JP2004305062A - Method for producing ammonium carboxylate using biocatalyst - Google Patents
Method for producing ammonium carboxylate using biocatalyst Download PDFInfo
- Publication number
- JP2004305062A JP2004305062A JP2003101199A JP2003101199A JP2004305062A JP 2004305062 A JP2004305062 A JP 2004305062A JP 2003101199 A JP2003101199 A JP 2003101199A JP 2003101199 A JP2003101199 A JP 2003101199A JP 2004305062 A JP2004305062 A JP 2004305062A
- Authority
- JP
- Japan
- Prior art keywords
- biocatalyst
- ammonium carboxylate
- reaction
- weight
- nitrile compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 ammonium carboxylate Chemical class 0.000 title claims abstract description 82
- 108090000790 Enzymes Proteins 0.000 title claims abstract description 55
- 102000004190 Enzymes Human genes 0.000 title claims abstract description 55
- 239000011942 biocatalyst Substances 0.000 title claims abstract description 50
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 57
- 108010033272 Nitrilase Proteins 0.000 claims abstract description 23
- 230000000694 effects Effects 0.000 claims abstract description 18
- 239000000872 buffer Substances 0.000 claims abstract description 10
- 230000008014 freezing Effects 0.000 claims abstract description 5
- 238000007710 freezing Methods 0.000 claims abstract description 5
- 210000001822 immobilized cell Anatomy 0.000 claims description 11
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 9
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 claims description 5
- GZPHSAQLYPIAIN-UHFFFAOYSA-N 3-pyridinecarbonitrile Chemical compound N#CC1=CC=CN=C1 GZPHSAQLYPIAIN-UHFFFAOYSA-N 0.000 claims description 4
- 241000589291 Acinetobacter Species 0.000 claims description 4
- 241000588986 Alcaligenes Species 0.000 claims description 4
- 241000894006 Bacteria Species 0.000 claims description 3
- 108010093096 Immobilized Enzymes Proteins 0.000 claims description 2
- 239000012535 impurity Substances 0.000 abstract description 31
- 239000000243 solution Substances 0.000 abstract description 21
- 239000007864 aqueous solution Substances 0.000 abstract description 15
- 108090000623 proteins and genes Proteins 0.000 abstract description 11
- 102000004169 proteins and genes Human genes 0.000 abstract description 11
- 238000000746 purification Methods 0.000 abstract description 11
- 229910021645 metal ion Inorganic materials 0.000 abstract description 10
- 210000004027 cell Anatomy 0.000 description 26
- WPKYZIPODULRBM-UHFFFAOYSA-N azane;prop-2-enoic acid Chemical compound N.OC(=O)C=C WPKYZIPODULRBM-UHFFFAOYSA-N 0.000 description 15
- 244000005700 microbiome Species 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 239000006285 cell suspension Substances 0.000 description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 8
- 230000001580 bacterial effect Effects 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 239000008363 phosphate buffer Substances 0.000 description 6
- 238000009825 accumulation Methods 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 241000588625 Acinetobacter sp. Species 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- FFNVQNRYTPFDDP-UHFFFAOYSA-N 2-cyanopyridine Chemical compound N#CC1=CC=CC=N1 FFNVQNRYTPFDDP-UHFFFAOYSA-N 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003204 osmotic effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000003622 immobilized catalyst Substances 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- ZIUHHBKFKCYYJD-UHFFFAOYSA-N n,n'-methylenebisacrylamide Chemical compound C=CC(=O)NCNC(=O)C=C ZIUHHBKFKCYYJD-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 2
- 238000011403 purification operation Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 241001524110 Dietzia maris Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 229940061634 magnesium sulfate heptahydrate Drugs 0.000 description 1
- SCVOEYLBXCPATR-UHFFFAOYSA-L manganese(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Mn+2].[O-]S([O-])(=O)=O SCVOEYLBXCPATR-UHFFFAOYSA-L 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229940068984 polyvinyl alcohol Drugs 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は,ニトリラーゼ活性を有する触媒を用いてカルボン酸アンモニウムを製造する方法に関する。
【0002】
【従来の技術】
酵素活性を持つ生体触媒を利用して目的の化合物を合成する方法は、反応条件が穏和であるため反応プロセスが簡略化できる、あるいは副生成物が少なく高純度の反応生成物を取得できる等の利点があるため、近年、様々な化合物の製造に用いられている。カルボン酸アンモニウムの製造においても、ニトリル化合物からカルボン酸アンモニウムに変換する酵素、ニトリラーゼが見いだされて以来、そのカルボン酸アンモニウム製造法への適用もいくつか検討されている。例えば、特許文献1〜4等が挙げられる。
【0003】
しかしながら、生体触媒で製造したカルボン酸アンモニウムの水溶液は、高純度の反応液が得られるにも拘わらず、反応液に生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が混入してしまう欠点を有しており、反応途中で反応液が粘調になる(特許文献1)等の問題点を有していた。或いは、例えばこのカルボン酸アンモニウムの水溶液をポリマー原料にする場合、該バッファー由来の不純物(例えばリン酸イオン等)、及び/又は該生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が、後の重合工程で支障を来す等の実用上の問題点を有していた。
【0004】
解決法として、これら不純物を許容範囲まで低下させるため精製系を設けることが考えられるが、多大なコストが必要となる。例えば、リン酸イオンや多価金属イオンについては、イオン交換樹脂を用いたイオン交換で除去することが可能であるが、該リン酸イオンや多価金属イオン濃度が高い場合、イオン交換樹脂の破過を早め、頻繁な樹脂交換を必要とし、運転コストが大きくなってしまう。
【0005】
一方蛋白質等の有機不純物についてはUF膜等の膜で除去する方法が一般的であるが、反応液中の蛋白質等の有機不純物が多い場合、UF膜が短時間に閉塞し、頻繁なUF膜の再生処理の発生や、濾過面積を大きくする必要がある等の不利益を生じ、運転コストや設備費が大きくなってしまう。また、例えばポリアクリロニトリル繊維を用いる方法は、蛋白質等の有機不純物の吸着容量が少ない上に再生が困難である。また、例えば活性炭を用いる方法は、活性炭の再生処理が難しく、さらに活性炭の持つ反応性により目的化合物が変性する場合もある。
【0006】
このように、生体触媒で製造したカルボン酸アンモニウムを工業的に使用するにあたっては、該不純物を許容範囲まで低下させるためのコストの高い操作が必要であり、工業的に実施するうえで満足できるものではなかった。
【0007】
【特許文献1】
特公昭63−2596号公報
【特許文献2】
特開昭63−129988号公報
【特許文献3】
特開昭63−209592号公報
【特許文献4】
特表2000−501610号公報
【0008】
【発明が解決しようとする課題】
本発明は、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、製造されるカルボン酸アンモニウム水溶液中の生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物 (例えば多価金属イオンや蛋白質等の有機不純物)が低減でき、その精製コストを大幅に削減できる高純度カルボン酸アンモニウムの製造法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者はこのような工業的諸問題を解決するため、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)を、多大なエネルギーやコストを掛けることなく、精製系への負荷をできるだけ抑制し、しかも製品の品質上、許容できる範囲まで低減できる、生体触媒を用いたニトリル化合物からのカルボン酸アンモニウムの製造法を鋭意検討したところ、驚くべきことに製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒重量を1/2000以下、及び該生体触媒を懸濁させるバッファー濃度を0.03M以下、及び反応温度を氷点〜30℃、及び反応液pHを6〜13にすることにより、あるいは反応系内のニトリル化合物濃度を2重量%以下にコントロールすることにより、多大なエネルギーやコストを掛けることなく、精製系への負荷をできるだけ抑制し、しかも製品の品質上、許容できる範囲まで該バッファー由来の不純物(例えばリン酸イオン等)、及び/又は該生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が低減された、高純度カルボン酸アンモニウムが製造できることを見出し、本発明を完成するに至った。
【0010】
即ち本発明は、以下のとおりである。
(1) ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造する方法において、製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒重量を1/2000以下、及び該生体触媒を懸濁させるバッファー濃度を0.03M以下、及び反応温度を氷点〜30℃、及び反応液pHを6〜13にすることを特徴とするカルボン酸アンモニウムの製造方法。
【0011】
(2) 生体触媒がグラム陰性菌であることを特徴とする(1)記載のカルボン酸アンモニウムの製造方法。
(3) 生体触媒がアシネトバクター属、及び/又は、アルカリゲネス属であることを特徴とする(1)又は(2)記載のカルボン酸アンモニウムの製造方法。
(4) 生体触媒が、固定化菌体あるいは固定化酵素であることを特徴とする(1)〜(3)のいずれかに記載のカルボン酸アンモニウムの製造方法。
【0012】
(5) ニトリル化合物が、アクリロニトリル、メタクリロニトリル、又は3−シアノピリジンであることを特徴とする(1)〜(4)のいずれかに記載のカルボン酸アンモニウムの製造方法。
(6) ニトリル化合物がアクリロニトリルであることを特徴とする(1)〜(5)のいずれかに記載のカルボン酸アンモニウムの製造方法。
【0013】
(7) 製造されるカルボン酸アンモニウムの反応液中の濃度が、20重量%以上であることを特徴とする(1)〜(6)のいずれかに記載のカルボン酸アンモニウムの製造方法。
(8) ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造する方法において、反応系内のニトリル化合物濃度を2重量%以下にコントロールすることを特徴とするカルボン酸アンモニウムの製造方法。
【0014】
【発明の実施の形態】
本発明について、以下具体的に説明する。
本発明でいうニトリラーゼ活性を有する生体触媒とは、ニトリラーゼ酵素を保有している触媒であれば如何なる形態のものでも良い。ニトリラーゼ酵素の由来としては、微生物・動植物細胞が挙げられるが、重量当たりの酵素発現量や取り扱いの容易性から、微生物菌体を使用することが好ましい。
【0015】
微生物種としては、多くのものが知られているが、例えばニトリラーゼ高活性を有するものとして、ロドコッカス属、アシネトバクター属、アルカリゲネス属等の微生物菌体が挙げられる。本発明においてはこの中でも、特にグラム陰性菌であるアシネトバクター属、アルカリゲネス属が好ましいが、これらに限定するものではない。
具体的には、アシネトバクター エスピー AK226(FERM BP−2451)、アシネトバクター エスピー AK227(微工研菌寄8272号)、ロドコッカス マリス BP−479−9(FERM BP−5219)である。これらの菌株は、特開平7−303496、特開昭63−129988、特開昭63−209592、特公昭63−2596号公報に記載されている。
【0016】
また、天然のあるいは人為的に改良したニトリラーゼ遺伝子を遺伝子工学的手法により組み込んだ微生物、あるいはそこから取り出した酵素であっても構わない。しかしながら、ニトリラーゼの発現量が少ない微生物あるいはニトリル化合物からカルボン酸アンモニウムへの変換活性の低いニトリラーゼを発現した微生物を少量用いてカルボン酸アンモニウムを製造するにはより多くの反応時間を要するため、可能な限りニトリラーゼを高発現した微生物、及び/又は変換活性の高いニトリラーゼを発現する微生物あるいはそこから取り出した酵素を用いることが望ましい。
【0017】
生体触媒の形態としては、微生物・動植物細胞等をそのまま用いても構わないが、好ましくは精製コストを削減するという観点から、そのものをあるいは破砕等の処理をしたものを、あるいは微生物等からニトリラーゼ酵素を取り出したものを、一般的な包括法、架橋法、担体結合法等で固定化したものを用いる方が好ましい。固定化する際の固定化担体の例としては、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸等が挙げられるが、これらに限定されるものではない。
【0018】
微生物・動植物細胞等をそのまま用いる場合、通常、浸透圧の関係からバッファー液に懸濁させて使用する。また、固定化したものを用いる場合、固定化時に使用する微生物・動植物細胞等も、通常、浸透圧の関係からバッファー液に懸濁させている。この時のバッファー液濃度は、低ければ低いほど反応液中不純物は低減され、精製コストは削減され、品質も向上する。不純物濃度が問題とならないのは通常0.03M以下であり、好ましくは0.02M以下である。下限値に特に制限はないが、バッファー液濃度が0(蒸留水)になると、浸透圧の関係から生体触媒の安定性、ライフに悪影響が出る等の問題が生じる。
【0019】
反応温度が低すぎると反応活性が低くなり、高濃度のカルボン酸アンモニウムを製造する場合、より多くの反応時間を必要とする。一方、反応温度が高すぎると生体触媒のライフが低下するため、目的とするカルボン酸濃度に到達させる前に、フレッシュな生体触媒を追添する等の使用生体触媒量を多くする操作が必要となり、本発明の指向から外れるので好ましくない。よって、通常、反応温度は氷点〜30℃が良く、好ましくは5℃〜25℃、更に好ましく10℃〜20℃が良い。
【0020】
反応液pHは使用する菌体由来ニトリラーゼの至適pHにすることが好ましく、通常、反応液pHは6〜13が良く、好ましくは9〜11が良い。
【0021】
本発明で使用されるニトリル化合物とは、ニトリラーゼの触媒作用により対応するカルボン酸アンモニウムに変換される限り、特に限定されない。例えば、アセトニトリル、プロピオニトリル、サクシノニトリル、アジポニトリルのような脂肪族飽和ニトリル、アクリロニトリル、メタクリロニトリルのような脂肪族不飽和ニトリル、ベンゾニトリル、フタロジニトリルのような芳香族ニトリル及び3−シアノピリジン、2−シアノピリジンのような複素環式ニトリルが挙げられる。経済的な問題として、生体触媒を用いたカルボン酸アンモニウムの製造に適している代表的なものはプロピオニトリル、アクリロニトリル、メタクリロニトリル、3−シアノピリジン、2−シアノピリジンであるが、特にアクリロニトリル、メタクリロニトリル、3−シアノピリジンが好適である。
【0022】
製造されるカルボン酸アンモニウムに対する使用乾燥生体触媒重量は、少なければ少ないほど反応液中不純物は低減され、精製コストは削減され、品質も向上する。しかし、不純物濃度が問題とならないのは1/2000以下であり、好ましくは1/3000、更に好ましくは1/4000以下である。生体触媒使用量の下限値は特に制限されないが、現実的には1/5000では大きなリアクターが必要となる、あるいは反応速度が低下するため高濃度のカルボン酸アンモニウムを製造する方法としては適さない等の問題が生じる。
【0023】
製造されるカルボン酸アンモニウムの反応液中の濃度は20重量%以上であるが、経済的な理由から高濃度であるほど良く、生成物阻害の影響が出ない範囲で、好ましくは30重量%以上、更に好ましくは40重量%以上が良い。
【0024】
カルボン酸アンモニウムを製造する反応方法は、固定床、移動層、流動層、撹拌槽等、いずれでも良く、また回分反応でも連続反応でも良い。反応基質、反応液、目的化合物の物性や生産規模により反応形式は選ばれ、任意の反応装置が設計される。
【0025】
また、反応系内のニトリル化合物の濃度を2重量%以下とすることによっても高純度のカルボン酸アンモニウムを製造することができる。ニトリル化合物の濃度を2重量%以下とすることでニトリル化合物による強い基質阻害を抑制でき、その他酵素による副反応に由来する不純物の生成を抑制でき、高純度のカルボン酸アンモニウムを製造することができる。また、下限値としては、特に制限はないが、現実的には低すぎると反応速度が低下するため。大きなリアクターが必要になる等の不利益が生じる。
【0026】
【実施例】
以下、実施例を挙げて本発明を説明する。なお、本発明は、これらの実施例に限定されるものでは無く、その要旨を越えない限り、様々な変更、修飾などが可能である。
【0027】
固定化してない微生物菌体液中の乾燥菌体重量の測定法は、以下のごとく実施した。まず、適当な濃度の微生物菌体懸濁液を適量取り、−80℃まで冷却した後、凍結乾燥機を用いて完全に乾燥し、菌体懸濁液濃度を算出した。既知濃度となった菌体懸濁液を適当な複数の濃度に希釈し、濁度計にて濁度を測定し、濁度計の検量線を作成し、ファクターを算出した。該濁度計の濁度指示値から任意の微生物菌体懸濁液の乾燥菌体濃度を算出した。
【0028】
菌体を固定化したものを生体触媒とする場合は、固定化する前の菌体懸濁液の乾燥菌体濃度を測定し、固定化担体と菌体の混合比に基づき固定化触媒中の固定化担体を差し引いた生体由来成分の乾燥重量を算出した。
【0029】
反応液の分析は、基質であるニトリル化合物についてはガスクロマトグラフィー(島津GC−14B)で測定した。カラムはキャピラリーの強極性カラム(信和化工ULBON HR−20M 0.25mmI.D.×30mL 0.25μm)、検出器はFIDで検出した。また、生成物であるカルボン酸アンモニウムは、ホルマリン処理でアンモニウムイオンをヘキサメチレンテトラミンとしてトラップした後、中和滴定にて定量した。また、品質の評価法となるリン酸イオンや多価金属イオンの分析はICP(理学 JY138)で実施した。蛋白質の定量については特に実施していないが、反応後の精製工程であるUF膜(旭化成ペンシル型モジュールSIP−0013)処理における目詰まりに由来する圧力上昇までの処理量を持って評価した。
【0030】
実施例1
生体触媒の調製
ニトリラーゼ活性を有するアシネトバクター エスピー AK226(FERM BP−2451)を、塩化ナトリウム0.1%、リン酸2水素カリウム0.1%、硫酸マグネシウム7水和物0.05%、硫酸鉄7水和物0.005%、硫酸マンガン5水和物0.005%、硫酸アンモニウム0.1%、硝酸カリウム0.1%(いずれも重量%)を含む水溶液をpH=7に調整した培地で、栄養源としてアセトニトリル0.5重量%を添加し、30℃で好気的に培養した。これを30mMリン酸バッファー(pH=7.0)にて洗浄し菌体懸濁液(乾燥菌体15重量%)を得た。続いてアクリルアミド、メチレンビスアクリルアミド、5%N,N,N’,N’−テトラメチルエチレンジアミン水溶液、菌体懸濁液、30mMリン酸緩衝液の混合液に、2.5%過硫酸カリウム水溶液を混合して重合物を得た。最終的な組成は、乾燥菌体濃度3%、30mMリン酸バッファー(pH=7)52%、アクリルアミド18%、メチレンビスアクリルアミド1%、5%N,N,N’,N’−テトラメチルエチレンジアミン水溶液12%、2.5%過硫酸カリウム水溶液14%(何れも重量%)とした。該重合物を約1×3×3mm角の粒子に裁断し固定化菌体を得た。この固定化菌体を30mMリン酸バッファー(pH=7)で洗浄し固定化菌体触媒とした。
【0031】
固定化菌体触媒による反応1
内容積500mlの三角フラスコに蒸留水400gを入れ、これに前述の固定化菌体触媒1g(乾燥菌体0.03gに相当)を金網かごに入れたものを液中にセットし、ゴム栓で封をした後、恒温水槽に浸けて内温を30℃に保ち、スターラーで撹拌した。
アクリロニトリルを間欠的に2重量%分フィード(アクリロニトリル濃度は0.5重量%以上で管理)し、アクリル酸アンモニウムの蓄積反応を行ったところ20重量%まで蓄積できた(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/2700)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.1ppm、S:ND、K:0.05ppm、Mg:0.3ppm、Fe:ND、Mn:0.04ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、目詰まり等の現象は見られず、全液量を処理することができ、高純度の20重量%アクリル酸アンモニウム水溶液を得た。
【0032】
実施例2
固定化菌体触媒による反応2
実施例1で調製した固定化菌体触媒を用いて、反応温度を20℃にする以外は実施例1と同様に、アクリル酸アンモニウムの蓄積反応を行ったところ30重量%になるまで蓄積できた (使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/4000)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.06ppm、S:ND、K:0.03ppm、Mg:0.2ppm、Fe:ND、Mn:0.02ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、目詰まり等の現象は見られず、全液量を処理することができ、高純度の30重量%アクリル酸アンモニウム水溶液を得た。
【0033】
比較例1
固定化菌体触媒による反応3
固定化菌体触媒使用量を2.7g(乾燥菌体0.08g)にする以外は実施例2と同様にアクリル酸アンモニウム濃度が30重量%になるまで蓄積反応を行った(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/1500)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.5ppm、S:ND、K:0.1ppm、Mg:0.8ppm、Fe:ND、Mn:0.2ppmであった。また、同一条件での反応液を5L作製し、UF膜(旭化成ペンシル型モジュールSIP−0013)による精製操作を行ったところ、処理量3Lの時点で目詰まりによる圧力上昇が観測され、それ以上のUF膜処理は継続できなかった。そのため、一度逆洗処理を施した後UF膜処理を実施し、30重量%アクリル酸アンモニウム水溶液を得た。
【0034】
比較例2
固定化菌体触媒による反応4
実施例1と同様の方法で培養し、得られたアシネトバクター エスピー AK226を50mMリン酸バッファー (pH=7.0)にて洗浄し菌体懸濁液(乾燥菌体15重量%)を得た。続いて、実施例1と同様にして、約1×3×3mm角の粒子に裁断した固定化菌体を得、50mMリン酸バッファー (pH=7)で洗浄し固定化菌体触媒とした。実施例2と同様に、アクリル酸アンモニウムの蓄積反応を行ったところ30重量%になるまで蓄積できた(使用乾燥菌体重量/生成アクリル酸アンモニウム重量=1/4000)。
得られたアクリル酸アンモニウム水溶液は無色透明であった。ICP分析の結果、P:0.2ppm、S:ND、K:0.1ppm、Mg:0.2ppm、Fe:ND、Mn:0.03ppmであった。
【0035】
【発明の効果】
本発明は、ニトリラーゼ活性を有する生体触媒を用いてニトリル化合物からカルボン酸アンモニウムを製造するにあたり、生体触媒を懸濁させるバッファー由来の不純物(例えばリン酸イオン等)、及び/又は生体触媒由来の不純物(例えば多価金属イオンや蛋白質等の有機不純物)が少なく、精製コストが低い高純度カルボン酸アンモニウムの製造法を提供できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing ammonium carboxylate using a catalyst having nitrilase activity.
[0002]
[Prior art]
The method of synthesizing the target compound using a biocatalyst having enzymatic activity can simplify the reaction process because the reaction conditions are mild, or can obtain high-purity reaction products with few by-products. Due to its advantages, it has recently been used in the production of various compounds. In the production of ammonium carboxylate, since an enzyme or nitrilase that converts a nitrile compound into ammonium carboxylate was discovered, its application to a method for producing ammonium carboxylate has been studied. For example, Patent Documents 1 to 4 and the like can be mentioned.
[0003]
However, the aqueous solution of ammonium carboxylate produced with the biocatalyst, although a high-purity reaction solution is obtained, impurities derived from a buffer that suspends the biocatalyst in the reaction solution (for example, phosphate ions), and / or Alternatively, it has a disadvantage that impurities derived from a biocatalyst (for example, organic impurities such as polyvalent metal ions and proteins) are mixed, and the reaction solution becomes viscous during the reaction (Patent Document 1). Had. Alternatively, for example, when the aqueous solution of ammonium carboxylate is used as a polymer raw material, impurities derived from the buffer (for example, phosphate ions and the like) and / or impurities derived from the biocatalyst (for example, organic impurities such as polyvalent metal ions and proteins) ) Had practical problems such as hindering the subsequent polymerization step.
[0004]
As a solution, it is conceivable to provide a purification system in order to reduce these impurities to an allowable range, but a large cost is required. For example, phosphate ions and polyvalent metal ions can be removed by ion exchange using an ion exchange resin, but when the phosphate ion or polyvalent metal ion concentration is high, the ion exchange resin is broken. It hasten the process, requires frequent resin replacement, and increases operating costs.
[0005]
On the other hand, a method of removing organic impurities such as proteins with a film such as a UF film is generally used. However, when the reaction solution contains a large amount of organic impurities such as proteins, the UF film is closed in a short time, and frequent UF films are used. However, disadvantages such as the occurrence of regeneration processing and the necessity of increasing the filtration area are caused, and the operating cost and equipment cost are increased. In addition, for example, a method using polyacrylonitrile fiber has a small adsorption capacity for organic impurities such as proteins and is difficult to regenerate. In addition, for example, in the method using activated carbon, the regeneration treatment of activated carbon is difficult, and the target compound may be denatured by the reactivity of activated carbon.
[0006]
As described above, when the ammonium carboxylate produced by the biocatalyst is used industrially, a costly operation for reducing the impurities to an allowable range is required, and the operation is satisfactory for industrial implementation. Was not.
[0007]
[Patent Document 1]
JP-B-63-2596 [Patent Document 2]
JP-A-63-129988 [Patent Document 3]
JP-A-63-209592 [Patent Document 4]
JP 2000-501610 A
[Problems to be solved by the invention]
The present invention relates to the production of ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity. In the production of an ammonium carboxylate aqueous solution, impurities derived from a buffer for suspending the biocatalyst (for example, phosphate ions) It is an object of the present invention to provide a method for producing high-purity ammonium carboxylate, which can reduce impurities derived from biocatalysts (eg, organic impurities such as polyvalent metal ions and proteins) and greatly reduce the purification cost. .
[0009]
[Means for Solving the Problems]
In order to solve such industrial problems, the present inventor, when producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, requires impurities (for example, phosphoric acid) derived from a buffer in which the biocatalyst is suspended. Ions) and / or impurities derived from biocatalysts (eg, organic impurities such as polyvalent metal ions and proteins), while minimizing the load on the purification system without incurring much energy and cost. Intensive studies on a method for producing ammonium carboxylate from a nitrile compound using a biocatalyst, which can be reduced to an acceptable range in terms of quality, have led to a surprising study. 2000 or less, and the buffer concentration for suspending the biocatalyst is 0.03 M or less, and By setting the reaction temperature to the freezing point to 30 ° C. and the pH of the reaction solution to 6 to 13 or controlling the concentration of the nitrile compound in the reaction system to 2% by weight or less, a great deal of energy and cost are not required. The load on the purification system is suppressed as much as possible, and the impurities derived from the buffer (for example, phosphate ions, etc.) and / or the impurities derived from the biocatalyst (for example, polyvalent metal ions or protein) to an acceptable range in terms of product quality. It has been found that high-purity ammonium carboxylate having reduced organic impurities such as carboxylic acid can be produced, and the present invention has been completed.
[0010]
That is, the present invention is as follows.
(1) A method for producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, wherein the weight of the used dry biocatalyst to the produced ammonium carboxylate is 1/2000 or less, and the biocatalyst is suspended. A method for producing ammonium carboxylate, wherein the buffer concentration is 0.03 M or less, the reaction temperature is a freezing point to 30 ° C., and the pH of the reaction solution is 6 to 13.
[0011]
(2) The method for producing ammonium carboxylate according to (1), wherein the biocatalyst is a gram-negative bacterium.
(3) The method for producing ammonium carboxylate according to (1) or (2), wherein the biocatalyst is of the genus Acinetobacter and / or the genus Alcaligenes.
(4) The method for producing ammonium carboxylate according to any one of (1) to (3), wherein the biocatalyst is an immobilized cell or an immobilized enzyme.
[0012]
(5) The method for producing ammonium carboxylate according to any one of (1) to (4), wherein the nitrile compound is acrylonitrile, methacrylonitrile, or 3-cyanopyridine.
(6) The method for producing ammonium carboxylate according to any one of (1) to (5), wherein the nitrile compound is acrylonitrile.
[0013]
(7) The method for producing ammonium carboxylate according to any one of (1) to (6), wherein the concentration of the produced ammonium carboxylate in the reaction solution is 20% by weight or more.
(8) A method for producing ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, wherein the concentration of the nitrile compound in the reaction system is controlled to 2% by weight or less. .
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described below.
The biocatalyst having nitrilase activity referred to in the present invention may be in any form as long as it has a nitrilase enzyme. Examples of the origin of the nitrilase enzyme include microorganisms and animal and plant cells. However, microbial cells are preferably used in view of the enzyme expression amount per weight and ease of handling.
[0015]
Many microbial species are known. For example, those having high nitrilase activity include microbial cells of the genus Rhodococcus, Acinetobacter, and Alcaligenes. In the present invention, among these, the genus Acinetobacter and Alcaligenes, which are gram-negative bacteria, are particularly preferable, but are not limited thereto.
Specifically, Acinetobacter sp. AK226 (FERM BP-2451), Acinetobacter sp. AK227 (Microtechnical Laboratories No. 8272), and Rhodococcus Maris BP-479-9 (FERM BP-5219). These strains are described in JP-A-7-303496, JP-A-63-129988, JP-A-63-209592, and JP-B-63-2596.
[0016]
Alternatively, a microorganism into which a natural or artificially improved nitrilase gene has been incorporated by a genetic engineering technique, or an enzyme extracted therefrom may be used. However, it takes more reaction time to produce ammonium carboxylate using a small amount of a microorganism having a low nitrilase expression level or a microorganism having a low nitrilase conversion activity from a nitrile compound to ammonium carboxylate. It is preferable to use a microorganism that highly expresses nitrilase and / or a microorganism that expresses nitrilase having high conversion activity, or an enzyme extracted therefrom.
[0017]
As the form of the biocatalyst, microorganisms, animal and plant cells, etc. may be used as they are, but preferably from the viewpoint of reducing the purification cost, those that have undergone treatment such as crushing or the like, or those from microorganisms, etc. It is preferable to use a product obtained by fixing the product by a general entrapment method, a crosslinking method, a carrier binding method, or the like. Examples of the immobilization carrier for immobilization include glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid, and the like, but are not limited thereto.
[0018]
When microorganisms, animal and plant cells, etc. are used as they are, they are usually used by suspending them in a buffer solution due to osmotic pressure. In the case of using immobilized cells, microorganisms, animal and plant cells used for immobilization are usually suspended in a buffer solution due to osmotic pressure. The lower the concentration of the buffer solution at this time, the lower the impurities in the reaction solution, the lower the purification cost and the higher the quality. Usually, the impurity concentration does not cause a problem is 0.03M or less, preferably 0.02M or less. The lower limit is not particularly limited, but when the buffer solution concentration becomes 0 (distilled water), problems such as adverse effects on the stability and life of the biocatalyst occur due to osmotic pressure.
[0019]
When the reaction temperature is too low, the reaction activity becomes low, and when producing a high concentration of ammonium carboxylate, more reaction time is required. On the other hand, if the reaction temperature is too high, the life of the biocatalyst decreases, so before reaching the target carboxylic acid concentration, it is necessary to increase the amount of biocatalyst used, such as adding a fresh biocatalyst. However, it is not preferable because it deviates from the orientation of the present invention. Therefore, the reaction temperature is usually from the freezing point to 30 ° C, preferably from 5 ° C to 25 ° C, more preferably from 10 ° C to 20 ° C.
[0020]
The pH of the reaction solution is preferably adjusted to the optimum pH of the bacterial cell-derived nitrilase. Generally, the pH of the reaction solution is preferably from 6 to 13, and more preferably from 9 to 11.
[0021]
The nitrile compound used in the present invention is not particularly limited as long as it is converted into the corresponding ammonium carboxylate by the catalytic action of nitrilase. For example, aliphatic saturated nitriles such as acetonitrile, propionitrile, succinonitrile, adiponitrile, aliphatic unsaturated nitriles such as acrylonitrile, methacrylonitrile, aromatic nitriles such as benzonitrile, phthalodinitrile and 3- Heterocyclic nitriles such as cyanopyridine and 2-cyanopyridine are exemplified. As an economic problem, typical ones suitable for the production of ammonium carboxylate using a biocatalyst are propionitrile, acrylonitrile, methacrylonitrile, 3-cyanopyridine, 2-cyanopyridine, and especially acrylonitrile. , Methacrylonitrile and 3-cyanopyridine are preferred.
[0022]
The smaller the weight of the dried biocatalyst used for the produced ammonium carboxylate, the lower the impurities in the reaction solution, the lower the purification cost, and the higher the quality. However, the impurity concentration does not matter at most 1/2000, preferably 1/3000, and more preferably 1/4000 or less. The lower limit of the amount of the biocatalyst used is not particularly limited, but in reality, 1/5000 would require a large reactor, or would be unsuitable as a method for producing high-concentration ammonium carboxylate due to a reduced reaction rate. Problem arises.
[0023]
The concentration of the produced ammonium carboxylate in the reaction solution is 20% by weight or more, but the higher the concentration, the better for economic reasons, and preferably 30% by weight or more as long as the product is not inhibited. And more preferably 40% by weight or more.
[0024]
The reaction method for producing ammonium carboxylate may be any of a fixed bed, a moving bed, a fluidized bed, a stirring tank, etc., and may be a batch reaction or a continuous reaction. The reaction format is selected depending on the physical properties and production scale of the reaction substrate, reaction solution, target compound, and an arbitrary reaction apparatus is designed.
[0025]
High-purity ammonium carboxylate can also be produced by setting the concentration of the nitrile compound in the reaction system to 2% by weight or less. By setting the concentration of the nitrile compound to 2% by weight or less, strong substrate inhibition by the nitrile compound can be suppressed, generation of impurities derived from side reactions by other enzymes can be suppressed, and high-purity ammonium carboxylate can be produced. . The lower limit is not particularly limited, but in practice, if it is too low, the reaction rate will decrease. There are disadvantages such as the need for a large reactor.
[0026]
【Example】
Hereinafter, the present invention will be described with reference to examples. The present invention is not limited to these embodiments, and various changes and modifications can be made without departing from the gist of the present invention.
[0027]
The method for measuring the dry cell weight in the unfixed microbial cell liquid was carried out as follows. First, an appropriate amount of a microbial cell suspension having an appropriate concentration was taken, cooled to −80 ° C., and completely dried using a freeze dryer to calculate the cell suspension concentration. The cell suspension having a known concentration was diluted to a plurality of appropriate concentrations, turbidity was measured with a turbidimeter, a calibration curve of the turbidimeter was prepared, and a factor was calculated. The dry cell concentration of an arbitrary microbial cell suspension was calculated from the turbidity indicator value of the turbidimeter.
[0028]
When the biocatalyst is obtained by immobilizing the cells, the dry cell concentration of the cell suspension before immobilization is measured, and the immobilized catalyst in the immobilized catalyst is measured based on the mixing ratio of the immobilized carrier and the cells. The dry weight of the biologically derived component from which the immobilized carrier was subtracted was calculated.
[0029]
In the analysis of the reaction solution, the nitrile compound as a substrate was measured by gas chromatography (Shimadzu GC-14B). The column was a capillary strong polarity column (Shinwa Kako ULBON HR-20M 0.25 mm ID × 30 mL 0.25 μm), and the detector was detected by FID. The product ammonium carboxylate was quantified by neutralization titration after trapping ammonium ions as hexamethylenetetramine by formalin treatment. In addition, analysis of phosphate ions and polyvalent metal ions as quality evaluation methods was performed by ICP (Rigaku JY138). Although the quantification of the protein was not particularly carried out, it was evaluated with the processing amount up to the pressure increase due to clogging in the UF membrane (Asahi Kasei pencil-type module SIP-0013) treatment, which is a purification step after the reaction.
[0030]
Example 1
Preparation of Biocatalyst Acinetobacter sp. AK226 (FERM BP-2451) having nitrilase activity was prepared by adding sodium chloride 0.1%, potassium dihydrogen phosphate 0.1%, magnesium sulfate heptahydrate 0.05%, iron sulfate 7 An aqueous solution containing 0.005% hydrate, 0.005% manganese sulfate pentahydrate, 0.1% ammonium sulfate, and 0.1% potassium nitrate (all by weight) is adjusted to pH = 7 by a nutrient medium. Acetonitrile (0.5% by weight) was added as a source and cultured at 30 ° C. aerobically. This was washed with 30 mM phosphate buffer (pH = 7.0) to obtain a cell suspension (15% by weight of dried cells). Subsequently, a 2.5% aqueous solution of potassium persulfate was added to a mixture of acrylamide, methylenebisacrylamide, a 5% N, N, N ', N'-tetramethylethylenediamine aqueous solution, a bacterial cell suspension, and a 30 mM phosphate buffer. The mixture was mixed to obtain a polymer. The final composition is 3% dry cell concentration, 52% 30 mM phosphate buffer (pH = 7), 18% acrylamide, 1% methylenebisacrylamide, 5% N, N, N ', N'-tetramethylethylenediamine The aqueous solution was 12%, and the aqueous 2.5% potassium persulfate solution was 14% (all by weight). The polymer was cut into particles of about 1 × 3 × 3 mm square to obtain immobilized cells. The immobilized cells were washed with 30 mM phosphate buffer (pH = 7) to obtain an immobilized cell catalyst.
[0031]
Reaction 1 with immobilized cell catalyst
400 g of distilled water was put into a 500 ml Erlenmeyer flask, and 1 g of the above-mentioned immobilized bacterial cell catalyst (equivalent to 0.03 g of dried bacterial cells) in a wire mesh basket was set in the liquid. After sealing, it was immersed in a constant temperature water bath to maintain the internal temperature at 30 ° C., and stirred with a stirrer.
Acrylonitrile was intermittently fed by 2% by weight (acrylonitrile concentration was controlled at 0.5% by weight or more), and the accumulation reaction of ammonium acrylate was performed. As a result, it was possible to accumulate up to 20% by weight (dry cell weight used / production). Ammonium acrylate weight = 1/2700).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, P: 0.1 ppm, S: ND, K: 0.05 ppm, Mg: 0.3 ppm, Fe: ND, Mn: 0.04 ppm. When 5 L of a reaction solution was prepared under the same conditions, and a purification operation was performed using a UF membrane (Asahi Kasei pencil type module SIP-0013), phenomena such as clogging were not observed. Thus, a high-purity 20% by weight aqueous solution of ammonium acrylate was obtained.
[0032]
Example 2
Reaction 2 with immobilized cell catalyst
Using the immobilized microbial cell catalyst prepared in Example 1, the accumulation reaction of ammonium acrylate was performed in the same manner as in Example 1 except that the reaction temperature was set to 20 ° C., and it was possible to accumulate to 30% by weight. (Weight of dry cells used / weight of ammonium acrylate produced = 1/4000).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, P: 0.06 ppm, S: ND, K: 0.03 ppm, Mg: 0.2 ppm, Fe: ND, Mn: 0.02 ppm. When 5 L of a reaction solution was prepared under the same conditions, and a purification operation was performed using a UF membrane (Asahi Kasei pencil type module SIP-0013), phenomena such as clogging were not observed. Thus, a high-purity 30% by weight aqueous solution of ammonium acrylate was obtained.
[0033]
Comparative Example 1
Reaction 3 with immobilized cell catalyst
The accumulation reaction was carried out until the ammonium acrylate concentration became 30% by weight in the same manner as in Example 2 except that the amount of the immobilized cell catalyst was changed to 2.7 g (0.08 g of dried cells). Weight / weight of formed ammonium acrylate = 1/1500).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, P: 0.5 ppm, S: ND, K: 0.1 ppm, Mg: 0.8 ppm, Fe: ND, Mn: 0.2 ppm. Further, 5 L of a reaction solution was prepared under the same conditions, and purification was performed using a UF membrane (Asahi Kasei pencil type module SIP-0013). UF membrane treatment could not be continued. Therefore, a UF membrane treatment was performed after the backwashing treatment was performed once to obtain a 30% by weight aqueous solution of ammonium acrylate.
[0034]
Comparative Example 2
Reaction 4 with immobilized cell catalyst
The cells were cultured in the same manner as in Example 1, and the obtained Acinetobacter sp. AK226 was washed with a 50 mM phosphate buffer (pH = 7.0) to obtain a cell suspension (15% by weight of dried cells). Subsequently, in the same manner as in Example 1, immobilized bacterial cells cut into particles of about 1 × 3 × 3 mm square were obtained, and washed with 50 mM phosphate buffer (pH = 7) to obtain an immobilized bacterial cell catalyst. When the accumulation reaction of ammonium acrylate was performed in the same manner as in Example 2, accumulation was possible up to 30% by weight (weight of dry bacterial cells used / weight of produced ammonium acrylate = 1/4000).
The obtained aqueous solution of ammonium acrylate was colorless and transparent. As a result of ICP analysis, P: 0.2 ppm, S: ND, K: 0.1 ppm, Mg: 0.2 ppm, Fe: ND, Mn: 0.03 ppm.
[0035]
【The invention's effect】
The present invention relates to the production of ammonium carboxylate from a nitrile compound using a biocatalyst having nitrilase activity, the production of a buffer-suspending impurity (for example, phosphate ion or the like) for suspending the biocatalyst, and / or the production of a biocatalyst-derived impurity. (Eg, organic impurities such as polyvalent metal ions and proteins) and a method for producing high-purity ammonium carboxylate with low purification cost.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003101199A JP4255730B2 (en) | 2003-04-04 | 2003-04-04 | Method for producing ammonium carboxylate using biocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003101199A JP4255730B2 (en) | 2003-04-04 | 2003-04-04 | Method for producing ammonium carboxylate using biocatalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004305062A true JP2004305062A (en) | 2004-11-04 |
JP4255730B2 JP4255730B2 (en) | 2009-04-15 |
Family
ID=33465074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003101199A Expired - Fee Related JP4255730B2 (en) | 2003-04-04 | 2003-04-04 | Method for producing ammonium carboxylate using biocatalyst |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4255730B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007116554A1 (en) | 2006-03-31 | 2007-10-18 | Asahi Kasei Chemicals Corporation | Water-absorbing resin partilce agglomerates and process for produciton thereof |
WO2013147610A3 (en) * | 2012-03-30 | 2014-01-09 | Jetze Botma | Automated selection of microorganisms and identification using maldi |
-
2003
- 2003-04-04 JP JP2003101199A patent/JP4255730B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007116554A1 (en) | 2006-03-31 | 2007-10-18 | Asahi Kasei Chemicals Corporation | Water-absorbing resin partilce agglomerates and process for produciton thereof |
WO2013147610A3 (en) * | 2012-03-30 | 2014-01-09 | Jetze Botma | Automated selection of microorganisms and identification using maldi |
CN104364659A (en) * | 2012-03-30 | 2015-02-18 | Bd科斯特公司 | Automated selection of microorganisms and identification using MALDI |
US9556495B2 (en) | 2012-03-30 | 2017-01-31 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
US9753045B2 (en) | 2012-03-30 | 2017-09-05 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
US10073105B2 (en) | 2012-03-30 | 2018-09-11 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
US10495655B2 (en) | 2012-03-30 | 2019-12-03 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
US10859588B2 (en) | 2012-03-30 | 2020-12-08 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
US11609239B2 (en) | 2012-03-30 | 2023-03-21 | Bd Kiestra B.V. | Automated selection of microorganisms and identification using MALDI |
Also Published As
Publication number | Publication date |
---|---|
JP4255730B2 (en) | 2009-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2288270C2 (en) | Method for producing amide compound using bacterial catalyst | |
WO2009113617A1 (en) | Method for stabilization of aqueous acrylamide solution | |
EP2540700B1 (en) | Stable aqueous acrylamide solution | |
CN1628175A (en) | Method for producing methacrylic acid and acrylic acid with a combination of enzyme catalysts | |
WO2011148867A1 (en) | Method for manufacturing an amide compound | |
JP4255730B2 (en) | Method for producing ammonium carboxylate using biocatalyst | |
JP5987825B2 (en) | Acrylamide aqueous solution, stabilization method of acrylamide aqueous solution | |
AU2012256707B2 (en) | Method for producing aqueous acrylamide solution | |
WO2004090147A1 (en) | Method of purifying aqueous amide compound solution and process for producing amide compound | |
JP4553242B2 (en) | Method for producing carboxylic acid (ammonium) using biocatalyst | |
JP2005176639A (en) | Method for producing nicotinic acid compounds | |
JP4709186B2 (en) | Method for producing amide compound using microbial catalyst | |
JP2001270857A (en) | Method for purifying amide compound | |
KR101894617B1 (en) | Method for producing acrylamide aqueous solution | |
JP2001299376A (en) | Method for producing amido compound using biocatalyst | |
JPH05244968A (en) | Production of alpha-hydroxyisobutyramide | |
JP2007295933A (en) | Method for producing amide compound by using microorganism catalyst | |
JP5165393B2 (en) | Method for producing glycolic acid or ammonium glycolate | |
WO2005095626A1 (en) | Immobilized biocatalyst and process for producing organic acid salt with the same | |
JP2004305066A (en) | Method for retaining nitrilase activity | |
JP2004321062A (en) | Method for using biocatalyst | |
JP2006050930A (en) | Method for retaining nitrilase activity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20060329 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071012 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081031 |
|
A521 | Written amendment |
Effective date: 20081226 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Effective date: 20090127 Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20090128 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120206 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20120206 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130206 Year of fee payment: 4 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20130206 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |