WO2016095718A1 - 检测通讯链路的方法、基站、网管、系统及存储介质 - Google Patents

检测通讯链路的方法、基站、网管、系统及存储介质 Download PDF

Info

Publication number
WO2016095718A1
WO2016095718A1 PCT/CN2015/096602 CN2015096602W WO2016095718A1 WO 2016095718 A1 WO2016095718 A1 WO 2016095718A1 CN 2015096602 W CN2015096602 W CN 2015096602W WO 2016095718 A1 WO2016095718 A1 WO 2016095718A1
Authority
WO
WIPO (PCT)
Prior art keywords
rru
detection point
base station
board
fault detection
Prior art date
Application number
PCT/CN2015/096602
Other languages
English (en)
French (fr)
Inventor
吕凤
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095718A1 publication Critical patent/WO2016095718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, a base station, a network management system, a system, and a storage medium for detecting a communication link between BBU and RRU.
  • the RRU In the BBU (Baseband Processing Unit)-RRU (Radio Frequency Remote Unit) architecture of the base station, the RRU is connected through the fiber-optic cable. Once the RRU is not detected, the RRU is broken. It is difficult to know the link. Which part of the problem occurs, especially if the transmission environment is unstable or the underlying driver is abnormal, it is even more difficult to know the cause of the link failure.
  • BBU Baseband Processing Unit
  • RRU Radio Frequency Remote Unit
  • the general processing method is: through the network management alarm prompt, the maintenance personnel, according to experience, plugging and replacing components step by step to tentatively eliminate the fault.
  • the alarm is often caused by multiple fault points.
  • the BBU-RRU communication link which is a comprehensive system involving multiple hardware devices and transmission media, multiple attempts to troubleshoot are required, and multiple alarms are needed for comprehensive analysis and maintenance. Staff requirements are too high.
  • the main purpose of the embodiments of the present invention is to provide a method, a base station, a network management system, a system, and a storage medium for detecting a communication link between BBU and RRU, aiming at improving the efficiency of locating a BBU-RRU communication link, thereby reducing the maintenance cost of the base station. .
  • an embodiment of the present invention provides a method for detecting a communication link, including:
  • the collected fault detection point information is sent to the network management system, and the network management system analyzes and diagnoses the fault detection point information.
  • the step of collecting the fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology includes:
  • the base station uses a parallel query manner to search for and collect the manual operation status of the optical interface board and the RRUs at each level and the operation information of the base station software from the RRU topology structure;
  • the base station uses the serial query mode to find and collect information about the optical interface board, the RRUs, the optical modules, and the cable information from the RRU topology.
  • the collected fault detection point information is collected as the fault detection point information of the communication link between the BBU and the RRU.
  • the RRU topology is one of a star topology, a cascade topology, a ring network topology, a ring plus link topology, and a dual uplink topology.
  • the embodiment of the invention further provides a method for detecting a communication link, comprising:
  • the NMS obtains the target RRU board selected by the user.
  • the fault detection point information is analyzed and diagnosed, and the fault state of the fault detection point is obtained and presented to the user.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains a fault state of the fault detection point, and the steps presented to the user include:
  • the network management system detects whether the link of the target RRU board is abnormal.
  • the fault status of the obtained fault detection point and the corresponding repair suggestions are presented to the user.
  • the optical port board, the RRUs, the optical modules, and the cables, and the base station operations and software are sequentially arranged according to the set priorities.
  • the operation condition is analyzed and diagnosed, and the steps of obtaining the fault status of the corresponding fault detection point include:
  • the fault status of the corresponding fault detection point is obtained.
  • the optical module of the target RRU and the cable connected to the RRU are detected;
  • the embodiment of the invention further provides a base station for detecting a communication link, comprising:
  • the request receiving module is configured to receive a diagnosis request sent by the network management, where the diagnosis request carries the target RRU board selected by the user;
  • Selecting a module configured to select an RRU topology in which the target RRU board is located according to the diagnosis request
  • the collecting module is configured to collect fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure;
  • the sending module is configured to send the collected fault detection point information to the network management system, and the network management system analyzes and diagnoses the fault detection point information.
  • the collecting module is further configured to search for and collect the manual operation status of the optical port board and the RRUs of each level and the operation information of the base station software from the RRU topology structure by using a parallel query manner; The method of finding and collecting the optical interface board, the RRUs, the optical modules, and the cable information from the RRU topology; collecting the fault detection point information collected as the fault detection point information of the communication link between the BBU and the RRU .
  • the RRU topology is one of a star topology, a cascade topology, a ring network topology, a ring plus link topology, and a dual uplink topology.
  • the embodiment of the present invention further provides a network management system for detecting a communication link, including:
  • the obtaining module is configured to obtain the target RRU board selected by the user.
  • the requesting and initiating module is configured to initiate a diagnosis request based on the target RRU board to the base station;
  • the information receiving module is configured to receive fault detection point information collected and summarized by the base station according to the diagnosis request;
  • the analysis and diagnosis module is configured to analyze and diagnose the fault detection point information, obtain a fault state of the fault detection point, and present the fault status to the user.
  • the analysis and diagnosis module is further configured to detect whether the link of the target RRU board is abnormal.
  • the hardware link of the target RRU board is abnormal, according to the set priority, Analyze and diagnose the operation of the optical port board, the RRUs, the optical modules and cables, and the operation of the base station, and obtain the fault status of the corresponding fault detection point.
  • the hardware link of the target RRU board is normal.
  • Detecting whether the software link of the target RRU board is abnormal When detecting that the software link of the target RRU board is abnormal, detecting the manual operation and software running status of the base station; and obtaining the fault status of the fault detection point and Corresponding repair Suggestions are presented to the user.
  • the analysis and diagnosis module is further configured to detect whether the optical port of the target RRU is abnormal; and if the egress port of the target RRU is abnormal, the fault of the corresponding fault detection point is obtained. If the optical port of the target RRU is normal, the optical module of the target RRU and the cable connected to the RRU are detected; if the optical module of the target RRU and the cable connected to the RRU are detected, If the fault is detected, the fault state of the corresponding fault detection point is obtained. If the optical module of the target RRU and the cable connected to the RRU are normal, the RRUs of each level are detected, and the fault status of the corresponding fault detection points of the RRUs at each level is obtained.
  • the embodiment of the invention further provides a system for detecting a communication link, comprising: a base station and a network management; wherein:
  • the network management device is configured to obtain a target RRU board selected by the user, and initiate a diagnosis request based on the target RRU board to the base station;
  • the base station is configured to: according to the diagnosis request, select an RRU topology structure where the target RRU board is located, and collect fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure, and collect the fault detection point information.
  • the fault detection point information is summarized and sent to the network management;
  • the network management system is further configured to analyze and diagnose the fault detection point information, and obtain a fault state of the fault detection point, and present the fault status to the user.
  • the method for detecting a communication link between the BBU and the RRU, the base station, the network management system, the system, and the storage medium are provided by the embodiment of the present invention.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station.
  • the base station selects the RRU topology of the target RRU board according to the diagnosis request, and collects the fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure, and collects the collected fault detection point information and sends the information to the fault detection point information.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault status of the fault detection point and presents it to the user.
  • the problems of collecting information, comprehensive analysis, and presenting results in the prior art are solved, and the positioning BBU-RRU communication chain is improved.
  • the efficiency of the road failure which in turn reduces the maintenance cost of the base station.
  • FIG. 1 is a schematic flow chart of an embodiment of a method for detecting a communication link according to the present invention
  • FIG. 2 is a schematic structural diagram of a system for detecting a communication link in an embodiment of the present invention
  • FIG. 3 is a data analysis model diagram of a network management system of a communication link between BBU and RRU according to an embodiment of the present invention
  • FIG. 4 is a flowchart of data analysis for analyzing and diagnosing a network management of a communication link between BBU and RRU according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a specific process of data analysis of a parent RRU traversal of a cyclic RRU in FIG. 4;
  • FIG. 6 is a schematic flow chart of another embodiment of a method for detecting a communication link according to the present invention.
  • FIG. 7 is a schematic diagram of functional modules of an embodiment of a base station for detecting a communication link according to the present invention.
  • FIG. 8 is a schematic diagram of functional modules of an embodiment of a network management system for detecting a communication link according to the present invention.
  • the solution of the embodiment of the present invention is that: the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, and selects The RRU topology structure collects the fault detection point information of the communication link between the BBU and the RRU, and collects the collected fault detection point information and sends the information to the network management system.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault of the fault detection point. Status, presented to the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • an embodiment of the present invention provides a method for detecting a communication link, including:
  • Step S101 The base station receives a diagnosis request sent by the network management, where the diagnosis request carries the target RRU board selected by the user.
  • the solution in this embodiment involves a base station and a network management system.
  • the base station side and the network management side respectively set corresponding functional modules.
  • the system architecture can be as shown in Figure 2.
  • the network management system can manage fault detection point information of multiple base station sites.
  • Each of the base station sites is composed of a BBU and a plurality of RRUs.
  • the RRU topology can be a star topology, a cascade topology, a ring topology, a ring plus link topology, or a dual uplink topology.
  • the wireless product, the method of the embodiment of the present invention is applicable to the above various types of topologies.
  • the network management side initiates a diagnosis request to the base station side according to the RRU board to be diagnosed selected by the user.
  • the diagnostic request carries the target RRU board selected by the user.
  • Step S102 Select an RRU topology structure where the target RRU board is located according to the diagnosis request.
  • Step S103 collecting fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure
  • the base station After receiving the diagnosis request from the network management system, the base station selects the RRU topology of the target RRU and collects all the possible fault detection points according to the topology of the base station, including: the optical port board, RRUs, and all levels. Modules and cables, manual operation of base stations that can cause RRU disconnection, and operation of base station software.
  • the base station when collecting the fault detection point information of the communication link between the BBU and the RRU, the base station may adopt the following scheme:
  • the parallel operation mode is used to find and collect the manual operation status of the optical port board and the RRUs at all levels and the operation information of the base station software from the RRU topology structure;
  • the light is searched and collected from the RRU topology.
  • Interface board, RRU, optical module and cable information are provided.
  • the collected fault detection point information is collected as the fault detection point information of the communication link between the BBU and the RRU.
  • the basic framework of the query can be established to manage the fault detection point information collection process.
  • the base station obtains the complete set of fault detection points that may need to be detected from the topology structure of the base station RRU according to the target RRU board information sent by the network management, correspondingly generates multiple query processes, and fills in the basic framework of the query according to the characteristics of the diagnostic request.
  • the query basic framework controls the order execution of each query process.
  • the query basic framework is a data query process scheduling control system, which starts a policy according to the diagnostic request, and sequentially schedules the parallel query mode and the individual query processes in the serial query mode. Including start, stop, data analysis, data summary functions.
  • the parallel query mode consists of a query process that can be started in parallel at the same time.
  • the serial query method consists of one or more query processes. After the parallel query mode is executed, the query process is executed serially.
  • the parallel query mode is preferred to shorten the time required for the query. If the diagnostic request item has an exclusive attribute, select the serial query mode.
  • the parallel query consists of the process of collecting the optical port board and the manual operation of the RRUs at all levels and the operation information of the base station software.
  • the serial query consists of the process of collecting the optical interface board, RRUs, optical modules and cable information.
  • timeout period can be preset for each detection process, and when the query process begins to execute, the timing count is started. If the time is up and there is still no query result returned, the query process ends.
  • step S104 the collected fault detection point information is collected and sent to the network management system, and the network management unit analyzes and diagnoses the fault detection point information.
  • the base station aggregates the collected fault detection point information and sends it back to the network management system.
  • the network management analyzes the diagnostic data, and comprehensively judges the status of the fault detection point, processing suggestions, and detailed information to the user.
  • the process of analyzing and diagnosing the fault detection point information sent by the base station by the network management system may adopt the following scheme:
  • a diagnostic analysis model for the communication link between the BBU and the RRU is established.
  • the four types of objects that affect the BBU-RRU communication link are the optical interface board, the RRU, the optical module, and the cable, as well as the base station operation and software operation. composition.
  • the network management detects the link status of the target RRU board, that is, the software RUDP/TCP link and the hardware LOOPTEST link of the target RRU, based on the situation of all the upper nodes in the RRU topology of the target RRU board. If the link is normal, the detection ends.
  • the NMS detects that the hardware link of the target RRU is abnormal, analyzes and diagnoses the operation of the optical port board, RRUs, optical modules, and cables, and the operation of the base station and software in sequence according to the set priorities. , get the fault status of the corresponding fault detection point.
  • the software link is abnormal, the manual operation and the software operation of the base station are detected, and the RRU software abnormality of the base station and the manual reset of the RRU may be excluded; if the hardware link is abnormal, the manual operation of the optical port board and the base station is detected.
  • the software running status can eliminate the abnormality of the optical interface board software, manual reset of the optical port board, power-off of the optical port board, and hardware failure of the optical port board.
  • the optical module is faulty, the optical module or the cable connected to the RRU can be faulty.
  • the optical module and the cable connected to the RRU are normal, the status of each RRU is detected.
  • For each level of the RRU first locate the RRU of the link and then detect the RRU and the lower-level optical module and cable.
  • the RRU hardware fault, optical module hardware or configuration fault, and cable fault can be eliminated.
  • the detection result of the optical module the manual operation and software operation of the base station are detected, and the RRU power failure power supply problem and the RRU failure can be eliminated.
  • the BBU-RRU communication link diagnosis is used to solve the problem of collecting information, comprehensive analysis, and presenting results in the prior art, and improving the efficiency of locating the BBU-RRU communication link, thereby reducing the base station. Maintenance costs.
  • the embodiment of the present invention further provides a first computer readable storage medium, the storage medium comprising a set of instructions for performing the method of detecting a communication link as shown in FIG.
  • FIG. 3 is a data analysis model diagram of a network management system of a communication link between BBU and RRU according to an embodiment of the present invention, where:
  • the NMS performs the target RRU link detection to determine whether the RRU software and hardware links are normal. If it is abnormal, analyze the fault point from the following four aspects:
  • Analysis of the optical port board failure Analyze whether there is a hardware failure of the optical port board.
  • Optical module and cable fault analysis Analyze whether the optical module is in position, rate matching, illuminating, frame locking, optical module hardware failure, optical module receiving power and threshold, optical port self-loop, optical fiber insertion, optical fiber Break and so on.
  • RRU board failure analysis Analyze whether there is an RRU hardware failure.
  • Base station operation and software operation failure analysis Analyze whether there is manual operation reset of the optical port board, power out of the optical port board, abnormal software of the optical port board, RRU power failure, RRU initialization alarm, RRU version loading process reset, RRU software runaway reset , RRU manual operation reset, etc.
  • FIG. 4 is a flowchart of data analysis for analyzing and diagnosing a network management link of a communication link between BBU and RRU according to an embodiment of the present invention, which specifically includes:
  • Step 400 for the user to select the target RRU to be diagnosed, if the hardware link LOOPTEST results are versa, then proceeds to step 401, otherwise, proceeds to step 402;
  • Step 401 Perform a RRU software detection process.
  • the target RRU has a software link RUDP/TCP disconnection. If a software link is broken, it is determined whether the current RRU reports an initialization alarm. If the alarm is not reported, the RRU communication link is broken. If the RRU is reset, the RRU reset is returned. That is, the RRU reset is caused by manual or software version (version loading process, software running).
  • the RRU hardware abnormality is returned. If there is no RRU hardware failure, the RRU hardware detection returns no abnormality.
  • Step 402 If the LOOPTEST of the target RRU is unreachable, detect the operation and hardware status of the optical port board FS software of the topology in which the target RRU is located.
  • the FS link status If the link is broken, the software of the optical interface board is abnormal, the optical port board is manually reset, and the optical port board is powered off. If the link is normal, the LOOPTEST test of the other RRUs in the topology is detected. If none of the faults are detected, the FS optical port SERDERS self-loop result of the uplink link of the target RRU is determined. If the loopback fails, the FS hardware detection error is returned. The fault point; if the loop is successful, it is determined whether the FS has a hardware fault alarm, and if so, the fault point of the FS hardware detection abnormality is returned. If the FS hardware detection is normal, proceed to step 403;
  • Step 403 If some RRUs in the topology are in the case of LOOPTEST test, the FS optical module is detected.
  • the optical module is detected whether the optical module is in place. If it is not in position, it returns to the fault point where the optical module is not in position. Check whether the optical module rates match, and if they do not match, return the fault point of the configuration error. Check whether the optical module hardware is normal. If it is abnormal, return to the fault point of the optical module fault.
  • step 404 If the optical module detection is normal, proceed to step 404;
  • Step 404 Check whether the optical fiber of the FS to the target RRU is normal.
  • the optical fiber is star-crossed, and if so, the fault point of the optical fiber connection error is indicated.
  • the fiber is single-passed, that is, the transmitting fiber is broken, the receiving fiber is normal, and if so, the fiber is sent to break the fault point.
  • FIG. 5 is a schematic flowchart of the data analysis of the parent RRU traversal of the cyclic RRU in FIG.
  • Step 405 If the current optical module is out of light, continue to determine whether there is an RRU power failure alarm. If there is an RRU power failure alarm, return to the fault location of the RRU external power supply. If there is no RRU power failure alarm, return the fiber to break. A point of failure. If the optical power of the current optical module is too low, return to the fault point of the fiber break or the lower RRU fault. If there is light but it can't be locked, Returns the fault point where the lower-level RRU fault or the lower-level RRU optical module rate does not match.
  • Step 406 Record the upper RRU of the target RRU as the current RRU, and start to identify the RRU step by step, and enter the loop.
  • the loop ends.
  • LOOPTEST If LOOPTEST is unreachable, record the current RRU LOOPTEST link is unreachable. Determine whether the upper node of the current RRU is the FS. If it is not the FS, set the upper RRU of the current RRU to the current RRU and continue the loop. Until you find the RRU of LOOPTEST or have arrived at FS. If the FS has been reached, skip the RRU software test. Otherwise, software testing is performed on the current RRU.
  • the current RRU is sent to the RRU. If the communication link breaks this fault point, you need to reset the RRU or replace the RRU. If the initialization alarm is reported, return the RRU to reset the fault point. You need to eliminate the RRU reset caused by manual or software version (version loading process, software running away) ).
  • the RRU determines whether the RRU has a hardware fault alarm. If it is, the fault is returned to the RRU hardware. If there is no RRU hardware fault, the RRU is connected to the optical module. If it is not in place, it returns to the fault point where the optical module is not in position. Check whether the optical module rates match, and if they do not match, return the fault point of the configuration error. Check whether the optical module hardware is normal. If it is abnormal, return to the fault point of the optical module fault. Check whether the optical module has no light. If the optical module has no light, continue to determine whether there is an RRU power failure alarm. If there is an RRU power failure alarm, return to the fault location of the RRU external power supply.
  • the optical port has two optical ports and a communication link with the target RRU, and only needs to be separated from the two optical ports. You can analyze the results.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, based on the selected
  • the RRU topology structure collects the fault detection point information of the communication link between the BBU and the RRU, and collects the collected fault detection point information and sends the information to the network management system.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault status of the fault detection point. To the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • another embodiment of the present invention provides a method for detecting a communication link, including:
  • Step S201 The network management system acquires the target RRU board selected by the user.
  • Step S202 initiating a diagnosis request based on the target RRU board to the base station
  • the solution in this embodiment involves a base station and a network management system.
  • the base station side and the network management side respectively set corresponding functional modules.
  • the system architecture can be as shown in Figure 2.
  • the network management system can manage fault detection point information of multiple base station sites.
  • Each of the base station sites is composed of a BBU and a plurality of RRUs.
  • the RRU topology can be a star topology, a cascade topology, a ring topology, a ring plus link topology, or a dual uplink topology.
  • the wireless product, the method of the embodiment of the present invention is applicable to the above various types of topologies.
  • the network management side initiates a diagnosis request to the base station side according to the RRU board to be diagnosed selected by the user.
  • the diagnostic request carries the target RRU board selected by the user.
  • Step S203 receiving, by the base station, fault detection point information collected and returned according to the diagnosis request;
  • Step S204 performing analysis and diagnosis on the fault detection point information to obtain a fault detection point.
  • the fault status is presented to the user.
  • the base station After receiving the diagnosis request from the network management system, the base station selects the RRU topology of the target RRU and collects all the possible fault detection points according to the topology of the base station, including: the optical port board, RRUs, and all levels. Modules and cables, manual operation of base stations that can cause RRU disconnection, and operation of base station software.
  • the base station when collecting the fault detection point information of the communication link between the BBU and the RRU, the base station may adopt the following scheme:
  • the parallel operation mode is used to find and collect the manual operation status of the optical port board and the RRUs at all levels and the operation information of the base station software from the RRU topology structure;
  • the optical interface board, the RRUs, the optical modules, and the cable information are searched for and collected from the RRU topology.
  • the collected fault detection point information is collected as the fault detection point information of the communication link between the BBU and the RRU.
  • the basic framework of the query can be established to manage the fault detection point information collection process.
  • the base station obtains the complete set of fault detection points that may need to be detected from the topology structure of the base station RRU according to the target RRU board information sent by the network management, correspondingly generates multiple query processes, and fills in the basic framework of the query according to the characteristics of the diagnostic request.
  • the query basic framework controls the order execution of each query process.
  • the query basic framework is a data query process scheduling control system, which starts a policy according to the diagnostic request, and sequentially schedules the parallel query mode and the individual query processes in the serial query mode. Including start, stop, data analysis, data summary functions.
  • the parallel query mode consists of a query process that can be started in parallel at the same time.
  • the serial query method consists of one or more query processes. After the parallel query mode is executed, the query process is executed serially.
  • the parallel query mode is preferred to shorten the time required for the query. If the diagnostic request item has an exclusive attribute, select the serial query mode.
  • the parallel query consists of the process of collecting the optical port board and the manual operation of the RRUs at all levels and the operation information of the base station software.
  • the serial query consists of the process of collecting the optical interface board, RRUs, optical modules and cable information.
  • timeout period can be preset for each detection process, and when the query process begins to execute, the timing count is started. If the time is up and there is still no query result returned, the query process ends.
  • the next query process is selectively started to prevent the detection of the redundant fault detection point from affecting the service on the RRU that is normally built.
  • the RRU link is normal, that is, the underlying hardware logic device loopback and the upper layer software link are normal, the communication link between the BBU and the RRU is considered to be normal. You do not need to collect fault detection point information about the optical port, RRU, and optical module cable.
  • the base station aggregates the collected fault detection point information and sends it back to the network management system.
  • the network management analyzes the diagnostic data, and comprehensively judges the status of the fault detection point, processing suggestions, and detailed information to the user.
  • the process of analyzing and diagnosing the fault detection point information sent by the base station by the network management system may adopt the following scheme:
  • a diagnostic analysis model for the communication link between the BBU and the RRU is established.
  • the four types of objects that affect the BBU-RRU communication link are the optical interface board, the RRU, the optical module, and the cable, as well as the base station operation and software operation. composition.
  • the network management detects the link status of the target RRU board, that is, the software RUDP/TCP link and the hardware LOOPTEST link of the target RRU, based on the situation of all the upper nodes in the RRU topology of the target RRU board. If the link is normal, the detection ends.
  • the NMS detects that the hardware link of the target RRU is abnormal, analyzes and diagnoses the operation of the optical port board, RRUs, optical modules, and cables, and the operation of the base station and software in sequence according to the set priorities. , get the fault status of the corresponding fault detection point.
  • the software link is abnormal, the manual operation and the software operation of the base station are detected, and the RRU software abnormality of the base station and the manual reset of the RRU may be excluded; if the hardware link is abnormal, the manual operation of the optical port board and the base station is detected.
  • the software running status can eliminate the abnormality of the optical interface board software, manual reset of the optical port board, power-off of the optical port board, and hardware failure of the optical port board.
  • the optical module is faulty, the optical module or the cable connected to the RRU can be faulty.
  • the optical module and the cable connected to the RRU are normal, the status of each RRU is detected.
  • For each level of the RRU first locate the RRU of the link and then detect the RRU and the lower-level optical module and cable.
  • the RRU hardware fault, optical module hardware or configuration fault, and cable fault can be eliminated.
  • the detection result of the optical module the manual operation and software operation of the base station are detected, and the RRU power failure power supply problem and the RRU failure can be eliminated.
  • the BBU-RRU communication link diagnosis is used to solve the problem of collecting information, comprehensive analysis, and presenting results in the prior art, and improving the positioning BBU-RRU communication.
  • the efficiency of link failures which in turn reduces base station maintenance costs.
  • the embodiment of the present invention further provides a second computer readable storage medium, the storage medium comprising a set of instructions for performing the method for detecting a communication link shown in FIG. 6 above.
  • FIG. 3 is a data analysis model diagram of a network management system of a communication link between BBU and RRU according to an embodiment of the present invention, where:
  • the NMS performs the target RRU link detection to determine whether the RRU software and hardware links are normal. If it is abnormal, analyze the fault point from the following four aspects:
  • Analysis of the optical port board failure Analyze whether there is a hardware failure of the optical port board.
  • Optical module and cable fault analysis Analyze whether the optical module is in position, rate matching, illuminating, frame locking, optical module hardware failure, optical module receiving power and threshold, optical port self-loop, optical fiber insertion, optical fiber Break and so on.
  • RRU board failure analysis Analyze whether there is an RRU hardware failure.
  • Base station operation and software operation failure analysis Analyze whether there is manual operation reset of the optical port board, power out of the optical port board, abnormal software of the optical port board, RRU power failure, RRU initialization alarm, RRU version loading process reset, RRU software runaway reset , RRU manual operation reset, etc.
  • FIG. 4 is a flowchart of data analysis for analyzing and diagnosing a network management link of a communication link between BBU and RRU according to an embodiment of the present invention, which specifically includes:
  • Step 400 for the user to select the target RRU to be diagnosed, if the hardware link LOOPTEST results are versa, then proceeds to step 401, otherwise, proceeds to step 402;
  • Step 401 Perform a RRU software detection process.
  • the target RRU has a software link RUDP/TCP disconnection. If the software link is broken, it is determined whether the current RRU reports an initialization alarm. If the alarm is not reported, the process returns. If the RRU communication link breaks the fault point, that is, the RRU needs to be reset or the RRU is replaced. If the initialization alarm is reported, the RRU reset is returned. That is, the RRU reset is caused by manual or software version (version loading process, The software runs away).
  • the RRU hardware abnormality is returned. If there is no RRU hardware failure, the RRU hardware detection returns no abnormality.
  • Step 402 If the LOOPTEST of the target RRU is unreachable, detect the operation and hardware status of the optical port board FS software of the topology in which the target RRU is located.
  • the FS link status If the link is broken, the software of the optical interface board is abnormal, the optical port board is manually reset, and the optical port board is powered off. If the link is normal, the LOOPTEST test of the other RRUs in the topology is detected. If none of the faults are detected, the FS optical port SERDERS self-loop result of the uplink link of the target RRU is determined. If the loopback fails, the FS hardware detection error is returned. The fault point; if the loop is successful, it is determined whether the FS has a hardware fault alarm, and if so, the fault point of the FS hardware detection abnormality is returned. If the FS hardware detection is normal, proceed to step 403;
  • Step 403 If some RRUs in the topology are in the case of LOOPTEST test, the FS optical module is detected.
  • the optical module is detected whether the optical module is in place. If it is not in position, it returns to the fault point where the optical module is not in position. Check whether the optical module rates match, and if they do not match, return the fault point of the configuration error. Check whether the optical module hardware is normal. If it is abnormal, return to the fault point of the optical module fault.
  • step 404 If the optical module detection is normal, proceed to step 404;
  • Step 404 Check whether the optical fiber of the FS to the target RRU is normal.
  • the optical fiber is star-crossed, and if so, the fault point of the optical fiber connection error is indicated.
  • the fiber is single-passed, that is, the transmitting fiber is broken, the receiving fiber is normal, and if so, the fiber is sent to break the fault point.
  • FIG. 5 is a schematic flowchart of data analysis of the parent RRU traversal of the cyclic RRU in FIG. 4 .
  • Step 405 If the current optical module is out of light, continue to determine whether there is an RRU power failure alarm. If there is an RRU power failure alarm, return to the fault location of the RRU external power supply. If there is no RRU power failure alarm, return the fiber to break. A point of failure. If the optical power of the current optical module is too low, return to the fault point of the fiber break or the lower RRU fault. If there is currently light but cannot be locked, return to the fault point where the lower-level RRU fault or the lower-level RRU optical module rate does not match.
  • Step 406 Record the upper RRU of the target RRU as the current RRU, and start to identify the RRU step by step, and enter the loop.
  • the loop ends.
  • LOOPTEST If LOOPTEST is unreachable, record the current RRU LOOPTEST link is unreachable. Determine whether the upper node of the current RRU is the FS. If it is not the FS, set the upper RRU of the current RRU to the current RRU and continue the loop. Until you find the RRU of LOOPTEST or have arrived at FS. If the FS has been reached, skip the RRU software test. Otherwise, software testing is performed on the current RRU.
  • the current RRU is sent to the RRU. If the communication link breaks this fault point, you need to reset the RRU or replace the RRU. If the initialization alarm is reported, return the RRU to reset the fault point. You need to eliminate the RRU reset caused by manual or software version (version loading process, software running away) ).
  • RRU has a hardware failure alarm. If it exists, the RRU hardware abnormality is returned. If there is no RRU hardware, If the fault is detected, it is detected whether the optical module of the RRU is in place. If it is not in position, it returns to the fault point where the optical module is not in position. Check whether the optical module rates match, and if they do not match, return the fault point of the configuration error. Check whether the optical module hardware is normal. If it is abnormal, return to the fault point of the optical module fault. Check whether the optical module has no light. If the optical module has no light, continue to determine whether there is an RRU power failure alarm.
  • RRU power failure alarm If there is an RRU power failure alarm, return to the fault location of the RRU external power supply. If there is no RRU power failure alarm, return the fiber break. This point of failure. Detects the optical power of the optical module. If it is too low, it returns the fault point of the fiber break or the lower RRU fault. If the current optical module has light but cannot be locked, it returns to the fault point that the lower-level RRU fault or the lower-level RRU optical module rate does not match.
  • the optical port has two optical ports and a communication link with the target RRU, and only needs to be separated from the two optical ports. You can analyze the results.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, based on the selected
  • the RRU topology structure collects the fault detection point information of the communication link between the BBU and the RRU, and collects the collected fault detection point information and sends the information to the network management system.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault status of the fault detection point. To the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • an embodiment of the present invention provides a base station for detecting a communication link, including: a request receiving module 701, a selecting module 702, a collecting module 703, and a sending module 704, where:
  • the request receiving module 701 is configured to receive a diagnosis request sent by the network management, where the diagnosis request carries a target RRU board selected by the user;
  • the module 702 is configured to select an RRU topology in which the target RRU board is located according to the diagnosis request.
  • the collecting module 703 is configured to collect fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure.
  • the sending module 704 is configured to send the collected fault detection point information to the network management system, and the network management system analyzes and diagnoses the fault detection point information.
  • the solution in this embodiment relates to a base station and a network management system, and the corresponding functional modules are respectively set on the base station side and the network management side according to requirements.
  • the system architecture can be as shown in Figure 2.
  • the network management system can manage fault detection point information of multiple base station sites.
  • Each of the base station sites is composed of a BBU and a plurality of RRUs.
  • the RRU topology can be a star topology, a cascade topology, a ring topology, a ring plus link topology, or a dual uplink topology.
  • the wireless product, the method of the embodiment of the present invention is applicable to the above various types of topologies.
  • the network management side initiates a diagnosis request to the base station side according to the RRU board to be diagnosed selected by the user.
  • the diagnostic request carries the target RRU board selected by the user.
  • the base station After receiving the diagnosis request from the network management system, the base station selects the RRU topology of the target RRU and collects all the possible fault detection points according to the topology of the base station, including: the optical port board, RRUs, and all levels. Modules and cables, manual operation of base stations that can cause RRU disconnection, and operation of base station software.
  • the base station when collecting the fault detection point information of the communication link between the BBU and the RRU, the base station may adopt the following scheme:
  • the parallel operation mode is used to find and collect the manual operation status of the optical port board and the RRUs at all levels and the operation information of the base station software from the RRU topology structure;
  • the optical interface board, the RRUs, the optical modules, and the cable information are searched for and collected from the RRU topology.
  • the collected fault detection point information is collected as the fault detection point information of the communication link between the BBU and the RRU.
  • the basic query can be established.
  • the framework manages the process of collecting fault detection points.
  • the base station obtains the complete set of fault detection points that may need to be detected from the topology structure of the base station RRU according to the target RRU board information sent by the network management, correspondingly generates multiple query processes, and fills in the basic framework of the query according to the characteristics of the diagnostic request.
  • the query basic framework controls the order execution of each query process.
  • the query basic framework is a data query process scheduling control system, which starts a policy according to the diagnostic request, and sequentially schedules the parallel query mode and the individual query processes in the serial query mode. Including start, stop, data analysis, data summary functions.
  • the parallel query mode consists of a query process that can be started in parallel at the same time.
  • the serial query method consists of one or more query processes. After the parallel query mode is executed, the query process is executed serially.
  • the parallel query mode is preferred to shorten the time required for the query. If the diagnostic request item has an exclusive attribute, select the serial query mode.
  • the parallel query consists of the process of collecting the optical port board and the manual operation of the RRUs at all levels and the operation information of the base station software.
  • the serial query consists of the process of collecting the optical interface board, RRUs, optical modules and cable information.
  • timeout period can be preset for each detection process, and when the query process begins to execute, the timing count is started. If the time is up and there is still no query result returned, the query process ends.
  • the next query process is selectively started to prevent the detection of the redundant fault detection point from affecting the service on the RRU that is normally built.
  • the RRU link is normal, that is, the underlying hardware logic device loopback and the upper layer software link are normal, the communication link between the BBU and the RRU is considered to be normal. You do not need to collect fault detection point information about the optical port, RRU, and optical module cable.
  • the base station aggregates the collected fault detection point information and sends it back to the network management system.
  • the network management analyzes the diagnostic data, and comprehensively judges the status of the fault detection point, processing suggestions, and detailed information to the user.
  • the process of analyzing and diagnosing the fault detection point information sent by the base station by the network management system may adopt the following scheme:
  • a diagnostic analysis model for the communication link between the BBU and the RRU is established.
  • the four types of objects that affect the BBU-RRU communication link are the optical interface board, the RRU, the optical module, and the cable, as well as the base station operation and software operation. composition.
  • the network management detects the link status of the target RRU board, that is, the software RUDP/TCP link and the hardware LOOPTEST link of the target RRU, based on the situation of all the upper nodes in the RRU topology of the target RRU board. If the link is normal, the detection ends.
  • the NMS detects that the hardware link of the target RRU is abnormal, analyzes and diagnoses the operation of the optical port board, RRUs, optical modules, and cables, and the operation of the base station and software in sequence according to the set priorities. , get the fault status of the corresponding fault detection point.
  • the software link is abnormal, the manual operation and the software operation of the base station are detected, and the RRU software abnormality of the base station and the manual reset of the RRU may be excluded; if the hardware link is abnormal, the manual operation of the optical port board and the base station is detected.
  • the software running status can eliminate the abnormality of the optical interface board software, manual reset of the optical port board, power-off of the optical port board, and hardware failure of the optical port board.
  • the optical module is faulty, the optical module or the cable connected to the RRU can be faulty.
  • the optical module and the cable connected to the RRU are normal, the status of each RRU is detected.
  • For each level of the RRU first locate the RRU of the link and then detect the RRU and the lower-level optical module and cable.
  • the RRU hardware fault, optical module hardware or configuration fault, and cable fault can be eliminated.
  • the detection result of the optical module the manual operation and software operation of the base station are detected, and the RRU power failure power supply problem and the RRU failure can be eliminated.
  • the BBU-RRU communication link diagnosis is used to solve the problem of collecting information, comprehensive analysis, and presenting results in the prior art, and improving the efficiency of locating the BBU-RRU communication link, thereby reducing the base station. Maintenance costs.
  • FIG. 3 is a data analysis model diagram of a network management system of a communication link between BBU and RRU according to an embodiment of the present invention, where:
  • the NMS performs the target RRU link detection to determine whether the RRU software and hardware links are normal. If it is abnormal, analyze the fault point from the following four aspects:
  • Analysis of the optical port board failure Analyze whether there is a hardware failure of the optical port board.
  • Optical module and cable fault analysis Analyze whether the optical module is in position, rate matching, illuminating, frame locking, optical module hardware failure, optical module receiving power and threshold, optical port self-loop, optical fiber insertion, optical fiber Break and so on.
  • RRU board failure analysis Analyze whether there is an RRU hardware failure.
  • Base station operation and software operation failure analysis Analyze whether there is manual operation reset of the optical port board, power out of the optical port board, abnormal software of the optical port board, RRU power failure, RRU initialization alarm, RRU version loading process reset, RRU software runaway reset, RRU manual operation reset, etc.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, based on the selected
  • the RRU topology structure collects the fault detection point information of the communication link between the BBU and the RRU, and collects the collected fault detection point information and sends the information to the network management system.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault status of the fault detection point. To the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • the selection module 702 and the collection module 703 can be configured by a central processing unit (CPU), or a digital signal processor (DSP), or a field programmable gate array (FPGA, Field Programmable). Gate Array) and the like are implemented; the receiving module 701 and the transmitting module 704 can be implemented by a receiver and a transmitter, respectively; the CPU, the DSP, the FPGA, the receiver, and the transmitter can be built in a base station for detecting a communication link. in.
  • CPU central processing unit
  • DSP digital signal processor
  • FPGA Field Programmable gate array
  • an embodiment of the present invention provides a network management system for detecting a communication link, including: an obtaining module 801, a request initiating module 802, an information receiving module 803, and an analysis and diagnosis module 804, where:
  • the obtaining module 801 is configured to obtain a target RRU board selected by the user.
  • the request initiating module 802 is configured to initiate a diagnosis request based on the target RRU board to the base station;
  • the information receiving module 803 is configured to receive, by the base station, a summary according to the diagnosis request Returned fault detection point information
  • the analysis and diagnosis module 804 is configured to analyze and diagnose the fault detection point information, obtain a fault state of the fault detection point, and present it to the user.
  • the solution in this embodiment relates to a base station and a network management system, and the corresponding functional modules are respectively set on the base station side and the network management side according to requirements.
  • the system architecture can be as shown in Figure 2.
  • the network management system can manage fault detection point information of multiple base station sites.
  • Each of the base station sites is composed of a BBU and a plurality of RRUs.
  • the RRU topology can be a star topology, a cascade topology, a ring topology, a ring plus link topology, or a dual uplink topology.
  • the wireless product, the method of the embodiment of the present invention is applicable to the above various types of topologies.
  • the network management side initiates a diagnosis request to the base station side according to the RRU board to be diagnosed selected by the user.
  • the diagnostic request carries the target RRU board selected by the user.
  • the base station After receiving the diagnosis request from the network management system, the base station selects the RRU topology of the target RRU and collects all the possible fault detection points according to the topology of the base station, including: the optical port board, RRUs, and all levels. Modules and cables, manual operation of base stations that can cause RRU disconnection, and operation of base station software.
  • the base station when collecting the fault detection point information of the communication link between the BBU and the RRU, the base station may adopt the following scheme:
  • the parallel operation mode is used to find and collect the manual operation status of the optical port board and the RRUs at all levels and the operation information of the base station software from the RRU topology structure;
  • the optical interface board, the RRUs, the optical modules, and the cable information are searched for and collected from the RRU topology.
  • the collected fault detection point information is collected as the fault detection point information of the communication link between the BBU and the RRU.
  • the basic framework of the query can be established to manage the fault detection point information collection process.
  • the base station obtains the complete set of fault detection points that may need to be detected from the topology structure of the base station RRU according to the target RRU board information sent by the network management, correspondingly generates multiple query processes, and fills in the basic framework of the query according to the characteristics of the diagnostic request.
  • the query basic framework controls the order execution of each query process.
  • the query basic framework is a data query process scheduling control system, which starts a policy according to the diagnostic request, and sequentially schedules the parallel query mode and the individual query processes in the serial query mode. Including start, stop, data analysis, data summary functions.
  • the parallel query mode consists of a query process that can be started in parallel at the same time.
  • the serial query method consists of one or more query processes. After the parallel query mode is executed, the query process is executed serially.
  • the parallel query mode is preferred to shorten the time required for the query. If the diagnostic request item has an exclusive attribute, select the serial query mode.
  • the parallel query consists of the process of collecting the optical port board and the manual operation of the RRUs at all levels and the operation information of the base station software.
  • the serial query consists of the process of collecting the optical interface board, RRUs, optical modules and cable information.
  • timeout period can be preset for each detection process, and when the query process begins to execute, the timing count is started. If the time is up and there is still no query result returned, the query process ends.
  • the next query process is selectively started to prevent the detection of the redundant fault detection point from affecting the service on the RRU that is normally built.
  • the RRU link is normal, that is, the underlying hardware logic device loopback and the upper layer software link are normal, the communication link between the BBU and the RRU is considered to be normal. You do not need to collect fault detection point information about the optical port, RRU, and optical module cable.
  • the base station aggregates the collected fault detection point information and sends it back to the network management system.
  • Network management received After the obstacle detection point information, the diagnostic data is analyzed, and the status of the fault detection point, processing suggestions, and detailed information are comprehensively judged and presented to the user.
  • the process of analyzing and diagnosing the fault detection point information sent by the base station by the network management system may adopt the following scheme:
  • a diagnostic analysis model for the communication link between the BBU and the RRU is established.
  • the four types of objects that affect the BBU-RRU communication link are the optical interface board, the RRU, the optical module, and the cable, as well as the base station operation and software operation. composition.
  • the network management detects the link status of the target RRU board, that is, the software RUDP/TCP link and the hardware LOOPTEST link of the target RRU, based on the situation of all the upper nodes in the RRU topology of the target RRU board. If the link is normal, the detection ends.
  • the NMS detects that the hardware link of the target RRU is abnormal, analyzes and diagnoses the operation of the optical port board, RRUs, optical modules, and cables, and the operation of the base station and software in sequence according to the set priorities. , get the fault status of the corresponding fault detection point.
  • the software link is abnormal, the manual operation and the software operation of the base station are detected, and the RRU software abnormality of the base station and the manual reset of the RRU may be excluded; if the hardware link is abnormal, the manual operation of the optical port board and the base station is detected.
  • the software running status can eliminate the abnormality of the optical interface board software, manual reset of the optical port board, power-off of the optical port board, and hardware failure of the optical port board.
  • the optical module is faulty, the optical module or the cable connected to the RRU can be faulty.
  • the optical module and the cable connected to the RRU are normal, the status of each RRU is detected.
  • For each level of the RRU first locate the RRU of the link and then detect the RRU and the lower-level optical module and cable.
  • the RRU hardware fault, optical module hardware or configuration fault, and cable fault can be eliminated.
  • the detection result of the optical module the manual operation and software operation of the base station are detected, and the RRU power failure power supply problem and the RRU failure can be eliminated.
  • the BBU-RRU communication link diagnosis is used to solve the problem of collecting information, comprehensive analysis, and presenting results in the prior art, and improving the efficiency of locating the BBU-RRU communication link, thereby reducing the base station. Maintenance costs.
  • FIG. 3 is a data analysis model diagram of a network management system of a communication link between BBU and RRU according to an embodiment of the present invention, where:
  • the NMS performs the target RRU link detection to determine whether the RRU software and hardware links are normal. If it is abnormal, analyze the fault point from the following four aspects:
  • Analysis of the optical port board failure Analyze whether there is a hardware failure of the optical port board.
  • Optical module and cable fault analysis Analyze whether the optical module is in position, rate matching, illuminating, frame locking, optical module hardware failure, optical module receiving power and threshold, optical port self-loop, optical fiber insertion, optical fiber Break and so on.
  • RRU board failure analysis Analyze whether there is an RRU hardware failure.
  • Base station operation and software operation failure analysis Analyze whether there is manual operation reset of the optical port board, power out of the optical port board, abnormal software of the optical port board, RRU power failure, RRU initialization alarm, RRU version loading process reset, RRU software runaway reset , RRU manual operation reset, etc.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, based on the selected
  • the RRU topology structure collects the fault detection point information of the communication link between the BBU and the RRU, and collects the collected fault detection point information and sends the information to the network management system.
  • the network management system analyzes and diagnoses the fault detection point information, and obtains the fault status of the fault detection point. To the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • the obtaining module 801 and the analysis and diagnosis module 804 can be configured by a central processing unit (CPU), or a digital signal processing (DSP), or a field programmable gate array (FPGA, Field). Programmable Gate Array) or the like is implemented; the information receiving module 803 and the request initiating module 802 can be implemented by a receiver and a transmitter, respectively; the CPU, the DSP, the FPGA, the receiver, and the transmitter can be built in the detection communication chain. In the network management of the road.
  • CPU central processing unit
  • DSP digital signal processing
  • FPGA field programmable gate array
  • Programmable Gate Array Programmable Gate Array
  • the embodiment of the present invention further provides a system for detecting a communication link, including: a base station and a network management; wherein:
  • the network management device is configured to obtain a target RRU board selected by the user, and initiate a diagnosis request based on the target RRU board to the base station;
  • the base station is configured to: according to the diagnosis request, select an RRU topology structure where the target RRU board is located, and collect fault detection point information of the communication link between the BBU and the RRU based on the selected RRU topology structure, and collect the fault detection point information.
  • the fault detection point information is summarized and sent to the network management;
  • the network management system is further configured to analyze and diagnose the fault detection point information to obtain a fault.
  • the fault status of the detection point is presented to the user.
  • the method for detecting a communication link between the BBU and the RRU, the base station, the network management system, and the system the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station; the base station selects the target according to the diagnosis request.
  • the RRU topology of the RRU is based on the selected RRU topology.
  • the fault detection point information of the communication link between the BBU and the RRU is collected.
  • the collected fault detection points are collected and sent to the NMS.
  • the information is analyzed and diagnosed, and the fault state of the fault detection point is obtained and presented to the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.
  • the network management system obtains the target RRU board selected by the user, and initiates a diagnosis request based on the target RRU board to the base station.
  • the base station selects the RRU topology structure of the target RRU board according to the diagnosis request, and selects the RRU topology structure based on the selected RRU topology.
  • the fault detection point information of the communication link between the BBU and the RRU is collected, and the collected fault detection point information is summarized and sent to the network management; the network management analyzes and diagnoses the fault detection point information, and obtains the fault state of the fault detection point, and presents the fault status to the user. Therefore, by using the BBU-RRU communication link diagnosis, the problems of collecting information, comprehensive analysis, and presenting in the prior art are solved, and the efficiency of locating the BBU-RRU communication link failure is improved, thereby reducing the maintenance cost of the base station.

Abstract

本发明实施例涉及一种检测通讯链路的方法、基站、网管、系统及存储介质,其方法包括:基站接收网管发送的诊断请求;根据诊断请求,选取目标RRU单板所在的RRU拓扑结构;基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;将收集的故障检测点信息汇总后发送给网管,由网管对故障检测点信息进行分析诊断,并将诊断结果呈现给用户。本发明解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。

Description

检测通讯链路的方法、基站、网管、系统及存储介质 技术领域
本发明涉及通讯技术领域,尤其涉及一种检测BBU-RRU间通讯链路的方法、基站、网管、系统及存储介质。
背景技术
在基站的BBU(基带处理单元)-RRU(射频拉远单元)架构下,RRU通过光纤线缆拉远连接,一旦出现RRU未探测到,即出现RRU断链现象,则很难知道是链路中哪一部分出现问题,尤其是传输环境不稳定或者底层驱动异常引起的情况下,更无法得知链路故障原因。
目前,对于基站中出现的RRU断链现象,一般的处理方法是:通过网管告警提示,由维护人员根据经验,逐级地插拔、替换元件来试探性排除故障。但是,告警往往由多个故障点引起,对于BBU-RRU通讯链路这一涉及多硬件设备及传输介质的综合系统,需要多次尝试排除故障,并要借助多个告警进行综合分析,对维护人员要求过高。
发明内容
本发明实施例的主要目的在于提供一种检测BBU-RRU间通讯链路的方法、基站、网管、系统及存储介质,旨在提高定位BBU-RRU通讯链路故障的效率,进而降低基站维护成本。
为了达到上述目的,本发明实施例提出一种检测通讯链路的方法,包括:
基站接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标RRU单板;
根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
上述方案中,所述基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息的步骤包括:
所述基站采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
所述基站采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息;
汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
上述方案中,所述RRU拓扑结构为星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑中的一种。
本发明实施例还提出一种检测通讯链路的方法,包括:
网管获取用户选择的目标RRU单板;
向基站发起基于所述目标RRU单板的诊断请求;
接收所述基站根据所述诊断请求收集汇总并返回的故障检测点信息;
对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
上述方案中,所述网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户的步骤包括:
所述网管检测所述目标RRU单板的链路是否异常;
当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级, 依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态;
当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;
当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况;
将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
上述方案中,所述当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态的步骤包括:
所述网管检测所述目标RRU单板的出光口板是否异常;
若检测到所述目标RRU单板的出光口板异常,则得到相应故障检测点的故障状态;
若检测到所述目标RRU单板的出光口板正常,则检测所述目标RRU的光模块和连接RRU的线缆情况;
若检测到所述目标RRU的光模块和连接RRU的线缆异常,则得到相应故障检测点的故障状态;
若检测到所述目标RRU的光模块和连接RRU的线缆正常,则检测各级RRU的情况,得到各级RRU相应故障检测点的故障状态。
本发明实施例还提出一种检测通讯链路的基站,包括:
请求接收模块,配置为接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标RRU单板;
选取模块,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
收集模块,配置为基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
发送模块,配置为将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
上述方案中,所述收集模块,还配置为采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息;汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
上述方案中,所述RRU拓扑结构为星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑中的一种。
本发明实施例还提出一种检测通讯链路的网管,包括:
获取模块,配置为获取用户选择的目标RRU单板;
请求发起模块,配置为向基站发起基于所述目标RRU单板的诊断请求;
信息接收模块,配置为接收所述基站根据所述诊断请求收集汇总并返回的故障检测点信息;
分析诊断模块,配置为对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
上述方案中,所述分析诊断模块,还配置为检测所述目标RRU单板的链路是否异常;当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态;当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况;将得到的故障检测点的故障状态以及相应的修复 建议呈现给用户。
上述方案中,所述分析诊断模块,还配置为检测所述目标RRU单板的出光口板是否异常;若检测到所述目标RRU单板的出光口板异常,则得到相应故障检测点的故障状态;若检测到所述目标RRU单板的出光口板正常,则检测所述目标RRU的光模块和连接RRU的线缆情况;若检测到所述目标RRU的光模块和连接RRU的线缆异常,则得到相应故障检测点的故障状态;若检测到所述目标RRU的光模块和连接RRU的线缆正常,则检测各级RRU的情况,得到各级RRU相应故障检测点的故障状态。
本发明实施例还提出一种检测通讯链路的系统,包括:基站和网管;其中:
所述网管,配置为获取用户选择的目标RRU单板,向基站发起基于所述目标RRU单板的诊断请求;
所述基站,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;
所述网管,还配置为对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
本发明实施例提出的一种检测BBU-RRU间通讯链路的方法、基站、网管、系统及存储介质,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链 路故障的效率,进而降低了基站维护成本。
附图说明
图1是本发明检测通讯链路的方法一实施例的流程示意图;
图2是本发明实施例中检测通讯链路的系统架构示意图;
图3是本发明实施例中BBU-RRU间通讯链路的网管的数据分析模型图;
图4是本发明实施例的一种BBU-RRU间通讯链路的网管进行分析诊断的数据分析流程图;
图5是图4中循环RRU的父级RRU遍历进行数据分析的具体流程示意图;
图6是本发明检测通讯链路的方法另一实施例的流程示意图;
图7是本发明检测通讯链路的基站一实施例的功能模块示意图;
图8是本发明检测通讯链路的网管一实施例的功能模块示意图。
为了使本发明的技术方案更加清楚、明了,下面将结合附图作进一步详述。
具体实施方式
本发明实施例的解决方案主要是:网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决现有技术中收集信息、综合分析、结果呈现的问题,提高定位BBU-RRU通讯链路故障的效率,进而降低基站维护成本。
具体地,如图1所示,本发明一实施例提出一种检测通讯链路的方法,包括:
步骤S101,基站接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标RRU单板;
本实施例方案涉及基站与网管,根据需要,基站侧与网管侧分别设置相应的功能模块。其系统架构可以如图2所示,网管可管理多个基站站点的故障检测点信息。每个基站站点由一个BBU和若干个RRU组成,其RRU拓扑结构可以是星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑等,各种配置拓扑对应支持不同的无线产品,本发明实施例方法适用于上述各类拓扑结构。
具体地,首先,网管侧根据用户选择的待诊断RRU单板,向基站侧发起诊断请求。该诊断请求中携带有用户选取的目标RRU单板。
步骤S102,根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
步骤S103,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
基站侧接收到网管发来的诊断请求后,选取所述目标RRU单板所在的RRU拓扑结构,根据基站拓扑结构,收集所有可能的故障检测点信息,包括:出光口板、各级RRU、光模块和线缆、可导致RRU断链的基站人工操作及基站软件运行情况等。
具体地,基站在收集BBU与RRU间通讯链路的故障检测点信息时,可以采用如下方案:
首先,采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
然后,采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光 口板、各级RRU、光模块和线缆信息。
最后,汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
在实际应用中,基站进行故障检测点数据采集时,可以建立查询基本框架来管理故障检测点信息采集过程。
其中,基站根据网管发来的目标RRU单板信息,从基站RRU拓扑结构中得到可能需要检测的故障检测点全集,对应地生成多个查询过程,并根据诊断请求特点,填入查询基本框架。由查询基本框架控制各个查询过程有序执行。
查询基本框架是一个数据查询过程调度控制系统,根据诊断请求启动策略,依次调度并行查询方式和串行查询方式下的各个查询过程。包括启动、停止、数据分析、数据汇总功能。
其中,并行查询方式由可以同时并行启动的查询过程组成。串行查询方式是由一个或多个查询过程组成,在并行查询方式执行完之后,在串行执行查询过程。
在填充查询过程时,对于并行查询和串行查询,优先选择并行查询方式以缩短查询所需时间。如果诊断请求项有排他特性,则选择串行查询方式。
对于BBU-RRU通讯链路的诊断请求,并行查询由采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息的查询过程组成。串行查询由采集出光口板、各级RRU、光模块和线缆信息的查询过程组成。
此外,针对各个检测过程可以预设超时时间,当查询过程开始执行时,启动定时计数。若定时时间到仍无查询结果返回,则结束该查询过程。
另外,在查询启动策略中还应避免检测冗余故障检测点。
在采集数据的过程中,通过分析已结束的查询过程结果,选择性启动 下一个查询过程,避免冗余故障检测点的检测影响正常建链的RRU上业务。当RRU链路正常时,即底层硬件逻辑器件环回和高层软件链路正常,则认为BBU-RRU间通讯链路正常。此时不需要收集相关出光口板、RRU和光模块线缆的故障检测点信息。
步骤S104,将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
之后,基站将收集的故障检测点信息汇总后发回给网管。网管收到故障检测点信息后,分析诊断数据,综合判断故障检测点状态、处理建议及详细信息等呈现给用户。
其中,网管对基站发来的故障检测点信息进行分析诊断的过程可以采用如下方案:
在网管侧,建立BBU-RRU间通讯链路的诊断分析模型,主要由影响BBU-RRU通讯链路的四类对象:出光口板、RRU、光模块和线缆,以及基站操作及软件运行情况组成。
首先,网管基于目标RRU单板所在RRU拓扑结构中所有上级节点情况,检测所述目标RRU单板的链路情况,即目标RRU的软件RUDP/TCP链路和硬件LOOPTEST链路。如果链路正常,则检测结束。
当网管检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态。
当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况。
最后,将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
其中,更为具体地,如果软件链路异常,则检测基站人工操作和软件运行情况,可以排除基站RRU软件异常、RRU人工复位;如果硬件链路异常,则检测出光口板和基站人工操作及软件运行情况,可以排除出光口板软件异常、出光口板人工复位、出光口板下电、出光口板硬件故障。
如果出光口板检测正常,则检测其光模块、连接RRU的线缆情况,可以排除光模块硬件或配置故障、线缆故障。
如果光模块、连接RRU的线缆正常,则检测各级RRU的情况。
对各级RRU,首先定位到链路断的这级RRU,然后检测该RRU的情况及下级联光模块、线缆情况,可以排除RRU硬件故障、光模块硬件或配置故障、线缆故障。
根据光模块的检测结果,检测基站人工操作及软件运行情况,可以排除RRU掉电供电电源问题、RRU故障。
通过上述分析诊断过程,可以得到具体是由光接口板、光模块、线缆、RRU、基站软件、人工操作这些故障点的哪个环节引起的BBU-RRU通讯链路异常。并可以直接呈现给用户准确故障点。
本实施例通过上述方案,采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
本发明实施例还提出一种第一计算机可读存储介质,该存储介质包括一组指令,所述指令用于执行以上如图1所示的检测通讯链路的方法。
以下结合附图对本发明实施例中网管对基站发来的故障检测点信息进行分析诊断的过程进行详细阐述:
如图3所示,图3是本发明实施例中BBU-RRU间通讯链路的网管的数据分析模型图,其中:
首先,网管进行目标RRU链路检测,判断RRU软、硬件链路是否正常。如果异常,则从下面四个方面分析故障点:
出光口板故障分析:分析是否存在出光口板硬件故障。
光模块、线缆故障分析:分析光模块是否在位、速率匹配、有光无光、帧锁定情况、光模块硬件故障、光模块接收功率及阈值、光口自环情况、光纤插错、光纤断等。
RRU单板故障分析:分析是否存在RRU硬件故障。
基站操作及软件运行情况故障分析:分析是否存在出光口板人工操作复位、出光口板下电、出光口板软件异常、RRU掉电、RRU初始化告警、RRU版本加载过程复位、RRU软件跑飞复位、RRU人工操作复位等。
如图4所示,图4是本发明实施例的一种BBU-RRU间通讯链路的网管进行分析诊断的数据分析流程图,具体包括:
步骤400,针对用户选择需要诊断的目标RRU,如果硬件链路LOOPTEST结果是通的,则进入步骤401,否则,进入步骤402;
步骤401,进行RRU软件检测流程;
首先判别该目标RRU是否有软件链路RUDP/TCP断,如果有软件链路断,则判断当前RRU是否上报初始化告警,如果没有上报该告警,则返回RRU通讯链路断这一故障点,即需要硬复位RRU或更换RRU;如果上报初始化告警,则返回RRU复位这一故障点,即需要排除RRU复位是人工引起或软件版本引起(版本加载过程,软件跑飞)。
如果没有软件链路断,则判别该RRU是否存在硬件故障告警,如果存在,则返回该RRU硬件异常这一故障点,如果不存在RRU硬件故障,则返回RRU硬件检测无异常。
步骤402,如果目标RRU的LOOPTEST不通,则检测其所在拓扑的出光口板FS软件运行及硬件情况。
首先,判断FS链路情况,若有链路断,则排除光口板软件异常、出光口板人工复位、出光口板下电。若链路正常,则检测该拓扑上其它RRU的LOOPTEST测试情况,如果均不通,则判断目标RRU上联链路的FS光口SERDERS自环结果,如果自环失败,返回FS硬件检测异常这一故障点;如果自环成功,则判别该FS是否有硬件故障告警,如果有,则返回FS硬件检测异常这一故障点。如果FS硬件检测正常,则进入步骤403;
步骤403,如果该拓扑上存在某些RRU是LOOPTEST测试通的情况,则检测FS光模块情况;
首先,检测光模块是否在位,若不在位,则返回光模块不在位这一故障点。检测光模块速率是否匹配,如果不匹配则返回配置错误这一故障点。检测光模块硬件是否正常,如果异常则返回光模块故障这一故障点。
如果光模块检测正常,则进入步骤404;
步骤404,检测FS到目标RRU的光纤是否正常;
具体地,检测光纤是否星形交叉连接,如果是,则提示光纤连接错误这一故障点。检测光纤是否单通,即发送光纤断,接收光纤正常,如果是则提示光纤发送断这一故障点。
如果光纤检测正常,判断目标RRU是否是第一级RRU,如果是则进行光信号检测和基站软件运行情况分析,具体见步骤405;如果目标RRU不是第一级RRU,则进入级联RRU检测,循环以RRU的父级RRU为当前RRU进行数据分析,具体见图5中各步骤,图5是图4中循环RRU的父级RRU遍历进行数据分析的流程示意图。
步骤405,如果当前单板光模块无光,则继续判断有没有RRU掉电告警,如果有RRU掉电告警,返回排查RRU外部电源这一故障点,如果没有RRU掉电告警,返回光纤断这一故障点。如果当前单板光模块光功率过低,返回光纤断或下级RRU故障这一故障点。如果当前有光但是锁不住, 返回下级RRU故障或下级RRU光模块速率不匹配这一故障点。
步骤406,记录目标RRU的上级RRU为当前RRU,并开始逐级针对RRU进行识别,进入循环。
具体地,针对当前RRU,检测该RRU的LOOPTEST链路是否通。如果该RRU的LOOPTEST链路通,则结束循环。
如果LOOPTEST不通,记录当前RRU LOOPTEST链路不通。判断当前RRU的上级节点是否是FS,如果不是FS,则置当前RRU的上级RRU为当前RRU,继续循环。直到找到LOOPTEST通的RRU或已到达FS为止。如果已到达FS,则跳过RRU软件检测。否则,对当前RRU进行软件检测。
其中,在对当前RRU进行软件检测时,判别该RRU是否有RUDP/TCP链路断,如果有RUDP/TCP链路断,则判断当前RRU是否上报初始化告警,如果没有上报该告警,则返回RRU通讯链路断这一故障点,需要硬复位RRU或更换RRU,如果上报初始化告警,则返回RRU复位这一故障点,需要排除RRU复位是人工引起或软件版本引起(版本加载过程,软件跑飞)。
如果没有RUDP/TCP链路断,则判别该RRU是否存在硬件故障告警,如果存在,则返回该RRU硬件异常这一故障点,如果不存在RRU硬件故障,则检测该RRU下联光模块是否在位,若不在位,则返回光模块不在位这一故障点。检测光模块速率是否匹配,如果不匹配则返回配置错误这一故障点。检测光模块硬件是否正常,如果异常则返回光模块故障这一故障点。检测光模块是否无光,如果光模块无光,则继续判断有没有RRU掉电告警,如果有RRU掉电告警,返回排查RRU外部电源这一故障点,如果没有RRU掉电告警,返回光纤断这一故障点。检测光模块光功率,如果过低,返回光纤断或下级RRU故障这一故障点。如果当前光模块有光但是锁不住,则返回下级RRU故障或下级RRU光模块速率不匹配这一故障点。
对于上述过程,同样适用于环网、环+链、双上联拓扑,这几种拓扑的特点是出光口板有两个光口与目标RRU有通讯链路,只需从两个出光口分别进行结果分析即可。
本实施例通过上述方案,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
如图6所示,本发明另一实施例提出一种检测通讯链路的方法,包括:
步骤S201,网管获取用户选择的目标RRU单板;
步骤S202,向基站发起基于所述目标RRU单板的诊断请求;
本实施例方案涉及基站与网管,根据需要,基站侧与网管侧分别设置相应的功能模块。其系统架构可以如图2所示,网管可管理多个基站站点的故障检测点信息。每个基站站点由一个BBU和若干个RRU组成,其RRU拓扑结构可以是星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑等,各种配置拓扑对应支持不同的无线产品,本发明实施例方法适用于上述各类拓扑结构。
具体地,首先,网管侧根据用户选择的待诊断RRU单板,向基站侧发起诊断请求。该诊断请求中携带有用户选取的目标RRU单板。
步骤S203,接收所述基站根据所述诊断请求收集汇总并返回的故障检测点信息;
步骤S204,对所述故障检测点信息进行分析诊断,得到故障检测点的 故障状态,呈现给用户。
基站侧接收到网管发来的诊断请求后,选取所述目标RRU单板所在的RRU拓扑结构,根据基站拓扑结构,收集所有可能的故障检测点信息,包括:出光口板、各级RRU、光模块和线缆、可导致RRU断链的基站人工操作及基站软件运行情况等。
具体地,基站在收集BBU与RRU间通讯链路的故障检测点信息时,可以采用如下方案:
首先,采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
然后,采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息。
最后,汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
在实际应用中,基站进行故障检测点数据采集时,可以建立查询基本框架来管理故障检测点信息采集过程。
其中,基站根据网管发来的目标RRU单板信息,从基站RRU拓扑结构中得到可能需要检测的故障检测点全集,对应地生成多个查询过程,并根据诊断请求特点,填入查询基本框架。由查询基本框架控制各个查询过程有序执行。
查询基本框架是一个数据查询过程调度控制系统,根据诊断请求启动策略,依次调度并行查询方式和串行查询方式下的各个查询过程。包括启动、停止、数据分析、数据汇总功能。
其中,并行查询方式由可以同时并行启动的查询过程组成。串行查询方式是由一个或多个查询过程组成,在并行查询方式执行完之后,在串行执行查询过程。
在填充查询过程时,对于并行查询和串行查询,优先选择并行查询方式以缩短查询所需时间。如果诊断请求项有排他特性,则选择串行查询方式。
对于BBU-RRU通讯链路的诊断请求,并行查询由采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息的查询过程组成。串行查询由采集出光口板、各级RRU、光模块和线缆信息的查询过程组成。
此外,针对各个检测过程可以预设超时时间,当查询过程开始执行时,启动定时计数。若定时时间到仍无查询结果返回,则结束该查询过程。
另外,在查询启动策略中还应避免检测冗余故障检测点。
在采集数据的过程中,通过分析已结束的查询过程结果,选择性启动下一个查询过程,避免冗余故障检测点的检测影响正常建链的RRU上业务。当RRU链路正常时,即底层硬件逻辑器件环回和高层软件链路正常,则认为BBU-RRU间通讯链路正常。此时不需要收集相关出光口板、RRU和光模块线缆的故障检测点信息。
之后,基站将收集的故障检测点信息汇总后发回给网管。网管收到故障检测点信息后,分析诊断数据,综合判断故障检测点状态、处理建议及详细信息等呈现给用户。
其中,网管对基站发来的故障检测点信息进行分析诊断的过程可以采用如下方案:
在网管侧,建立BBU-RRU间通讯链路的诊断分析模型,主要由影响BBU-RRU通讯链路的四类对象:出光口板、RRU、光模块和线缆,以及基站操作及软件运行情况组成。
首先,网管基于目标RRU单板所在RRU拓扑结构中所有上级节点情况,检测所述目标RRU单板的链路情况,即目标RRU的软件RUDP/TCP链路和硬件LOOPTEST链路。如果链路正常,则检测结束。
当网管检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态。
当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况。
最后,将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
其中,更为具体地,如果软件链路异常,则检测基站人工操作和软件运行情况,可以排除基站RRU软件异常、RRU人工复位;如果硬件链路异常,则检测出光口板和基站人工操作及软件运行情况,可以排除出光口板软件异常、出光口板人工复位、出光口板下电、出光口板硬件故障。
如果出光口板检测正常,则检测其光模块、连接RRU的线缆情况,可以排除光模块硬件或配置故障、线缆故障。
如果光模块、连接RRU的线缆正常,则检测各级RRU的情况。
对各级RRU,首先定位到链路断的这级RRU,然后检测该RRU的情况及下级联光模块、线缆情况,可以排除RRU硬件故障、光模块硬件或配置故障、线缆故障。
根据光模块的检测结果,检测基站人工操作及软件运行情况,可以排除RRU掉电供电电源问题、RRU故障。
通过上述分析诊断过程,可以得到具体是由光接口板、光模块、线缆、RRU、基站软件、人工操作这些故障点的哪个环节引起的BBU-RRU通讯链路异常。并可以直接呈现给用户准确故障点。
本实施例通过上述方案,采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通 讯链路故障的效率,进而降低了基站维护成本。
本发明实施例还提出一种第二计算机可读存储介质,该存储介质包括一组指令,所述指令用于执行以上图6所示的检测通讯链路的方法。
以下结合附图对本发明实施例中网管对基站发来的故障检测点信息进行分析诊断的过程进行详细阐述:
如图3所示,图3是本发明实施例中BBU-RRU间通讯链路的网管的数据分析模型图,其中:
首先,网管进行目标RRU链路检测,判断RRU软、硬件链路是否正常。如果异常,则从下面四个方面分析故障点:
出光口板故障分析:分析是否存在出光口板硬件故障。
光模块、线缆故障分析:分析光模块是否在位、速率匹配、有光无光、帧锁定情况、光模块硬件故障、光模块接收功率及阈值、光口自环情况、光纤插错、光纤断等。
RRU单板故障分析:分析是否存在RRU硬件故障。
基站操作及软件运行情况故障分析:分析是否存在出光口板人工操作复位、出光口板下电、出光口板软件异常、RRU掉电、RRU初始化告警、RRU版本加载过程复位、RRU软件跑飞复位、RRU人工操作复位等。
如图4所示,图4是本发明实施例的一种BBU-RRU间通讯链路的网管进行分析诊断的数据分析流程图,具体包括:
步骤400,针对用户选择需要诊断的目标RRU,如果硬件链路LOOPTEST结果是通的,则进入步骤401,否则,进入步骤402;
步骤401,进行RRU软件检测流程;
首先判别该目标RRU是否有软件链路RUDP/TCP断,如果有软件链路断,则判断当前RRU是否上报初始化告警,如果没有上报该告警,则返回 RRU通讯链路断这一故障点,即需要硬复位RRU或更换RRU;如果上报初始化告警,则返回RRU复位这一故障点,即需要排除RRU复位是人工引起或软件版本引起(版本加载过程,软件跑飞)。
如果没有软件链路断,则判别该RRU是否存在硬件故障告警,如果存在,则返回该RRU硬件异常这一故障点,如果不存在RRU硬件故障,则返回RRU硬件检测无异常。
步骤402,如果目标RRU的LOOPTEST不通,则检测其所在拓扑的出光口板FS软件运行及硬件情况。
首先,判断FS链路情况,若有链路断,则排除光口板软件异常、出光口板人工复位、出光口板下电。若链路正常,则检测该拓扑上其它RRU的LOOPTEST测试情况,如果均不通,则判断目标RRU上联链路的FS光口SERDERS自环结果,如果自环失败,返回FS硬件检测异常这一故障点;如果自环成功,则判别该FS是否有硬件故障告警,如果有,则返回FS硬件检测异常这一故障点。如果FS硬件检测正常,则进入步骤403;
步骤403,如果该拓扑上存在某些RRU是LOOPTEST测试通的情况,则检测FS光模块情况;
首先,检测光模块是否在位,若不在位,则返回光模块不在位这一故障点。检测光模块速率是否匹配,如果不匹配则返回配置错误这一故障点。检测光模块硬件是否正常,如果异常则返回光模块故障这一故障点。
如果光模块检测正常,则进入步骤404;
步骤404,检测FS到目标RRU的光纤是否正常;
具体地,检测光纤是否星形交叉连接,如果是,则提示光纤连接错误这一故障点。检测光纤是否单通,即发送光纤断,接收光纤正常,如果是则提示光纤发送断这一故障点。
如果光纤检测正常,判断目标RRU是否是第一级RRU,如果是则进行 光信号检测和基站软件运行情况分析,具体见步骤405;如果目标RRU不是第一级RRU,则进入级联RRU检测,循环以RRU的父级RRU为当前RRU进行数据分析,具体见图5中各步骤,图5是图4中循环RRU的父级RRU遍历进行数据分析的流程示意图。
步骤405,如果当前单板光模块无光,则继续判断有没有RRU掉电告警,如果有RRU掉电告警,返回排查RRU外部电源这一故障点,如果没有RRU掉电告警,返回光纤断这一故障点。如果当前单板光模块光功率过低,返回光纤断或下级RRU故障这一故障点。如果当前有光但是锁不住,返回下级RRU故障或下级RRU光模块速率不匹配这一故障点。
步骤406,记录目标RRU的上级RRU为当前RRU,并开始逐级针对RRU进行识别,进入循环。
具体地,针对当前RRU,检测该RRU的LOOPTEST链路是否通。如果该RRU的LOOPTEST链路通,则结束循环。
如果LOOPTEST不通,记录当前RRU LOOPTEST链路不通。判断当前RRU的上级节点是否是FS,如果不是FS,则置当前RRU的上级RRU为当前RRU,继续循环。直到找到LOOPTEST通的RRU或已到达FS为止。如果已到达FS,则跳过RRU软件检测。否则,对当前RRU进行软件检测。
其中,在对当前RRU进行软件检测时,判别该RRU是否有RUDP/TCP链路断,如果有RUDP/TCP链路断,则判断当前RRU是否上报初始化告警,如果没有上报该告警,则返回RRU通讯链路断这一故障点,需要硬复位RRU或更换RRU,如果上报初始化告警,则返回RRU复位这一故障点,需要排除RRU复位是人工引起或软件版本引起(版本加载过程,软件跑飞)。
如果没有RUDP/TCP链路断,则判别该RRU是否存在硬件故障告警,如果存在,则返回该RRU硬件异常这一故障点,如果不存在RRU硬件故 障,则检测该RRU下联光模块是否在位,若不在位,则返回光模块不在位这一故障点。检测光模块速率是否匹配,如果不匹配则返回配置错误这一故障点。检测光模块硬件是否正常,如果异常则返回光模块故障这一故障点。检测光模块是否无光,如果光模块无光,则继续判断有没有RRU掉电告警,如果有RRU掉电告警,返回排查RRU外部电源这一故障点,如果没有RRU掉电告警,返回光纤断这一故障点。检测光模块光功率,如果过低,返回光纤断或下级RRU故障这一故障点。如果当前光模块有光但是锁不住,则返回下级RRU故障或下级RRU光模块速率不匹配这一故障点。
对于上述过程,同样适用于环网、环+链、双上联拓扑,这几种拓扑的特点是出光口板有两个光口与目标RRU有通讯链路,只需从两个出光口分别进行结果分析即可。
本实施例通过上述方案,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
如图7所示,本发明一实施例提出一种检测通讯链路的基站,包括:请求接收模块701、选取模块702、收集模块703及发送模块704,其中:
请求接收模块701,配置为接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标RRU单板;
选取模块702,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
收集模块703,配置为基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
发送模块704,配置为将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
具体地,本实施例方案涉及基站与网管,根据需要,基站侧与网管侧分别设置相应的功能模块。其系统架构可以如图2所示,网管可管理多个基站站点的故障检测点信息。每个基站站点由一个BBU和若干个RRU组成,其RRU拓扑结构可以是星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑等,各种配置拓扑对应支持不同的无线产品,本发明实施例方法适用于上述各类拓扑结构。
具体地,首先,网管侧根据用户选择的待诊断RRU单板,向基站侧发起诊断请求。该诊断请求中携带有用户选取的目标RRU单板。
基站侧接收到网管发来的诊断请求后,选取所述目标RRU单板所在的RRU拓扑结构,根据基站拓扑结构,收集所有可能的故障检测点信息,包括:出光口板、各级RRU、光模块和线缆、可导致RRU断链的基站人工操作及基站软件运行情况等。
具体地,基站在收集BBU与RRU间通讯链路的故障检测点信息时,可以采用如下方案:
首先,采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
然后,采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息。
最后,汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
在实际应用中,基站进行故障检测点数据采集时,可以建立查询基本 框架来管理故障检测点信息采集过程。
其中,基站根据网管发来的目标RRU单板信息,从基站RRU拓扑结构中得到可能需要检测的故障检测点全集,对应地生成多个查询过程,并根据诊断请求特点,填入查询基本框架。由查询基本框架控制各个查询过程有序执行。
查询基本框架是一个数据查询过程调度控制系统,根据诊断请求启动策略,依次调度并行查询方式和串行查询方式下的各个查询过程。包括启动、停止、数据分析、数据汇总功能。
其中,并行查询方式由可以同时并行启动的查询过程组成。串行查询方式是由一个或多个查询过程组成,在并行查询方式执行完之后,在串行执行查询过程。
在填充查询过程时,对于并行查询和串行查询,优先选择并行查询方式以缩短查询所需时间。如果诊断请求项有排他特性,则选择串行查询方式。
对于BBU-RRU通讯链路的诊断请求,并行查询由采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息的查询过程组成。串行查询由采集出光口板、各级RRU、光模块和线缆信息的查询过程组成。
此外,针对各个检测过程可以预设超时时间,当查询过程开始执行时,启动定时计数。若定时时间到仍无查询结果返回,则结束该查询过程。
另外,在查询启动策略中还应避免检测冗余故障检测点。
在采集数据的过程中,通过分析已结束的查询过程结果,选择性启动下一个查询过程,避免冗余故障检测点的检测影响正常建链的RRU上业务。当RRU链路正常时,即底层硬件逻辑器件环回和高层软件链路正常,则认为BBU-RRU间通讯链路正常。此时不需要收集相关出光口板、RRU和光模块线缆的故障检测点信息。
之后,基站将收集的故障检测点信息汇总后发回给网管。网管收到故障检测点信息后,分析诊断数据,综合判断故障检测点状态、处理建议及详细信息等呈现给用户。
其中,网管对基站发来的故障检测点信息进行分析诊断的过程可以采用如下方案:
在网管侧,建立BBU-RRU间通讯链路的诊断分析模型,主要由影响BBU-RRU通讯链路的四类对象:出光口板、RRU、光模块和线缆,以及基站操作及软件运行情况组成。
首先,网管基于目标RRU单板所在RRU拓扑结构中所有上级节点情况,检测所述目标RRU单板的链路情况,即目标RRU的软件RUDP/TCP链路和硬件LOOPTEST链路。如果链路正常,则检测结束。
当网管检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态。
当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况。
最后,将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
其中,更为具体地,如果软件链路异常,则检测基站人工操作和软件运行情况,可以排除基站RRU软件异常、RRU人工复位;如果硬件链路异常,则检测出光口板和基站人工操作及软件运行情况,可以排除出光口板软件异常、出光口板人工复位、出光口板下电、出光口板硬件故障。
如果出光口板检测正常,则检测其光模块、连接RRU的线缆情况,可以排除光模块硬件或配置故障、线缆故障。
如果光模块、连接RRU的线缆正常,则检测各级RRU的情况。
对各级RRU,首先定位到链路断的这级RRU,然后检测该RRU的情况及下级联光模块、线缆情况,可以排除RRU硬件故障、光模块硬件或配置故障、线缆故障。
根据光模块的检测结果,检测基站人工操作及软件运行情况,可以排除RRU掉电供电电源问题、RRU故障。
通过上述分析诊断过程,可以得到具体是由光接口板、光模块、线缆、RRU、基站软件、人工操作这些故障点的哪个环节引起的BBU-RRU通讯链路异常。并可以直接呈现给用户准确故障点。
本实施例通过上述方案,采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
以下结合附图对本发明实施例中网管对基站发来的故障检测点信息进行分析诊断的过程进行详细阐述:
如图3所示,图3是本发明实施例中BBU-RRU间通讯链路的网管的数据分析模型图,其中:
首先,网管进行目标RRU链路检测,判断RRU软、硬件链路是否正常。如果异常,则从下面四个方面分析故障点:
出光口板故障分析:分析是否存在出光口板硬件故障。
光模块、线缆故障分析:分析光模块是否在位、速率匹配、有光无光、帧锁定情况、光模块硬件故障、光模块接收功率及阈值、光口自环情况、光纤插错、光纤断等。
RRU单板故障分析:分析是否存在RRU硬件故障。
基站操作及软件运行情况故障分析:分析是否存在出光口板人工操作复位、出光口板下电、出光口板软件异常、RRU掉电、RRU初始化告警、 RRU版本加载过程复位、RRU软件跑飞复位、RRU人工操作复位等。
本实施例网管进行分析诊断的数据分析流程可以参照上述结合图4及图5所述内容,在此不再赘述。
本实施例通过上述方案,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
在实际应用中,所述选取模块702及收集模块703均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述接收模块701和发送模块704可分别由接收器和发射器来实现;所述CPU、DSP、FPGA、接收器和发射器均可内置于检测通讯链路的基站中。
如图8所示,本发明一实施例提出一种检测通讯链路的网管,包括:获取模块801、请求发起模块802、信息接收模块803及分析诊断模块804,其中:
获取模块801,配置为获取用户选择的目标RRU单板;
请求发起模块802,配置为向基站发起基于所述目标RRU单板的诊断请求;
信息接收模块803,配置为接收所述基站根据所述诊断请求收集汇总并 返回的故障检测点信息;
分析诊断模块804,配置为对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
具体地,本实施例方案涉及基站与网管,根据需要,基站侧与网管侧分别设置相应的功能模块。其系统架构可以如图2所示,网管可管理多个基站站点的故障检测点信息。每个基站站点由一个BBU和若干个RRU组成,其RRU拓扑结构可以是星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑等,各种配置拓扑对应支持不同的无线产品,本发明实施例方法适用于上述各类拓扑结构。
具体地,首先,网管侧根据用户选择的待诊断RRU单板,向基站侧发起诊断请求。该诊断请求中携带有用户选取的目标RRU单板。
基站侧接收到网管发来的诊断请求后,选取所述目标RRU单板所在的RRU拓扑结构,根据基站拓扑结构,收集所有可能的故障检测点信息,包括:出光口板、各级RRU、光模块和线缆、可导致RRU断链的基站人工操作及基站软件运行情况等。
具体地,基站在收集BBU与RRU间通讯链路的故障检测点信息时,可以采用如下方案:
首先,采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
然后,采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息。
最后,汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
在实际应用中,基站进行故障检测点数据采集时,可以建立查询基本框架来管理故障检测点信息采集过程。
其中,基站根据网管发来的目标RRU单板信息,从基站RRU拓扑结构中得到可能需要检测的故障检测点全集,对应地生成多个查询过程,并根据诊断请求特点,填入查询基本框架。由查询基本框架控制各个查询过程有序执行。
查询基本框架是一个数据查询过程调度控制系统,根据诊断请求启动策略,依次调度并行查询方式和串行查询方式下的各个查询过程。包括启动、停止、数据分析、数据汇总功能。
其中,并行查询方式由可以同时并行启动的查询过程组成。串行查询方式是由一个或多个查询过程组成,在并行查询方式执行完之后,在串行执行查询过程。
在填充查询过程时,对于并行查询和串行查询,优先选择并行查询方式以缩短查询所需时间。如果诊断请求项有排他特性,则选择串行查询方式。
对于BBU-RRU通讯链路的诊断请求,并行查询由采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息的查询过程组成。串行查询由采集出光口板、各级RRU、光模块和线缆信息的查询过程组成。
此外,针对各个检测过程可以预设超时时间,当查询过程开始执行时,启动定时计数。若定时时间到仍无查询结果返回,则结束该查询过程。
另外,在查询启动策略中还应避免检测冗余故障检测点。
在采集数据的过程中,通过分析已结束的查询过程结果,选择性启动下一个查询过程,避免冗余故障检测点的检测影响正常建链的RRU上业务。当RRU链路正常时,即底层硬件逻辑器件环回和高层软件链路正常,则认为BBU-RRU间通讯链路正常。此时不需要收集相关出光口板、RRU和光模块线缆的故障检测点信息。
之后,基站将收集的故障检测点信息汇总后发回给网管。网管收到故 障检测点信息后,分析诊断数据,综合判断故障检测点状态、处理建议及详细信息等呈现给用户。
其中,网管对基站发来的故障检测点信息进行分析诊断的过程可以采用如下方案:
在网管侧,建立BBU-RRU间通讯链路的诊断分析模型,主要由影响BBU-RRU通讯链路的四类对象:出光口板、RRU、光模块和线缆,以及基站操作及软件运行情况组成。
首先,网管基于目标RRU单板所在RRU拓扑结构中所有上级节点情况,检测所述目标RRU单板的链路情况,即目标RRU的软件RUDP/TCP链路和硬件LOOPTEST链路。如果链路正常,则检测结束。
当网管检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态。
当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况。
最后,将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
其中,更为具体地,如果软件链路异常,则检测基站人工操作和软件运行情况,可以排除基站RRU软件异常、RRU人工复位;如果硬件链路异常,则检测出光口板和基站人工操作及软件运行情况,可以排除出光口板软件异常、出光口板人工复位、出光口板下电、出光口板硬件故障。
如果出光口板检测正常,则检测其光模块、连接RRU的线缆情况,可以排除光模块硬件或配置故障、线缆故障。
如果光模块、连接RRU的线缆正常,则检测各级RRU的情况。
对各级RRU,首先定位到链路断的这级RRU,然后检测该RRU的情况及下级联光模块、线缆情况,可以排除RRU硬件故障、光模块硬件或配置故障、线缆故障。
根据光模块的检测结果,检测基站人工操作及软件运行情况,可以排除RRU掉电供电电源问题、RRU故障。
通过上述分析诊断过程,可以得到具体是由光接口板、光模块、线缆、RRU、基站软件、人工操作这些故障点的哪个环节引起的BBU-RRU通讯链路异常。并可以直接呈现给用户准确故障点。
本实施例通过上述方案,采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
以下结合附图对本发明实施例中网管对基站发来的故障检测点信息进行分析诊断的过程进行详细阐述:
如图3所示,图3是本发明实施例中BBU-RRU间通讯链路的网管的数据分析模型图,其中:
首先,网管进行目标RRU链路检测,判断RRU软、硬件链路是否正常。如果异常,则从下面四个方面分析故障点:
出光口板故障分析:分析是否存在出光口板硬件故障。
光模块、线缆故障分析:分析光模块是否在位、速率匹配、有光无光、帧锁定情况、光模块硬件故障、光模块接收功率及阈值、光口自环情况、光纤插错、光纤断等。
RRU单板故障分析:分析是否存在RRU硬件故障。
基站操作及软件运行情况故障分析:分析是否存在出光口板人工操作复位、出光口板下电、出光口板软件异常、RRU掉电、RRU初始化告警、RRU版本加载过程复位、RRU软件跑飞复位、RRU人工操作复位等。
本实施例网管进行分析诊断的数据分析流程可以参照上述结合图4及图5所述内容,在此不再赘述。
本实施例通过上述方案,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
在实际应用中,所述获取模块801及分析诊断模块804均可由中央处理单元(CPU,Central Processing Unit)、或数字信号处理(DSP,Digital Signal Processor)、或现场可编程门阵列(FPGA,Field Programmable Gate Array)等来实现;所述信息接收模块803和请求发起模块802可分别由接收器和发射器来实现;所述CPU、DSP、FPGA、接收器和发射器均可内置于检测通讯链路的网管中。
此外,本发明实施例还提出一种检测通讯链路的系统,包括:基站和网管;其中:
所述网管,配置为获取用户选择的目标RRU单板,向基站发起基于所述目标RRU单板的诊断请求;
所述基站,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;
所述网管,还配置为对所述故障检测点信息进行分析诊断,得到故障 检测点的故障状态,呈现给用户。
其中,基站与网管进行交互实现BBU-RRU间通讯链路的检测的具体过程,请参照上述各实施例,在此不再赘述。
本发明实施例检测BBU-RRU间通讯链路的方法、基站、网管及系统,网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
本发明实施例网管获取用户选择的目标RRU单板,向基站发起基于目标RRU单板的诊断请求;基站根据诊断请求,选取目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。由此,通过采用BBU-RRU通讯链路诊断,解决了现有技术中收集信息、综合分析、结果呈现的问题,提高了定位BBU-RRU通讯链路故障的效率,进而降低了基站维护成本。

Claims (15)

  1. 一种检测通讯链路的方法,包括:
    基站接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标射频拉远单元RRU单板;
    根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
    基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
    将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
  2. 根据权利要求1所述的方法,其中,所述基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息的步骤包括:
    所述基站采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;
    所述基站采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息;
    汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
  3. 根据权利要求1或2所述的方法,其中,所述RRU拓扑结构为星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑中的一种。
  4. 一种检测通讯链路的方法,包括:
    网管获取用户选择的目标RRU单板;
    向基站发起基于所述目标RRU单板的诊断请求;
    接收所述基站根据所述诊断请求收集汇总并返回的故障检测点信息;
    对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
  5. 根据权利要求4所述的方法,其中,所述网管对故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户的步骤包括:
    所述网管检测所述目标RRU单板的链路是否异常;
    当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态;
    当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;
    当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况;
    将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
  6. 根据权利要求5所述的方法,其中,所述当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态的步骤包括:
    所述网管检测所述目标RRU单板的出光口板是否异常;
    若检测到所述目标RRU单板的出光口板异常,则得到相应故障检测点的故障状态;
    若检测到所述目标RRU单板的出光口板正常,则检测所述目标RRU的光模块和连接RRU的线缆情况;
    若检测到所述目标RRU的光模块和连接RRU的线缆异常,则得到相应故障检测点的故障状态;
    若检测到所述目标RRU的光模块和连接RRU的线缆正常,则检测各级RRU的情况,得到各级RRU相应故障检测点的故障状态。
  7. 一种检测通讯链路的基站,包括:
    请求接收模块,配置为接收网管发送的诊断请求,所述诊断请求携带有用户选取的目标RRU单板;
    选取模块,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构;
    收集模块,配置为基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息;
    发送模块,配置为将收集的所述故障检测点信息汇总后发送给网管,由所述网管对所述故障检测点信息进行分析诊断。
  8. 根据权利要求7所述的基站,其中,
    所述收集模块,还配置为采用并行查询的方式,从所述RRU拓扑结构中查找并采集出光口板和各级RRU的人工操作情况及基站软件运行情况信息;采用串行查询的方式,从所述RRU拓扑结构中查找并采集出光口板、各级RRU、光模块和线缆信息;汇总采集的各故障检测点信息,作为BBU与RRU间通讯链路的故障检测点信息。
  9. 根据权利要求7或8所述的基站,其中,所述RRU拓扑结构为星形拓扑、级联拓扑、环网拓扑、环加链拓扑、双上联拓扑中的一种。
  10. 一种检测通讯链路的网管,包括:
    获取模块,配置为获取用户选择的目标RRU单板;
    请求发起模块,配置为向基站发起基于所述目标RRU单板的诊断请求;
    信息接收模块,配置为接收所述基站根据所述诊断请求收集汇总并返回的故障检测点信息;
    分析诊断模块,配置为对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
  11. 根据权利要求10所述的网管,其中,
    所述分析诊断模块,还配置为检测所述目标RRU单板的链路是否异常; 当检测到所述目标RRU单板的硬件链路异常时,按照设定的优先级,依次对出光口板、各级RRU、光模块和线缆,以及基站操作及软件运行情况进行分析诊断,得到相应故障检测点的故障状态;当检测到所述目标RRU单板的硬件链路正常时,检测所述目标RRU单板的软件链路是否异常;当检测到所述目标RRU单板的软件链路异常时,检测基站人工操作和软件运行情况;将得到的故障检测点的故障状态以及相应的修复建议呈现给用户。
  12. 根据权利要求11所述的网管,其中,
    所述分析诊断模块,还配置为检测所述目标RRU单板的出光口板是否异常;若检测到所述目标RRU单板的出光口板异常,则得到相应故障检测点的故障状态;若检测到所述目标RRU单板的出光口板正常,则检测所述目标RRU的光模块和连接RRU的线缆情况;若检测到所述目标RRU的光模块和连接RRU的线缆异常,则得到相应故障检测点的故障状态;若检测到所述目标RRU的光模块和连接RRU的线缆正常,则检测各级RRU的情况,得到各级RRU相应故障检测点的故障状态。
  13. 一种检测通讯链路的系统,包括:基站和网管;其中:
    所述网管,配置为获取用户选择的目标RRU单板,向基站发起基于所述目标RRU单板的诊断请求;
    所述基站,配置为根据所述诊断请求,选取所述目标RRU单板所在的RRU拓扑结构,基于选取的所述RRU拓扑结构,收集BBU与RRU间通讯链路的故障检测点信息,将收集的故障检测点信息汇总后发送给网管;所述网管,还配置为对所述故障检测点信息进行分析诊断,得到故障检测点的故障状态,呈现给用户。
  14. 一种第一计算机可读存储介质,该存储介质包括一组指令,所述指令用于执行权利要求1至3任一项所述的检测通讯链路的方法。
  15. 一种第二计算机可读存储介质,该存储介质包括一组指令,所述 指令用于执行权利要求4至6任一项所述的检测通讯链路的方法。
PCT/CN2015/096602 2014-12-17 2015-12-07 检测通讯链路的方法、基站、网管、系统及存储介质 WO2016095718A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410789689.0A CN105764081B (zh) 2014-12-17 2014-12-17 检测通讯链路的方法、基站、网管及系统
CN201410789689.0 2014-12-17

Publications (1)

Publication Number Publication Date
WO2016095718A1 true WO2016095718A1 (zh) 2016-06-23

Family

ID=56125893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096602 WO2016095718A1 (zh) 2014-12-17 2015-12-07 检测通讯链路的方法、基站、网管、系统及存储介质

Country Status (2)

Country Link
CN (1) CN105764081B (zh)
WO (1) WO2016095718A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107396390A (zh) * 2017-08-30 2017-11-24 京信通信系统(中国)有限公司 一种通信方法、装置及系统
CN109788549A (zh) * 2017-11-10 2019-05-21 上海华为技术有限公司 一种rru的定位方法及其相关装置
CN113014418A (zh) * 2021-01-29 2021-06-22 深圳市风云实业有限公司 一种基于网络历史拓扑流量的故障诊断方法
CN113132001A (zh) * 2019-12-30 2021-07-16 中兴通讯股份有限公司 一种光模块管理方法、装置、网络设备及储存介质
CN114465663A (zh) * 2022-03-23 2022-05-10 中国电信股份有限公司 光路故障定位方法和系统
WO2023216457A1 (zh) * 2022-05-11 2023-11-16 中电信数智科技有限公司 一种核心网与基站传输网络异常预测及定位的方法
CN117422425A (zh) * 2023-12-18 2024-01-19 国网浙江省电力有限公司宁波供电公司 一种基于即时通讯的现场安全隐患管理方法及系统
CN117439825A (zh) * 2023-12-21 2024-01-23 江苏禾冠信息技术有限公司 面向家庭路由器的网络入侵防护方法及系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108063677A (zh) * 2016-11-09 2018-05-22 大唐移动通信设备有限公司 一种分级定位接收链路故障的方法及故障检测装置
CN109104294B (zh) * 2017-06-20 2022-10-25 中兴通讯股份有限公司 单板配置方法及装置、单板和计算机可读存储介质
CN108541008A (zh) * 2018-03-26 2018-09-14 安徽德特信息技术有限公司 一种基于云平台的通信基站线路数据自检系统
CN109041090B (zh) * 2018-08-21 2021-09-21 京信网络系统股份有限公司 基于基站的异常处理方法、装置及电子设备
CN110875822B (zh) * 2018-08-29 2021-04-13 大唐移动通信设备有限公司 电源系统
CN111044936A (zh) * 2019-11-28 2020-04-21 中国航空工业集团公司西安航空计算技术研究所 一种机载gjb289a总线线缆故障快速定位方法
CN113766527B (zh) * 2020-06-03 2023-08-01 大唐移动通信设备有限公司 一种基站硬件检测方法和装置
CN115226111A (zh) * 2021-04-16 2022-10-21 大唐移动通信设备有限公司 一种网络设备配置方法及其装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885750A (zh) * 2005-06-23 2006-12-27 上海华为技术有限公司 远端射频模块及其传输信号的方法
CN101594267A (zh) * 2009-06-25 2009-12-02 中兴通讯股份有限公司 网关故障诊断方法及装置
WO2012155603A1 (zh) * 2011-07-04 2012-11-22 中兴通讯股份有限公司 一种环形基站系统及利用其进行业务容灾保护的方法
CN103490920A (zh) * 2013-09-09 2014-01-01 广东电网公司电力调度控制中心 电力光纤通信网络中的多重故障保护/恢复方法及系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101325754B (zh) * 2005-07-21 2011-04-13 华为技术有限公司 一种射频拉远模块复位的方法及系统
CN101662791A (zh) * 2009-09-29 2010-03-03 中兴通讯股份有限公司 故障信息处理方法、装置和系统
CN101860802A (zh) * 2010-05-21 2010-10-13 中兴通讯股份有限公司 故障处理方法及系统
CN103517300B (zh) * 2012-06-20 2018-02-13 中兴通讯股份有限公司 分布式基站的自发现方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1885750A (zh) * 2005-06-23 2006-12-27 上海华为技术有限公司 远端射频模块及其传输信号的方法
CN101594267A (zh) * 2009-06-25 2009-12-02 中兴通讯股份有限公司 网关故障诊断方法及装置
WO2012155603A1 (zh) * 2011-07-04 2012-11-22 中兴通讯股份有限公司 一种环形基站系统及利用其进行业务容灾保护的方法
CN103490920A (zh) * 2013-09-09 2014-01-01 广东电网公司电力调度控制中心 电力光纤通信网络中的多重故障保护/恢复方法及系统

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107396390A (zh) * 2017-08-30 2017-11-24 京信通信系统(中国)有限公司 一种通信方法、装置及系统
CN109788549A (zh) * 2017-11-10 2019-05-21 上海华为技术有限公司 一种rru的定位方法及其相关装置
CN109788549B (zh) * 2017-11-10 2020-11-10 上海华为技术有限公司 一种rru的定位方法及其相关装置
US10911896B2 (en) 2017-11-10 2021-02-02 Huawei Technologies Co., Ltd. RRU positioning method and related apparatus thereof
CN113132001A (zh) * 2019-12-30 2021-07-16 中兴通讯股份有限公司 一种光模块管理方法、装置、网络设备及储存介质
CN113014418A (zh) * 2021-01-29 2021-06-22 深圳市风云实业有限公司 一种基于网络历史拓扑流量的故障诊断方法
CN113014418B (zh) * 2021-01-29 2022-08-09 深圳市风云实业有限公司 一种基于网络历史拓扑流量的故障诊断方法
CN114465663A (zh) * 2022-03-23 2022-05-10 中国电信股份有限公司 光路故障定位方法和系统
WO2023216457A1 (zh) * 2022-05-11 2023-11-16 中电信数智科技有限公司 一种核心网与基站传输网络异常预测及定位的方法
CN117422425A (zh) * 2023-12-18 2024-01-19 国网浙江省电力有限公司宁波供电公司 一种基于即时通讯的现场安全隐患管理方法及系统
CN117439825A (zh) * 2023-12-21 2024-01-23 江苏禾冠信息技术有限公司 面向家庭路由器的网络入侵防护方法及系统
CN117439825B (zh) * 2023-12-21 2024-03-01 江苏禾冠信息技术有限公司 面向家庭路由器的网络入侵防护方法及系统

Also Published As

Publication number Publication date
CN105764081B (zh) 2020-03-13
CN105764081A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2016095718A1 (zh) 检测通讯链路的方法、基站、网管、系统及存储介质
US9686166B2 (en) Power fluctuation detection and analysis
US9712290B2 (en) Network link monitoring and testing
US8259587B2 (en) Pool-based network diagnostic systems and methods
US9225554B2 (en) Device-health-based dynamic configuration of network management systems suited for network operations
US7898971B2 (en) Method and apparatus for automating hub and spoke Internet Protocol Virtual Private Network trouble diagnostics
US11204824B1 (en) Intelligent network operation platform for network fault mitigation
US20140372805A1 (en) Self-healing managed customer premises equipment
WO2015090098A1 (zh) 一种实现故障定位的方法及装置
US11714700B2 (en) Intelligent network operation platform for network fault mitigation
US8755285B2 (en) Method, system and apparatus for diagnosing physical downlink failure
CN103414916A (zh) 一种故障诊断系统及方法
WO2016045353A1 (zh) 一种故障诊断分析方法、装置、系统及存储介质
US11894969B2 (en) Identifying root causes of network service degradation
CN102075368A (zh) 一种业务故障诊断方法、装置和系统
WO2017193763A1 (zh) 一种检测方法、装置及系统
CN101667953B (zh) 一种快速环网物理链路状态的上报方法及装置
US7719992B1 (en) System for proactive time domain reflectometry
CN113162808B (zh) 存储链路故障处理方法及装置、电子设备和存储介质
CN101707503B (zh) 嵌入式控制通道通讯故障自动定位方法和装置
US10613963B2 (en) Intelligent packet analyzer circuits, systems, and methods
CN116896499B (zh) kubernetes Pod网络错误排查系统及方法
CN103885441A (zh) 一种控制器局域网络的自适应故障诊断方法
US11632287B1 (en) Tracking and reporting faults detected on different priority levels
EP4156628A1 (en) Tracking and reporting faults detected on different priority levels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869226

Country of ref document: EP

Kind code of ref document: A1