WO2016095816A1 - 样品测量池 - Google Patents

样品测量池 Download PDF

Info

Publication number
WO2016095816A1
WO2016095816A1 PCT/CN2015/097540 CN2015097540W WO2016095816A1 WO 2016095816 A1 WO2016095816 A1 WO 2016095816A1 CN 2015097540 W CN2015097540 W CN 2015097540W WO 2016095816 A1 WO2016095816 A1 WO 2016095816A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
reflective
light
measuring cell
incident
Prior art date
Application number
PCT/CN2015/097540
Other languages
English (en)
French (fr)
Inventor
邓文平
Original Assignee
邓文平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 邓文平 filed Critical 邓文平
Priority to US15/536,624 priority Critical patent/US10073029B2/en
Publication of WO2016095816A1 publication Critical patent/WO2016095816A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/004Systems comprising a plurality of reflections between two or more surfaces, e.g. cells, resonators

Definitions

  • the present invention relates to a sample measuring cell, and more particularly to a sample measuring cell for measuring the physicochemical properties of a sample by optical methods.
  • the White type sample measuring cell and the Herriott type sample measuring cell are relatively common, and both sample measuring cells use a concave spherical mirror to achieve multiple reflection of the optical path in a small spatial area.
  • a planar mirror For example, in US Pat. No. 3,524,066, two planar mirrors are mounted on both ends of a cylindrical cavity to effect multiple reflections of the optical path.
  • the mirror-based sample measuring cell is coated on the front surface because the highly reflective film layer is The lens is coated with an outer reflection film. At this time, the reflection surface of the mirror and the contact surface of the contact sample coincide, that is, one surface.
  • the highly reflective film layer is in direct contact with the sample in the sample measuring cell, and the film layer is easily destroyed by impurities in the sample and the sample.
  • the highly reflective film layer is a metal reflective film or a dielectric reflective film. If a metal reflective film is used, since the single-layer metal film has a low hardness and is easily scratched, a protective film is often applied to the metal film, and the metal reflective film itself needs to be plated a plurality of times to obtain
  • the metal reflective film generally comprises a multilayer film layer.
  • the dielectric reflective film is generally formed by multiple plating, and thus, the obtained dielectric reflective film also includes a multilayered film layer.
  • the reflective film layer is easily destroyed; in addition, during the preparation of the highly reflective film layer, foreign matter is generally introduced, and the introduced foreign matter of the particle causes defects of the highly reflective film layer, and when the mirror with the defect of the film layer is placed in the bad In the environment, the damage will be aggravated, which not only reduces the reflectivity of the highly reflective film layer, but also loses light energy, and the film layer that breaks down during the process may also block the light path, further reducing the collection of light energy.
  • the efficiency even deforms and ruptures the glass under the stress of the highly reflective film layer, resulting in poor environmental adaptability of the sample measuring cell based on the coating technology mirror, which cannot adapt to different measurement environments and cannot be used normally in harsh environments.
  • the measurement method used in the sample measuring cell of the present invention is an optical method including, but not limited to, an absorption spectrum, a Raman spectrum, a scattering spectrum, a fluorescence, and the like.
  • an embodiment of the present invention provides a sample measuring cell including a reflective cavity and at least one reflective structure for accommodating a sample to be tested; the at least one reflection The structure is disposed at a boundary of the reflective cavity; wherein the reflective structure includes a contact surface and a reflective surface, the contact surface contacts the sample to be tested, the reflective surface is away from the sample to be tested; At least one of the reflective surfaces is non-planar; incident light is reflected multiple times within the reflective cavity to form a measurement optical path, the incident light entering the reflective cavity through an incident portion, the incident portion being the A portion of the incident light that is in initial contact with the measuring optical path, the incident portion and the reflecting surface are discontinuously disposed.
  • the reflective structure is a mirror
  • the device comprises at least two mirrors, and the at least two mirrors are respectively disposed at two ends of the reflective cavity.
  • the reflection cavity is a region where the measurement optical path is formed.
  • the reflecting surface is plated with a reflective film.
  • the reflecting surface is a total reflecting surface.
  • the incident portion is a light-passing surface, a light-passing hole, or an incident region around the reflective structure on the reflective structure.
  • the non-planar surface is a spherical surface, a cylindrical surface, a quadric surface, a free curved surface, or an aspheric surface.
  • the beam waist position of the spot of the incident light is located inside the reflection cavity.
  • the at least one reflective structure has an included angle, and the included angle ranges from 0° to 360°.
  • the reflecting surface is provided with a protective structure for protecting the reflecting surface.
  • the invention has the beneficial effects that the reflective surface of the reflective structure is disposed away from the side of the sample to be tested, and the impurities in the sample to be measured do not damage the reflective surface that reflects the reflection.
  • the invention in mention At the same time of long optical path, the environmental adaptability of the sample measuring cell has been greatly improved.
  • the present invention takes into account the long path length and strong environmental adaptability.
  • FIG. 1 is a perspective view of a sample measuring cell according to an embodiment of the present invention.
  • Figure 2 is a front elevational view of a sample measuring cell according to an embodiment of the present invention.
  • Figure 3 is a schematic view showing a continuous arrangement of an embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a light-passing aperture according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a light-passing aperture according to an embodiment of the present invention.
  • Figure 6 is a schematic view showing the shape of a mirror according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural view of a probe according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing a measurement flow of a sample measuring cell according to an embodiment of the present invention.
  • 9 to 20 are schematic views showing the structure of another embodiment of the present invention.
  • the sample measuring cell 100 includes a reflective cavity 101 and at least one reflective structure 102; the reflective cavity 101 is configured to accommodate a sample to be tested, the at least A reflective structure 102 is disposed at a boundary of the reflective cavity 101.
  • the reflective structure 102 includes a contact surface 1021 and a reflective surface 1022.
  • the contact surface 1021 contacts the sample to be tested, and the reflective surface 1022 is away from the The sample to be tested is not in contact with the sample to be tested; at least one of the contact surface 1021 and the reflective surface 1022 is non-planar; the incident light L is reflected multiple times in the reflective cavity 101 to form a measuring optical path.
  • the incident light L enters the reflective cavity 101 through an incident portion, and the incident portion is a portion where the incident light L is in initial contact with the measuring optical path, and the incident portion and the reflective surface 1022 are non- Continuous setting.
  • the contact surface 1021 is in direct contact with the sample to be tested, and the reflective surface 1022 that realizes the reflection is away from the sample to be tested, that is, the contact surface 1021 which is not reflective, and the reflective surface 1022 is not affected.
  • the reflective surface 1022 is away from the sample to be tested.
  • the beneficial effect is that the reflective surface 1022 can be provided with a protective structure.
  • the protective structure is a mechanical structure, and the mechanical structure can be disposed to protect the reflective surface 1022 from scratching.
  • a desiccant may be placed near the reflecting surface 1022, or a high vacuum or an inert gas may be placed between the reflecting surface and the mechanical structure, but not limited thereto.
  • the reflective structure 102 is a mirror 102, and the device includes at least two mirrors 102 respectively disposed at boundaries of the reflective cavity 101.
  • the incident light L is reflected multiple times in the reflective cavity 101 , and the path through which the light reflected in the reflective cavity 101 is reflected is the measuring optical path of the embodiment, and the measuring optical path is The reflection cavity 101 is formed.
  • the incident portion is a light-passing surface on the mirror 102, a light-passing hole 1023, or an incident area around the mirror 102.
  • the incident light L enters the reflective cavity 101 through the light passing hole 1023.
  • the portion where the incident light L and the measuring optical path are in contact with each other is the portion of the light passing hole 1023, that is, the incident portion is the light passing hole 1023, and the light passing hole 1023.
  • the surface of the light-passing hole 1023 and the surface of the reflecting surface 1022 is a non-continuous surface, and the physical property of the light-passing hole 1023 is such that the light passes through the reflecting surface 1022.
  • the physical property is reflected light, and the physical properties of the light-passing aperture 1023 and the reflective surface 1022 are also discontinuous.
  • the incident portion when incident light L is incident from the side of the mirror 102 to the reflective cavity 101, the incident portion is an incident area around the mirror 102, and the surrounding incident and reflective surfaces 1022 is not in contact, that is, the incident portion and the reflecting surface 1022 are also discontinuously disposed at this time.
  • the arrangement is continuous.
  • the incident light L is directly incident on the reflecting surface 1022, and the portion of the incident light L that is in initial contact with the measuring optical path is located on the reflecting surface 1022, that is, the incident portion is on the reflecting surface.
  • the incident portion and the reflecting surface 1022 are continuous surfaces, and the physical properties of the incident portion and the reflecting surface 1022 are also continuous. At this time, the incident portion and the reflecting surface 1022 are continuously disposed.
  • the mirror 102 can be made of glass.
  • suitable materials are: fused quartz, sapphire, calcium fluoride, diamond, yttrium aluminum garnet (YAG), Si3N4, ZrO2, Al2O3, HfO2, etc., and other media that are transparent in the light wave frequency range, but not limited thereto, since the materials are chemically inert, the mirror 102 made of such materials is placed in the sample measuring cell 100, and its contact surface 1021 will not be damaged by the sample to be tested and the impurities contained in the sample to be tested in the sample measuring cell 100, but is not limited thereto.
  • the contact surface 1021 is attached with the sample to be tested, and the impurities in the sample to be tested are chemically inert. material.
  • the reflective surface 1022 is plated with a reflective film having a high reflectance.
  • the reflective film can be generally classified into a dielectric film or a metal film depending on the material, but not limited thereto.
  • the technique is that the reflective film in the embodiment is disposed on the reflective surface 1022, and the reflective film does not contact the sample and the impurity in the sample, and the mirror 102 is placed on a sample with high temperature, high humidity, high dust, and corrosivity.
  • impurities in the sample to be tested in the sample measurement cell 100 impurities in the sample to be tested do not enter the inside of the reflection film or the reflection film and the reflection surface 1022 are connected, and the reflection performance of the reflection film is not damaged.
  • the mirror 102 of the present embodiment is suitable for a harsh environment (high dust, corrosiveness, high moisture, high temperature, etc.); in addition, the incident light L in the present embodiment enters the reflective cavity 101 through the incident portion, when incident When the light L satisfies a certain incident condition, the light can be reflected multiple times in the reflective cavity 101. Thereby achieving a longer optical path. Therefore, the present embodiment takes into consideration the advantages of strong environmental adaptability and long optical path.
  • At least one of the contact surface 1021 and the reflective surface 1022 of the at least two mirrors 102 is non-planar, and the non-planar surface may be a spherical surface, a cylindrical surface, and a quadric surface. , free-form surfaces, aspheric surfaces, etc., but not limited to this, depending on the actual situation.
  • two mirrors 102 are taken as an example, and the contact faces 1021 of the two mirrors 102 are spherical, and an incident portion is provided at the boundary of the reflective cavity 101, and the incident portion of the present embodiment is incident.
  • incident light L is incident through the incident portion to the contact surface of the other of the two mirrors 102 of the two mirrors 102.
  • the mirror 102 since the mirror 102 is made of a transparent material, the light passes through the contact surface 1021 of the mirror 102 and reaches the reflecting surface 1022, and the light is reflected by the reflecting surface 1022 and then emitted by the light passing hole 1023, as shown in FIG. It is shown that since the contact surface 1021 is a spherical surface, the spot 1024 obtained by multiple reflections is generally distributed in a closed form, that is, the incident light L and the outgoing light enter and exit from the same light passing hole 1023, and the spot 1024 and the incident light are emitted after multiple reflections.
  • the spots 1024 of the light L may overlap, be adjacent to each other, or be spaced apart from each other by a plurality of spots, and the distribution of the spot 1024, the positional relationship between the spot 1024 of the emitted light and the spot 1024 of the incident light L may be determined according to actual conditions, when the incident light L and the outgoing light are From the same
  • the stability of the sample measuring cell 100 can be improved, and the sample measuring cell 100 can be miniaturized.
  • the light-passing holes 1023 may be disposed on the two mirrors 102.
  • the number of the light-passing holes 1023 is not limited to one. As shown in FIG. 4, for example, a plurality of light-passing lights may be disposed on one mirror 102.
  • the hole 1023, the incident light L and the outgoing light can enter and exit from the different light passing holes 1023 respectively; the position of the light passing hole 1023 is not limited to the middle of the mirror 102, as shown in FIG. 5, for example, the light passing hole 1023 can be set in the reflection.
  • the edge position of the mirror 102 that is, the light passing hole 1023 can penetrate the edge of the mirror 102.
  • the light passing hole 1023 is a non-closed hole; the light passing hole 1023 may not be disposed on the mirror 102, for example, the incident light L is reflected.
  • the side of the mirror 102 is incident into the reflective cavity 101.
  • the reflected light on the surface of the mirror 102 may interfere with the main light path formed by the incident light L, resulting in low detection sensitivity.
  • Experimental studies have found that the essence of the problem is that the mirror 102 itself is equivalent to a parallel plane cavity, and if the parallelism is broken, the influence of the reflected light on the surface of the material on the main light path can be reduced.
  • At least one of the contact surface 1021 and the reflective surface 1022 of the at least two mirrors 102 are set to be non-planar, such as a spherical surface, a cylindrical surface, a quadric surface or a free curved surface. , aspherical surface, etc., but not limited thereto, when the incident light L is incident on the reflecting surface 1022, there is an angle between the reflected light and the incident light L, thereby preventing the light formed by the reflecting process from being incident.
  • the main light path formed by the light L causes interference, reducing stray light in the sample measuring cell 100.
  • the diameter can effectively avoid the influence of the reflected light on the surface of the mirror 102 on the main optical path.
  • at least one of the contact surface 1021 and the reflective surface 1022 of the at least two mirrors 102 is set to be non-planar, since the actual spot 1024 of the incident light L has a certain divergence angle, the spot 1024
  • the size increases as the propagation distance increases, and the non-planar setting corresponds to the converging lens, which reduces the size of the spot 1024 and constrains the divergence angle of the incident light L.
  • the incident light L is emitted by the collimator, and the spot 1024 emitted from the collimator has a certain divergence angle.
  • the parameters of the light source 200 and the collimator determine the change between the size of the spot 1024 and the propagation distance. Relationship, the size of the spot 1024 will increase with the propagation distance first or increase with the increase of the propagation distance, and the position where the spot 1024 is the smallest is called the beam waist position.
  • the present embodiment sets the beam waist position of the spot 1024 inside the reflection cavity 101, that is, the position of the minimum spot 1024 of the incident light L is located in the reflection cavity. The interior of 101.
  • the reflection cavity 101 is symmetrical, when the beam waist position is located inside the reflection cavity 101, the spot 1024 repeatedly passes through the process of "convergence-diverging-convergence-diverging", and the size of all the spots 1024 on the mirror 102 can be realized. Small, therefore, by arranging the beam waist position inside the reflection cavity 101, the effect of the spot 1024 on the mirror 102 being small can be achieved, thereby further improving the surface utilization of the mirror 102.
  • the shape of the outer shape of the mirror 102 is not limited. As shown in FIG. 6, for example, it may be designed as a circle, a square, a polygon, or the like.
  • the non-planar form of the mirror 102 is not limited, and may be, for example, a spherical surface, a cylindrical surface, a quadric surface, a free curved surface, an aspheric surface, or the like, but is not limited thereto.
  • the position between the mirrors 102 is not limited, that is, the distance between the mirrors 102, the angle, and the like may be determined according to actual conditions, for example, the mirrors 102 may have an included angle.
  • the number of mirrors 102 is not limited, and the number of mirrors 102 constituting the sample measuring cell 100 may be more than two, even in the form of an array device, and if it is a plurality of mirrors 102, the arrangement of the mirrors 102 may be included, for example, Arranged on a circumference, but not limited to this.
  • the size of the mirror 102 is not limited, for example, the mirror 102 in the same sample measuring cell 100 may be unequal.
  • the mirror 102 can also be used in conjunction with other components, such as the mirror 102 in conjunction with a prism.
  • the plurality of mirrors 102 can also be made in one piece.
  • the incident light L is not limited to enter and exit from the light passing hole 1023, and for example, the incident light L can enter and exit from the side of the mirror 102.
  • the sample measuring cell 100 of the present embodiment further includes a detector 300 for emitting incident light L, and a light source 200 for receiving light emitted from the sample measuring cell 100, each time.
  • the light emitted from the sample measuring cell 100 is concentrated into the detector 300 via the lens 500.
  • the sample to be tested is, for example, a solid, a gas, a liquid, a liquid crystal, a biological tissue, or the like, but is not limited thereto.
  • the measurement flow module diagram of the sample measurement cell 100 of the present invention is shown in FIG. 8.
  • the measurement flow module diagram includes but is not limited to the light source control module 10, the light source module 11, the external light path adjustment module 12, the sample measurement cell 100, and the sample.
  • the light source control module 10 is configured to control the opening or closing, frequency modulation, current tuning, temperature tuning and the like of the light source module 11;
  • the light source module 11 may have different forms according to the detection technology and the use requirements, including but not limited to a laser light source, a broadband light source, a combination of different frequency laser light sources, a combination of a laser light source and a broadband light source, and the like;
  • the external light path adjusting module 12 is configured to change the polarization property of the light, the divergence angle of the light beam, the energy distribution of the light field, and the like, and feed back the signal to the light source control module 10.
  • the external light path adjustment module 12 includes, but is not limited to, a polarizing device, an optical coupling, a light cutting device, and the like;
  • the sample measurement cell 100 is an optical delay system for increasing the propagation path of light, increasing the optical path, and improving the measurement sensitivity of the system.
  • the sample measurement cell 100 includes, but is not limited to, a multiple reflection chamber, optical resonance. Cavity, etc.
  • the sample measuring cell monitoring module 13 is configured to monitor the working state of the reflective cavity 101, fault alarm, online real-time calibration of the equivalent absorption optical path of the sample measuring cell 100, and provide a monitoring signal to the sample measuring cell.
  • the sample measurement cell control module 18 is configured to correct the relative positional relationship of the optical devices in the sample measurement cell 100 in real time according to the monitoring signal provided by the sample measurement cell monitoring module 13, and the sample measurement cell control module 18 includes However, it is not limited to at least one PZT or other mechanical structure or device having a translational rotation function or a combination thereof, thereby changing the relative positional relationship of the optical components of the sample measuring cell 100;
  • Sample pretreatment module 14 The sample pretreatment module 14 is used for pretreatment of a sample to be tested, including but not limited to heating the sample to be tested, filtering out moisture in the sample, filtering out the sample and Measuring other impurities that are not relevant, filtering dust, etc.;
  • the photodetection module 15 is configured to receive and detect an optical signal output by the sample measuring cell 100, and convert the optical signal into an electrical signal, and perform signal filtering, amplification, analog-to-digital conversion and the like;
  • the data acquisition and processing module 16 collects the converted photoelectric digital signals, and performs spectral signal processing such as averaging and concentration calculation;
  • Data and image output module 17 the data and image output module 17 is used to output spectral lines and points of the sample The sub-spectrum absorbs data such as intensity and concentration value and image information. It should be noted that the data and image output module 17 is set to display information such as element concentration, and its form and structure are not limited.
  • the sample measuring cell 100 of the present invention may have various embodiments depending on the number, position, form and the like of the reflective structure 102. Other embodiments of the present invention will be specifically described below, but the embodiments of the present invention are not The number of specific examples is limited, and for convenience of explanation, some of the elements have been omitted, and the same elements are given the same reference numerals.
  • the sample measuring cell 100 includes two mirrors 102.
  • One of the two mirrors 102 can be any one of the mirrors 102 as shown in FIG.
  • the other of the mirrors 102 can be any one of the mirrors 102 as in FIG. 10, and can be arbitrarily combined according to actual needs.
  • the sample measuring cell 100 includes a mirror 102.
  • the mirror 102 is formed in a square ring shape, that is, the reflecting cavity 101 is a middle portion of the square annular mirror 102, and the mirror 102 is
  • the contact surface 1021 is non-planar, and the incident light L enters the reflective cavity 101 and is reflected back and forth through the contact surface 1021 at the reflective surface 1022.
  • the area utilization of the reflective surface 1022 that increases the reflection is increased.
  • the number of times of multiple reflections of the light can be increased, and the optical path length is increased.
  • the square annular mirror 102 can also be formed by splicing a plurality of mirrors 102.
  • the sample measuring cell 100 includes two mirrors 102 , and the contact faces 1021 of the two mirrors 102 of the present embodiment are all arranged to be non-planar, but the two mirrors 102 are One of the mirrors 102 is smaller in size than the other of the mirrors 102 such that the incident light L can be incident from the non-overlapping portions of the two mirrors 102.
  • the sample measuring cell 100 includes a mirror 102 and a prism 103 .
  • the contact surface 1021 of the mirror 102 is non-planar, and the reflecting surface 1032 of the prism 103 is a total reflecting surface, and the incident light L
  • a reflecting film can be plated on the reflecting surface 1032 of the prism 103 to improve the reflection effect.
  • the prism 103 can be a right angle prism, a corner cube prism, an isosceles prism, etc., but not limited thereto, and the type of the prism 103 can be determined according to actual conditions.
  • the sample measuring cell 100 includes two mirrors 102 .
  • the contact surfaces 1021 of the mirrors 102 are all non-planar, and the non-planar surfaces can be spherical, cylindrical, quadric, and free-form surfaces. , aspherical surface, etc., but not limited thereto, the shape of the mirror 102 is square, but not limited thereto, in the two mirrors 102 At least one of the two can be provided with a light-passing hole, and an angle ⁇ is formed between the two mirrors 102.
  • the angle ⁇ can range from 0° to 360° (including 0°), and the light can be controlled by adjusting the angle.
  • the propagation path makes the sample measuring cell 100 more versatile and can make the available area of the reflecting surface of the mirror 102 wider.
  • the included angle is defined as the angle between the planes at which the maximum radius of curvature of the reflecting surface 1022 is located, that is, the dihedral angle. As shown in FIG. 16 and FIG. 17, the plane where the maximum radius of curvature of one of the two mirrors 102 is located is the first plane 1025, and the maximum radius of curvature of the two mirrors 102 of the other mirror 102 is located.
  • the plane is the second plane 1026, and the angle between the first plane 1025 and the second plane 1026 is ⁇ .
  • the sample measuring cell 100 includes two right-angle prisms 103.
  • the right-angle prism 103 has a contact surface 1031 and a reflecting surface 1032.
  • the contact surface 1031 is non-planar, and the reflecting surface 1032 is a total reflecting surface.
  • the light L can be totally reflected at the reflecting surface 1032 to realize the light reflection back and forth, and the two right-angle prisms 103 are alternately arranged, so that the range of the reflecting cavity 101 becomes large.
  • the sample measuring cell 100 may include two corner cubes or an isosceles prism.
  • the incident light may be incident on the contact surface 1031 at an angle such that the light can propagate helically within the reflective cavity 101.
  • the sample measuring cell 100 includes a right-angle prism 103 and a non-orthogonal prism 103'.
  • the right-angle prism 103 and the non-right-angle prism 103' do not have the same size, and the right-angle prism 103 has a contact surface 1031 and The reflecting surface 1032, the non-orthogonal prism 103' has a contact surface 1031' and a reflecting surface 1032', the contact surfaces 1031, 1031' are non-planar, the reflecting surfaces 1032, 1032' are total reflection surfaces, and the incident light is on the reflecting surfaces 1032, 1032' Total reflection can occur at the site to achieve multiple reflections of light.
  • the sample measuring cell 100 includes four mirrors 102.
  • the mirrors 102 are combined in two or a whole.
  • the sample measuring cell 100 can also include six mirrors 102. Each of the three mirrors 102 can be combined.
  • the three mirrors 102 can be vertically spliced or integrated with each other to form three mutually perpendicular contact faces 1021 and corresponding mutuals.
  • the vertical reflecting surface 1022 the light can be reflected back and forth between the mutually perpendicular reflecting surfaces 1022, so that the area of the reflecting surface 1021 which increases the reflection is increased, and the number of times of multiple reflection of the light is increased, and the optical path length is increased.
  • the type of the sample measuring cell 100 may be other forms, such as a Robert type sample measuring cell, a White type sample measuring cell, etc., and the specific structure thereof will not be described again.
  • the reflective structure 102 of the present invention replaces the reflective structure of the conventional outer plating film, and the reflective surface 1022 of the reflective structure 102 is away from the sample to be tested and does not contact the sample to be tested, thereby solving the traditional plating reflection.
  • the radius of curvature of the plane effectively reduces stray light in the sample measuring cell 100; the present invention can achieve that the distribution pattern of the spot on the reflective structure 102 is closed, thereby improving stability and miniaturization.
  • the present invention sets the beam waist position of the spot 1024 inside the reflective cavity 101, thereby optimizing the size of the spot 1024 on the reflective structure 102, and further improving the surface utilization of the reflective structure 102.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种样品测量池,所述样品测量池(100)包括反射腔(101)及至少一个反射结构(102),反射腔(101)用于容置待测样品;反射结构(102)设置于反射腔(101)的边界;反射结构(102)包括接触待测样品的接触面(1021)和远离待测样品的反射面(1022);样品接触面(1021)对样品具有化学惰性,同时设置反射面(1022)为远离待测样品的一面,以使待测样品及样品中的杂质不会破坏起反射作用的反射面,该样品测量池兼顾了环境适应能力强和长光程的优点。

Description

样品测量池
本申请要求了申请日为2014年12月17日,申请号为201410782027.0,发明名称为“样品测量池”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种样品测量池,尤其涉及一种利用光学方法对样品的物化性质进行测量的样品测量池。
背景技术
目前,在很多领域的应用中都需要利用吸收光谱法检测ppm和ppb浓度水平的微量样品,为了提高吸收光谱技术对低浓度样品的检测灵敏度,增加光束穿过样品的光程是一种有效的方法。显然,单纯将光源与探测器位置远离,使光束穿越一个非常直长的透射型样品测量池,会使装置笨重、准直复杂、温度稳定性和抗震性能差。通常采用“折叠”光程,即光束在反射镜间多次反射来实现在一个较小的空间区域内的有效光程延长。比如,比较常见的是White型样品测量池和Herriott型样品测量池,这两种样品测量池都采用凹球面反射镜在较小的空间区域内实现光路的多次反射。同样也有利用平面反射镜实现的方式,比如,在美国专利US3524066中描述了在圆柱腔体的两端安装两个平面反射镜来实现光路的多次反射。
然而,在实际使用中,当测试环境恶劣(高粉尘、腐蚀性、高水份、高温、振动等)时,基于反射镜的样品测量池,由于高反射膜层是镀在前表面的(即镜片镀外反射膜),此时,反射镜的反射面和接触样品的接触面重合,即同为一个面。实际使用时高反射膜层与样品测量池中的样品直接接触,膜层容易被样品、样品中的杂质所破坏。
一般地,高反射膜层为金属反射膜或介质反射膜。若使用金属反射膜,由于单层的金属膜硬度较低,极易被擦伤,因此,常在金属膜上加镀保护膜,且金属反射膜本身就需经多次镀设而成,得到的金属反射膜一般包含多层膜层。类似地,当使用介质反射膜时,介质反射膜一般通过多次镀设而成,因此,得到的介质反射膜也包含多层膜层。无论是金属反射膜还是介质反射膜,由于各膜层之间的粘附性、膜层和基底材质之间的粘附性、以及膜层的致密性有限,当将高反射膜层置于高温、高湿、高粉尘、腐蚀性等恶劣环境中时,环境中的气体、水汽及杂质容易进入到高反射膜层的各个膜层之间以及高反射膜层与玻璃基底的连接处,使得高反射膜层容易被破坏;另外,在高反射膜层的制备过程中,一般会引入颗粒异物,所引入的颗粒异物会造成高反射膜层的缺陷,当有膜层缺陷的反射镜置于恶劣环境中时,会加剧破坏作用,这不仅使得高反射膜层的反射率降低,损失光能,而且破坏过程脱落的膜层还可能会阻挡光路,进一步降低光能的收集 效率,甚至会使得玻璃在高反射膜层的应力的作用下变形破裂,从而导致基于镀膜技术反射镜的样品测量池的环境适应性差,无法适应不同的测量环境,在恶劣环境中无法正常使用。
发明内容
本发明的目的在于提供一种样品测量池。
本发明的样品测量池所用的测量方法为光学方法,包括但不限于:吸收光谱、拉曼光谱、散射谱、荧光等分析方法。
为实现上述发明目的之一,本发明一实施方式提供了一种样品测量池,所述样品测量池包括反射腔及至少一个反射结构,反射腔用于容置待测样品;所述至少一个反射结构设置于所述反射腔的边界;其中,所述反射结构包括接触面和反射面,所述接触面接触所述待测样品,所述反射面远离所述待测样品;所述接触面及所述反射面的至少其中之一为非平面;入射光于所述反射腔内多次反射以形成测量光路路径,所述入射光通过入射部分进入所述反射腔,所述入射部分为所述入射光与所述测量光路路径初次接触的部分,所述入射部分与所述反射面之间为非连续设置。
作为本发明一实施方式的进一步改进,所述反射结构为反射镜,所述装置包含至少两个反射镜,所述至少两个反射镜分别设置于所述反射腔的两端。
作为本发明一实施方式的进一步改进,所述反射腔为所述测量光路路径形成的区域。
作为本发明一实施方式的进一步改进,所述反射面上镀有反射膜。
作为本发明一实施方式的进一步改进,所述反射面为全反射面。
作为本发明一实施方式的进一步改进,所述入射部分为所述反射结构上的通光面、通光孔或所述反射结构的周围的入射区域。
作为本发明一实施方式的进一步改进,所述非平面为球面、柱面、二次曲面、自由曲面、或非球面。
作为本发明一实施方式的进一步改进,所述入射光的光斑的束腰位置位于所述反射腔的内部。
作为本发明一实施方式的进一步改进,所述至少一个反射结构之间具有夹角,所述夹角取值范围为0°~360°。
作为本发明一实施方式的进一步改进,所述反射面上设置有保护结构,所述保护结构用于保护所述反射面。
与现有技术相比,本发明的有益效果是:本发明将反射结构的反射面设置为远离待测样品的一面,待测量样品、样品中的杂质不会破坏起反射作用的反射面,本发明在提 供长光程的同时,样品测量池的环境适应能力也得到了极大的提升,如此,本发明兼顾了长光程和强的环境适应能力。
附图说明
图1是本发明一实施方式的样品测量池立体图;
图2是本发明一实施方式的样品测量池主视图;
图3是本发明一实施方式的连续设置的示意图;
图4是本发明一实施方式的通光孔结构示意图;
图5是本发明一实施方式的通光孔结构示意图;
图6是本发明一实施方式的反射镜形状示意图;
图7是本发明一实施方式的探测器的结构示意图;
图8是本发明一实施方式的样品测量池的测量流程模块图;
图9-图20是本发明其他实施方式的结构示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
如图1及图2所示,在本发明一实施方式中,所述样品测量池100包括反射腔101及至少一个反射结构102;所述反射腔101用于容置待测样品,所述至少一个反射结构102设置于所述反射腔101的边界;其中,所述反射结构102包含接触面1021及反射面1022,所述接触面1021接触所述待测样品,所述反射面1022远离所述待测样品,与待测样品不接触;所述接触面1021及所述反射面1022的至少其中之一为非平面;入射光L于所述反射腔101内多次反射以形成测量光路路径,所述入射光L通过入射部分进入所述反射腔101,所述入射部分为所述入射光L与所述测量光路路径初次接触的部分,所述入射部分与所述反射面1022之间为非连续设置。
其中,与待测样品直接接触的是接触面1021,而实现反射作用的反射面1022均远离待测样品,即会被破坏的是不起反射作用的接触面1021,而反射面1022不会受到待测样品、样品中的杂质的影响,如此,样品测量池100的环境适应性能力得到了极大的提升。反射面1022远离待测样品,相较于现有技术,其有益效果还在于:反射面1022上可以设置保护结构,例如,保护结构为机械结构,可设置机械结构以保护反射面1022免于刮伤、阻止气体及水份等杂质和反射面1022接触,也可于反射面1022附近放置干燥剂,或者反射面和机械结构间设置为高真空或充入惰性气体等,但不以此为限。
在本实施方式中,所述反射结构102为反射镜102,所述装置包含至少两个反射镜102,所述至少两个反射镜102分别设置于所述反射腔101的边界。如图1所示,所述入射光L于所述反射腔101内多次反射,反射腔101内多次反射的光线所途径的路径即为本实施方式的测量光路路径,所述测量光路路径形成所述反射腔101。所述入射部分为所述反射镜102上的通光面、通光孔1023或所述反射镜102周围的入射区域。入射光L通过通光孔1023进入反射腔101,即此时入射光L与测量光路路径初次接触的部分为通光孔1023部分,亦即此时入射部分为通光孔1023,通光孔1023与反射面1022之间为非连续设置,非连续设置是指所述通光孔1023与反射面1022表面为非连续的面,且通光孔1023的物理性质为使光线通过,反射面1022的物理性质为反射光线,通光孔1023与反射面1022的物理性质也不连续。在其他实施例中,当入射光L从反射镜102的侧面入射至所述反射腔101时,所述入射部分为所述反射镜102的周围的入射区域,所述周围的入射区域与反射面1022不接触,即此时入射部分与所述反射面1022也为非连续设置。
与非连续设置相对的是连续设置,如图3所示,入射光L直接入射至反射面1022上,入射光L与测量光路路径初次接触的部分位于反射面1022上,即入射部分在反射面1022上,入射部分与反射面1022为连续的面,且入射部分与反射面1022物理性质也连续,此时,入射部分与反射面1022为连续设置。
在本实施方式中,反射镜102的制造材料可为玻璃,目前已知适用的材料有:熔凝石英、蓝宝石、氟化钙、金刚石、钇铝石榴石(YAG)、Si3N4、ZrO2、Al2O3、HfO2等,以及其他在光波频率范围内为透明的介质,但不以此为限,由于该类材料具有化学惰性,该类材料制作的反射镜102置于样品测量池100中时,其接触面1021不会被样品测量池100内的待测样品、待测样品所含杂质所破坏,但不以此为限,例如接触面1021附着有对待测样品、待测样品中的杂质具有化学惰性的材料。
在本实施方式中,所述反射面1022上镀有高反射率的反射膜,反射膜按材质的不同一般可以分为介质膜或金属膜等,但不以此为限,相较于现有技术,由于本实施方式中的反射膜设置于反射面1022上,反射膜不接触待测样品及样品中的杂质,当将该反射镜102置于高温、高湿、高粉尘、腐蚀性的样品测量池100中时,样品测量池100中的待测样品、待测样品中的杂质不会进入反射膜内部或反射膜与反射面1022连接处,反射膜的反射性能不会受到损伤。因此,本实施方式的反射镜102适用于恶劣环境(高粉尘、腐蚀性、高水份、高温等);另外,本实施方式中的入射光L通过入射部分进入所述反射腔101,当入射光L满足一定的入射条件时,光线可在反射腔101内多次反射, 从而实现更长的光程。因此,本实施方式兼顾了环境适应能力强和长光程的优点。
如图1及图2所示,所述至少两个反射镜102的所述接触面1021及所述反射面1022的至少其中之一为非平面,非平面可为球面、柱面、二次曲面、自由曲面、非球面等,但不以此为限,可依据实际情况而定。
在本实施方式中,如图2所示,以两个反射镜102为例,且两个反射镜102的接触面1021均为球面,在反射腔101的边界设置入射部分,本实施方式的入射部分以两个反射镜102的其中之一反射镜102上的通光孔1023为例,入射光L通过所述入射部分入射至两个反射镜102的其中另一个反射镜102的所述接触面1021上,由于反射镜102为透明材质,光线透过反射镜102的接触面1021到达反射面1022上,且光线经反射面1022多次反射后由所述通光孔1023出射,如图2所示,由于接触面1021为球面,经多次反射得到的光斑1024一般呈闭合形式分布,即入射光L和出射光从同一个通光孔1023进出,多次反射后出射光的光斑1024与入射光L的光斑1024可以重合、彼此邻近或彼此间隔多个光斑,光斑1024的分布、出射光的光斑1024与入射光L的光斑1024的位置关系根据实际情况而定,当入射光L和出射光从同一个通光孔1023进出时,可提高样品测量池100的稳定性,亦可实现样品测量池100的小型化。
在本实施方式中,可以在两个反射镜102上均设置通光孔1023;通光孔1023的数量不限于一个,如图4所示,例如可以在一个反射镜102上设置多个通光孔1023,入射光L及出射光可以分别从不同的通光孔1023进出;通光孔1023的位置不限于在反射镜102的中部,如图5所示,例如通光孔1023可以设置于反射镜102的边缘位置,即通光孔1023可以贯穿反射镜102的边缘,此时通光孔1023为非闭合性孔;反射镜102上也可以不设置通光孔1023,例如入射光L从反射镜102的侧边入射至所述反射腔101中。
在本实施方式中,由于在光线的传播过程中,光线要进入反射镜102内部,如果设计不当,反射镜102表面的反射光可能会对入射光L形成的主光路形成干扰,造成检测灵敏度低。实验研究发现,造成该问题的本质在于,反射镜102本身相当于一个平行平面腔,如果破坏其平行度,则可以降低材料表面的反射光对主光路的影响。因此,本实施方式中将所述至少两个反射镜102的所述接触面1021及所述反射面1022的至少其中之一设置为非平面,例如为球面、柱面、二次曲面或自由曲面、非球面等,但不以此为限,如此,当入射光L入射至反射面1022上时,反射出来的光线与入射光L之间会有夹角,从而防止反射过程形成的光线对入射光L形成的主光路产生干扰,降低样品测量池100内的杂散光。由计算机仿真实验得知,在其他影响因素一致的情况下,非平面的曲率半径越小,则反射镜102表面反射光对主光路的影响就越小,通过合理选择曲率半 径,可以有效避免反射镜102表面反射光对主光路的影响。另外,将所述至少两个反射镜102的所述接触面1021及所述反射面1022的至少其中之一设置为非平面,由于入射光L的实际光斑1024会有一定的发散角,光斑1024的大小会随着传播距离的增大而增大,非平面的设置相当于会聚透镜,可减小光斑1024的尺寸,对入射光L的发散角进行约束。
在本实施方式中,例如入射光L由准直器发出,从准直器出射的光斑1024具有一定的发散角,光源200和准直器的参数决定了光斑1024大小和传播距离之间的变化关系,光斑1024的大小会随着传播距离先减小后增大或者随传播距离的增大而增大,光斑1024最小处的位置称为束腰位置。为了使得分布在反射镜102上的光斑1024较小,本实施方式将光斑1024的束腰位置设置在反射腔101的内部,即所述入射光L的光斑1024最小值的位置位于所述反射腔101的内部。由于反射腔101是对称的,当束腰位置位于反射腔101内部时,光斑1024反复经过“会聚-发散-会聚-发散”的过程,可实现在反射镜102上的所有光斑1024的尺寸均较小,因此,通过将束腰位置设置在反射腔101的内部,可实现反射镜102上的光斑1024较小的效果,从而进一步提高反射镜102的表面利用率。
在本实施方式中,反射镜102的外观形状不限,如图6所示,例如设计为圆形、方形、多边形等均可。反射镜102的非平面的形式不限,例如可为球面、柱面、二次曲面、自由曲面、非球面等,但不以此为限。反射镜102之间的放置位置不限,即反射镜102相互之间的距离,角度等关系可按实际情况而定,例如反射镜102之间可以具有夹角。反射镜102的数量不限,组成样品测量池100的反射镜102可以多于两个,甚至是阵列器件的形式,如果是多个反射镜102,则包括反射镜102的排布形式,例如可以排布在一个圆周上,但不以此为限。反射镜102的尺寸大小不限,例如同一个样品测量池100中的反射镜102可以不等大。反射镜102也可与其他元器件搭配使用,例如将反射镜102与棱镜配合使用。多个反射镜102也可以做在一个整体上。入射光L不限于从通光孔1023中进出,例如入射光L可以从反射镜102的侧边进出。
如图7所示,本实施方式的样品测量池100还包括探测器300及光源200,光源200用于发射入射光L,探测器300用于接收从样品测量池100中出射的光线,每次从样品测量池100出射的光线都会经由透镜500会聚进入探测器300,待测样品例如为固体、气体、液体、液晶、生物组织等,但不以此为限。
本发明的样品测量池100的测量流程模块图如图8所示,所述测量流程模块图包括但不限于光源控制模块10、光源模块11、外光路调整模块12、样品测量池100、样品 测量池监测模块13、样品测量池控制模块18、样品预处理模块14、光电探测模块15、数据采集和处理模块16、数据和图像输出模块17。需要特别说明的是,图8中所示的各测量模块可根据实际测量需求进行适当的增加或减少,如待测样品不需要预处理时,样品预处理模块14可以省略。
本实施方式的各个模块的工作原理或功能如下所述:
光源控制模块10:所述光源控制模块10用于控制光源模块11的打开或关闭、频率调制、电流调谐、温度调谐等功能;
光源模块11:所述光源模块11根据探测技术和使用要求的不同可以有不同的形式,包括但不限于激光光源、宽带光源、不同频率激光光源的组合,激光光源和宽带光源的组合等;
外光路调整模块12:所述外光路调整模块12用于改变光的偏振性质、光束的发散角、光场的能量分布等,并反馈信号给光源控制模块10。所述外光路调整模块12包括但不限于起偏装置、光学耦合、切光装置等;
样品测量池100:所述样品测量池100为光学延迟系统,用于增加光的传播路径、增加光程,提高系统测量灵敏度,所述样品测量池100包括但不限于多次反射室、光学谐振腔等;
样品测量池监测模块13:所述样品测量池监测模块13用于监控反射腔101的工作状态、故障告警、在线实时标定样品测量池100的等效吸收光程,并提供监测信号给样品测量池控制模块18;
样品测量池控制模块18:所述样品测量池控制模块18用于根据样品测量池监测模块13提供的监测信号在线实时校正样品测量池100内光学器件的相对位置关系,样品测量池控制模块18包括但不限于至少一块PZT或其他具有平移旋转功能的机械结构或装置或其组合来实现,从而改变样品测量池100光学器件的相对位置关系;
样品预处理模块14:所述样品预处理模块14用于对待测样品进行预处理,所述样品预处理模块14包括但不限于加热待测样品、滤除样品中的水分、滤除样品中与测量无关的其他杂质、滤除粉尘等;
光电探测模块15:所述光电探测模块15用于接收和探测样品测量池100输出的光信号,并将光信号转化成电信号,进行信号的滤波、放大、模数转换等处理;
数据采集和处理模块16:所述数据采集和处理模块16采集转化后的光电数字信号,并进行平均、浓度计算等光谱信号处理;
数据和图像输出模块17:所述数据和图像输出模块17用于输出样品的光谱线、分 子光谱吸收强度、浓度值等数据和图像信息。需要说明的是,所述数据和图像输出模块17的设置是为了显示元素浓度等信息,其形式和结构不受限制。
本发明的样品测量池100根据反射结构102的数量、位置、形式等具体情况的不同,可以有多种实施方式,下面就具体说明本发明的其他实施方式,但本发明的实施方式并不以具体举例的数量为限,为说明方便,已省略部分元件,且相同的元件使用相同的标号。
如图9及图10所示,在本实施方式中,样品测量池100包含两个反射镜102,两个反射镜102的其中之一可如图9中的任意一个反射镜102,两个反射镜102的其中另一可为如图10中的任意一个反射镜102,可以根据实际需求任意组合。
如图11所示,在本实施方式中,样品测量池100包含一个反射镜102,反射镜102成方形环状,即此时反射腔101为方形环状反射镜102的中间部分,反射镜102的接触面1021为非平面,入射光L进入反射腔101内,并透过所述接触面1021在反射面1022处来回反射,如此,即增大了起反射作用的反射面1022的面积利用率,可以增加光线多次反射的次数,提高了光程长度,在另一实施方式中,如图12所示,方形环状反射镜102也可由多个反射镜102拼接而成。
如图13所示,在本实施方式中,样品测量池100包含两个反射镜102,本实施方式的两个反射镜102的接触面1021均设置为非平面,但两个反射镜102的其中之一反射镜102的尺寸小于其中另一反射镜102的尺寸,如此,入射光L可从两个反射镜102的非重叠部分入射。
如图14所示,本实施方式中,样品测量池100包含一个反射镜102以及一个棱镜103,反射镜102的接触面1021为非平面,棱镜103的反射面1032为全反射面,入射光L以一定的角度进入棱镜103,可在棱镜103的反射面1032处发生全反射,当然,也可在棱镜103的反射面1032上镀上反射膜,提高反射效果。其中,棱镜103可为直角棱镜、角锥棱镜、等腰棱镜等,但不以此为限,棱镜103的类型可根据实际情况而定。
如图15所示,在本实施方式中,光从光密介质(折射率为n1)入射到光疏介质(折射率为n2,n1>n2),当入射角α大于临界角β(β=arcsin(n2/n1))时,光全部返回光密介质,此条件称作全反射条件,此现象称作全反射。此时,光密介质和光疏介质的交界面称作全反射面,上述实施方式的全反射面即为棱镜103的反射面1032。
如图16所示,本实施方式中,样品测量池100包含两个反射镜102,反射镜102的接触面1021均为非平面,非平面例如可为球面、柱面、二次曲面、自由曲面、非球面等,但不以此为限,反射镜102的外形为方形,但不以此为限,在两个反射镜102的 至少其中之一上可设置有通光孔,两个反射镜102之间形成夹角θ,夹角θ的范围可为0°~360°(包括0°),通过角度的调节,可控制光线传播路径,使得样品测量池100的通用性更强,且可使得反射镜102起反射作用的面的可利用面积更广。所述夹角定义为反射面1022的最大曲率半径所在的平面之间的角度,即二面角。如图16及图17所示,两个反射镜102其中之一反射镜102的最大曲率半径所在的平面为第一平面1025,两个反射镜102其中另一反射镜102的最大曲率半径所在的平面为第二平面1026,第一平面1025及第二平面1026之间的夹角为θ。
如图18所示,本实施方式中,样品测量池100包含两个直角棱镜103,直角棱镜103具有接触面1031及反射面1032,接触面1031为非平面,反射面1032为全反射面,入射光L在反射面1032处可发生全反射,以实现光线来回反射,两个直角棱镜103交错排布,使得反射腔101的范围变大。本实施方式不以此为限,例如所述样品测量池100可包含两个角锥棱镜或等腰棱镜。另外,入射光可以一定角度入射至接触面1031处,使得光线在反射腔101内可实现螺旋状传播。
如图19所示,本实施方式中,样品测量池100包含一个直角棱镜103,以及一个非直角棱镜103’,直角棱镜103与非直角棱镜103’的尺寸不一致,直角棱镜103具有接触面1031及反射面1032,非直角棱镜103’具有接触面1031’及反射面1032’,接触面1031、1031’为非平面,反射面1032、1032’为全反射面,入射光在反射面1032、1032’处可发生全反射,以实现光线多次反射。
如图20所示,本实施方式中,样品测量池100包含四个反射镜102,反射镜102两两组合或为一个整体,当入射光L以特定的入射方式入射时,光线可在样品测量池100中实现螺旋状传播,从而可提高反射面的利用率,实现长光程。样品测量池100也可包含六个反射镜102,每三个反射镜102组合,三个反射镜102之间可以相互垂直拼接或为一个整体,形成三个相互垂直的接触面1021及对应的相互垂直的反射面1022,光线可在相互垂直的反射面1022之间来回反射,如此,即增大了起反射作用的接触面1021的面积,可以增加光线多次反射的次数,提高光程长度。
在其他实施例中,样品测量池100的类型可以为其他形式,例如为Robert型样品测量池、White型样品测量池等,其具体结构不再赘述。
综上所述,本发明所述的反射结构102取代传统镀外反射膜的反射结构,由于反射结构102的反射面1022远离待测样品,不与待测样品接触,从而解决了传统镀外反射膜的反射结构环境适应性差的问题;本发明在提供长光程的同时,样品测量池100的环境适应能力得到了极大的提升,兼顾了长光程和环境适应性强;本发明通过合理选择非 平面的曲率半径,有效降低了样品测量池100内的杂散光;本发明可实现光斑在反射结构102上的分布形式是闭合的,从而提高了稳定性,实现小型化。本发明将光斑1024的束腰位置设置在反射腔101的内部,以此优化光斑1024在反射结构102上的大小,进一步提高反射结构102的表面利用率。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本发明的可行性实施方式的具体说明,它们并非用以限制本发明的保护范围,凡未脱离本发明技艺精神所作的等效实施方式或变更均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种样品测量池,其特征在于,所述样品测量池包括:
    反射腔,用于容置待测样品;以及
    至少一个反射结构,所述至少一个反射结构设置于所述反射腔的边界;
    其中,所述反射结构包括接触面和反射面,所述接触面接触所述待测样品,所述反射面远离所述待测样品;所述接触面及所述反射面的至少其中之一为非平面;入射光于所述反射腔内多次反射以形成测量光路路径,所述入射光通过入射部分进入所述反射腔,所述入射部分为所述入射光与所述测量光路路径初次接触的部分,所述入射部分与所述反射面之间为非连续设置。
  2. 根据权利要求1所述的样品测量池,其特征在于,所述反射结构为反射镜,所述装置包含两个反射镜,所述两个反射镜分别设置于所述反射腔的两端。
  3. 根据权利要求1所述的样品测量池,其特征在于,所述反射腔为所述测量光路路径所形成的区域。
  4. 根据权利要求1所述的样品测量池,其特征在于,所述反射面上镀有反射膜。
  5. 根据权利要求1或2所述的样品测量池,其特征在于,所述反射面为全反射面。
  6. 根据权利要求1或2所述的样品测量池,其特征在于,所述入射部分为所述反射结构上的通光面、通光孔或所述反射结构周围的入射区域。
  7. 根据权利要求1所述的样品测量池,其特征在于,所述非平面为球面、柱面、二次曲面、自由曲面或非球面。
  8. 根据权利要求1所述的样品测量池,其特征在于,所述入射光的光斑的束腰位置位于所述反射腔的内部。
  9. 根据权利要求1或2所述的样品测量池,其特征在于,所述至少一个反射结构之间具有夹角,所述夹角取值范围为0°~360°。
  10. 根据权利要求1或2所述的样品测量池,其特征在于,所述反射面上设置有保护结构,所述保护结构用于保护所述反射面。
PCT/CN2015/097540 2014-12-17 2015-12-16 样品测量池 WO2016095816A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/536,624 US10073029B2 (en) 2014-12-17 2015-12-16 Sample measurement pool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410782027.0 2014-12-17
CN201410782027.0A CN105445196A (zh) 2014-12-17 2014-12-17 样品测量池

Publications (1)

Publication Number Publication Date
WO2016095816A1 true WO2016095816A1 (zh) 2016-06-23

Family

ID=55555652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097540 WO2016095816A1 (zh) 2014-12-17 2015-12-16 样品测量池

Country Status (3)

Country Link
US (1) US10073029B2 (zh)
CN (1) CN105445196A (zh)
WO (1) WO2016095816A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537454A (zh) * 2020-04-27 2020-08-14 深圳网联光仪科技有限公司 基于多次反射和衰减全反射的综合检测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106644945A (zh) * 2016-11-01 2017-05-10 铜陵谱敏光电科技有限公司 防止镜片膜层腐蚀和污染的平凸镜多通吸收池
CN107402185A (zh) * 2017-07-31 2017-11-28 三代光学科技(天津)有限公司 一种自由曲面气体池及其加工方法
CN107449755A (zh) * 2017-09-21 2017-12-08 江汉大学 准分布式光纤气体浓度检测系统及方法
GB201812766D0 (en) * 2018-08-06 2018-09-19 Res & Innovation Uk Optical multi-pass cells
CN110146471A (zh) * 2019-03-13 2019-08-20 常州龙新激光科技有限公司 小体积多次往返反射样品池的设计
CN114585892A (zh) * 2019-10-31 2022-06-03 索尼集团公司 传感器装置
CN111537453A (zh) * 2020-04-23 2020-08-14 山东省科学院激光研究所 一种二维多点反射长光程气体传感器探头及气体传感器
CN111735741B (zh) * 2020-07-03 2020-12-08 中国人民解放军国防科技大学 一种不规则生物颗粒毫米波透过率的测试装置
CN114993989A (zh) * 2022-07-18 2022-09-02 中国科学院长春光学精密机械与物理研究所 一种激光气体检测模组和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2510830A1 (en) * 2002-12-19 2004-07-08 Osamu Tsutsui Retroreflecting functional member and retroreflecting unit
US20070002922A1 (en) * 2005-06-30 2007-01-04 Intel Corporation Retro-reflecting lens for external cavity optics
CN201269853Y (zh) * 2008-10-09 2009-07-08 聚光科技(杭州)有限公司 一种应用icos技术的气体分析装置
CN201289459Y (zh) * 2008-11-06 2009-08-12 上海烟草(集团)公司 一种增加气体吸收光程的采集装置
CN204314210U (zh) * 2014-12-17 2015-05-06 邓文平 样品测量池
CN204314209U (zh) * 2014-12-17 2015-05-06 邓文平 样品测量池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973864A (en) * 1997-10-21 1999-10-26 Trustees Of Princeton University High-finesse optical resonator for cavity ring-down spectroscopy based upon Brewster's angle prism retroreflectors
US6795190B1 (en) * 2001-10-12 2004-09-21 Los Gatos Research, Inc. Absorption spectroscopy instrument with off-axis light insertion into cavity
CN2881611Y (zh) * 2005-08-15 2007-03-21 南京信息工程大学 一种甲醛气体含量的快速测量装置
US8018981B2 (en) * 2006-04-12 2011-09-13 Li-Cor, Inc. Multi-pass optical cell with actuator for actuating a reflective surface
KR100922124B1 (ko) * 2007-05-18 2009-10-16 연세대학교 산학협력단 광활성 용액의 비침습적 온라인 농도측정장치
CN101514920B (zh) * 2008-02-20 2010-06-09 厦门大学 紫外分光光度计检测头
CN102486572B (zh) * 2010-12-06 2014-08-27 中国科学院西安光学精密机械研究所 一种实现多光程的方法
US8810902B2 (en) * 2010-12-29 2014-08-19 Asml Netherlands B.V. Multi-pass optical apparatus
US9625702B2 (en) * 2012-05-17 2017-04-18 Joseph T. Hodges Coupled cavity spectrometer with enhanced sensitivity and dynamic range
CN103149158B (zh) * 2013-01-14 2016-04-20 中国计量学院 一种双棱镜水质监测光纤传感系统
CN203894137U (zh) * 2014-05-30 2014-10-22 江苏师范大学 气溶胶的消光法检测系统
CN104155241B (zh) * 2014-07-02 2016-08-24 合肥工业大学 一种光程可调的长程光学吸收池
US9983126B2 (en) * 2015-02-06 2018-05-29 Block Engineering, Llc Quantum cascade laser (QCL) based gas sensing system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2510830A1 (en) * 2002-12-19 2004-07-08 Osamu Tsutsui Retroreflecting functional member and retroreflecting unit
US20070002922A1 (en) * 2005-06-30 2007-01-04 Intel Corporation Retro-reflecting lens for external cavity optics
CN201269853Y (zh) * 2008-10-09 2009-07-08 聚光科技(杭州)有限公司 一种应用icos技术的气体分析装置
CN201289459Y (zh) * 2008-11-06 2009-08-12 上海烟草(集团)公司 一种增加气体吸收光程的采集装置
CN204314210U (zh) * 2014-12-17 2015-05-06 邓文平 样品测量池
CN204314209U (zh) * 2014-12-17 2015-05-06 邓文平 样品测量池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111537454A (zh) * 2020-04-27 2020-08-14 深圳网联光仪科技有限公司 基于多次反射和衰减全反射的综合检测方法
CN111537454B (zh) * 2020-04-27 2023-08-04 深圳网联光仪科技有限公司 基于多次反射和衰减全反射的综合检测方法

Also Published As

Publication number Publication date
US10073029B2 (en) 2018-09-11
CN105445196A (zh) 2016-03-30
US20180113065A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2016095816A1 (zh) 样品测量池
US20180356569A1 (en) Reflecting prism for optical resonant cavity, and optical resonant cavity and spectral measurement instrument thereof
JP4195551B2 (ja) プリズム逆反射体を用いた空洞リングダウン分光法用の光学共振器
CN105445195A (zh) 样品测量池
WO2018021311A1 (ja) 濃度測定装置
KR100812431B1 (ko) 브루스터각 프리즘 역행반사기에 근거한 공동 링다운 분광법을 위한 향상된 모드 매칭 및 이를 이용한 공진기
US20230324281A1 (en) Two-dimensional multi-point-reflection long-optical-path gas sensor probe and gas sensor
US20070263220A1 (en) Optical Measurement System with Simultaneous Multiple Wavelengths, Multiple Angles of Incidence and Angles of Azimuth
KR20080103992A (ko) 전반사 감쇠형 광학 프로브 및 그것을 이용한 수용액 분광 측정 장치
CN204314209U (zh) 样品测量池
TWI667465B (zh) 平板顆粒度檢測裝置
KR20210118957A (ko) 공간적으로 변화하는 편광 회전자와 편광기를 사용한 민감성 입자 검출
CN204314210U (zh) 样品测量池
WO2017092614A1 (zh) 光学谐振器用反射镜及其光学谐振器和光谱测量仪
US6172824B1 (en) Low loss prism retroreflectors for relative index of refraction less than the square root of 2
CN205212168U (zh) 光学谐振器用反射镜及其光学谐振器和光谱测量仪
KR20200027562A (ko) 고전력 섬유 조명 소스에 대한 스펙트럼 필터
JP2017181405A (ja) 光学測定装置及び測定方法
KR100992839B1 (ko) 마이크로 스폿 분광타원계
CN109283136B (zh) 具有大量程的光腔
US20070242267A1 (en) Optical Focusing Devices
CN210571920U (zh) 基于耐高温、耐腐蚀、高反射率的紫外反射镜的怀特池
CN220040238U (zh) 一种长光程光学气体吸收池及气体传感器
RU2377542C1 (ru) Устройство для определения оптических потерь на поглощение в тонких пленках
CN105842832B (zh) 测量高功率激光聚焦光束分布的衰减装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869323

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536624

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869323

Country of ref document: EP

Kind code of ref document: A1