WO2016095704A1 - 防止激光泄露的光模块和控制方法 - Google Patents

防止激光泄露的光模块和控制方法 Download PDF

Info

Publication number
WO2016095704A1
WO2016095704A1 PCT/CN2015/096291 CN2015096291W WO2016095704A1 WO 2016095704 A1 WO2016095704 A1 WO 2016095704A1 CN 2015096291 W CN2015096291 W CN 2015096291W WO 2016095704 A1 WO2016095704 A1 WO 2016095704A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical
optical fiber
control switch
circuit
Prior art date
Application number
PCT/CN2015/096291
Other languages
English (en)
French (fr)
Inventor
余美勇
许维
杨松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15869212.9A priority Critical patent/EP3226045A4/en
Priority to JP2017533299A priority patent/JP2018500769A/ja
Priority to KR1020177020085A priority patent/KR101933595B1/ko
Publication of WO2016095704A1 publication Critical patent/WO2016095704A1/zh
Priority to US15/625,396 priority patent/US10008824B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0608Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by light, e.g. optical switch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3895Dismountable connectors, i.e. comprising plugs identification of connection, e.g. right plug to the right socket or full engagement of the mating parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/504Laser transmitters using direct modulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • G02B2006/4297Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources having protection means, e.g. protecting humans against accidental exposure to harmful laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses

Definitions

  • Embodiments of the present invention relate to optoelectronic technology, and in particular, to an optical module and a control method for preventing laser leakage.
  • the communication between two adjacent communication devices is based on a pair of optical modules plus optical fibers to connect the two devices.
  • the laser power of the laser in the optical module becomes larger and larger.
  • the leaked high-power laser may be applied to the human body or The eyes are hurting.
  • FIG. 1 is a schematic diagram of the IPA process when the optical fiber line is broken in the prior art.
  • the detection board at the B end detects that the signal is received (English: Receiving Loss Of Signal, RLOS for short), and the laser of the control board at the B end is turned off, which will further trigger.
  • the A-side detection board detects the RLOS alarm, and then the A-end system also turns off the laser of the control board, so that there is no optical power on the line fiber between the AB.
  • the control board laser After the IPA is started, the control board laser will send the probe light to detect whether the line is detected. After the B-side control board is turned off for a period of time, the probe light is sent. After receiving the probe light, the RLOS alarm is ended, and the laser of the A-side control board is turned on. If the fiber is restored to normal, End the B-side RLOS alarm, and then the whole The system resumes normal transmission.
  • the prior art solution can only control the switch of the laser through a complete loop under the premise of the insertion of the optical fiber, and can not solve the damage caused by the laser leakage of the optical module in the scenario where the optical fiber is not inserted into the optical fiber interface.
  • the optical module and the control method for preventing laser leakage provided by the embodiments of the present invention solve the problem of the prior art, and cannot solve the problem that the laser leakage of the optical module causes damage to the human body in a scenario where the optical fiber is not inserted into the optical fiber interface.
  • a first aspect of the present invention provides an optical module for preventing laser leakage, comprising: a current control circuit, a first triode, a laser, and a laser control unit;
  • the current control circuit is coupled to a base of the first transistor for providing a stable current; the laser is coupled to an emitter of the first transistor; the laser control unit is respectively The base of the first triode is connected to the fiber optic interface;
  • the laser control unit is configured to control to turn on the laser if it is detected that the fiber interface is inserted into the fiber; if the fiber interface is not inserted into the fiber, the laser is kept in the off state.
  • the method further includes: a voltage dividing circuit, the first terminal of the voltage dividing circuit is connected to the power source, and the second end of the voltage dividing circuit is The base of the first transistor is connected, and the third end of the voltage dividing circuit is connected to the collector of the first transistor.
  • the laser control unit comprises a light exit control switch, a logic operation module, and a second three-pole a light exit control switch is disposed at the fiber interface for detecting whether an optical fiber is inserted into the fiber interface;
  • a first input port of the logic operation module is connected to a first end of the optical outlet control switch, and a second input port of the logic operation module is connected to a ground or a power source;
  • An output port of the block is connected to a base of the second transistor;
  • a collector of the second transistor is connected to a base of the first transistor;
  • the optical outlet control switch When the optical outlet control switch detects that the optical fiber is inserted into the optical fiber interface, the first end of the optical outlet control switch outputs a low level, and the output port of the logic operation module outputs a low level to control the laser to be turned on; When the exit control switch detects that the optical fiber is not inserted into the optical fiber interface, the first end of the optical outlet control switch outputs a high level, and the output port of the logic operation module outputs a high level to control the laser to be turned off.
  • the second end of the optical outlet control switch is grounded, and the third end of the optical outlet control switch is connected to the power supply Connecting, when the optical fiber is inserted into the optical fiber interface, the first end and the second end of the optical outlet control switch are turned on, and when the optical fiber is not inserted into the optical fiber interface, the first end and the third end of the optical exit control switch are connected .
  • the logic operation module is an OR gate circuit, a first input port of the OR gate circuit Connected to the first end of the optical outlet control switch, the second input port of the OR circuit is grounded.
  • the logic operation module is an AND circuit, a first input port of the AND circuit Connected to the first end of the light exit control switch, the second input port of the AND circuit is connected to the power source.
  • any one of the first to fifth possible implementation manners, the sixth possible implementation manner of the first aspect further includes an acquisition circuit, the first end of the acquisition circuit The emitter of the first transistor is connected, the second end of the acquisition circuit is connected to the laser, and the acquisition circuit is configured to collect current on the laser.
  • a second aspect of the present invention provides a control method of an optical module for preventing laser leakage, the optical module including a current control circuit, a first triode, a laser, and a laser control unit; a flow control circuit coupled to a base of the first transistor; the laser coupled to an emitter of the first transistor; the laser control unit and a base of the first transistor, respectively A fiber optic interface connection, the method comprising:
  • the laser controller control unit detects whether the optical fiber is inserted into the optical fiber interface
  • the laser control unit includes a light exit control switch, a logic operation module, and a second triode; the light exit control switch is disposed in the The first input port of the logic operation module is connected to the first end of the optical outlet control switch, and the second input port of the logic operation module is connected to the ground or the power source, and the output of the logic operation module is a port is connected to a base of the second transistor; a collector of the second transistor is connected to a base of the first transistor, and the laser controller control unit detects a fiber interface insertion The optical fiber is controlled to open the laser in the optical module, including: the optical outlet control switch detects that the optical fiber interface is inserted into the optical fiber, and the logic operation module inputs the level according to the input of the first input port, and passes the operation processing.
  • the output port provides a low level to a base of the second transistor to turn the laser on;
  • the laser controller control unit detects that the optical fiber interface is not inserted into the optical fiber, and then controls the laser in the optical module to remain in a closed state, including: the optical outlet control switch detects that the optical fiber interface is not inserted into the optical fiber, and the logic operation module According to the level of the input of the first input port, a high level is provided to the base of the second transistor through the output port after the arithmetic processing to keep the laser off.
  • the optical module and the control method for preventing laser leakage provided by the invention provide a laser control unit based on the existing optical module, and the current control circuit is connected with the base of the first triode for providing a stable current, the laser Connected to the emitter of the first triode, the laser control unit is respectively connected to the base of the first triode and the optical fiber interface, and the laser control unit detects the optical fiber When the fiber interface is inserted, the laser is turned on. When the fiber is not inserted into the fiber interface, the laser is turned off. When the fiber is not inserted into the fiber interface, the laser is turned off to prevent the laser from harming the human body when the fiber interface is exposed.
  • FIG. 1 is a schematic diagram of an IPA process when a fiber line is broken in the prior art
  • FIG. 2 is a schematic diagram of the first embodiment of the optical module for preventing laser leakage according to the present invention
  • FIG. 3 is a schematic diagram of the principle of the second embodiment of the optical module for preventing laser leakage according to the present invention
  • FIG. 4 is a schematic diagram of the principle of the third embodiment of the optical module for preventing laser leakage according to the present invention.
  • 5a is a front view of a light exit control switch of an example of an optical module for preventing laser leakage according to the present invention
  • 5b is a schematic rear view of an optical outlet control switch of an example of an optical module for preventing laser leakage according to the present invention
  • FIG. 6 is a schematic diagram of an implementation of an optical module for preventing laser leakage according to the present invention.
  • FIG. 7 is a flow chart of a method for controlling an optical module for preventing laser leakage according to the present invention.
  • the technical solution provided by the present invention can be used to improve optical modules of various communication devices. Solving the prior art can not solve the problem that the laser damages the human body when the optical port is exposed.
  • the optical module for preventing laser leakage includes: a current control circuit 11, a first triode 13, a laser 14, and a laser. Control unit 15;
  • the current control circuit 11 is connected to the base of the first transistor 13 for providing a stable current; the laser 14 is connected to the emitter of the first transistor 13; the laser control unit 15 is respectively connected to the base of the first transistor 13 and the optical fiber interface;
  • the laser control unit 15 is configured to control to turn on the laser 14 if it detects that the fiber interface is inserted into the fiber; and if the fiber interface is not inserted into the fiber, the laser 14 is controlled to remain in the off state.
  • the main function of the current control circuit 11 is to amplify the input current to a required size and output, and the laser control unit 15 is connected to the optical fiber to realize whether the optical fiber is directly connected to the optical fiber through the laser control unit 15.
  • the state of the interface then controls the opening and closing of the laser 14. Specifically, when the laser control unit 15 detects that the optical fiber is pulled out from the optical fiber interface, the control laser 14 is turned off, and the laser 14 is kept in the closed state until the optical fiber interface has not been connected to the optical fiber until the optical fiber is inserted into the optical fiber. When the interface, that is, when the fiber interface is not exposed, the control laser 14 is turned on, and the laser 14 can be kept in the open state while the fiber of the fiber interface is not pulled out.
  • the collector and the base of the first transistor 13 need to provide different voltages, and different sizes of power sources may be used, which are respectively connected to the collector and the base of the first transistor 13, or may be the same
  • the power source is connected to the collector and the base of the first transistor 13 by different partial voltages to supply a voltage for the operation of the first transistor 13, and generally the voltage required by the collector is slightly larger.
  • the optical module further includes a voltage dividing circuit 12, a first terminal power supply of the voltage dividing circuit 12, and a second end of the voltage dividing circuit 12 and the first three poles.
  • the base of the tube 13 is connected, and the third end of the voltage dividing circuit 12 is connected to the collector of the first transistor 13
  • the voltage supplied from the third end of the voltage dividing circuit 12 to the collector of the first transistor 13 is slightly larger than the voltage supplied to the first transistor 13 through the second end of the voltage dividing circuit 12.
  • the voltage of the pole under normal circumstances, the voltage difference is within 0.3V.
  • the voltage dividing circuit 12 includes at least two different resistors, which can be divided by selecting a suitable resistor, and the second end and the third end are two different outputs of the voltage dividing circuit 12, and the voltage dividing circuit 12 The second end and the third end are respectively connected to the base and the collector of the first transistor 13, and the voltage of the three outputs of the voltage dividing circuit is slightly larger than the second for the first transistor 13 to work normally. The voltage at the output of the terminal.
  • the optical module for preventing laser leakage provided by this embodiment is provided with a laser control unit based on the existing optical module, and the current control circuit is connected with the base of the first triode for providing a stable current, and the laser is connected
  • the emitter of the first triode, the laser control unit is respectively connected with the base of the first triode and the optical fiber interface, and the laser control unit controls to turn on the laser when detecting the insertion of the optical fiber into the optical fiber interface; when the optical fiber is not inserted into the optical fiber interface
  • the laser is turned off, the laser is controlled to turn off when the fiber is not inserted into the fiber interface, which effectively prevents the laser from harming the human body when the fiber interface is exposed.
  • FIG. 3 is a schematic diagram of the second embodiment of the optical module for preventing laser leakage according to the present invention.
  • the laser control unit 15 specifically includes: a light exit control switch 151 and a logic operation module. 152.
  • the second transistor 153; the light exit control switch 151 is disposed at the fiber interface, and is connected to the fiber interface for detecting whether the fiber is inserted into the fiber interface.
  • the optical outlet control switch 151 is directly connected to the optical fiber interface, and may be directly disposed on the optical fiber interface.
  • the optical fiber insertion and extraction may control the closed state of the optical outlet control switch 151.
  • the optical fiber interface may be a commonly used square interface. It can also be a circular interface, which is not limited.
  • the first input port of the logic operation module 152 is connected to the first end of the optical outlet control switch 151, and the second input port of the logic operation module 152 is connected to the ground or the power source.
  • the output port of the logic operation module 152 is connected to the base of the second transistor 153; the collector of the second transistor 153 is connected to the base of the first transistor 13.
  • the optical outlet control switch 151 when the optical outlet control switch 151 detects that the optical fiber is inserted into the optical fiber interface, the first end of the optical outlet control switch 151 outputs a low level, and the output port of the logic operation module 152 outputs a low level.
  • the first end of the light exit control switch 151 outputs a high level, and the output port of the logic operation module 152 outputs a high output when the light exit control switch 153 detects that the optical fiber is not inserted into the optical fiber interface.
  • the second end of the optical exit control switch 151 is grounded, and the third end of the optical exit control switch 151 is connected to the power source.
  • the optical exit control switch 151 The first end and the second end are turned on, and when the optical fiber is not inserted into the optical fiber interface, the first end and the third end of the optical exit control switch 151 are turned on.
  • the implementation of the logic operation module 152 includes at least the following two types:
  • the logic operation module 152 is an OR circuit
  • the first input port of the OR gate circuit is connected to the first end of the optical outlet control switch 151, in order to insert the optical fiber into the optical fiber interface,
  • the output port of the OR circuit can provide a low level to the subsequent second transistor 153, and the second input port of the OR circuit is grounded.
  • the optical fiber is inserted into the optical fiber interface, and the first end and the second end of the optical outlet control switch 151 are turned on, that is, the low level is input to the first input port of the OR circuit, and the low level of the second input port is performed. Or operation, that is, generating a low level to the base of the second transistor.
  • the collector level of the triggering diode is pulled high, the level of the collector of the first transistor is also pulled high, thereby generating a current on the emitter of the first transistor, and the laser is turned on.
  • the optical fiber is pulled out from the optical fiber interface, and the first end and the third end of the optical outlet control switch 151 are turned on, that is, a high level is input at the first input port of the OR circuit, and a low level of the second input port is performed or The operation is to generate a high level to the base of the second transistor 153.
  • the collector level of the triggering second transistor 153 is pulled low, the level of the collector of the first transistor 13 is also pulled low, so that no current is generated at the emitter of the first transistor 13, The laser 14 is turned off.
  • the logic operation module 152 is an AND circuit
  • the first input port of the AND circuit is connected to the first end of the optical outlet control switch 151, so that the optical fiber is not inserted into the optical fiber interface.
  • the output port of the AND circuit can provide a high level to the base of the subsequent second transistor 153, and the second input port of the AND circuit is connected to the power source.
  • the optical fiber is inserted into the optical fiber interface, and the first end and the second end of the optical outlet control switch 151 are turned on, that is, the low level is input to the first input port of the AND circuit, and the high level of the second input port is performed.
  • the AND operation generates a low level to the base of the second transistor 153.
  • the collector level of the triggering second transistor 153 is pulled up, the level of the collector of the first transistor 13 is also pulled high, thereby generating a current on the emitter of the first transistor 13, and the laser is turned on. .
  • the optical fiber is pulled out from the optical fiber interface, and the first end and the third end of the optical outlet control switch 151 are turned on, that is, a high level is input at the first input port of the AND circuit, and a high level is performed with the second input port.
  • the operation is to generate a high level to the base of the second transistor 153.
  • the collector level of the triggering second transistor 153 is pulled low, the level of the collector of the first transistor 13 is also pulled low, so that no current is generated at the emitter of the first transistor 13, the laser Shut down.
  • the OR gate circuit or the AND gate circuit in this embodiment does not specifically limit the chip model, and may be selected according to actual application and wiring requirements, and can be implemented or operated or operated.
  • the functions implemented by the logic operation module 152 in the present application may also be implemented by using other existing hardware and software methods, and are not limited to using only an AND gate or an OR gate, as long as the laser can be realized when the optical fiber interface is connected to the optical fiber. Open, the laser can be turned off when the fiber is pulled out.
  • a laser control unit including a light exit control switch 151, a logic operation module 152, and a second transistor 153 is provided, and the current control circuit and the current control circuit are provided.
  • the base connection of the first triode is used to provide a stable current
  • the laser is connected to the emitter of the first triode
  • the optical outlet control switch is disposed at the insertion state of the optical fiber interface acquisition fiber
  • the optical exit control switch and logic operation Module connection the output of the logic operation module is connected with the base of the second triode, and the collector of the second triode and the first triode
  • the base is connected, and the optical outlet control switch detects the opening of the laser through the logic operation module when the optical fiber is inserted into the optical fiber interface, thereby controlling the opening of the laser; and outputting the high power through the logic operation module when detecting that the optical fiber is not inserted into the optical fiber interface.
  • the flat control turns off the laser and controls the laser to be turned off when the fiber is not inserted into the fiber interface, effectively preventing the laser from injuring the human body when the fiber interface is exposed.
  • the optical module further includes an acquisition circuit 16 , and the acquisition circuit 16 One end is connected to the emitter of the first transistor 13, the second end of the acquisition circuit 16 is connected to the laser 14, and the acquisition circuit is used to collect current on the laser.
  • the acquisition circuit generally consists of one or more resistors, which may be a series, parallel or series-parallel combination of multiple resistors, which is convenient for directly calculating the current obtained by the laser through the voltage on the test resistor, and may also apply The voltage across the laser 14 is divided to protect the laser.
  • the optical module for preventing laser leakage provided by the embodiment provides a light exit control switch at the fiber interface, and directly controls the switch of the laser according to whether the optical fiber is inserted or not based on the existing circuit, and the laser is not inserted when the optical fiber is inserted. It will not open, effectively preventing the damage of the laser to the human body during the process of replacing the optical fiber.
  • FIG. 5a is a front view of an optical outlet control switch of an optical module for preventing laser leakage according to an embodiment of the present invention
  • FIG. 5b is a schematic view of the rear side of the optical outlet control switch of an optical module for preventing laser leakage according to the present invention, as shown in FIGS. 5a and 5b.
  • the light exit control switch is a dome switch
  • the spring switch includes a spring piece and a metal piece protruding on the front surface of the fiber interface, and the fiber piece is pressed by the fiber when the fiber is inserted. Closely, the first end and the second end of the light exit control switch are turned on; when the optical fiber is pulled out from the optical fiber interface, the spring switch is turned off, and the first end and the third end of the light exit control switch are closed The terminal is turned on.
  • the dome switch is directly disposed at the fiber interface, and when the fiber is inserted, the spring of the dome switch is squeezed to be closed, and the light exit control switch is One end and the second end are connected (ie, the upper elastic piece in FIG. 5a of the dome switch and the metal on the back side in FIG. 5b are the first end and the second end, respectively), and the base of the second triode is passed through the OR gate circuit. Provide a low level. Similarly, after the optical fiber is pulled out from the optical fiber interface, the spring switch is opened, the first end and the third end of the optical outlet control switch are turned on, and the base of the second triode is supplied with a high level through the OR circuit.
  • control switches such as a photoresistor or a sensor may also be selected to implement the above functions, for example:
  • the light exit control switch includes a sensor; when the optical fiber is inserted into the optical fiber interface, the sensor controls the first end and the second end of the optical outlet control switch to be turned on; when the optical fiber is pulled out from the optical fiber interface, the A sensor controls the first end and the third end of the light exit control switch to be turned on.
  • the light exit control switch includes a photoresistor; when the optical fiber is inserted into the optical fiber interface, the light irradiated on the photoresistor becomes weak, the resistance of the photoresistor decreases, and the first end of the light exit control switch The second end is turned on; when the optical fiber is pulled out from the optical fiber interface, the light irradiated on the photoresistor becomes strong, the resistance of the photoresistor increases, and the first end of the light exit control switch The third end is turned on.
  • the resistance may increase when the light is dark, that is, when the optical fiber is inserted, the photoresistor becomes large, which is equivalent to the first end and the second end being turned on.
  • the photoresistor becomes smaller, which is equivalent to the connection of the first end and the third end.
  • the selection of the photoresistor can be determined according to the actual situation, and the present application is not limited to the above case.
  • the optical module for preventing laser leakage provides a light exit control switch at the fiber interface, and the control switch can include a switch such as a dome switch, a photoresistor, a sensor, and the like, and the first end of the light exit control switch
  • the logic operation module is connected, and the other ends are respectively connected to the power source and the ground.
  • the output port of the logic operation module provides a high level to the base of the second three-stage tube connected thereto, and controls the opening and closing of the laser, that is, in the existing circuit.
  • the laser will not be opened when the optical fiber is not inserted, and the laser damage to the human body during the process of replacing the optical fiber is effectively prevented.
  • FIG. 6 is a schematic diagram of an implementation of an optical module for preventing laser leakage according to the present invention. As shown in FIG. 4, based on the first and second embodiments, the present embodiment provides a specific implementation manner of an optical module for preventing laser leakage. ,specific:
  • the current control circuit includes a power amplifier circuit for providing a stable power supply for the base of the first transistor, and adjusting the voltage of the output of the operational amplifier through the voltage change of the collector of the second transistor during the application process.
  • the base voltage of the pole tube, the amplifier model selected in the embodiment is AD8301BR; the logic operation module in the laser control unit is implemented by the OR circuit U2, and the OR gate circuit is used to control the state of the switch through the light exit.
  • the base level of the diode 2 is controlled to turn the laser on and off.
  • the model of the OR gate circuit selected in this embodiment is 74LS32D.
  • the second transistor Q2 is mainly used for level conversion, so it is also possible to use a MOS tube instead.
  • a MOS tube instead of the second transistor Q2 directly connect one end of the MOS tube with the output of the logic operation module. Connected, the other end is connected to the base of the first transistor.
  • the optical module for preventing laser leakage provided by the embodiment provides a light exit control switch at the optical fiber interface, and the optical outlet control switch is used to collect whether the optical fiber is inserted or not, and whether the optical fiber is inserted or not, and the base of the first triode is inserted.
  • the optical outlet control switch is used to collect whether the optical fiber is inserted or not, and whether the optical fiber is inserted or not, and the base of the first triode is inserted.
  • control the laser will not open when the fiber is not inserted, effectively prevent the laser from being exposed during the optical port, such as laser replacement Damage to the human body.
  • FIG. 7 is a flow chart of a method for controlling an optical module for preventing laser leakage according to the present invention.
  • the control method of the optical module for preventing laser leakage is used to control the optical module of FIGS. 1 to 6 of the present invention, and the optical module includes a current control circuit, a first triode, a laser, and a laser.
  • a control unit the current control circuit is coupled to a base of the first transistor; the laser is coupled to an emitter of the first transistor; and the laser control unit is respectively coupled to the first three pole
  • the base of the tube is connected to the fiber interface, and the specific steps of the method include:
  • the laser controller control unit detects whether the optical fiber is inserted into the optical fiber interface.
  • the state of the light exit control switch is detected.
  • the laser controller controls the hardware of the unit.
  • the connection between the two ends indicates that the fiber is inserted into the fiber interface, and the connection at both ends indicates that the fiber is not inserted into the fiber. Interface and other methods.
  • the laser is turned on by software or hardware. If it is detected that the fiber has been removed from the fiber interface, that is, the fiber is not connected, the laser is turned off by software or hardware so that no laser is emitted when the fiber is not connected.
  • the laser control unit in this embodiment includes a light exit control switch, a logic operation module, and a second triode; the light exit control switch is disposed at the fiber interface, and the first input of the logic operation module a port is connected to the first end of the optical outlet control switch, a second input port of the logic operation module is connected to a ground or a power source, and an output port of the logic operation module is connected to a base of the second triode
  • the collector of the second transistor is connected to the base of the first transistor, and the step S102 specifically includes:
  • the optical outlet control switch detects that the optical fiber interface is inserted into the optical fiber, and the logic operation module inputs the level according to the input of the first input port, and after the operation processing, passes the output port to the The base of the second transistor provides a low level to turn the laser on.
  • the optical outlet control switch detects that the optical fiber interface is not inserted into the optical fiber, and the logic operation module inputs the level according to the first input port, and after the operation processing, passes through the output port to the base of the second triode.
  • the poles are provided at a high level to keep the lasers off.
  • the method for controlling the optical module for preventing laser leakage provides a laser control unit based on the existing optical module, and directly detects whether the optical fiber interface is inserted through the optical fiber through the laser control unit, and if the optical fiber interface is detected The incoming fiber controls the laser to be turned on. If it is detected that the fiber interface is not connected to the fiber, the laser is turned off. That is, when the fiber is not inserted, the laser does not open, effectively preventing the laser from harming the human body during the process of replacing the fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

一种防止激光泄露的光模块和控制方法,该光模块包括:电流控制电路(11)、第一三极管(13)、激光器(14)和激光器控制单元(15)。电流控制电路(11)与第一三极管(13)的基极连接,用于提供稳定的电流;激光器(14)连接在第一三极管(13)的发射极;激光器控制单元(15)分别与第一三极管(13)的基极和光纤接口连接。激光器控制单元(15)用于,在检测到光纤插入光纤接口时控制打开激光器(14);在检测到光纤未插入光纤接口时控制关闭激光器(14)。有效防止在光纤未插入光纤接口时光纤接口裸露而造成激光伤害人体。

Description

防止激光泄露的光模块和控制方法
本申请要求于2014年12月19日提交中国专利局、申请号为201410804386.1、发明名称为“防止激光泄露的光模块和控制方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及光电技术,尤其涉及一种防止激光泄露的光模块和控制方法。
背景技术
相邻两台通信设备之间的通信,是靠一对光模块加上光纤,把两台设备连接起来的。随着光模块传输距离的增大,光模块中的激光器的激光功率越来越大,在光模块的光纤接口没有插光纤、以及光纤断纤等场景下,泄露的大功率激光可能对人体或者眼睛有伤害。
在现有技术中,采用智能光功率调节(英文:Intelligent Power Adjustment,简称:IPA)的方式解决光模块泄露激光对人体的伤害,图1为现有技术中光纤线路断纤时IPA进程示意图,如图1所示,当线路L点发生断纤时,B端的检测板检测到收无信号(英文:Receiving Loss Of Signal,简称:RLOS)告警关断B端的控制板的激光器,这将进一步触发A端检测板检测到RLOS告警,然后A端系统也会关闭控制板的激光器,这样AB之间的线路光纤上无光功率,在IPA启动之后,控制板激光器会发送探测光,以检测线路是否恢复正常,即B端控制板关闭一段时间后,开始发送探测光,在A端收到该探测光后,将RLOS告警结束,从而打开A端控制板的激光器,如果此时光纤恢复正常,则结束B端RLOS告警,进而整个 系统恢复正常传输。
然而,现有技术的方案只能在光纤插入的前提下,通过一个完整的回路才能控制激光器的开关,不能解决在光纤未插入光纤接口的场景下,光模块的激光器漏光对人体造成的伤害。
发明内容
本发明实施例提供的防止激光泄露的光模块和控制方法,解决了现有技术的方案,不能解决在光纤未插入光纤接口的场景下,光模块的激光器漏光对人体造成伤害的问题。
本发明第一方面提供一种防止激光泄露的光模块,包括:电流控制电路、第一三极管、激光器和激光器控制单元;
所述电流控制电路与所述第一三极管的基极连接,用于提供稳定的电流;所述激光器连接在所述第一三极管的发射极;所述激光器控制单元分别与所述第一三极管的基极和光纤接口连接;
所述激光器控制单元用于,若检测到光纤接口插入光纤,则控制打开激光器;若检测到光纤接口未插入光纤,则控制所述激光器保持关闭状态。
结合第一方面,在第一方面的第一种可能的实施方式中,还包括:分压电路,所述分压电路的第一端接电源,所述分压电路的第二端与所述第一三极管的基极连接,所述分压电路的第三端与所述第一三极管的集电极连接。
结合第一方面或第一方面的第一种可能的实施方式,在第一方面的第二种可能的实施方式中,所述激光器控制单元包括光出口控制开关、逻辑运算模块、第二三极管;所述光出口控制开关设置在所述光纤接口处,用于检测光纤是否插入所述光纤接口;
所述逻辑运算模块的第一输入端口与所述光出口控制开关的第一端连接,所述逻辑运算模块的第二输入端口与地或电源连接;所述逻辑运算模 块的输出端口与所述第二三极管的基极连接;所述第二三极管的集电极与所述第一三极管的基极连接;
所述光出口控制开关检测到光纤插入光纤接口时,所述光出口控制开关的第一端输出低电平,所述逻辑运算模块的输出端口输出低电平,以控制激光器打开;所述光出口控制开关检测到光纤未插入光纤接口时,所述光出口控制开关的第一端输出高电平,所述逻辑运算模块的输出端口输出高电平,以控制激光器关闭。
结合第一方面的第二种可能的实施方式,在第一方面的第三种可能的实施方式,所述光出口控制开关的第二端接地,所述光出口控制开关的第三端与电源连接,当光纤插入光纤接口时,所述光出口控制开关的第一端和第二端接通,当光纤未插入光纤接口时,所述光出口控制开关的第一端和第三端接通。
结合第一方面的第二种或第三种可能的实施方式,在第一方面的第四种可能的实施方式,所述逻辑运算模块为或门电路,所述或门电路的第一输入端口与所述光出口控制开关的第一端连接,所述或门电路的第二输入端口接地。
结合第一方面的第二种或第三种可能的实施方式,在第一方面的第五种可能的实施方式,所述逻辑运算模块为与门电路,所述与门电路的第一输入端口与所述光出口控制开关的第一端连接,所述与门电路的第二输入端口与电源连接。
结合第一方面、第一种至第五种中的任一种可能的实施方式,在第一方面的第六种可能的实施方式,还包括采集电路,所述采集电路的第一端与所述第一三极管的发射极连接,所述采集电路的第二端与所述激光器连接,所述采集电路用于采集所述激光器上的电流。
本发明第二方面提供一种防止激光泄露的光模块的控制方法,所述光模块包括电流控制电路、第一三极管、激光器和激光器控制单元;所述电 流控制电路与所述第一三极管的基极连接;所述激光器连接在所述第一三极管的发射极;所述激光器控制单元分别与所述第一三极管的基极和光纤接口连接,所述方法包括:
所述激光控制器控制单元检测光纤是否插入光纤接口;
若所述激光控制器控制单元检测到光纤接口插入光纤,则控制所述光模块中的激光器打开;若所述激光控制器控制单元检测到光纤接口未插入光纤,则控制所述光模块中的激光器保持关闭状态。
结合第二方面,在第二方面的第一种可能的实施方式中,所述激光器控制单元包括光出口控制开关、逻辑运算模块、第二三极管;所述光出口控制开关设置在所述光纤接口处,所述逻辑运算模块的第一输入端口与所述光出口控制开关的第一端连接,所述逻辑运算模块的第二输入端口与地或电源连接,所述逻辑运算模块的输出端口与所述第二三极管的基极连接;所述第二三极管的集电极与所述第一三极管的基极连接,则所述激光控制器控制单元检测到光纤接口插入光纤,则控制所述光模块中的激光器打开,包括:所述光出口控制开关检测到光纤接口插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述第二三极管的基极提供低电平,以使所述激光器打开;
所述激光控制器控制单元检测到光纤接口未插入光纤,则控制所述光模块中的激光器保持关闭状态,包括:所述光出口控制开关检测到光纤接口未插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述第二三极管的基极提供高电平,以使所述激光器保持关闭状态。
本发明提供的防止激光泄露的光模块和控制方法,在现有光模块的基础上,设置了激光器控制单元,电流控制电路与第一三极管的基极连接用于提供稳定的电流,激光器连接在第一三极管的发射极,激光器控制单元分别与第一三极管的基极和光纤接口连接,激光器控制单元在检测到光纤 插入光纤接口时控制打开激光器;在检测到光纤未插入光纤接口时控制关闭激光器,通过检测光纤未插入光纤接口时控制关闭激光器,有效防止在光纤接口裸露时激光伤害人体。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术中光纤线路断纤时IPA进程示意图;
图2为本发明防止激光泄露的光模块实施例一的原理示意图;
图3为本发明防止激光泄露的光模块实施例二的原理示意图;
图4为本发明防止激光泄露的光模块实施例三的原理示意图;
图5a为本发明防止激光泄露的光模块一实例的光出口控制开关正面示意图;
图5b为本发明防止激光泄露的光模块一实例的光出口控制开关背面示意图;
图6为本发明防止激光泄露的光模块一实施的原理图;
图7为本发明防止激光泄露的光模块的控制方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供的技术方案可以用于对各类通信设备的光模块进行改进, 解决现有技术还不能解决光口裸露时,激光对人体造成危害的问题。
图2为本发明防止激光泄露的光模块实施例一的原理示意图,如图2所示,该防止激光泄露的光模块,包括:电流控制电路11、第一三极管13、激光器14和激光器控制单元15;
所述电流控制电路11与所述第一三极管13的基极连接,用于提供稳定的电流;所述激光器14连接在所述第一三极管13的发射极;所述激光器控制单元15分别与所述第一三极管13的基极和光纤接口连接;
所述激光器控制单元15用于,若检测到光纤接口插入光纤,则控制打开激光器14;若检测到光纤接口未插入光纤,则控制所述激光器14保持关闭状态。
在本实施例中,电流控制电路11的主要功能是将输入的电流放大到需要的大小,并进行输出,激光器控制单元15与光纤接口连接,实现通过激光器控制单元15直接采集光纤是否接入光纤接口的状态,然后控制激光器14的打开和关闭。具体的,激光器控制单元15检测到光纤从光纤接口拔出的时,则控制激光器14关闭,在光纤接口一直没有接入光纤的过程中,都控制激光器14保持关闭状态,直至检测到光纤插入光纤接口,即光纤接口未裸露的时候,则控制激光器14打开,在光纤接口的光纤没有拔出的过程中,可以一直控制激光器14保持打开状态。
另外,第一三极管13的集电极和基极需要提供不同的电压,可以采用不同大小的电源,分别连接在第一三极管13的集电极和基极上,也可以是采用同一个电源,利用不同的分压,分别连接在第一三极管13的集电极和基极上,为所述第一三极管13的工作提供电压,一般情况下集电极需要的电压稍大。
在本实施例的优选方案中,该光模块还包括一分压电路12、所述分压电路12的第一端接电源,所述分压电路12的第二端与所述第一三极管13的基极连接,所述分压电路12的第三端与所述第一三极管13的集电极连 接,且该电源通过该分压电路12的第三端提供给第一三极管13的集电极的电压略大于通过该分压电路12的第二端提供给第一三极管13的基极的电压,一般情况下的电压差在0.3V以内。
分压电路12包括至少两个不同的电阻,可以通过选择合适的电阻,将电源电压进行分压,第二端和第三端为分压电路12的两个不同的输出,将分压电路12的第二端和第三端分别连接在第一三极管13的基极和集电极,为了第一三极管13能够正常的工作该分压电路的三输出的电压略大于所述第二端输出的电压。
本实施例提供的防止激光泄露的光模块,在现有光模块的基础上,设置了激光器控制单元,电流控制电路与第一三极管的基极连接用于提供稳定的电流,激光器连接在第一三极管的发射极,激光器控制单元分别与第一三极管的基极和光纤接口连接,激光器控制单元在检测到光纤插入光纤接口时控制打开激光器;在检测到光纤未插入光纤接口时控制关闭激光器,通过检测光纤未插入光纤接口时控制关闭激光器,有效防止在光纤接口裸露时激光伤害人体。
图3为本发明防止激光泄露的光模块实施例二的原理示意图,如图2所示,在上述实施例一的基础上,该激光器控制单元15具体包括:光出口控制开关151、逻辑运算模块152、第二三极管153;所述光出口控制开关151设置在所述光纤接口处,与光纤接口连接用于检测光纤是否插入所述光纤接口。
在本实施例中,光出口控制开关151直接与光纤接口连接,可以是直接设置在光纤接口上,光纤插拔可以控制该光出口控制开关151的闭合状态,该光纤接口可以是常用的方形接口,也可以是圆形的接口,对此不作限制。
具体的,所述逻辑运算模块152的第一输入端口与所述光出口控制开关151的第一端连接,所述逻辑运算模块152的第二输入端口与地或电源 连接;所述逻辑运算模块152的输出端口与所述第二三极管153的基极连接;所述第二三极管153的集电极与所述第一三极管13的基极连接。
在本实施例中,所述光出口控制开关151检测到光纤插入光纤接口时,所述光出口控制开关151的第一端输出低电平,所述逻辑运算模块152的输出端口输出低电平,以控制激光器14打开;所述光出口控制开关153检测到光纤未插入光纤接口时,所述光出口控制开关151的第一端输出高电平,所述逻辑运算模块152的输出端口输出高电平,以控制激光器14关闭。
作为上述特征的一种具体实现方式,光出口控制开关151的第二端接地,所述光出口控制开关151的第三端与电源连接,当光纤插入光纤接口时,所述光出口控制开关151的第一端和第二端接通,当光纤未插入光纤接口时,所述光出口控制开关151的第一端和第三端接通。
根据上述控制激光器14的原理以及光出口控制开关151的连接关系,逻辑运算模块152的实现方式至少包括以下两种:
第一种实现方式,所述逻辑运算模块152为或门电路时,所述或门电路的第一输入端口与所述光出口控制开关151的第一端连接,为了使光纤插入光纤接口后,或门电路的输出端口可以向后续的第二三极管153提供低电平,则将所述或门电路的第二输入端口接地。
具体的,光纤插入光纤接口,该光出口控制开关151的第一端和第二端接通,即在或门电路的第一输入端口输入低电平,与第二输入端口的低电平进行或运算,即向第二三极管的基极产生低电平。触发第二三极管的集电极电平拉高,则第一三极管的集电极的电平也被拉高,从而在第一三极管的发射极上产生电流,激光器打开。光纤从光纤接口拔出,该光出口控制开关151的第一端和第三端接通,即在或门电路的第一输入端口输入高电平,与第二输入端口的低电平进行或运算,即向第二三极管153的基极产生高电平。触发第二三极管153的集电极电平拉低,则第一三极管13的集电极的电平也被拉低,从而在第一三极管13的发射极上未产生电流, 激光器14关断。
第二种实现方式,所述逻辑运算模块152为与门电路时,所述与门电路的第一输入端口与所述光出口控制开关151的第一端连接,为了使光纤未插入光纤接口时,与门电路的输出端口可以向后续的第二三极管153的基极提供高电平,则所述与门电路的第二输入端口与电源连接。
具体的,光纤插入光纤接口,该光出口控制开关151的第一端和第二端接通,即在与门电路的第一输入端口输入低电平,与第二输入端口的高电平进行与运算,即向第二三极管153的基极产生低电平。触发第二三极管153的集电极电平拉高,则第一三极管13的集电极的电平也被拉高,从而在第一三极管13的发射极上产生电流,激光器打开。光纤从光纤接口拔出,该光出口控制开关151的第一端和第三端接通,即在与门电路的第一输入端口输入高电平,与第二输入端口的高电平进行与运算,即向第二三极管153的基极产生高电平。触发第二三极管153的集电极电平拉低,则第一三极管13的集电极的电平也被拉低,从而在第一三极管13的发射极上未产生电流,激光器关断。
本实施例中的或门电路或者与门电路,具体不限制芯片型号,可以根据实际应用和布线需求选择,能够实现或运算或者与运算即可。
此外,本申请中的逻辑运算模块152所实现的功能也可以使用其他现有的硬件和软件方式实现,并不限于只使用与门或者或门,只要能够实现在光纤接口接入光纤时,激光器打开,光纤拔出时激光器关断即可。
本实施例提供的防止激光泄露的光模块,在现有光模块的基础上,设置了包括光出口控制开关151、逻辑运算模块152、第二三极管153的激光器控制单元,电流控制电路与第一三极管的基极连接用于提供稳定的电流,激光器连接在第一三极管的发射极,光出口控制开关设置在光纤接口采集光纤的插入状态,该光出口控制开关与逻辑运算模块连接,逻辑运算模块的输出与第二三极管的基极连接,该第二三极管的集电极与第一三极管的 基极连接,光出口控制开关在检测到光纤插入光纤接口时,通过逻辑运算模块向后输出低电平从而控制打开激光器;在检测到光纤未插入光纤接口时通过逻辑运算模块向后输出高电平控制关闭激光器,通过检测光纤未插入光纤接口时控制关闭激光器,有效防止在光纤接口裸露时激光伤害人体。
图4为本发明防止激光泄露的光模块实施例三的原理示意图,如图4所示,在上述两个实施例的基础上,该光模块还包括采集电路16,所述采集电路16的第一端与所述第一三极管13的发射极连接,所述采集电路16的第二端与所述激光器14连接,所述采集电路用于采集所述激光器上的电流。
在本实施例中,采集电路一般由一个或多个电阻组成,可以是多个电阻的串联、并联或者串并联结合,方便通过测试电阻上的电压直接计算获取到激光器的电流,还可以对施加在激光器14上的电压进行分压,保护激光器。
本实施例提供的防止激光泄露的光模块,通过在光纤接口处设置光出口控制开关,在现有电路的基础上,直接根据是否插入光纤,直接控制激光器的开关,在未插入光纤时,激光器不会打开,有效防止在更换光纤的过程中激光对人体的伤害。
图5a为本发明防止激光泄露的光模块一实例的光出口控制开关正面示意图;图5b为本发明防止激光泄露的光模块一实例的光出口控制开关背面示意图,如图5a、5b所示,在上述实施例的基础上,若所述光出口控制开关为弹片开关;该弹片开关包括一个在光纤接口正面凸起的弹片和金属片,在光纤插入时,受光纤的挤压所述弹片开关闭合,所述光出口控制开关的第一端和第二端接通;当所述光纤从光纤接口拔出时,所述弹片开关断开,所述光出口控制开关的第一端和第三端接通。
在本实施例中,如图5a、5b所示,弹片开关直接设置在光纤接口处,在光纤插入的时候,将弹片开关的弹片挤压至闭合,光出口控制开关的第 一端和第二端接通(即弹片开关的图5a中的上部的弹片和图5b中背面的金属分别为第一端和第二端),通过或门电路为第二三极管的基极提供低电平。同样的,光纤从光纤接口拔出后,弹片开关弹开,光出口控制开关的第一端和第三端接通,通过或门电路为第二三极管的基极提供高电平。
可选的,对于本发明中的光出口控制开关,还可以选择光敏电阻或者传感器等其他控制开关来实现上述功能,例如:
当光出口控制开关包括传感器时候;当光纤插入光纤接口时,所述传感器控制所述光出口控制开关的第一端和第二端接通;当所述光纤从光纤接口拔出时,所述传感器控制所述光出口控制开关的第一端和第三端接通。
当光出口控制开关包括光敏电阻时候;当光纤插入光纤接口时,照射在所述光敏电阻上的光线变弱,所述光敏电阻的阻值减小,所述光出口控制开关的第一端和第二端接通;当所述光纤从光纤接口拔出时,照射在所述光敏电阻上的光线变强,所述光敏电阻的阻值增大,所述光出口控制开关的第一端和第三端接通。
对于光敏电阻的选择,还可以是光线暗的时候电阻增大,即光纤插入时,光敏电阻变大,相当于第一端和第二端接通。光纤拔出,光敏电阻变小,相当于第一端和第三端相连。
另外,对于光敏电阻的选择可以根据实际情况来定,本申请并不只限制于上述情况。
本实施例提供的防止激光泄露的光模块,通过在光纤接口处设置光出口控制开关,该控制开关可以包括弹片开关、光敏电阻、传感器等类型的开关,该光出口控制开关的第一端与逻辑运算模块连接,另外两端分别连接电源和地,该逻辑运算模块的输出端口向与其连接的第二三级管的基极提供高低电平,控制激光器的打开和关闭,即在现有电路的基础上,直接根据是否插入光纤,控制在未插入光纤时,激光器不会打开,有效防止在更换光纤的过程中激光对人体的伤害。
图6为本发明防止激光泄露的光模块一实施的原理图,如图4所示,在上述实施例一和二的基础上,本实施例提供防止激光泄露的光模块的一种具体实现方式,具体的:
电流控制电路包括一个功放电路,用于为第一三极管的基极提供稳定的电源,在应用过程中通过第二三极管的集电极的电压变化调整运放输出的电压控制第一三极管的基极电压,在本实施例中选择的放大器型号为AD8301BR;激光器控制单元中的逻辑运算模块使用或门电路U2来实现,该或门电路用于通过光出口控制开关的状态控制第二三极管Q2的基极电平的高低,从而控制激光器的开启和关断。本实施例中选用的或门电路的型号为74LS32D。
对于本实施例的电路原理图6中的其他元器件的连接,请参考附图6。在上述介绍的电路中,当光纤插入光纤接口,J1与P1接通,与低电平进行或运算并输出,U2向第二三极管Q2的基极P6产生低电平,触发第二三极管Q2的集电极P3电平拉高,则第一三极管Q1的集电极P4电平也被拉高,从而第一三极管Q1的发射极P5产生电流,激光器打开。
当光纤从光纤接口拔出时,J1与P2接通,与低电平进行或运算并输出,U2向第二三极管Q2的基极P6产生高电平,触发第二三极管Q2的集电极P3电平拉低,则第一三极管Q1的集电极P4电平也被拉低,从而第一三极管Q1的发射极P5电流消失,激光器关断。
可选的,第二三极管Q2主要是做电平转换,因此也可以使用MOS管代替,在使用MOS管代替第二三极管Q2时,直接将MOS管的一端与逻辑运算模块的输出连接,另一端与第一三极管的基极连接即可。
本实施例提供的防止激光泄露的光模块,通过在光纤接口处设置光出口控制开关,通过该光出口控制开关采集光纤是否插入的状态,通过光纤是否插入,向第一三极管的基极提供高电平或低电平,控制在未插入光纤时,激光器不会打开,有效防止在光口裸露,例如更换光纤的过程中激光 对人体的伤害。
图7为本发明防止激光泄露的光模块的控制方法的流程图。如图7所示,该防止激光泄露的光模块的控制方法是用来控制本发明图1-图6的光模块的,所述光模块包括电流控制电路、第一三极管、激光器和激光器控制单元;所述电流控制电路与所述第一三极管的基极连接;所述激光器连接在所述第一三极管的发射极;所述激光器控制单元分别与所述第一三极管的基极和光纤接口连接,所述方法的具体步骤包括:
S101:所述激光控制器控制单元检测光纤是否插入光纤接口。
在本实施例中,检测光出口控制开关的状态,例如:激光控制器控制单元硬件的方式,通过连接方式检测到某两端连接时表示光纤插入光纤接口,某两端连接表示光纤未插入光纤接口等方式。
S102:若所述激光控制器控制单元检测到光纤接口插入光纤,则控制所述光模块中的激光器打开;若所述激光控制器控制单元检测到光纤接口未插入光纤,则控制所述光模块中的激光器保持关闭状态。
在本实施例中,如果检测到光纤已经插入光纤接口,则通过软件或硬件控制激光器打开。如果检测到光纤已经从光纤接口中拔出,即为未接入光纤状态,则通过软件或硬件控制激光器关闭,以使在未接入光纤的时候,不会发出激光。
具体的,本实施例中的激光器控制单元包括光出口控制开关、逻辑运算模块、第二三极管;所述光出口控制开关设置在所述光纤接口处,所述逻辑运算模块的第一输入端口与所述光出口控制开关的第一端连接,所述逻辑运算模块的第二输入端口与地或电源连接,所述逻辑运算模块的输出端口与所述第二三极管的基极连接;所述第二三极管的集电极与所述第一三极管的基极连接,则步骤S102具体包括:
所述光出口控制开关检测到光纤接口插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述 第二三极管的基极提供低电平,以使所述激光器打开。
或者
所述光出口控制开关检测到光纤接口未插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述第二三极管的基极提供高电平,以使所述激光器保持关闭状态。
本实施例提供的防止激光泄露的光模块的控制方法,通过现有的光模块的基础上,设置激光器控制单元,通过该激光器控制单元直接检测光纤接口是否有光纤插入,若检测出光纤接口接入光纤则控制打开激光器,若检测出光纤接口未接入光纤则控制关闭激光器,即在未插入光纤时,激光器不会打开,有效防止在更换光纤的过程中激光对人体的伤害。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种防止激光泄露的光模块,其特征在于,包括:电流控制电路、第一三极管、激光器和激光器控制单元;
    所述电流控制电路与所述第一三极管的基极连接,用于提供稳定的电流;所述激光器连接在所述第一三极管的发射极;所述激光器控制单元分别与所述第一三极管的基极和光纤接口连接;
    所述激光器控制单元用于,若检测到光纤接口插入光纤,则控制打开激光器;若检测到光纤接口未插入光纤,则控制所述激光器保持关闭状态。
  2. 根据权利要求1所述的光模块,其特征在于,还包括:分压电路,所述分压电路的第一端接电源,所述分压电路的第二端与所述第一三极管的基极连接,所述分压电路的第三端与所述第一三极管的集电极连接。
  3. 根据权利要求1或2所述的光模块,其特征在于,所述激光器控制单元包括光出口控制开关、逻辑运算模块、第二三极管;所述光出口控制开关设置在所述光纤接口处,用于检测光纤是否插入所述光纤接口;
    所述逻辑运算模块的第一输入端口与所述光出口控制开关的第一端连接,所述逻辑运算模块的第二输入端口与地或电源连接;所述逻辑运算模块的输出端口与所述第二三极管的基极连接;所述第二三极管的集电极与所述第一三极管的基极连接;
    所述光出口控制开关检测到光纤插入光纤接口时,所述光出口控制开关的第一端输出低电平,所述逻辑运算模块的输出端口输出低电平,以控制激光器打开;所述光出口控制开关检测到光纤未插入光纤接口时,所述光出口控制开关的第一端输出高电平,所述逻辑运算模块的输出端口输出高电平,以控制激光器关闭。
  4. 根据权利要求3所述的光模块,其特征在于,所述光出口控制开关的第二端接地,所述光出口控制开关的第三端与电源连接,当光纤插入光纤接口时,所述光出口控制开关的第一端和第二端接通,当光纤未插入光纤接口时,所述光出口控制开关的第一端和第三端接通。
  5. 根据权利要求3或4所述的光模块,其特征在于,所述逻辑运算模块为或门电路,所述或门电路的第一输入端口与所述光出口控制开关的第一端连接,所述或门电路的第二输入端口接地。
  6. 根据权利要求3或4所述的光模块,其特征在于,所述逻辑运算模块为与门电路,所述与门电路的第一输入端口与所述光出口控制开关的第一端连接,所述与门电路的第二输入端口与电源连接。
  7. 根据权利要求1至6任一项所述的光模块,其特征在于,还包括采集电路,所述采集电路的第一端与所述第一三极管的发射极连接,所述采集电路的第二端与所述激光器连接,所述采集电路用于采集所述激光器上的电流。
  8. 一种防止激光泄露的光模块的控制方法,其特征在于,所述光模块包括电流控制电路、第一三极管、激光器和激光器控制单元;所述电流控制电路与所述第一三极管的基极连接;所述激光器连接在所述第一三极管的发射极;所述激光器控制单元分别与所述第一三极管的基极和光纤接口连接,所述方法包括:
    所述激光控制器控制单元检测光纤是否插入光纤接口;
    若所述激光控制器控制单元检测到光纤接口插入光纤,则控制所述光模块中的激光器打开;若所述激光控制器控制单元检测到光纤接口未插入光纤,则控制所述光模块中的激光器保持关闭状态。
  9. 根据权利要求8所述的方法,其特征在于,所述激光器控制单元包括光出口控制开关、逻辑运算模块、第二三极管;所述光出口控制开关设置在所述光纤接口处,所述逻辑运算模块的第一输入端口与所述光出口控制开关的第一端连接,所述逻辑运算模块的第二输入端口与地或电源连接,所述逻辑运算模块的输出端口与所述第二三极管的基极连接;所述第二三极管的集电极与所述第一三极管的基极连接,则所述激光控制器控制单元检测到光纤接口插入光纤,则控制所述光模块中的激光器打开,包括:所述光出口控制开关检测到光纤接口插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述第二三极管的基极提供低电平,以使所述激光器打开;
    所述激光控制器控制单元检测到光纤接口未插入光纤,则控制所述光模块中的激光器保持关闭状态,包括:所述光出口控制开关检测到光纤接口未插入光纤,则所述逻辑运算模块的根据第一输入端口输入的电平,经运算处理后通过所述输出端口向所述第二三极管的基极提供高电平,以使 所述激光器保持关闭状态。
PCT/CN2015/096291 2014-12-19 2015-12-03 防止激光泄露的光模块和控制方法 WO2016095704A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15869212.9A EP3226045A4 (en) 2014-12-19 2015-12-03 Optical module preventing laser beam leakage, and control method
JP2017533299A JP2018500769A (ja) 2014-12-19 2015-12-03 レーザービームの漏れを防止するための光モジュールおよびその制御方法
KR1020177020085A KR101933595B1 (ko) 2014-12-19 2015-12-03 레이저 빔 누출을 방지하는 광 모듈, 및 제어 방법
US15/625,396 US10008824B2 (en) 2014-12-19 2017-06-16 Optical module for preventing laser beam leakage and control method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410804386.1 2014-12-19
CN201410804386.1A CN105759369B (zh) 2014-12-19 2014-12-19 防止激光泄露的光模块和控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/625,396 Continuation US10008824B2 (en) 2014-12-19 2017-06-16 Optical module for preventing laser beam leakage and control method thereof

Publications (1)

Publication Number Publication Date
WO2016095704A1 true WO2016095704A1 (zh) 2016-06-23

Family

ID=56125886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096291 WO2016095704A1 (zh) 2014-12-19 2015-12-03 防止激光泄露的光模块和控制方法

Country Status (6)

Country Link
US (1) US10008824B2 (zh)
EP (1) EP3226045A4 (zh)
JP (1) JP2018500769A (zh)
KR (1) KR101933595B1 (zh)
CN (1) CN105759369B (zh)
WO (1) WO2016095704A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107959531B (zh) * 2016-10-18 2020-02-11 新华三技术有限公司 一种光发射装置
CN108809413A (zh) * 2018-06-20 2018-11-13 武汉光迅科技股份有限公司 一种端口连接状态监测系统和方法
JP2020088020A (ja) * 2018-11-16 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 検出回路、駆動回路および発光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340726A (zh) * 2000-08-31 2002-03-20 Lg电子株式会社 用于在光传输系统中显示自动激光关断状态的装置和方法
CN2574306Y (zh) * 2002-10-17 2003-09-17 武汉光迅科技有限责任公司 一种在线自动关断和开启的喇曼放大器
CN1869751A (zh) * 2006-07-05 2006-11-29 仪和仪美(北京)科技有限公司 光纤插座及光纤插头
CN101470409A (zh) * 2007-12-26 2009-07-01 鸿富锦精密工业(深圳)有限公司 激光装置
CN202494788U (zh) * 2012-01-18 2012-10-17 天津市天坤光电技术有限公司 一种用于判断光纤连接状态的监测装置
CN203590234U (zh) * 2013-12-17 2014-05-07 青岛海信宽带多媒体技术有限公司 一种激光器开启和关闭电路以及光模块

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186384A (ja) * 1983-04-07 1984-10-23 Canon Inc レ−ザ−の駆動装置
US4639924A (en) * 1982-09-03 1987-01-27 Canon Kabushiki Kaisha Drive system for a semiconductor laser
JPS59126314U (ja) * 1983-02-15 1984-08-25 三菱電機株式会社 電源回路
US4598199A (en) * 1983-11-03 1986-07-01 Hewlett-Packard Company Safety device for controlling a light signal generator based on fiber position
JPH052121A (ja) * 1991-06-26 1993-01-08 Sony Corp 光伝送装置
JP2913958B2 (ja) * 1991-11-25 1999-06-28 松下電器産業株式会社 半導体レーザ駆動停止回路
JP3250920B2 (ja) * 1994-11-01 2002-01-28 シャープ株式会社 光信号伝送装置
JPH08340144A (ja) * 1995-06-09 1996-12-24 Hitachi Cable Ltd 半導体レーザダイオード駆動回路
US5752100A (en) * 1996-01-26 1998-05-12 Eastman Kodak Company Driver circuit for a camera autofocus laser diode with provision for fault protection
JP3725235B2 (ja) * 1996-03-29 2005-12-07 富士通株式会社 発光素子駆動回路及びこれを有する発光装置
JPH10116126A (ja) * 1996-10-11 1998-05-06 Tec Corp 温度保護回路
JPH11177174A (ja) * 1997-12-10 1999-07-02 Sumitomo Electric Ind Ltd 発光モジュール
US6554490B1 (en) * 1999-05-26 2003-04-29 Sharp Kabushiki Kaisha Electronic apparatus having communication function using detachable communication cable, capable of reducing power consumption and stable operation
US6384664B1 (en) * 2000-10-05 2002-05-07 Texas Instruments Incorporated Differential voltage sense circuit to detect the state of a CMOS process compatible fuses at low power supply voltages
JP3980997B2 (ja) * 2002-12-06 2007-09-26 株式会社ソニー・ディスクアンドデジタルソリューションズ 半導体レーザ駆動装置
CN1641391A (zh) * 2004-01-14 2005-07-20 王子梁 光敏感光纤连接座
JP5446282B2 (ja) * 2009-01-21 2014-03-19 ソニー株式会社 固体撮像素子およびカメラシステム
JP2010276688A (ja) * 2009-05-26 2010-12-09 Olympus Corp 光源装置
JP2012065152A (ja) * 2010-09-16 2012-03-29 Sekisui Chem Co Ltd メディアコンバータ
CN203759314U (zh) * 2014-01-22 2014-08-06 武汉华工激光医疗设备有限公司 光纤耦合器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1340726A (zh) * 2000-08-31 2002-03-20 Lg电子株式会社 用于在光传输系统中显示自动激光关断状态的装置和方法
CN2574306Y (zh) * 2002-10-17 2003-09-17 武汉光迅科技有限责任公司 一种在线自动关断和开启的喇曼放大器
CN1869751A (zh) * 2006-07-05 2006-11-29 仪和仪美(北京)科技有限公司 光纤插座及光纤插头
CN101470409A (zh) * 2007-12-26 2009-07-01 鸿富锦精密工业(深圳)有限公司 激光装置
CN202494788U (zh) * 2012-01-18 2012-10-17 天津市天坤光电技术有限公司 一种用于判断光纤连接状态的监测装置
CN203590234U (zh) * 2013-12-17 2014-05-07 青岛海信宽带多媒体技术有限公司 一种激光器开启和关闭电路以及光模块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3226045A4 *

Also Published As

Publication number Publication date
US10008824B2 (en) 2018-06-26
EP3226045A4 (en) 2017-12-27
KR20170095387A (ko) 2017-08-22
KR101933595B1 (ko) 2018-12-28
CN105759369A (zh) 2016-07-13
US20170310082A1 (en) 2017-10-26
CN105759369B (zh) 2018-03-09
EP3226045A1 (en) 2017-10-04
JP2018500769A (ja) 2018-01-11

Similar Documents

Publication Publication Date Title
CN102637012B (zh) 一种用于激光加工设备的双路功率负反馈系统
WO2016095704A1 (zh) 防止激光泄露的光模块和控制方法
KR20160067173A (ko) 단말 및 전자 방수의 방법
CN103457673A (zh) 提高apd光接收机饱和光功率的方法和装置
CN204119014U (zh) 一种用于三电平的igbt驱动和保护电路
CN105025616B (zh) 光学导航传感器和提供供应电压给相关光源的方法
CN105243833A (zh) 电力抄表终端
CN105654912A (zh) 一种屏幕背光控制电路及显示装置
CN105119478A (zh) 一种功率单元的旁路接触器控制板
CN202615183U (zh) 一种用于激光加工设备的双路功率负反馈系统
WO2014199382A3 (en) Laser driver system and method
CN204738991U (zh) 一种风扇控制和保护电路
CN107193314A (zh) 一种运放输出电压钳位在驱动管阈值电压的恒流电路
CN107294199A (zh) 一种逻辑复合型电压检测切换电路
CN206413166U (zh) 一种耳机输出静音电路
CN204407877U (zh) 一种大光输入a/d采样过压保护电路
CN103118307A (zh) 基于pon设备的节电控制电路
CN204216634U (zh) 一种不间断电源的逆变与维修旁路互锁电路
CN103179458B (zh) 一种机顶盒及其天线供电模块
CN207096857U (zh) 一种运放输出电压钳位在驱动管阈值电压的恒流电路
CN110149564A (zh) 基于powerlevel功能调整ONU发光的方法
CN105262546B (zh) 一种光模块
CN204330619U (zh) 一种用于小体积产品全检的防呆组件
CN111193177A (zh) 一种激光回光噪声处理系统
CN104914739A (zh) 节能电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017533299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015869212

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020085

Country of ref document: KR

Kind code of ref document: A