321062A (en) Method for using biocatalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees