WO2016095378A1 - 一种雪崩光电二极管偏置电压温度补偿装置及方法 - Google Patents

一种雪崩光电二极管偏置电压温度补偿装置及方法 Download PDF

Info

Publication number
WO2016095378A1
WO2016095378A1 PCT/CN2015/076557 CN2015076557W WO2016095378A1 WO 2016095378 A1 WO2016095378 A1 WO 2016095378A1 CN 2015076557 W CN2015076557 W CN 2015076557W WO 2016095378 A1 WO2016095378 A1 WO 2016095378A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
feedback
voltage
fixed resistance
circuit
Prior art date
Application number
PCT/CN2015/076557
Other languages
English (en)
French (fr)
Inventor
王滔
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016095378A1 publication Critical patent/WO2016095378A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/567Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for temperature compensation

Definitions

  • This paper relates to the field of optical receivers in optical fiber communication, and more specifically to a temperature compensation scheme for avalanche photodiode (APD) bias voltage.
  • APD avalanche photodiode
  • Long-distance fiber-optic communication typically uses an avalanche photodiode (APD) as the core device at the receiving end, converting the optical signal into an electrical signal.
  • APD avalanche photodiode
  • APD has a higher gain, and the resulting high sensitivity.
  • the bias voltage supplied to the APD by the optical receiver circuit must have temperature compensation capability: the bias voltage can be appropriately adjusted according to the temperature change, so that the bias voltage changes linearly with temperature, and the variation ratio coefficient is equal to the selected one.
  • the temperature coefficient of the APD bias voltage is equal to the selected one.
  • the traditional method of using the thermistor roughly utilizes the law of the resistance of the negative temperature coefficient thermistor with temperature.
  • a single negative temperature coefficient thermistor is connected in parallel with a fixed resistance resistor string to form a resistor network as a voltage. Generate feedback resistance of the circuit. When the temperature changes, the resistance of the resistor network changes, thereby changing the output voltage to compensate for the APD bias voltage with temperature.
  • This method is simple in idea and can be designed only by simple calculations, but the disadvantage is that no matter how the form of the resistor network changes, since the resistance of the single negative temperature coefficient thermistor changes with temperature, it is exponential. There is always a large degree of nonlinearity in the relationship between the equivalent resistance of the resistor network and the temperature.
  • Figure 1 shows the traditional method of using the thermistor to compensate the APD bias voltage.
  • the resulting output voltage varies with temperature.
  • the graph It can be seen that the difference between the output compensation voltage and the ideal voltage is maximum near 263K (-10°C) and 328K (55°C), and the sum of the absolute values of the two is reached. 1.33V, the nonlinearity in the range of commercial temperature (0 ⁇ 70 ° C) is 1.43%. As a result, the APD bias voltage temperature compensation effect is poor, and the receiving sensitivity of the device fluctuates greatly.
  • the lookup table method pre-records a table of the relationship between the APD bias voltage and the temperature.
  • the temperature sensing device converts the current temperature into a digital code, according to which the table finds the corresponding voltage value, and then uses the adjusted digital resistor. Adjust the output voltage by changing the duty cycle of the booster circuit.
  • the purpose of adjusting the APD bias voltage when the temperature changes is achieved.
  • the DDMI temperature error of the receiving device must not exceed ⁇ 3 °C. This means that if the proportionality of the linear relationship between the APD bias voltage and temperature is 0.1V/°C, then the maximum error of 0.6V is in accordance with the SFF-8472 protocol, but obviously such a large error will lead to comparison. Large range of sensitivity changes. Third, the adjustment accuracy of the output voltage is controlled by the resolution of the digital code, and the error is large. Finally, the price of digital resistors is high, resulting in high cost of the optical receiving device.
  • Embodiments of the present invention provide an APD bias voltage temperature compensation apparatus and method to solve the problem of complicated temperature compensation of a light receiving end device.
  • Avalanche photodiode APD bias voltage temperature compensating device comprising a voltage adjusting unit, a boosting unit and a feedback unit,
  • the voltage adjusting unit is configured to: change a voltage dividing ratio of the feedback unit according to a preset digital coded output current signal, and adjust a voltage V out output by the boosting unit,
  • the feedback unit includes a fixed resistance feedback resistor R1, and a temperature compensation subunit connected to the feedback voltage end of the feedback resistor R1, the temperature compensation subunit adopting more than two negative temperature coefficient thermistors and fixing
  • the resistance of the resistor constitutes a circuit for linear temperature compensation of the feedback voltage of the feedback resistor R1.
  • the temperature compensation subunit uses two or more negative temperature coefficient thermistors and solids
  • the resistance component circuit of the fixed resistance value is temperature compensated for the feedback voltage of the feedback resistor R1, including:
  • the negative temperature coefficient thermistor RT1 and the fixed resistance resistor R3 form a parallel circuit
  • the negative temperature coefficient thermistor RT2 and the fixed resistance resistor R4 form a series circuit
  • the parallel circuit is connected in parallel with the series circuit
  • the fixed resistance value One end of the resistor R2 is connected in series, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • the temperature compensating subunit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor circuit to perform temperature compensation for the feedback voltage of the feedback resistor R1, including:
  • the negative temperature coefficient thermistor RT1 and the fixed resistance resistor R3 form a parallel circuit.
  • the parallel circuit is connected in series with the fixed resistance R4, in parallel with the negative temperature coefficient thermistor RT2, and finally with the fixed resistance R2.
  • One end is connected in series, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • the feedback unit further includes a capacitor C1 for stabilizing the loop parameter, and the capacitor C1 is connected in parallel with the feedback resistor R1.
  • the boosting unit comprises a boosting circuit comprising a pulse width modulated PWM power switch and a charge pump boosting circuit.
  • the voltage adjustment unit comprises a digital-to-analog signal conversion chip DAC, a single chip microcomputer, or a laser diode drive-receive chip.
  • An avalanche photodiode APD bias voltage temperature compensation method comprising:
  • the voltage adjustment unit of the APD bias voltage temperature compensation device changes the voltage division ratio of the feedback unit in the APD bias voltage temperature compensation device according to the preset digital coded output current signal to adjust the output voltage V out of the boosting unit.
  • the temperature compensating subunit in the feedback unit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor circuit to perform linear temperature compensation for the feedback voltage of the fixed resistance feedback resistor R1 in the feedback unit. .
  • the temperature compensation subunit in the feedback unit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor to form a circuit, including:
  • the temperature coefficient thermistor RT2 and the fixed resistance resistor R4 form a series circuit, and the parallel circuit is connected in parallel with the series circuit, and is connected in series with one end of the fixed resistance R2, and the other end of the resistor R2 and the feedback resistor The feedback voltage terminal of R1 is connected.
  • the temperature compensation subunit in the feedback unit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor to form a circuit, including:
  • a parallel circuit is formed by using a negative temperature coefficient thermistor RT1 and a fixed resistance R3.
  • the parallel circuit is connected in series with a fixed resistance R4, in parallel with the negative temperature coefficient thermistor RT2, and finally with a fixed resistance R2.
  • One end of the resistor R2 is connected in series, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • the method further includes:
  • the APD bias voltage temperature compensation device uses a capacitor C1 in parallel with the fixed resistance resistor R1 to stabilize the loop parameters.
  • the APD bias voltage temperature compensation scheme provided by the embodiment of the present application can appropriately adjust the output voltage according to the change of the temperature.
  • the output voltage that is, the APD bias voltage
  • the temperature are linear. Thereby reducing the workload and difficulty of the development work of the optical receiving end device, and improving the linearity of the APD bias voltage temperature compensation, which can meet the requirements of different APD manufacturers.
  • 1 is a graph of an output voltage as a function of temperature in a related art method of using a thermistor to compensate an APD bias voltage
  • FIG. 2 is a schematic circuit diagram of an APD bias voltage temperature compensation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing the configuration of an APD bias voltage temperature compensation circuit including an embodiment in accordance with the present invention
  • FIG. 4 is a schematic diagram showing the configuration of an APD bias voltage temperature compensation circuit including another embodiment in accordance with the present invention.
  • FIG. 5 is a graph showing an output voltage as a function of temperature generated by an APD bias voltage temperature compensation method according to an embodiment of the invention.
  • the embodiment provides an APD bias voltage temperature compensation device, which includes at least a voltage adjustment unit, a boosting unit, and a feedback unit.
  • the feedback unit includes a fixed resistance feedback resistor R1 and a temperature compensation subunit.
  • the voltage adjusting unit adjusts the voltage dividing ratio of the feedback unit according to the preset digital coded output current signal, and adjusts the voltage V out output by the boosting unit;
  • the temperature compensation subunit is connected to the feedback voltage terminal of the fixed resistance feedback resistor R1, and the temperature compensation subunit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor circuit to form the feedback.
  • the feedback voltage of the resistor R1 is temperature compensated.
  • the negative temperature coefficient thermistor RT1 and the fixed resistance R3 constitute a parallel circuit
  • the negative temperature coefficient thermistor RT2 and the fixed resistance R4 form a series circuit
  • the parallel circuit and the series circuit After being connected in parallel, it is connected in series with one end of the resistor R2 of a fixed resistance, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • the feedback unit may further include a capacitor C1 for stabilizing the loop parameter, and the capacitor C1 is connected in parallel with the fixed resistance feedback resistor R1.
  • the boosting unit 100 is a DC/DC boosting circuit capable of generating a DC output voltage of 15V to 70V from a 3.3V DC voltage, and the output voltage is connected to the bias of the APD400. Voltage pin.
  • the voltage adjusting unit 200 is a programmable constant current source. By absorbing or discharging current at the voltage feedback point, a DC voltage component of a specified amplitude can be superimposed on the output voltage to meet the bias voltage requirements of different APD individuals.
  • a feedback unit 300 is also included.
  • the feedback unit 300 is composed of a temperature compensation subunit 310 and a fixed resistance resistor R1 connected in series. Capacitor C1 is connected in parallel with R1 to stabilize the loop parameters.
  • the temperature compensation circuit 310 is composed of two negative temperature coefficient thermistors and other fixed resistance resistors: a negative temperature coefficient thermistor RT1 and a fixed resistance resistor R3.
  • the parallel circuit is formed, and the negative temperature coefficient thermistor RT2 and the fixed resistance resistor R4 form a series circuit, and the parallel circuit and the series circuit are connected in parallel, and then connected in series with the fixed resistance resistor R2 to form the temperature compensation circuit 310.
  • the resistance value of the temperature compensation circuit 310 changes linearly, so that the output voltage changes linearly with temperature.
  • FIG. 3 illustrates one embodiment of an APD bias voltage temperature compensation device in accordance with the present disclosure.
  • the boosting unit 100 may include an "MP3217" chip produced by American Core Source Systems, Inc. (MPS), headquartered in 79 Great Oaks Blvd, San Jose, CA, USA, using PWM power switching technology to form a boost. Circuit.
  • the boosting circuit using a PWM input voltage 3.3V, 36V capable of producing the highest output voltage V p of.
  • the voltage generating section 100 further includes a "MMBD4148TW” chip manufactured by DIODES Corporation of the United States, headquartered at 4949Hedgcoxe Road, Plano, Texas, USA, to constitute a charge pump boosting circuit.
  • the boosting circuit using the charge pump as an input voltage V p, having the ability to produce the highest 70V output voltage V out.
  • APD 400 is connected to the bias voltage input pin and the V out.
  • the voltage adjustment unit 200 is a programmable constant current source comprising a "M02098" laser diode driver-receiver chip manufactured by MINDSPEED, Inc., headquartered at 4000 MacArthur Blvd., East Tower Newport Beach, CA 92660.
  • the chip receives a preset digital code, converts it into a current signal I 1 through an on-chip DAC, outputs it from the AUX DAC pin, and flows through the resistor R5 from right to left. Due to the presence of the current signal I 1 , a DC component is superimposed on V out , the magnitude of which is equal to I 1 ⁇ R 1 .
  • the bias voltage of each APD at normal temperature can be adjusted by adjusting the digital code of the chip.
  • the temperature compensating subunit 310 is connected in series with a fixed resistance resistor R1, and the capacitor C1 is connected in parallel with R1 for stabilizing the loop parameters.
  • the negative temperature coefficient thermistor RT1 and the fixed resistance resistor R3 form a parallel circuit
  • the negative temperature coefficient thermistor RT2 and the fixed resistance resistor R4 form a series circuit
  • the parallel circuit and the series circuit are connected in parallel, and then the fixed resistance resistor R2 In series, a temperature compensation subunit 310 is formed.
  • circuit parameters are calculated as follows:
  • the output voltage V out is equal to the bias voltage V apd required by the APD :
  • V out V apd 1
  • V apd 0.08 ⁇ T+b 2
  • the intercept b is called an offset, and the offset of each APD is different.
  • V fb is the reference voltage of MP3217
  • R n is the resistance of the voltage dividing resistor under the feedback network.
  • the linearity of the output voltage V out reaches 0.4% over the entire operating temperature range.
  • the output voltage linearity index of this embodiment is better when the bias voltage required by the APD is higher.
  • FIG. 4 illustrates another embodiment of an APD bias voltage temperature compensation device in accordance with the present disclosure.
  • the difference between this scheme and the scheme shown in FIG. 3 is mainly that the negative temperature coefficient thermistor RT1 and the fixed resistance resistor R3 in the temperature compensating subunit form a parallel circuit, and the parallel circuit is connected in series with the fixed resistance resistor R4. In parallel with the negative temperature coefficient thermistor RT2, and finally connected in series with one end of the fixed resistance R2, the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • This embodiment provides an APD bias voltage temperature compensation method, which mainly includes:
  • the voltage adjustment unit of the APD bias voltage temperature compensation device changes the voltage division ratio of the feedback unit in the APD bias voltage temperature compensation device according to the preset digital coded output current signal to adjust the boost unit output voltage V out ;
  • the temperature compensating subunit in the feedback unit uses two or more negative temperature coefficient thermistors and a fixed resistance resistor to form a circuit, and linearizes the feedback voltage of the fixed resistance feedback resistor R1 in the feedback unit. Temperature compensation.
  • the APD bias voltage temperature compensation device utilizes two or more negative temperature coefficient thermistors and a fixed resistance resistor to form a circuit, including:
  • the negative temperature coefficient thermistor RT1 and the fixed resistance resistor R3 form a parallel circuit
  • the negative temperature coefficient thermistor RT2 and the fixed resistance resistor R4 form a series circuit
  • the parallel circuit is connected in parallel with the series circuit
  • the fixed resistance One end of the value resistor R2 is connected in series, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • a negative temperature coefficient thermistor RT1 and a fixed resistance resistor R3 are used to form a parallel circuit.
  • the parallel circuit is connected in series with a fixed resistance R4, and is connected in parallel with the negative temperature coefficient thermistor RT2, and finally with a fixed resistance value.
  • One end of the resistor R2 is connected in series, and the other end of the resistor R2 is connected to the feedback voltage terminal of the feedback resistor R1.
  • the APD bias voltage temperature compensation device may also use a capacitor C1 in parallel with the fixed resistance resistor R1 to stabilize the loop parameters.
  • the APD bias voltage temperature compensation means boosted output voltage V out it may be a pulse width modulation (PWM) power switch and a charge pump booster circuit composed of the booster circuit boosts the output voltage V out.
  • PWM pulse width modulation
  • the voltage adjustment unit when the voltage adjustment unit outputs a current signal according to a preset digital code, a programmable constant current source, a digital-analog signal conversion chip DAC, a single chip microcomputer or a laser diode driving-receiving chip can be used to realize the current. Signal conversion.
  • the embodiment of the present application has the characteristics of high linearity of compensation effect, simple calculation, and low price, and can be adapted to products of different APD manufacturers.
  • the embodiment of the invention has the characteristics of high linearity of compensation effect, simple calculation and low price, and can adapt to products of different APD manufacturers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Light Receiving Elements (AREA)
  • Amplifiers (AREA)

Abstract

一种雪崩光电二极管(400)偏置电压温度补偿装置及方法,该装置包括电压调整单元(200)、升压单元(100)和反馈单元(300),其中反馈单元(300)包括固定阻值的反馈电阻R1,以及与反馈电阻R1的反馈电压端相连的温度补偿子单元(310),温度补偿子单元(310)采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为反馈电阻R1的反馈电压进行线性温度补偿。

Description

一种雪崩光电二极管偏置电压温度补偿装置及方法 技术领域
本文涉及光纤通信中光接收机领域,更具体的涉及,一种雪崩光电二极管(APD)偏置电压的温度补偿方案。
背景技术
长距离光纤通信通常使用雪崩光电二极管(APD)作为接收端的核心设备,将光信号转换成电信号。相对于普通光电二极管,APD具有较高的增益,和由此带来的高灵敏度。
为了获得较高的增益水平,需要向APD提供较高的偏置电压(30~60V)。该偏置电压是温度敏感的,它与温度作同向线性变化,二者之间的比例系数称为APD偏置电压的温变系数。因此光接收机电路提供给APD的偏置电压必须具有温度补偿能力:能够根据温度变化的情况,适当调节偏置电压的大小,使得偏置电压随温度作线性变化,变化的比例系数等于所选用的APD偏置电压的温变系数。
目前光纤通信接收端对APD偏置电压的温度补偿方法有两种,一是传统的使用热敏电阻的方法,二是使用查找表的方法。
传统的使用热敏电阻的方法粗略地利用了负温度系数热敏电阻的阻值随温度变化的规律,将单个负温度系数热敏电阻与固定阻值的电阻串并联,形成电阻网络,作为电压产生电路的反馈电阻。当温度变化时,电阻网络阻值变化,从而改变输出电压,达到补偿APD偏置电压随温度变化的目的。这种方法思路简单,只需要简单的计算就能设计完成,但缺点是,无论电阻网络的形式如何变化,由于单个负温度系数热敏电阻的阻值随温度变化的函数是指数形式的,因此电阻网络的等效电阻与温度之间的变化关系始终存在较大的非线性度,图1所示即为传统的使用热敏电阻补偿APD偏置电压的方法,产生的输出电压随温度变化情况的曲线图。可以看到在263K(-10℃)与328K(55℃)附近,输出补偿电压与理想电压的差异最大,两者绝对值之和达到 1.33V,商业温度(0~70℃)范围内非线性度为1.43%。这样导致APD偏置电压温度补偿效果较差,设备的接收灵敏度有较大波动。
查找表方法是预先记录APD偏置电压与温度之间的关系表格,当温度变化时,温度感知装置将当前温度转换成数字编码,据此查表找到对应的电压值,再利用调整数字电阻器、改变升压电路占空比等手段调整输出电压。从而达到当温度变化时,调整APD偏置电压的目的。这种方法的缺点有四。第一,制作温度-电压关系表格的工作繁琐。通常情况下,需要在多个温度点下,测量上百台设备的最佳接收灵敏度数据,非常耗时。当灵敏度不能通过误码仪直接测量,而是通过丢包率等指标间接测量时,还会引入相当大的测量误差。第二,根据SFF-8472协议规定,接收端设备的DDMI温度误差不得超过±3℃。这就意味着,如果APD偏置电压与温度之间的线性关系的比例系数是0.1V/℃,那么最大0.6V的误差是合乎SFF-8472协议规定的,但是显然这么大的误差会导致比较大的灵敏度变化范围。第三,输出电压的调整精度受到数字编码的分辨度控制,误差较大。最后,数字电阻器的价格较高,导致光接收端设备的成本居高不下。
发明内容
本发明实施例提供一种APD偏置电压温度补偿装置及方法,以解决光接收端设备温度补偿复杂的问题。
一种雪崩光电二极管APD偏置电压温度补偿装置,包括电压调整单元、升压单元和反馈单元,
所述电压调整单元,设置为:根据预先设置的数字编码输出电流信号,改变反馈单元的分压比例,调整升压单元输出的电压Vout
所述反馈单元包括固定阻值的反馈电阻R1,以及与所述反馈电阻Rl的反馈电压端相连的温度补偿子单元,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行线性温度补偿。
可选地,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固 定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行温度补偿,包括:
负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,所述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
可选地,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行温度补偿,包括:
负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
可选地,所述反馈单元还包括用于稳定环路参数的电容C1,所述电容C1与所述反馈电阻R1并联。
可选地,所述升压单元包括采用脉冲宽度调制PWM电源开关组成的升压电路以及电荷泵升压电路。
可选地,所述电压调整单元包括数字-模拟信号转换芯片DAC、单片机,或激光二级管驱动-接收芯片。
一种雪崩光电二极管APD偏置电压温度补偿方法,包括:
APD偏置电压温度补偿装置中电压调整单元根据预先设置的数字编码输出电流信号,改变APD偏置电压温度补偿装置中反馈单元的分压比例,以调整升压单元的输出电压Vout
所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈单元中的固定阻值的反馈电阻R1的反馈电压进行线性温度补偿。
可选地,所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,包括:
采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负 温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,所述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
可选地,所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,包括:
采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
可选地,该方法还包括:
所述APD偏置电压温度补偿装置采用电容C1与固定阻值电阻R1并联,稳定环路参数。
本申请实施例提供的APD偏置电压温度补偿方案能够根据温度的变化,适当调整输出电压。在工作温度范围内(-40℃~85℃),使输出电压(即是APD偏置电压)与温度之间成线性关系。从而降低了光接收端设备研制工作的工作量和难度,并且提高了APD偏置电压温度补偿的线性度,能够满足不同APD厂商产品的需求。
附图概述
图1为相关技术的使用热敏电阻补偿APD偏置电压的方法产生的输出电压随温度变化情况的曲线图;
图2为本发明实施例公开的APD偏置电压温度补偿方法的电路示意图;
图3为包括依据本发明的一个实施例的APD偏置电压温度补偿电路的配置示意图;
图4为包括依据本发明的另一个实施例的APD偏置电压温度补偿电路的配置示意图;
图5为依据本发明实施例公开的APD偏置电压温度补偿方法产生的输出电压随温度变化情况的曲线图。
本发明的实施方式
下文将结合附图对本发明实施例的技术方案作进一步详细说明。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
本实施例提供一种APD偏置电压温度补偿装置,至少包括电压调整单元、升压单元以及反馈单元,其中,反馈单元包括固定阻值的反馈电阻R1和温度补偿子单元。
电压调整单元,根据预先设置的数字编码输出电流信号,改变反馈单元的分压比例,调整升压单元输出的电压Vout
反馈单元中,温度补偿子单元与固定阻值的反馈电阻R1的反馈电压端相连,温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行温度补偿。
其中,温度补偿子单元中,负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,上述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,电阻R2的另一端与反馈电阻R1的反馈电压端相连即可。
另外,上述反馈单元还可以包括用于稳定环路参数的电容C1,该电容C1与固定阻值的反馈电阻R1并联。
还有一些可选方案,如图2所示,升压单元100是一个DC/DC升压电路,能够从3.3V直流电压产生15V~70V的直流输出电压,该输出电压连接到APD400的偏置电压管脚。电压调整单元200是一个可编程恒流源,通过在电压反馈点吸收或者放出电流,可以在上述输出电压上叠加指定幅度的直流电压分量,满足不同APD个体的偏置电压需要。还包括反馈单元300。反馈单元300由温度补偿子单元310和一个固定阻值电阻R1串联组成。电容C1与R1并联,用于稳定环路参数。温度补偿电路310由两个负温度系数热敏电阻与其他固定阻值电阻搭配组成:负温度系数热敏电阻RT1与固定阻值电阻R3 组成并联电路,负温度系数热敏电阻RT2与固定阻值电阻R4组成串联电路,上述并联电路与串联电路并联后,再与固定阻值电阻R2串联,即形成温度补偿电路310。在工作温度范围内(-40℃~85℃),随着温度变化,所述温度补偿电路310的阻值随之发生线性变化,从而使得输出电压随温度做线性变化。
图3给出了依据本申请公开的APD偏置电压温度补偿装置的一个实施例。如图3所示,升压单元100可以包括由总部位于79Great Oaks Blvd,San Jose,CA,USA的美国芯源系统有限公司(MPS)生产的“MP3217”芯片,使用PWM电源开关技术组成升压电路。该PWM升压电路利用3.3V输入电压,具有产生最高36V的输出电压Vp的能力。电压产生部分100还包括由总部位于4949Hedgcoxe Road,Plano,Texas,USA的美国DIODES公司生产的“MMBD4148TW”芯片,组成电荷泵升压电路。该电荷泵升压电路利用Vp作为输入电压,具有产生最高70V的输出电压Vout的能力。APD 400的偏置电压输入管脚与Vout相连。
电压调整单元200是一个可编程恒流源,包含由总部位于4000MacArthur Blvd.,East Tower Newport Beach,CA 92660的美国MINDSPEED公司生产的“M02098”激光二极管驱动-接收芯片。该芯片接收预先设置的数字编码,通过片内DAC转换成电流信号I1,从AUX DAC管脚输出,从右向左流过电阻R5。由于该电流信号I1的存在,Vout上就叠加了一个直流分量,其大小等于I1×R1。在批量生产光接收端设备时,由于每个APD在常温下的偏置电压都不相同,通过调整该芯片的数字编码,即可以调整每个APD在常温下的偏置电压。
反馈单元300中,温度补偿子单元310和一个固定阻值电阻R1串联,电容C1与R1并联,用于稳定环路参数。负温度系数热敏电阻RT1与固定阻值电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值电阻R4组成串联电路,上述并联电路与串联电路并联后,再与固定阻值电阻R2串联,即形成温度补偿子单元310。
电路参数计算方法如下:
输出电压Vout等于APD需要的偏置电压Vapd
Vout=Vapd      ①
本实施例中,APD偏置电压Vapd的温变系数为0.08V/℃,因此Vapd与温度T的关系如下:
Vapd=0.08×T+b     ②
其中,截距b称为偏移量,每个APD的偏移量都不相同。
根据PWM电源开关技术的特点、MP3217、热敏电阻的数据手册,输出电压Vout的公式如下:
Figure PCTCN2015076557-appb-000001
     ③
其中,Vfb为MP3217的参考电压,Rn为反馈网络下分压电阻的阻值。
在工作温度范围(-40℃~85℃)内,取温度T等于233K、263K、298K、328K、358K,可以得到5个方程。该方程组没有解析解,可以使用数值计算工具例如MATLAB等,计算出数值解。本实施例中得到如下结果:
R2=6.34KΩ
R3=8.45KΩ
R4=6.65KΩ
RT1常温标称阻值=15KΩ,B=4000K
RT2常温标称阻值=1.5KΩ,B=4000K
根据上述选定的电路参数,可以得到在整个工作温度范围内,输出电压Vout的线性度达到0.4%。当APD需要的偏置电压更高时,本实施例的输出电压线性度指标还会更好。
图4所示为依据本申请公开的APD偏置电压温度补偿装置的另一个实施例。此方案与图3所示的方案的不同主要在于,温度补偿子单元中负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
从图5可以看出,上述装置在全温范围内,输出补偿电压都接近理想电压,两者最大差值的绝对值之和为0.38V。商业温度(0~70℃)范围内非线 性度为0.25%。
实施例2
本实施例提供一种APD偏置电压温度补偿方法,主要包括:
APD偏置电压温度补偿装置中电压调整单元根据预先设置的数字编码输出电流信号,改变APD偏置电压温度补偿装置中反馈单元的分压比例,以调整升压单元输出电压Vout
其中,所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈单元中的固定阻值的反馈电阻R1的反馈电压进行线性温度补偿。
可选地,APD偏置电压温度补偿装置利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,包括:
采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,所述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
或者,采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
上述APD偏置电压温度补偿装置还可以采用电容C1与固定阻值电阻R1并联,以稳定环路参数。
APD偏置电压温度补偿装置升压输出电压Vout时,可以采用脉冲宽度调制PWM电源开关组成的升压电路以及电荷泵升压电路进行升压后,输出电压Vout
APD偏置电压温度补偿装置中电压调整单元根据预先设置的数字编码输出电流信号时,可以采用可编程恒流源,数字-模拟信号转换芯片DAC、单片机或激光二级管驱动-接收芯片实现电流信号的转换。
由于上述方法的实施可依赖上述实施例1中的APD偏置电压温度补偿装 置,因此本实施例的详细说明可参见上述实施例1的相应内容,在此不再赘述。
从上述实施例可以看出,本申请实施例具有补偿效果线性度高、计算简便、价格低廉的特点,能适应不同APD厂家的产品。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
以上所述,仅为本发明的较佳实例而已,并非用于限定本发明的保护范围。
工业实用性
本发明实施例具有补偿效果线性度高、计算简便、价格低廉的特点,能适应不同APD厂家的产品。

Claims (10)

  1. 一种雪崩光电二极管APD偏置电压温度补偿装置,包括电压调整单元、升压单元和反馈单元,
    所述电压调整单元,设置为:根据预先设置的数字编码输出电流信号,改变反馈单元的分压比例,调整升压单元输出的电压Vout
    所述反馈单元包括固定阻值的反馈电阻R1,以及与所述反馈电阻Rl的反馈电压端相连的温度补偿子单元,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行线性温度补偿。
  2. 如权利要求1所述的装置,其中,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行温度补偿,包括:
    负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,所述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
  3. 如权利要求1所述的装置,其中,所述温度补偿子单元采用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈电阻R1的反馈电压进行温度补偿,包括:
    负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
  4. 如权利要求1至3任一项所述的装置,其中,所述反馈单元还包括用于稳定环路参数的电容C1,所述电容C1与所述反馈电阻R1并联。
  5. 如权利要求4所述的装置,其中,
    所述升压单元包括采用脉冲宽度调制PWM电源开关组成的升压电路以 及电荷泵升压电路。
  6. 如权利要求4所述的装置,其中,
    所述电压调整单元包括数字-模拟信号转换芯片DAC、单片机,或激光二级管驱动-接收芯片。
  7. 一种雪崩光电二极管APD偏置电压温度补偿方法,包括:
    APD偏置电压温度补偿装置中电压调整单元根据预先设置的数字编码输出电流信号,改变APD偏置电压温度补偿装置中反馈单元的分压比例,以调整升压单元的输出电压Vout
    所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,为所述反馈单元中的固定阻值的反馈电阻R1的反馈电压进行线性温度补偿。
  8. 如权利要求7所述的方法,其中,所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,包括:
    采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,负温度系数热敏电阻RT2与固定阻值的电阻R4组成串联电路,所述并联电路与串联电路并联后,与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
  9. 如权利要求7所述的方法,其中,所述反馈单元中温度补偿子单元利用两个以上的负温度系数热敏电阻与固定阻值的电阻组成电路,包括:
    采用负温度系数热敏电阻RT1与固定阻值的电阻R3组成并联电路,该并联电路与固定阻值的电阻R4串联后,与负温度系数热敏电阻RT2并联,最后与固定阻值的电阻R2的一端串联,所述电阻R2的另一端与所述反馈电阻R1的反馈电压端相连。
  10. 如权利要求7至9任一项所述的方法,该方法还包括:
    所述APD偏置电压温度补偿装置采用电容C1与固定阻值电阻R1并联,稳定环路参数。
PCT/CN2015/076557 2014-12-16 2015-04-14 一种雪崩光电二极管偏置电压温度补偿装置及方法 WO2016095378A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410785442.1 2014-12-16
CN201410785442.1A CN105759890A (zh) 2014-12-16 2014-12-16 一种雪崩光电二极管偏置电压温度补偿装置及方法

Publications (1)

Publication Number Publication Date
WO2016095378A1 true WO2016095378A1 (zh) 2016-06-23

Family

ID=56125745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076557 WO2016095378A1 (zh) 2014-12-16 2015-04-14 一种雪崩光电二极管偏置电压温度补偿装置及方法

Country Status (2)

Country Link
CN (1) CN105759890A (zh)
WO (1) WO2016095378A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889242A (zh) * 2019-12-10 2020-03-17 深圳市普威技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN114756070A (zh) * 2022-04-01 2022-07-15 苏州海光芯创光电科技股份有限公司 一种自主控温的硅光芯片设计方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106767938B (zh) * 2016-12-08 2019-07-09 西安电子科技大学 一种apd偏置电压温度补偿电路
CN106525232A (zh) * 2016-12-09 2017-03-22 中国科学院自动化研究所 多通道光检测装置
CN107222266B (zh) * 2017-06-12 2019-09-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN107504983A (zh) * 2017-09-06 2017-12-22 湖南航天机电设备与特种材料研究所 小型光纤陀螺y波导驱动电路及半波电压漂移补偿方法
CN108075761B (zh) * 2017-12-26 2021-01-26 积成电子股份有限公司 一种温度自补偿的开关量信号处理方法
CN108933517A (zh) * 2018-09-06 2018-12-04 广州金升阳科技有限公司 开关变换器的输出电压反馈电路及温度补偿电路
CN109814085B (zh) * 2018-12-18 2021-06-08 歌尔光学科技有限公司 一种激光雷达温度补偿方法、装置、系统和设备
CN110196430B (zh) * 2019-05-15 2021-05-14 深圳市速腾聚创科技有限公司 一种应用于单光子阵列传感器的温度补偿电路及方法
CN112311209A (zh) * 2019-07-29 2021-02-02 希望森兰科技股份有限公司 输出可调电压的稳压电源装置
CN112165075B (zh) * 2020-09-22 2021-08-24 郑州嘉晨电器有限公司 一种过流保护电路
CN114510108A (zh) * 2021-12-27 2022-05-17 中国原子能科学研究院 一种用于硅光电倍增管的微型温度补偿电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153835A (en) * 1977-08-25 1979-05-08 Bell Telephone Laboratories, Incorporated Temperature compensation circuit
JPS63187672A (ja) * 1987-01-30 1988-08-03 Nippon Telegr & Teleph Corp <Ntt> Apdバイアス回路
CN1516362A (zh) * 2003-01-02 2004-07-28 三星电子株式会社 用于雪崩光电二极管光接收机的温度补偿设备
CN200950235Y (zh) * 2006-09-25 2007-09-19 深圳飞通光电子技术有限公司 雪崩光电二极管的温度补偿偏压电路
CN101800254A (zh) * 2010-02-05 2010-08-11 中国计量学院 对雪崩光电二极管偏置电压进行温度补偿的电路
CN103067076A (zh) * 2012-12-27 2013-04-24 武汉华工正源光子技术有限公司 光模块突发光功率的检测电路

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4300392A (en) * 1980-02-14 1981-11-17 General Electric Company Interchangeable networks with non-linear sensors and method of producing such networks

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153835A (en) * 1977-08-25 1979-05-08 Bell Telephone Laboratories, Incorporated Temperature compensation circuit
JPS63187672A (ja) * 1987-01-30 1988-08-03 Nippon Telegr & Teleph Corp <Ntt> Apdバイアス回路
CN1516362A (zh) * 2003-01-02 2004-07-28 三星电子株式会社 用于雪崩光电二极管光接收机的温度补偿设备
CN200950235Y (zh) * 2006-09-25 2007-09-19 深圳飞通光电子技术有限公司 雪崩光电二极管的温度补偿偏压电路
CN101800254A (zh) * 2010-02-05 2010-08-11 中国计量学院 对雪崩光电二极管偏置电压进行温度补偿的电路
CN103067076A (zh) * 2012-12-27 2013-04-24 武汉华工正源光子技术有限公司 光模块突发光功率的检测电路

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110889242A (zh) * 2019-12-10 2020-03-17 深圳市普威技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN110889242B (zh) * 2019-12-10 2023-10-20 深圳市联洲国际技术有限公司 Apd电压的调整方法、装置、存储介质及onu设备
CN114756070A (zh) * 2022-04-01 2022-07-15 苏州海光芯创光电科技股份有限公司 一种自主控温的硅光芯片设计方法

Also Published As

Publication number Publication date
CN105759890A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2016095378A1 (zh) 一种雪崩光电二极管偏置电压温度补偿装置及方法
TWI595735B (zh) 可降低電流漣波之電流調節電路及降低電流漣波的方法
TWI400990B (zh) 具溫度補償之發光二極體驅動電路及其控制器
US8724350B2 (en) Power supply circuit with temperature compensation and electronic device
CN105743340B (zh) 雪崩光电二极管的偏压产生电路及相关的控制电路
TW201739318A (zh) 控制電路、控制方法和應用其的線性led驅動電路
US9232575B2 (en) LCD backlight driving circuit and liquid crystal device
TWI546641B (zh) 雪崩光電二極體的偏壓產生電路及相關的控制電路
TW201325054A (zh) 切換式電源供應器及其控制電路與控制方法
US9780875B2 (en) Visible light communication modulation circuit, illumination device, illumination apparatus and visible light communication system
TWI510133B (zh) Digital pulse wave drive device for stabilizing the optical power of light emitting diodes
US6919716B1 (en) Precision avalanche photodiode current monitor
US9705462B2 (en) Sensor signal output circuit and method for adjusting it
US10247760B2 (en) Apparatus and method for measuring primary voltage from the secondary side of an isolated power supply
TWI610526B (zh) 電源轉換器的控制器及其操作方法
Mirvakili et al. A flicker-free CMOS LED driver control circuit for visible light communication enabling concurrent data transmission and dimming control
CN112135390B (zh) 调光电路及电源芯片
WO2017110369A1 (ja) ワイヤレス受電装置
US20140184103A1 (en) Feedback control circuit and power supply apparatus using dimming adjustment and forward voltage control
JP6277548B2 (ja) 照明光通信装置
US10034341B1 (en) Adaptive backlight device, system and control method thereof
TWI396063B (zh) 無esr電阻補償之低壓降線性穩壓器
CN105469747B (zh) 电子装置及其背光驱动电路
EP2647260B1 (en) Adaptable driver circuit for driving a light circuit
JP2019115098A (ja) フィードバック回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15868895

Country of ref document: EP

Kind code of ref document: A1