WO2016095775A1 - 基于分布式光源的辐射成像系统 - Google Patents

基于分布式光源的辐射成像系统 Download PDF

Info

Publication number
WO2016095775A1
WO2016095775A1 PCT/CN2015/097264 CN2015097264W WO2016095775A1 WO 2016095775 A1 WO2016095775 A1 WO 2016095775A1 CN 2015097264 W CN2015097264 W CN 2015097264W WO 2016095775 A1 WO2016095775 A1 WO 2016095775A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
rays
imaging system
energy
ray generators
Prior art date
Application number
PCT/CN2015/097264
Other languages
English (en)
French (fr)
Inventor
张丽
金鑫
唐华平
黄清萍
孙运达
陈志强
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to US15/301,345 priority Critical patent/US10371648B2/en
Priority to DE112015001147.1T priority patent/DE112015001147T5/de
Priority to EP15869282.2A priority patent/EP3236246B1/en
Publication of WO2016095775A1 publication Critical patent/WO2016095775A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • G01V5/224Multiple energy techniques using one type of radiation, e.g. X-rays of different energies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/33Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts
    • G01N2223/3307Accessories, mechanical or electrical features scanning, i.e. relative motion for measurement of successive object-parts source and detector fixed; object moves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/40Imaging
    • G01N2223/423Imaging multispectral imaging-multiple energy imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/643Specific applications or type of materials object on conveyor

Definitions

  • Embodiments of the present disclosure generally relate to radiation imaging, and more particularly to radiation imaging systems based on distributed light sources.
  • Radiation imaging is a necessary safety detection method for customs, civil aviation airports and railway systems. It utilizes the principle that the radiation penetrates the object to interact with each other, and can image the contents without opening the box, effectively identifying prohibited items such as guns, explosives, drugs, etc. in the luggage items, and safeguarding the personal safety of citizens and maintaining the society. Stability has a positive effect.
  • one of the main means to achieve non-destructive testing is the transmission imaging technology, which uses the principle that X-rays penetrate different densities and materials to produce different attenuation, which realizes the freight container and baggage items. Do not open the box for inspection.
  • the applicant proposes a radiation imaging security system using the principle of X-ray transmission, which system mainly consists of an X-ray generating source located on one side of the object to be inspected, and an object to be inspected.
  • the detector module for receiving the radiation source on the other side, the area to be inspected for placing the object to be inspected, and the data processing unit and the human-machine interaction unit are composed.
  • the above patent also discloses a multi-view transmission imaging system and method, which uses a plurality of radiation source-detector modules to form a plurality of scanning surfaces, and each scanning surface is independently scanned to obtain a perspective image of a plurality of angles of the target object, thereby avoiding a single viewing angle.
  • dual-energy, multi-energy imaging is also widely used in transmission imaging technology, as disclosed in the publication No. CN102484935A, which discloses a multi-energy transmission imaging system that utilizes the attenuation capability of X-rays of different energies as they pass through a substance. The difference is obtained by using a plurality of detector modules with different energy corresponding to achieve energy spectrum decomposition, thereby obtaining an estimation of the atomic number, electron density and the like of the fluoroscopic image.
  • the method of increasing the source-detector logarithm achieves the perspective scanning of different viewing angles, which helps to solve the problem that the single-angle fluoroscopic imaging has object overlap and difficulty in identification.
  • the solution of using multiple sources and detectors will result in a substantial increase in the overall cost of the system, and since different source-detector pairs need to work independently of each other, a certain distance between the scanning surfaces is required.
  • Double perspective / Multi-view perspective systems tend to have a larger footprint, which limits the flexibility and application of the system to some extent.
  • dual-energy/multi-energy imaging can be used to calculate physical parameters such as atomic number and electron density of materials, which helps to improve the identification of prohibited items, but dual-energy/multi-energy imaging usually uses multi-layer detection.
  • the way to achieve differentiated acquisition of transmitted rays of different energies which means that the number of detector crystal units and readout circuit channels required increases, taking into account the cost of the detector unit, the use of multilayer detectors will also The overall cost of the system has increased.
  • a radiation imaging system comprising: a radiation source comprising a plurality of X-ray generators distributed over one or more intersecting a direction of travel of an object to be inspected a detector module, comprising a plurality of detecting units, receiving X-rays that penetrate the object to be inspected; and a data acquisition circuit coupled to the detector module to convert the signal generated by the detector module into detection data a controller, connected to the radiation source, the detector module, and the data acquisition circuit, controlling at least two X-ray generators of the plurality of X-ray generators in the radiation source to generate X-rays in turn Soing that the object to be inspected is transmitted with the movement of the object to be inspected, and the detector module and the data acquisition circuit are controlled to obtain detection data corresponding to the at least two X-ray generators, respectively.
  • a data processing computer reconstructing an image of the object under inspection from the perspective of the at least two X-ray generators based on the probe data.
  • the detector module includes a low energy detector and a high energy detector located behind the low energy detector.
  • the source of radiation specifically comprises a plurality of carbon nanotube X-ray generators or a plurality of magnetically constrained X-ray generators.
  • At least some of the plurality of X-ray sources are capable of emitting high energy X-rays and low energy X-rays in a switched manner.
  • the plurality of X-ray generators are disposed on an L-shaped, inverted L-shaped, U-shaped or curved support to emit X-rays toward the detector module.
  • the radiation source comprises a first row of X-ray generators and a second X-ray ray generator, respectively, generating high-energy X-rays and low-energy X-rays in a switched manner under the control of the controller
  • the detector module includes a first row of detectors and a second row of detectors arranged in parallel, responsive to high energy X-rays and low energy X-rays, respectively.
  • the plurality of X-ray generators have a distribution pattern of two pairs, the matched two targets are close in spatial distance, and are adjacent to each other in the order of the beam, one of which adopts a high voltage of the first energy. X-rays are generated, and another high-pressure X-ray is generated using the second energy.
  • the plurality of X-ray generators employ a high pressure of the first energy at a certain exit, and a high pressure of the second energy at the next exit, so that the cycle is repeated.
  • which of the plurality of X-ray generators are to be activated is determined in conjunction with the current transmission speed and/or the image signal to noise ratio depending on the spatial resolution of the respective view images to be achieved in the transfer direction.
  • manually specifying which of the plurality of X-ray generators are to be activated or determining an X-ray generator at an optimal perspective perspective according to the shape and size of the target item is performed according to a projection angle to be viewed.
  • the radiation imaging system further includes an object boundary detecting device that detects an object boundary before the object passes through the scanning surface; wherein the complete coverage of the target object is achieved according to the detected object boundary The choice of X-ray generator.
  • a multi-view fluoroscopic imaging system in a single scanning plane is realized by adopting a distributed X-ray source and adopting a detector multiplexing manner.
  • the cost of the detector module can be effectively saved.
  • the single-plane design also keeps the overall volume of the system at a small level, which helps to improve the flexibility and flexibility of the system. Such a solution can effectively enhance the overall competitiveness of the system and achieve low-cost, high-efficiency multi-perspective perspective imaging.
  • FIG. 1 shows a schematic structural view of a radiation imaging system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram depicting the operation of a radiation imaging system in accordance with one embodiment of the present disclosure
  • Figure 3 is a schematic illustration of the internal structure of a computer for image processing in the embodiment shown in Figure 1;
  • FIG. 4 is a schematic diagram describing an operation process of a radiation imaging system according to another embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram depicting an operational process of a radiation imaging system in accordance with still another embodiment of the present disclosure.
  • references to "one embodiment”, “an embodiment”, “an” or “an” or “an” or “an” or “an” In at least one embodiment.
  • the appearances of the phrase “in one embodiment”, “in the embodiment”, “the” Furthermore, the particular features, structures, or characteristics may be combined in one or more embodiments or examples in any suitable combination and/or sub-combination.
  • the term “and/or” as used herein includes any and all combinations of one or more of the associated listed items.
  • the source of radiation includes a plurality of X-ray generators.
  • the plurality of X-ray generators are distributed on one or more planes that intersect the traveling direction of the object to be inspected.
  • the detector module includes a plurality of detection units that receive X-rays that penetrate the object under inspection.
  • the data acquisition circuit is coupled to the detector module to convert the signal generated by the detector module into probe data.
  • the controller is connected to the radiation source, the detector module and the data acquisition circuit, and at least two X-ray generators of the plurality of X-ray generators in the control radiation source alternately generate X-rays, thereby emitting and wearing along with the movement of the object to be inspected. Through the object being inspected.
  • the controller controls the detector module and the data acquisition circuit to obtain detection data corresponding to at least two X-ray generators, respectively.
  • the data processing computer reconstructs an image of the object under inspection from the perspective of at least two X-ray generators based on the probe data. According to the above embodiment, multi-energy multi-view scanning can be realized on one scanning plane.
  • a pulsed distributed X-ray source module is employed.
  • the pulsed distributed X-ray source can realize the pulsed beam-out, so that the X-rays are emitted only in the sampling period of the detector, and can be stopped in time outside the sampling period of the detector, so that the rapid alternate beam-out of different ray sources can be realized, and different Continuous fluoroscopy of the viewing angle, the ray source with only one viewing angle is activated each time, so the rays between different viewing angles are independent of each other and do not interfere with each other.
  • a detector module is used to detect rays from different X-ray sources.
  • the detector must be collected to ensure that only one beam of radiation from one source is collected for each acquisition, ie the acquisition of the detector and the source of the detector. Exposure sync. In this way, since there is only one scanning plane, the detector is effectively multiplexed in imaging at different viewing angles, so the cost of the detector module can be effectively saved, and the price competitiveness of the system can be improved.
  • the single plane design also keeps the overall volume of the system at a small level, which helps to improve the mobility and flexibility of the system.
  • the number of radiation sources (ie, the number of imaging angles of view) to be used is determined according to different scanning parameters during scanning, and the scanning of the target object is realized by rapidly switching each of the radiation sources according to the specified beaming sequence during scanning.
  • magnetic confinement and other technologies can achieve distributed X-ray source scanning, that is, the generation of X-ray beams from a plurality of different spatial locations on a ray source module, especially based on the distribution of carbon nanotube technology.
  • the ray source can realize a large number of densely distributed X-ray source points at a very low cost, and realize fluoroscopic imaging of many viewing angles. Therefore, using a carbon nanotube distributed ray source can achieve more than one source point on one system. The case of imaging the number of viewing angles with little increase in equipment costs.
  • the collected data must be divided according to the ray source number (ie, the projection angle of view), and then the same ray source module (ie, the same
  • the fluoroscopic image of the ray source ie, the viewing angle
  • the detector module is multiplexed by each ray source during the scanning process, the number of times of image acquisition at each viewing angle will be 1/N of the total number of acquisitions, where N is the number of projection views.
  • the appropriate number of viewing angles can be determined according to actual scanning parameters or actual needs.
  • the detector module may be a single-energy module, or: A) multi-energy detection in the form of a double layer/multilayer. In this case, different layers have different ray energy responses. Filter layers can be installed between layers to adjust the energy spectrum of incident rays. B) Dual/multiple energy can be realized in double/multiple rows. Detection, in this case, different rows have different ray energy responses, and the filter plates can be installed in front of each row to adjust the energy spectrum of the incident rays.
  • the positions of all source points of the source may be distributed in a scanning plane perpendicular to the direction of advancement of the belt, or along the direction of travel of the belt, or randomly distributed in three dimensions, but The beam at each source point needs to be guaranteed to be received by the detector module.
  • the system can also achieve dual-energy/multi-energy spectrum through the ray source to achieve dual-energy/multi-energy scanning. For example, for dual-energy imaging, a single can be used.
  • the detector can implement the following schemes for the ray source module: A) the ray source point distribution pattern is pairwise pairing, the matched two targets are close in spatial distance, and the neighboring sequences are adjacent in the order of the beam, one of which adopts the first The high voltage of the energy generates X-rays, the other uses the high energy of the second energy different from the first energy to generate X-rays; B) The source points of the radiation source use the high voltage of the first energy at a certain beam, under The high pressure of the second energy different from the first energy is used in one outing, so that the cycle is repeated.
  • the number of activated source points can be determined by the following methods: A) spatial resolution along the belt direction of each view image obtained according to need, Combined with the current belt speed: In the case of a certain spatial resolution, if the belt speed is higher, only a small number of source points are activated, and if the belt speed is lower, more source points are activated. B) Manually specify, at this time, according to the number of source points and the belt speed and the image signal-to-noise ratio, the time of each beam exit and the outflow intensity of each source point can be determined.
  • the activated source point of the ray source module participates in the scanning imaging, and the number of the activated source point can be determined by the following methods: A) manually specifying according to the projection angle to be viewed; B) according to the target The shape and size of the item determines the optimal perspective angle of view, such as for a flaky target object (box), the angle at which the average distance of the ray-transparent object is selected for fluoroscopic imaging.
  • A) manually specifying according to the projection angle to be viewed B) according to the target
  • the shape and size of the item determines the optimal perspective angle of view, such as for a flaky target object (box), the angle at which the average distance of the ray-transparent object is selected for fluoroscopic imaging.
  • the distributed ray source of the system is distributed along two adjacent sides of the scanning channel (in a section perpendicular to the direction of travel of the object), the detector being distributed along the other two sides adjacent to the scanning channel. Since the source points of the ray source are close enough to the channel, so that the rays generated by part of the source points of A) are limited by the beam opening angle and cannot completely cover the entire channel in the scanning plane, or B) even if the beam of a certain ray is The scanning plane covers the entire scanning channel. Due to the position of the source and the arrangement of the detector, the detector also has the possibility of not accepting all the rays passing through the scanning channel.
  • the system can be provided with an object boundary detection device that detects the boundary of the object before the object passes through the scanning surface.
  • the source point for scanning the current object is selected according to the following reasons: A. The system obtains the number of source points to be activated according to the method for determining the number of source points as described above; B. The system according to the detected object boundary The source point is selected in such a way as to achieve complete coverage of the target object.
  • a multi-view fluoroscopic imaging system in a single scanning plane is realized by adopting a distributed X-ray source and adopting a detector multiplexing manner. In this way, the cost of the detector module can be effectively saved.
  • the single-plane design also keeps the overall volume of the system at a small level, which helps to improve the flexibility and flexibility of the system. The present disclosure can effectively improve the overall competitiveness of the system and realize low-cost and high-efficiency multi-perspective perspective imaging.
  • FIG. 1 shows a schematic structural view of a radiation imaging system according to an embodiment of the present disclosure.
  • the radiation imaging system shown in FIG. 1 includes a carrier mechanism 140 carrying a substrate 130 to be inspected, such as a belt or the like, a distributed X-ray source 110, a detector module 150, an acquisition circuit 160, a controller 170, and a data processing computer. 180 and so on.
  • Radiation source 110 includes a plurality of X-ray generators. The plurality of X-ray generators are distributed on one or more planes that intersect the traveling direction of the object 130 to be inspected.
  • the carrier mechanism 140 carries the inspected baggage 130 through a scanning area between the source 110 and the detector 150.
  • detector 150 and acquisition circuit 160 are, for example, detectors and data collectors having an integral modular structure, such as multiple rows of detectors, for detecting radiation transmitted through the article under inspection, obtaining an analog signal, and simulating The signal is converted into a digital signal, thereby outputting projection data of the object under inspection for the X-ray.
  • the controller 170 is used to control the various parts of the entire system to work synchronously.
  • the data processing computer 180 is used to process the data collected by the data collector, process and reconstruct the data, and output the results.
  • the detector 150 and the acquisition circuit 160 are used to acquire transmission data of the object 130 to be inspected.
  • the acquisition circuit 160 includes a data amplification shaping circuit that operates in either (current) integration mode or pulse (count) mode.
  • the data output cable of the acquisition circuit 150 is coupled to the controller 170 and the data processing computer 180, and the acquired data is stored in the data processing computer 180 in accordance with a trigger command.
  • the detector module 150 includes a plurality of detection units that receive X-rays that penetrate the object being inspected.
  • the data acquisition circuit 160 is coupled to the detector module 150 to convert the signals generated by the detector module 160 into probe data.
  • the controller 170 is connected to the radiation source 110 through the control line CTRL1, is connected to the detector module through the control line CTRL2, and is connected to the data acquisition circuit, and controls at least two X-ray generators of the plurality of X-ray generators in the radiation source to take turns. X-rays are generated to cause penetration of the object to be inspected as the object to be inspected moves. Further, the controller 170 controls the detector module 150 and the data acquisition circuit 160 to obtain detection data corresponding to at least two X-ray generators, respectively.
  • the data processing computer 180 reconstructs an image of the object under inspection at the perspective of at least two X-ray generators based on the probe data.
  • the ray sources 130-1 and 130-2 that generate the X-ray beam include a plurality of cathodes that generate free electrons and corresponding anode source points.
  • the detector includes at least one row of detectors for detecting radiation from the source and forming a shape according to different source points Into different X-ray perspectives.
  • the transport mechanism moves the object under inspection through the system.
  • the data processing unit processes the data collected by the detector and generates a fluoroscopic image and automatically identifies the contraband.
  • FIG. 3 shows a block diagram of the structure of the data processing computer 180 shown in FIG. 1.
  • the data collected by the acquisition circuit 160 is stored in the memory 31 via the interface unit 38 and the bus 34.
  • the read-only memory (ROM) 32 stores configuration information and programs of the computer data processor.
  • a random access memory (RAM) 33 is used to temporarily store various data during the operation of the processor 36.
  • a computer program for performing data processing is also stored in the memory 31.
  • the internal bus 34 is connected to the above-described memory 31, read only memory 32, random access memory 33, input device 35, processor 36, display device 37, and interface unit 38.
  • the instruction code of the computer program instructs the processor 36 to execute a predetermined data reconstruction algorithm, and after obtaining the data processing result, displays it on, for example, an LCD display.
  • the processing result is outputted on the display device 37 of the class, or directly in the form of a hard copy such as printing.
  • the plurality of source points of the radiation sources 130-1 and 130-2 and the detector together form a scanning surface, wherein the radiation source comprises a plurality of radiation source points, the working voltages of the different source points are the same, and the operating current is The same, wherein the detector is a single row of double-layer detectors, wherein the first layer of rays that penetrates the low-energy detector unit 150-1 mainly detects low-energy rays, and the second layer that the rays penetrates is a high-energy detector unit 150-2. Mainly detect high energy rays.
  • the transport mechanism is a conveyor system located at the bottom of the scanning surface and is responsible for carrying the object to be detected through the scanning surface.
  • only the activated source point scans the object.
  • each activation source point sequentially circulates the beam, and ensures that only one source point is in the beam-out state at the same time, and simultaneously detects
  • the array is synchronized with the source point to obtain the projection data when the different source points are out of the beam.
  • the data processing computer 180 processes the sampled data in real time and displays the processed result through the display.
  • the scanned data of the object is processed to obtain a fluoroscopic image scanned by different source points, and an image of atomic number and the like is obtained by a dual energy decomposition technique, and substance classification and prohibited items are identified, and according to the classification and The recognition result pseudo-colors the image to form a dual-energy perspective image and displays it through the display.
  • FIG. 4 is a schematic diagram depicting the operation of a radiation imaging system in accordance with another embodiment of the present disclosure.
  • the scanning plane consists of a single energy detector and two
  • the group consists of X-ray source modules 430-1, 431-1 and 430-2, 431-2 which are parallel in the channel direction, wherein the voltage of one group of the radiation source modules is lower than the voltage of the other group, the voltage of each group of the source modules, The current is consistent.
  • all source points are sequentially discharged, but the order of the source points corresponding to the two sets of ray source modules are adjacent.
  • FIG. 5 is a schematic diagram depicting an operational process of a radiation imaging system in accordance with still another embodiment of the present disclosure.
  • the embodiment shown in Figure 5 differs from the embodiment of Figure 4 in that the scanning plane is comprised of a single energy detector and a set of X-ray source modules 530-1 and 530-2 that are parallel in the direction of the channel, wherein the source of radiation
  • Two (or more) voltages can be implemented at each source point of the module to enable dual-energy (or multi-energy) scanning.
  • all source points are sequentially discharged, and each source point is continuously beamed twice (or multiple times) using different energies, and the detector synchronizes with the source point to achieve two (or multiple) acquisitions.
  • the ray source employs an inverted L-shaped two-stage type
  • distribution means such as a plurality of X-ray generators disposed in an L-shape, a U-shape or an arc shape. X-rays are emitted toward the detector module on the support.
  • a multi-view fluoroscopic imaging system in a single scanning plane is realized by adopting a distributed X-ray source and adopting a detector multiplexing manner.
  • the cost of the detector module can be effectively saved.
  • the single-plane design also keeps the overall volume of the system at a small level, which helps to improve the flexibility and flexibility of the system. Such a solution can effectively enhance the overall competitiveness of the system and achieve low-cost, high-efficiency multi-perspective perspective imaging.
  • aspects of the embodiments disclosed herein may be implemented in an integrated circuit as a whole or in part, as one or more of one or more computers running on one or more computers.
  • a computer program eg, implemented as one or more programs running on one or more computer systems
  • implemented as one or more programs running on one or more processors eg, implemented as one or One or more programs running on a plurality of microprocessors, implemented as firmware, or substantially in any combination of the above, and those skilled in the art, in accordance with the present disclosure, will be provided with design circuitry and/or write software and / or firmware code capabilities.
  • signal bearing media include, but are not limited to, recordable media such as floppy disks, hard drives, compact disks (CDs), digital versatile disks (DVDs), digital tapes, computer memories, and the like; and transmission-type media such as digital and / or analog communication media (eg, fiber optic cable, waveguide, wired communication link, wireless communication link, etc.).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种辐射成像系统,包括:射线源(110),包括多个X射线发生器,分布在与被检查物体(130)的行进方向交叉的一个或者多个平面上;探测器模块(150),包括多个探测单元;数据采集电路(160);控制器(170),控制射线源中的多个X射线发生器的至少两个X射线发生器轮流产生X射线,从而随着被检查物体(130)的移动而发出穿透被检查物体(130),并且控制探测器模块(150)和数据采集电路(160),分别获得与至少两个X射线发生器相对应的探测数据;数据处理计算机(180),基于探测数据重建至少两个X射线发生器的视角下的被检查物体(130)的图像。通过采用分布式X射线源,并采取探测器复用的方式,实现单一扫描面内的多视角透视成像系统。

Description

基于分布式光源的辐射成像系统 技术领域
本公开的实施例一般涉及辐射成像,具体涉及基于分布式光源的辐射成像系统。
背景技术
辐射成像是海关、民航机场和铁路系统必需的安全检测手段。其利用射线穿透物体发生相互作用的原理,能够在不开箱的情况下对内容物进行成像,有效识别行李物品中的枪支、炸药、毒品等违禁物品,对于保障公民人身财产安全、维护社会稳定有着积极作用。
在现有辐射成像技术中,实现无损检测的一种主要手段是透射成像技术,即利用X射线穿透不同密度和材料的物质会产生不同的衰减这一原理,实现对货运集装箱、行李物品的不开箱检查。如在公开号为CN102804326A的专利中,申请人提出了一种使用X射线透射原理的辐射成像安检系统,所述系统主要由位于待检物一侧的产生X射线的射线源、位于待检物体另一侧的用于接收射线源的探测器模块、放置待检物的待检区域以及数据处理单元和人机交互单元组成。上述专利同时公开了一种多视角透射成像系统及方法,使用多个射线源-探测器模块形成多个扫描面,各扫描面独立扫描,获得目标物体多个角度的透视图像,避免单一视角下物体重叠、辨识困难的问题。另外,双能、多能成像在透射成像技术中也被广泛采用,如在公开号为CN102484935A的专利中公开了一种多能透射成像系统,利用不同能量的X射线穿过物质时的衰减能力的差异,通过采用多层具有不同能量相应的探测器模块实现能谱分解,从而获得对透视图像进行物质原子序数、电子密度等的估计。
对于安检技术而言,如何更好的识别目标货物中的违禁物品是其核心内容。现有透视成像技术中提高违禁品识别性能主要通过增加扫描视角和采用双能/多能扫描的方法实现,其具有如下问题。
一方面,通过增加射线源-探测器对数的方法尽管实现了不同视角的透视扫描,有助于解决单一角度的透视成像具有物体重叠、辨识困难的问题。然而采用多个射线源、探测器的方案将导致系统整体成本的大幅增加,而由于不同的射线源-探测器对之间需要彼此独立工作,各扫描面之间需要保持一定的距离间隔,因此双视角/ 多视角透视系统往往占地面积更大,一定程度上限制了系统的灵活性和适用场所。
另一方面,采用双能/多能成像的方法可以实现对物质原子序数、电子密度等物理参数的计算,有助于提高违禁物品的辨识能力,但是双能/多能成像通常采用多层探测器的方式来实现不同能量的透射射线的区别化采集,这意味着需要的探测器晶体单元和读出电路通道数量的增加,考虑到探测器单元的成本昂贵,采用多层探测器也将带来系统整体成本的升高。
发明内容
鉴于现有技术中的一个或多个问题,提出了基于分布式光源的辐射成像系统。
在本公开的一个方面,提出了一种辐射成像系统,包括:射线源,包括多个X射线发生器,所述多个X射线发生器分布在与被检查物体的行进方向交叉的一个或者多个平面上;探测器模块,包括多个探测单元,接收穿透被检查物体的X射线;数据采集电路,与所述探测器模块耦接,将所述探测器模块产生的信号转换为探测数据;控制器,与所述射线源、所述探测器模块和所述数据采集电路连接,控制所述射线源中的所述多个X射线发生器的至少两个X射线发生器轮流产生X射线,从而随着被检查物体的移动而发出穿透所述被检查物体,并且控制所述探测器模块和所述数据采集电路,分别获得与所述至少两个X射线发生器相对应的探测数据;数据处理计算机,基于所述探测数据重建所述至少两个X射线发生器的视角下的被检查物体的图像。
根据一些实施例,所述探测器模块包括低能探测器和位于所述低能探测器后面的高能探测器。
根据一些实施例,所述射线源具体包括多个碳纳米管X射线发生器或者多个磁约束X射线发生器。
根据一些实施例,所述多个X射线源中的至少一些能够以切换的方式发出高能X射线和低能X射线。
根据一些实施例,所述多个X射线发生器设置在L形、倒L形、U形或弧形的支架上,向着所述探测器模块发出X射线。
根据一些实施例,所述射线源包括第一排X射线发生器和第二X排射线发生器,分别在所述控制器的控制下以切换的方式产生高能X射线和低能X射线,并且所述 探测器模块包括并列设置的第一排探测器和第二排探测器,分别针对高能X射线和低能射X线做出响应。
根据一些实施例,所述多个X射线发生器的分布模式为两两配对,匹配的两个靶点在空间距离上接近,在出束顺序上前后近邻,其中一个采用第一种能量的高压产生X射线,另一个采用第二种能量的高压产生X射线。
根据一些实施例,所述多个X射线发生器在某次出束时采用第一种能量的高压,在下一次出束时采用第二种能量的高压,如此循环往复。
根据一些实施例,根据要达到的各视角图像的沿传送方向的空间分辨率,结合当前传送速度和/或图像信噪比决定所述多个X射线发生器中的哪些要被激活。
根据一些实施例,根据要查看的投影角度进行手动指定所述多个X射线发生器中的哪些要被激活或者根据目标物品的形状和尺寸确定最佳透视视角下的X射线发生器。
根据一些实施例,所述的辐射成像系统,还包括物体边界探测装置,该装置在物体通过扫描面之前对物体边界进行探测;其中根据探测到的物体边界,以能够实现目标物体的完整覆盖进行X射线发生器的选择。
上述实施例中,通过采用分布式X射线源,并采取探测器复用的方式,实现单一扫描面内的多视角透视成像系统。
在上述实施例中,探测器模块的成本可以得到有效节省。此外,单一平面的设计也使得系统整体体积保持在较小的水平,有利于提高系统的机动性和灵活性。这样的方案能有效提升系统整体竞争力,实现低成本、高效的多视角透视成像。
附图说明
为了更好地理解本公开,将根据以下附图对本公开进行详细描述:
图1示出了根据本公开实施例的辐射成像系统的结构示意图;
图2是描述根据本公开一个实施例的辐射成像系统的工作过程的示意图;
图3是在图1所示的实施例中,用于图像处理的计算机的内部结构的示意图;
图4是描述根据本公开另一实施例的辐射成像系统的工作过程的示意图;
图5是描述根据本公开再一实施例的辐射成像系统的工作过程的示意图。
具体实施方式
下面将详细描述本公开的具体实施例,应当注意,这里描述的实施例只用于举例说明,并不用于限制本公开。在以下描述中,为了提供对本公开的透彻理解,阐述了大量特定细节。然而,对于本领域普通技术人员显而易见的是:不必采用这些特定细节来实行本公开。在其他实例中,为了避免混淆本公开,未具体描述公知的结构、材料或方法。
在整个说明书中,对“一个实施例”、“实施例”、“一个示例”或“示例”的提及意味着:结合该实施例或示例描述的特定特征、结构或特性被包含在本公开至少一个实施例中。因此,在整个说明书的各个地方出现的短语“在一个实施例中”、“在实施例中”、“一个示例”或“示例”不一定都指同一实施例或示例。此外,可以以任何适当的组合和/或子组合将特定的特征、结构或特性组合在一个或多个实施例或示例中。此外,本领域普通技术人员应当理解,这里使用的术语“和/或”包括一个或多个相关列出的项目的任何和所有组合。
根据本公开的实施例,针对现有技术中的问题,提出了一种基于分布式射线源的辐射成像系统,能够以简单的结构实现多视角扫描。例如,射线源包括多个X射线发生器。该多个X射线发生器分布在与被检查物体的行进方向交叉的一个或者多个平面上。探测器模块包括多个探测单元,接收穿透被检查物体的X射线。数据采集电路与探测器模块耦接,将探测器模块产生的信号转换为探测数据。控制器与射线源、探测器模块和数据采集电路连接,控制射线源中的多个X射线发生器的至少两个X射线发生器轮流产生X射线,从而随着被检查物体的移动而发出穿透被检查物体。此外,控制器控制探测器模块和数据采集电路,分别获得与至少两个X射线发生器相对应的探测数据。数据处理计算机基于探测数据重建至少两个X射线发生器的视角下的被检查物体的图像。根据上述实施例,能够在一个扫描平面上实现多能多视角扫描。
根据一些实施例,采用脉冲分布式X射线源模块。脉冲分布式X射线源能够实现脉冲式出束,使得X射线只在探测器采样周期内射出,在探测器采样周期外可以及时停止,这样可以实现不同射线源的快速交替式出束,实现不同视角的连续透视扫描,每次出束只有一个视角的射线源被激活,因此不同视角之间的射线相互独立,互不干扰。
相应地,采用一个探测器模块探测来自不同X射线源的射线,探测器采集时必须保证每次采集只采集到来自一个射线源的某次出束的射线,即探测器的采集和射线源的曝光同步。这样,由于只有一个扫描平面,探测器在不同视角的成像中得到有效的复用,因此探测器模块的成本可以得到有效节省,提高系统的价格竞争能力。同时,单一平面的设计也使得系统整体体积保持在较小的水平,有利于提高系统的机动性和灵活性。
此外,扫描时根据不同的扫描参数来决定所需使用的射线源数目(即成像视角数),并在扫描时按照指定的出束顺序快速切换各个射线源实现对目标物体的扫描。例如,目前基于碳纳米管、磁约束等技术可以实现分布式X射线源扫描,即在一个射线源模块上实现从多个不同的空间位置产生X射线束,特别是基于碳纳米管技术的分布式射线源,可以以极为低廉的成本实现数量众多、分布密集的X射线源源点,实现众多视角的透视成像,因此使用碳纳米管分布式射线源可以实现在一个系统上存在源点数目多于成像视角数的情况,而几乎不增加设备成本。
这样,由于所有射线源都对应同一个探测器模块,因此所述系统在采集完成以后,须将采集到的数据按射线源编号(即投影视角)进行划分,再将同一射线源模块(即同一透视视角)的数据组合,才可以获得该射线源(即该视角)的透视成像图像,在各个视角的图像都得到以后,最终实现多视角成像。换言之,由于所述系统在扫描过程中探测器模块被各个射线源所复用,因此各个视角下的图像的采集次数将是总采集次数的1/N,其中N为投影视角数。这意味着在采集总次数相同的情况下,各视角下的图像质量将随着视角数目的增加而降低,主要表现为沿皮带前进方向的采样次数降低,即该方向的空间分辨率将变差。所以可以根据实际扫描参数或实际需求,来确定合适的视角数目。
根据一些实施例,探测器模块可以选用单能模块,也可以:A)以双层/多层的形式实现多能探测。这种情况下,不同层具有不同的射线能量响应,层与层之间可以根据需要安装滤过片,调整入射射线的能谱;B)以双排/多排的形式实现双能/多能探测,这种情况下,不同排具有不同的射线能量响应,并且各排前面可以根据需要安装滤过片,调整入射射线的能谱。
在一些实施例中,射线源的所有源点的位置可以分布在一个垂直于皮带前进方向的扫描平面内,也可以沿着皮带前进方向分布,或者是在三维空间随意分布,但 各源点的射线束都需要保证能被所述探测器模块接收到。
另外,系统除了在探测器模块上实现双能/多能探测,还可以通过射线源实现双能/多能能谱,达到双能/多能扫描的目的,例如对于双能成像,可以使用单能探测器,并对射线源模块实施如下方案:A)射线源源点分布模式为两两配对,匹配的两个靶点在空间距离上接近,在出束顺序上前后近邻,其中一个采用第一种能量的高压产生X射线,另一个采用与第一种能量不同的第二种能量的高压产生X射线;B)射线源各源点在某次出束时采用第一种能量的高压,在下一次出束时采用与第一种能量不同的第二种能量的高压,如此循环往复。
在扫描过程中,射线源模块中只有被激活的源点参与扫描成像,被激活的源点的数量可以有以下方法确定:A)根据需要达到的各视角图像的沿皮带方向的空间分辨率,结合当前皮带速度决定:在空间分辨率一定的情况下,若带速较高,则只激活较少的源点数目,若带速较低,则激活较多的源点数目。B)手动指定,此时可以根据源点数量和带速以及图像信噪比,确定每个源点每次出束的时间和出束流强。
此外在扫描过程中,射线源模块中只有被激活的源点参与扫描成像,被激活的源点的编号可以由以下方法确定:A)根据所需要查看的投影角度进行手动指定;B)根据目标物品的形状和尺寸确定最佳透视视角,如针对薄片状目标物体(箱子),选择穿射线透物体的平均距离较小的角度进行透视成像。
在一些实施例中,系统的分布式射线源沿扫描通道(垂直于物体行进方向的截面中)相邻的两条边分布,探测器沿扫描通道相邻的另外两条边分布。由于射线源各源点距离通道足够近,以至于A)部分源点产生的射线受出束张角限制并不能在其扫描面内完全覆盖整个通道,或者B)即使某个射线的射线束在其扫描面内覆盖了整个扫描通道,受射线源位置和探测器排布的影响,探测器也存在无法接受所有穿过扫描通道的射线的可能性。这种情况下,可以给系统设置物体边界探测装置,该装置在物体通过扫描面之前对物体边界进行探测。这样,系统扫描时,依据以下理由选择用于扫描当前物体的源点:A、系统根据之前所述的确定源点数的方法得到所需激活的源点数量;B、系统根据探测到的物体边界,以能够实现目标物体的完整覆盖进行源点的选择。
上述实施例中,通过采用分布式X射线源,并采取探测器复用的方式,实现单一扫描面内的多视角透视成像系统。这样,探测器模块的成本可以得到有效节省。 此外,单一平面的设计也使得系统整体体积保持在较小的水平,有利于提高系统的机动性和灵活性。本公开能有效提升系统整体竞争力,实现低成本、高效的多视角透视成像。
图1示出了根据本公开实施例的辐射成像系统的结构示意图。如图1所示的辐射成像系统包括承载被检查物体130前进的承载机构140,例如皮带等,分布式设置的X射线源110,探测器模块150、采集电路160、控制器170和数据处理计算机180等。射线源110包括多个X射线发生器。该多个X射线发生器分布在与被检查物体130的行进方向交叉的一个或者多个平面上。
如图1所示,承载机构140承载被检查行李130穿过射线源110与探测器150之间的扫描区域。在一些实施例中,探测器150和采集电路160例如是具有整体模块结构的探测器及数据采集器,例如多排探测器,用于探测透射被检物品的射线,获得模拟信号,并且将模拟信号转换成数字信号,从而输出被检查物体针对X射线的投影数据。控制器170用于控制整个系统的各个部分同步工作。数据处理计算机180用来处理由数据采集器采集的数据,对数据进行处理并重建,输出结果。
根据该实施例,探测器150和采集电路160用于获取被检查物体130的透射数据。采集电路160中包括数据放大成形电路,它可工作于(电流)积分方式或脉冲(计数)方式。采集电路150的数据输出电缆与控制器170和数据处理计算机180连接,根据触发命令将采集的数据存储在数据处理计算机180中。
在一些实施例中,探测器模块150包括多个探测单元,接收穿透被检查物体的X射线。数据采集电路160与探测器模块150耦接,将探测器模块160产生的信号转换为探测数据。控制器170通过控制线路CTRL1与射线源110连接,通过控制线路CTRL2与探测器模块连接,并且与数据采集电路连接,控制射线源中的多个X射线发生器的至少两个X射线发生器轮流产生X射线,从而随着被检查物体的移动而发出穿透被检查物体。此外,控制器170控制探测器模块150和数据采集电路160,分别获得与至少两个X射线发生器相对应的探测数据。数据处理计算机180基于探测数据重建至少两个X射线发生器的视角下的被检查物体的图像。
图2是描述根据本公开一个实施例的辐射成像系统的工作过程的示意图。生成X射线束的射线源130-1和130-2包括多个产生自由电子的阴极和对应的阳极源点。探测器包含至少一排探测器,用于探测来自射线源的射线,并根据不同源点分别形 成不同的X射线透视图。传送机构移动被检查物体通过所述系统。数据处理单元处理探测器采集到的数据,并生成透视图像和进行违禁品自动识别。
图3示出了如图1所示的数据处理计算机180的结构框图。如图3所示,采集电路160所采集的数据通过接口单元38和总线34存储在存储器31中。只读存储器(ROM)32中存储有计算机数据处理器的配置信息以及程序。随机存取存储器(RAM)33用于在处理器36工作过程中暂存各种数据。另外,存储器31中还存储有用于进行数据处理的计算机程序。内部总线34连接上述的存储器31、只读存储器32、随机存取存储器33、输入装置35、处理器36、显示装置37和接口单元38。
在用户通过诸如键盘和鼠标之类的输入装置35输入的操作命令后,计算机程序的指令代码命令处理器36执行预定的数据重建算法,在得到数据处理结果之后,将其显示在诸如LCD显示器之类的显示装置37上,或者直接以诸如打印之类硬拷贝的形式输出处理结果。
在该实施例中,射线源130-1和130-2的多个源点和所述探测器共同构成扫描面,其中射线源包含若干个射线源点,不同源点的工作电压相同,工作电流相同,其中探测器为单排双层探测器,其中射线首先穿透的一层为低能探测器单元150-1主要探测低能射线,射线其次穿透的一层为高能探测器单元150-2,主要探测高能射线。
在该实施例中,所述传送机构为位于扫描面底部的传送带系统,负责承载待检测物体通过扫描面。在该实施例中,只有激活的源点对物体实施扫描,当待检测物体经过扫描面时,各激活源点顺序循环出束,并保证在同一时刻只有一个源点处于出束状态,同时探测器阵列配合源点同步采集,得到不同源点各次出束时的投影数据。
在该实施例中,数据处理计算机180对采样数据进行实时处理,并将处理结果通过显示器显示出来。当待检测物体离开扫描面后,物体的扫描数据经过处理,得到不同源点扫描的透视图像,并采用双能分解技术得到原子序数等图像,并进行物质分类和违禁物品识别,并根据分类和识别结果对图像进行伪彩色着色,形成双能透视图像,并通过显示器显示。
图4是描述根据本公开另一实施例的辐射成像系统的工作过程的示意图。在如图4所示的实施例中,与图2所示实施例的区别在于,扫描平面由单能探测器和两 组沿通道方向平行的X射线源模块430-1、431-1和430-2、431-2构成,其中一组射线源模块的电压低于另一组,每组射线源模块中的电压、电流一致。扫描时,所有源点顺序出束,但是两组射线源模块对应的源点的出束顺序相邻。
图5是描述根据本公开再一实施例的辐射成像系统的工作过程的示意图。图5所示实施例与图4所示实施例的区别在于,扫描平面由单能探测器和一组沿通道方向平行的X射线源模块530-1和530-2构成,其中所述射线源模块的每个源点均可实现两种(或多种)电压、实现双能(或多能)扫描。扫描时,所有源点顺序出束,各个源点使用不同能量连续出束两次(或多次),探测器同步配合源点出束实现两次(或多次)采集。
虽然在上述实施例中,射线源采用了倒L形的两段式,但是本领域的技术人员可以想到采用其他的分布方式,例如多个X射线发生器设置在L形、U形或弧形的支架上,向着所述探测器模块发出X射线。
上述实施例中,通过采用分布式X射线源,并采取探测器复用的方式,实现单一扫描面内的多视角透视成像系统。在上述实施例中,探测器模块的成本可以得到有效节省。此外,单一平面的设计也使得系统整体体积保持在较小的水平,有利于提高系统的机动性和灵活性。这样的方案能有效提升系统整体竞争力,实现低成本、高效的多视角透视成像。
以上的详细描述通过使用示意图、流程图和/或示例,已经阐述了辐射成像系统的众多实施例。在这种示意图、流程图和/或示例包含一个或多个功能和/或操作的情况下,本领域技术人员应理解,这种示意图、流程图或示例中的每一功能和/或操作可以通过各种结构、硬件、软件、固件或实质上它们的任意组合来单独和/或共同实现。在一个实施例中,本公开的实施例所述主题的若干部分可以通过专用集成电路(ASIC)、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、或其他集成格式来实现。然而,本领域技术人员应认识到,这里所公开的实施例的一些方面在整体上或部分地可以等同地实现在集成电路中,实现为在一台或多台计算机上运行的一个或多个计算机程序(例如,实现为在一台或多台计算机系统上运行的一个或多个程序),实现为在一个或多个处理器上运行的一个或多个程序(例如,实现为在一个或多个微处理器上运行的一个或多个程序),实现为固件,或者实质上实现为上述方式的任意组合,并且本领域技术人员根据本公开,将具备设计电路和/或写入软件和 /或固件代码的能力。此外,本领域技术人员将认识到,本公开所述主题的机制能够作为多种形式的程序产品进行分发,并且无论实际用来执行分发的信号承载介质的具体类型如何,本公开所述主题的示例性实施例均适用。信号承载介质的示例包括但不限于:可记录型介质,如软盘、硬盘驱动器、紧致盘(CD)、数字通用盘(DVD)、数字磁带、计算机存储器等;以及传输型介质,如数字和/或模拟通信介质(例如,光纤光缆、波导、有线通信链路、无线通信链路等)。
虽然已参照几个典型实施例描述了本公开,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本公开能够以多种形式具体实施而不脱离公开的精神或实质,所以应当理解,上述实施例不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (11)

  1. 一种辐射成像系统,包括:
    射线源,包括多个X射线发生器,所述多个X射线发生器分布在与被检查物体的行进方向交叉的一个或者多个平面上;
    探测器模块,包括多个探测单元,接收穿透被检查物体的X射线;
    数据采集电路,与所述探测器模块耦接,将所述探测器模块产生的信号转换为探测数据;
    控制器,与所述射线源、所述探测器模块和所述数据采集电路连接,控制所述射线源中的所述多个X射线发生器的至少两个X射线发生器轮流产生X射线,从而随着被检查物体的移动而发出穿透所述被检查物体,并且控制所述探测器模块和所述数据采集电路,分别获得与所述至少两个X射线发生器相对应的探测数据;
    数据处理计算机,基于所述探测数据重建所述至少两个X射线发生器的视角下的被检查物体的图像。
  2. 如权利要求1所述的辐射成像系统,其中所述探测器模块包括低能探测器和位于所述低能探测器后面的高能探测器。
  3. 如权利要求1所述的辐射成像系统,其中所述射线源具体包括多个碳纳米管X射线发生器或者多个磁约束X射线发生器。
  4. 如权利要求1所述的辐射成像系统,其中所述多个X射线源中的至少一些能够以切换的方式发出高能X射线和低能X射线。
  5. 如权利要求1所述的辐射成像系统,其中所述多个X射线发生器设置在L形、倒L形、U形或弧形的支架上,向着所述探测器模块发出X射线。
  6. 如权利要求1所述的辐射成像系统,其中所述射线源包括第一排X射线发生器和第二X排射线发生器,分别在所述控制器的控制下以切换的方式产生高能X射线和低能X射线,并且所述探测器模块包括并列设置的第一排探测器和第二排探测器,分别针对高能X射线和低能射X线做出响应。
  7. 如权利要求1所述的辐射成像系统,其中所述多个X射线发生器的分布模式为两两配对,匹配的两个靶点在空间距离上接近,在出束顺序上前后近邻,其中一个采用第一种能量的高压产生X射线,另一个采用第二种能量的高压产生X射线。
  8. 如权利要求1所述的辐射成像系统,其中所述多个X射线发生器在某次出 束时采用第一种能量的高压,在下一次出束时采用第二种能量的高压,如此循环往复。
  9. 如权利要求1所述的辐射成像系统,其中根据要达到的各视角图像的沿传送方向的空间分辨率,结合当前传送速度和/或图像信噪比决定所述多个X射线发生器中的哪些要被激活。
  10. 如权利要求1所述的辐射成像系统,其中根据要查看的投影角度进行手动指定所述多个X射线发生器中的哪些要被激活或者根据目标物品的形状和尺寸确定最佳透视视角下的X射线发生器。
  11. 如权利要求1所述的辐射成像系统,还包括:物体边界探测装置,该装置在物体通过扫描面之前对物体边界进行探测;其中根据探测到的物体边界,以能够实现目标物体的完整覆盖进行X射线发生器的选择。
PCT/CN2015/097264 2014-12-17 2015-12-14 基于分布式光源的辐射成像系统 WO2016095775A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/301,345 US10371648B2 (en) 2014-12-17 2015-12-14 Radiography systems based on distributed ray source
DE112015001147.1T DE112015001147T5 (de) 2014-12-17 2015-12-14 Radiographiesysteme auf der Basis einer verteilten Strahlenquelle
EP15869282.2A EP3236246B1 (en) 2014-12-17 2015-12-14 Radiation imaging system based on distributed light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410787688.2 2014-12-17
CN201410787688.2A CN104483711B (zh) 2014-12-17 2014-12-17 基于分布式光源的辐射成像系统

Publications (1)

Publication Number Publication Date
WO2016095775A1 true WO2016095775A1 (zh) 2016-06-23

Family

ID=52758276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097264 WO2016095775A1 (zh) 2014-12-17 2015-12-14 基于分布式光源的辐射成像系统

Country Status (6)

Country Link
US (1) US10371648B2 (zh)
EP (1) EP3236246B1 (zh)
CN (1) CN104483711B (zh)
DE (1) DE112015001147T5 (zh)
HK (1) HK1208912A1 (zh)
WO (1) WO2016095775A1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483711B (zh) 2014-12-17 2020-02-21 同方威视技术股份有限公司 基于分布式光源的辐射成像系统
CN106344054B (zh) * 2016-09-09 2020-01-10 上海涛影医疗科技有限公司 多段位双光面x光机系统
GB2556117B (en) * 2016-11-22 2020-09-02 Smiths Heimann Gmbh Method and apparatus
CN106841256B (zh) * 2017-02-17 2023-11-21 清华大学 多视角背散射检查系统和多视角背散射检查方法
CN107202808A (zh) * 2017-06-14 2017-09-26 上海英曼尼安全装备有限公司 一种双源双视角安检方法及其系统
JP6717784B2 (ja) * 2017-06-30 2020-07-08 アンリツインフィビス株式会社 物品検査装置およびその校正方法
CN108345040A (zh) * 2018-03-02 2018-07-31 上海瑞示电子科技有限公司 双射线源检测设备及其控制设备、出束方法
CN111265231B (zh) * 2019-04-15 2021-08-31 清华大学 分布式光源ct图像重建方法与系统
CN112305625B (zh) * 2019-07-23 2022-04-08 同方威视技术股份有限公司 移动目标检查系统和方法
CN114167506B (zh) * 2020-09-11 2023-10-13 同方威视技术股份有限公司 安全检查系统及方法
CN112415619B (zh) * 2020-09-14 2024-03-19 上海奕瑞光电子科技股份有限公司 基于线阵探测器的高速大数据传输系统、方法、终端以及介质
CN114764069A (zh) * 2020-12-31 2022-07-19 同方威视技术股份有限公司 辐射检查系统
CN114690258A (zh) * 2020-12-31 2022-07-01 同方威视技术股份有限公司 物体检测设备
CN112858167B (zh) * 2021-01-07 2024-01-02 上海奕瑞光电子科技股份有限公司 多排双能线阵探测器扫描方法、系统、介质及装置
CN115598718B (zh) * 2021-07-07 2024-05-31 同方威视技术股份有限公司 检查系统和方法
CN115097537A (zh) * 2021-07-07 2022-09-23 同方威视技术股份有限公司 射线扫描设备
CN115097536B (zh) * 2021-07-07 2024-05-14 同方威视技术股份有限公司 检查系统和方法
CN115105110A (zh) * 2021-10-15 2022-09-27 清华大学 用于射线检查的成像系统和方法
CN114113158A (zh) * 2021-11-08 2022-03-01 上海物影科技有限公司 目标物体识别装置及系统
CN113790685B (zh) * 2021-11-17 2022-01-18 湖南苏科智能科技有限公司 面向双光源x射线安检机的待检物品尺寸自动检测方法
CN114152994A (zh) * 2021-12-31 2022-03-08 同方威视科技(北京)有限公司 安检设备、安检系统及安检方法
CN116297569B (zh) * 2023-04-28 2023-09-05 杭州睿影科技有限公司 一种基于x射线的物体检测方法、系统及处理设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319759A (zh) * 2000-01-24 2001-10-31 模拟技术公司 使用双能量扫描信息的爆炸材料检测装置和方法
CN1376947A (zh) * 2001-03-26 2002-10-30 舒嘉 X射线立体图像观察系统
CN101231254A (zh) * 2007-01-24 2008-07-30 清华大学 双源三维立体成像系统和成像方法
US20130230139A1 (en) * 2012-02-08 2013-09-05 Rapiscan Systems, Inc. High-Speed Security Inspection System
CN104483711A (zh) * 2014-12-17 2015-04-01 同方威视技术股份有限公司 基于分布式光源的辐射成像系统
CN204422777U (zh) * 2014-12-17 2015-06-24 同方威视技术股份有限公司 基于分布式光源的辐射成像系统

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85107860A (zh) 1985-04-03 1986-10-01 海曼股份公司 X-射线扫描仪
US6814489B2 (en) * 2001-11-23 2004-11-09 Ge Medical Systems Global Technology Company, Llc 3D reconstruction system and method utilizing a variable X-ray source to image distance
US7856081B2 (en) 2003-09-15 2010-12-21 Rapiscan Systems, Inc. Methods and systems for rapid detection of concealed objects using fluorescence
US7280631B2 (en) * 2003-11-26 2007-10-09 General Electric Company Stationary computed tomography system and method
US7227923B2 (en) * 2005-04-18 2007-06-05 General Electric Company Method and system for CT imaging using a distributed X-ray source and interpolation based reconstruction
WO2008020886A2 (en) * 2006-02-09 2008-02-21 L-3 Communications Security And Detection Systems, Inc. Radiation scanning systems and methods
CN101978790A (zh) * 2008-03-19 2011-02-16 皇家飞利浦电子股份有限公司 用于高强度放电灯的灯寿终保护电路
CN101561405B (zh) * 2008-04-17 2011-07-06 清华大学 一种直线轨迹扫描成像系统和方法
CN101592622A (zh) * 2009-07-03 2009-12-02 公安部第一研究所 具有真实双能量的多视角x射线行李爆炸物自动探测装置
US9247919B2 (en) 2011-02-01 2016-02-02 Koninklijke Philips N.V. Method and system for dual energy CT image reconstruction
WO2013078344A1 (en) 2011-11-22 2013-05-30 Xinray Systems Inc High speed, small footprint x-ray tomography inspection systems, devices, and methods
CN103462628B (zh) * 2012-09-20 2017-03-29 北京朗视仪器有限公司 辐射成像设备及方法
CN103901488A (zh) * 2012-12-27 2014-07-02 同方威视技术股份有限公司 固定式ct装置
CN203341743U (zh) * 2012-12-31 2013-12-18 同方威视技术股份有限公司 使用了分布式x射线源的物品检查装置
CN103913779B (zh) 2012-12-31 2017-07-07 清华大学 多能ct成像系统以及成像方法
US9020092B2 (en) * 2013-02-19 2015-04-28 Kabushiki Kaisha Toshiba Apparatus and method for angular response calibration of photon-counting detectors in sparse spectral computed tomography imaging
US20150019983A1 (en) * 2013-07-11 2015-01-15 Crackpot Inc. Computer-implemented virtual object for managing digital content
CN104749197B (zh) * 2013-12-26 2017-08-11 清华大学 Ct系统及其方法
CN203643369U (zh) * 2013-12-26 2014-06-11 清华大学 Ct系统
CN203909313U (zh) * 2013-12-27 2014-10-29 清华大学 多能谱静态ct设备
CN203772764U (zh) * 2013-12-30 2014-08-13 同方威视技术股份有限公司 双通道高能x射线透视成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319759A (zh) * 2000-01-24 2001-10-31 模拟技术公司 使用双能量扫描信息的爆炸材料检测装置和方法
CN1376947A (zh) * 2001-03-26 2002-10-30 舒嘉 X射线立体图像观察系统
CN101231254A (zh) * 2007-01-24 2008-07-30 清华大学 双源三维立体成像系统和成像方法
US20130230139A1 (en) * 2012-02-08 2013-09-05 Rapiscan Systems, Inc. High-Speed Security Inspection System
CN104483711A (zh) * 2014-12-17 2015-04-01 同方威视技术股份有限公司 基于分布式光源的辐射成像系统
CN204422777U (zh) * 2014-12-17 2015-06-24 同方威视技术股份有限公司 基于分布式光源的辐射成像系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3236246A4 *

Also Published As

Publication number Publication date
CN104483711A (zh) 2015-04-01
EP3236246B1 (en) 2022-08-03
HK1208912A1 (zh) 2016-03-18
CN104483711B (zh) 2020-02-21
EP3236246A1 (en) 2017-10-25
US10371648B2 (en) 2019-08-06
DE112015001147T5 (de) 2017-01-12
EP3236246A4 (en) 2018-08-08
US20170122884A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2016095775A1 (zh) 基于分布式光源的辐射成像系统
WO2015096785A1 (zh) Ct系统及其方法
US9541510B2 (en) System and methods for multi-beam inspection of cargo in relative motion
US7869566B2 (en) Integrated multi-sensor systems for and methods of explosives detection
RU2444723C2 (ru) Устройство и способ досмотра объектов
US8971484B2 (en) High speed, small footprint x-ray tomography inspection systems, devices, and methods
US7505562B2 (en) X-ray imaging of baggage and personnel using arrays of discrete sources and multiple collimated beams
US7792241B2 (en) System and method of fast KVP switching for dual energy CT
EP2526410B1 (en) Multi-view cargo scanner
WO2015096784A1 (zh) Ct系统及其方法
WO2015196857A1 (zh) 探测器装置、双能ct系统和使用该系统的检测方法
US20090213989A1 (en) System and method for xrd-based threat detection
JP7011052B2 (ja) 物品安全検査のためのスキャンによるイメージングシステム及びそのイメージング方法
US9588064B2 (en) Charged particle tomography with improved momentum estimation
US10641918B2 (en) Adaptive cargo inspection based on multi-energy betatron
CN204422777U (zh) 基于分布式光源的辐射成像系统
US11614552B2 (en) Charged particle scanners
Arodzero et al. ACTM: Adaptive computed tomography with modulated-energy X-ray pulses
Arodzero et al. Security X-ray screening with modulated-energy pulses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869282

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015869282

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15301345

Country of ref document: US

Ref document number: 2015869282

Country of ref document: EP

Ref document number: 112015001147

Country of ref document: DE