WO2016093323A1 - Metal surface treatment liquid, method for producing surface-treated metal material, and surface-treated metal material - Google Patents

Metal surface treatment liquid, method for producing surface-treated metal material, and surface-treated metal material Download PDF

Info

Publication number
WO2016093323A1
WO2016093323A1 PCT/JP2015/084703 JP2015084703W WO2016093323A1 WO 2016093323 A1 WO2016093323 A1 WO 2016093323A1 JP 2015084703 W JP2015084703 W JP 2015084703W WO 2016093323 A1 WO2016093323 A1 WO 2016093323A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface treatment
group
metal surface
treatment liquid
metal
Prior art date
Application number
PCT/JP2015/084703
Other languages
French (fr)
Japanese (ja)
Other versions
WO2016093323A8 (en
Inventor
智洋 猪古
一郎 大浦
亨 徳留
遠藤 正彦
圭一 中島
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to KR1020177015326A priority Critical patent/KR101988780B1/en
Priority to JP2016501908A priority patent/JP6127198B2/en
Priority to CN201580067410.0A priority patent/CN107429110B/en
Publication of WO2016093323A1 publication Critical patent/WO2016093323A1/en
Priority to PH12017501069A priority patent/PH12017501069A1/en
Publication of WO2016093323A8 publication Critical patent/WO2016093323A8/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a metal surface treatment liquid, a method for producing a surface treatment metal material, and a surface treatment metal material.
  • Patent Document 1 discloses a coated metal material having a urethane-based resin film containing a polyurethane resin as a main component on a metal material, and describes that corrosion resistance and workability are excellent.
  • the required performance for the metal materials used is also increasing.
  • the adhesion (coating film adhesion) of the coating film disposed on the metal material surface It is also required to be excellent in corrosion resistance after being provided (corrosion resistance after painting) and chemical resistance to acids and alkalis.
  • the present inventors performed surface treatment of a metal material using a urethane resin as described in Patent Document 1 and evaluated various properties with respect to the obtained surface-treated metal material. There was nothing to satisfy with the level, and it was found that further improvement was necessary.
  • the present invention provides a metal surface treatment liquid capable of obtaining a surface-treated metal material excellent in corrosion resistance, workability, chemical resistance, coating film adhesion and post-coating corrosion resistance.
  • Another object of the present invention is to provide a method for producing a surface-treated metal material using a metal surface-treatment liquid, and a surface-treated metal material.
  • the present inventors can obtain a desired effect by using a metal surface treatment liquid containing a blocked isocyanate having a predetermined structure and an organic resin having a predetermined functional group. I found out. More specifically, the present inventors have found that the above object can be achieved by the following configuration.
  • a metal surface treatment solution comprising: an organic resin (B) having at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group.
  • At least one phosphorus-containing compound (D) selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, organic phosphate, organic phosphonic acid, and organic phosphonate comprising: (4) The metal surface treatment liquid according to (3) above, wherein the phosphorus-containing compound (D) contains at least one selected from the group consisting of an ammonium salt of inorganic phosphoric acid and an organic phosphonic acid.
  • the metal surface treatment liquid according to the above (6) or (7), wherein the metal compound (C) is zirconium ammonium carbonate, zirconium hydrofluoric acid or a salt thereof.
  • a surface-treated metal material comprising a step of bringing the metal surface treatment liquid according to any one of (1) to (13) into contact with a surface of the metal material, followed by heating and drying to form a film on the metal material. Production method.
  • a surface-treated metal material comprising a metal material and a film formed by bringing the metal surface treatment liquid according to any one of (1) to (13) above into contact with the metal material and drying by heating.
  • the metal surface treatment liquid which can obtain the surface treatment metal material excellent in corrosion resistance, work resistance, chemical resistance, coating-film adhesiveness, and post-coating corrosion resistance can be provided.
  • the manufacturing method of the surface treatment metal material using a metal surface treatment liquid, and a surface treatment metal material can also be provided.
  • the blocked isocyanate (A) has many polar groups in the molecule such as an isocyanurate structure containing an oxygen atom and a nitrogen atom and a polyalkyleneoxy chain containing an oxygen atom. These polar groups form a hydrogen bond with a hydroxyl group on the metal material, or form a covalent bond by heat drying, and as a result, the film is firmly bonded to the metal material.
  • This characteristic has the effect of suppressing the bond breakage between the metal material and the film due to the increase in pH through the reduction reaction of dissolved oxygen that occurs under the film in a corrosive environment.
  • the adhesion point at the interface between the film and the metal material increases, it also has an action of suppressing film peeling and film destruction. Therefore, it acts effectively on corrosion control such as corrosion resistance.
  • most of the isocyanate groups (blocked isocyanate groups) blocked by the blocking agent in the blocked isocyanate (A) contained in the metal surface treatment liquid are dissociated by heat drying, but a part of them is considered to remain.
  • the film formed from the metal surface treatment liquid of the present invention also effectively acts on chemical resistance (solvent resistance and water repellency). These are achieved by a curing reaction with the organic resin (B) coexisting with the blocked isocyanate (A). This is because the molecular weight of the entire coating increases due to the curing reaction, and the penetration of corrosion factors is achieved by the dense structure formed in the coating.
  • the metal surface treatment liquid contains at least a blocked isocyanate (A) and an organic resin (B).
  • A blocked isocyanate
  • B organic resin
  • the metal surface treatment liquid contains a blocked isocyanate (A) having an isocyanate group (blocked isocyanate group) blocked with a blocking agent, and further having an isocyanurate structure and a polyalkyleneoxy chain.
  • the blocked isocyanate is a product obtained by reacting an isocyanate group of an isocyanate compound with a blocking agent, and when heated, the protecting group (residue of the blocking agent) is dissociated to regenerate the isocyanate group.
  • the blocked isocyanate having a lower dissociation temperature regenerates the isocyanate group at a relatively low temperature.
  • the regenerated isocyanate group undergoes a crosslinking reaction with a later-described organic resin (B) having a predetermined functional group to form a bond.
  • the type of the blocking agent used for blocking (protecting) the isocyanate group is not particularly limited, and usually a compound having one active hydrogen in the molecule is preferably used.
  • phenol blocking agents for example, phenol, cresol
  • lactam blocking agents for example, caprolactam, valerolactam
  • oxime blocking agents for example, formamide oxime, acetamide oxime, methyl ethyl ketoxime
  • active methylene blocking agents For example, diethyl malonate, dimethyl malonate
  • alcohol-based blocking agent for example, methanol, ethanol, ethylene glycol monobutyl ether
  • pyrazole-based blocking agent for example, 3,5-dimethylpyrazole
  • mercaptan-based blocking agent for example, Butyl mercaptan
  • acid amide blocking agents eg acetanilide, acetic acid amide
  • imidazole blocking agents eg imidazole
  • amine blocking agents eg dipheny
  • 1,3-dicarbonyl compounds or nitrogen-containing cyclic compounds are more preferred.
  • a blocking agent having an electron-withdrawing group such as malonates and pyrazoles is suitable and has an effect of lowering the dissociation temperature. All isocyanate groups may be blocked with one blocking agent, or two or more blocking agents may be used in combination.
  • the dissociation temperature of the blocked isocyanate (A) (the temperature at which the blocked isocyanate group dissociates) is not particularly limited, but it is often 60 to 180 ° C., because it is easy to handle and has excellent alkali resistance and coating film adhesion. 80 to 120 ° C. is preferable.
  • the content of the isocyanate group blocked by the blocking agent in the blocked isocyanate (A) is not particularly limited, but the content of the effective isocyanate group in the blocked isocyanate (A) is the corrosion resistance, processing resistance, chemical resistance, coating 0.5 to 10% by mass in the total mass of the blocked isocyanate (A) in that at least one of film adhesion and post-coating corrosion resistance is more excellent (hereinafter also referred to simply as “the effect of the present invention is more excellent”). Preferably, 1 to 7% by mass is more preferable.
  • content of an effective isocyanate group shows content of the isocyanate group after dissociating the blocking group which blocks an isocyanate group from a blocked isocyanate group in blocked isocyanate (A).
  • the content (concentration) of the effective isocyanate group is specified by an isocyanate equivalent, and is measured according to the method specified in JIS K1603-1.
  • Isocyanate equivalent is the number of grams of blocked isocyanate (A) containing 1 g equivalent of isocyanate groups.
  • the isocyanate equivalent is preferably 150 to 5000, more preferably 300 to 4500, and still more preferably 400 to 4000.
  • Block isocyanate (A) has an isocyanurate structure (isocyanurate ring structure).
  • the isocyanurate structure is a structure represented by the following formula (X). * Represents a binding position.
  • the isocyanurate structure is obtained by cyclization and trimerization of isocyanate groups of various diisocyanates or triisocyanates.
  • Diisocyanates include 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanate) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4- or 2,4,4.
  • Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate; 1,3- or 1,4-bis (isocyanate methylcyclohexane), 1,3- or 1,4-diisocyanate cyclohexane, 3-isocyanate-methyl-3,5,5 Alicyclic diisocyanates such as trimethylcyclohexyl isocyanate, dicyclohexylmethane-4,4′-diisocyanate, 2,5- or 2,6-diisocyanate methylnorbornane; m- or p-phenylene diisocyanate Anate, tolylene-2,4- or 2,6-diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-bis (2-isocyanate 2-propyl) benzene, naphthalene-1,5-diisocyanate, diphenyl-4 Aromatic diisocyanates such as 4,4'-di
  • triisocyanate examples include aliphatic triisocyanates such as 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate 4-isocyanate methyloctane, 2-isocyanatoethyl (2,6-diisocyanate) hexanoate; Examples thereof include alicyclic triisocyanates such as 5- or 2,6-diisocyanate methyl-2-isocyanatopropylnorbornane; aromatic triisocyanates such as triphenylmethane triisocyanate and tris (isocyanatephenyl) thiophosphate.
  • the number of isocyanurate structures contained in the blocked isocyanate (A) is not particularly limited, but is preferably 1 to 10 and more preferably 1 to 4 in terms of more excellent effects of the present invention.
  • the blocked isocyanate (A) has a polyalkyleneoxy chain (for example, a polyethyleneoxy chain, a polypropyleneoxy chain).
  • the polyalkyleneoxy chain is a chain having a structural unit (repeating unit) represented by the formula (2).
  • Formula (2)-(LO) n- L represents an alkylene group.
  • the number of carbon atoms contained in the alkylene group is not particularly limited, but is preferably 2 to 10 and more preferably 2 to 4 in terms of more excellent effects of the present invention.
  • the number of structural units (repeating units) represented by n is not particularly limited, but is preferably 2 to 1000 (preferably an integer of 2 to 1000) and more preferably 5 to 400 from the viewpoint of more excellent effects of the present invention.
  • the molecular weight of the polyalkyleneoxy chain is not particularly limited, but is preferably from 100 to 10,000, more preferably from 200 to 5,000, from the viewpoint that the effects of the present invention are more excellent.
  • the content of the polyalkyleneoxy chain in the blocked isocyanate (A) is not particularly limited, but is preferably from 10 to 70% by mass, preferably from 20 to 60%, based on the total mass of the blocked isocyanate (A), from the viewpoint that the effects of the present invention are more excellent.
  • the mass% is more preferable.
  • the weight average molecular weight of the blocked isocyanate (A) is not particularly limited, but is often 300 to 20000, preferably 400 to 15000, more preferably 1000 to 7000, in view of excellent handling properties and the effects of the present invention. .
  • the weight average molecular weight of the blocked isocyanate (A) affects the physical properties of the film to be formed.
  • the weight average molecular weight of the blocked isocyanate (A) is preferably a high molecular weight (preferably, a weight average molecular weight of 400 to 15000) from the viewpoint of imparting excellent elasticity and strength to the film.
  • Excellent elasticity and hardness not only provide mechanical resistance such as chemical resistance such as chemical resistance, but also mechanical resistance such as scratch resistance and abrasion resistance to the film. Also effective.
  • the film thus obtained effectively acts on the adhesion to the metal material due to the high polarity of the blocked isocyanate (A) itself.
  • the blocked isocyanate (A) is preferably a self-emulsifying type blocked isocyanate.
  • the self-emulsifying type blocked isocyanate intends that the compound itself has an affinity for water and can be emulsified and dispersed in water.
  • the particle size of the blocked isocyanate (A) particles in the metal surface treatment liquid is 0.00 in that the effect of the present invention is more excellent. 01 to 1.0 ⁇ m is preferable, and 0.05 to 0.5 ⁇ m is more preferable.
  • a preferred embodiment of the blocked isocyanate (A) is an embodiment having a structural unit represented by the formula (1) and a structural unit represented by the above formula (2) in that the effect of the present invention is more excellent. It is done. * Represents a binding position.
  • X represents a bivalent hydrocarbon group each independently.
  • the number of carbon atoms contained in the divalent hydrocarbon group is not particularly limited, and is preferably from 1 to 20, more preferably from 2 to 20, and even more preferably from 4 to 12 from the viewpoint that the effects of the present invention are more excellent.
  • Examples of the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, or a combination thereof.
  • the divalent aliphatic hydrocarbon group may be linear, branched or cyclic.
  • the cyclic may be either monocyclic or polycyclic, and examples of the monocyclic aliphatic hydrocarbon group include cyclohexanediyl.
  • Examples of the polycyclic aliphatic hydrocarbon group include adamantanediyl group and norbornanediyl group. Etc.
  • the divalent hydrocarbon group an alkylene group having 1 to 6 carbon atoms, an aliphatic six-membered ring group in which an alkyl group may be substituted, or xylylene in which an alkyl group may be substituted Preferred are groups and the like.
  • R 1 represents a residue of the blocking agent.
  • the residue of the blocking agent means a residue obtained by removing a hydrogen atom from a blocking agent that can react with an isocyanate group.
  • the kind of blocking agent is as having mentioned above. Of these, alkylamino groups having 3 to 8 carbon atoms, 1,3-dicarbonyl groups having 2 to 8 carbon atoms, or pyrazole groups having 2 to 8 carbon atoms are preferable.
  • the number of structural units represented by the formula (1) in the block isocyanate (A) is not particularly limited, but is the same as the number of the isocyanurate structures described above.
  • the production method of the blocked isocyanate (A) is not particularly limited and a known method is adopted.
  • a polyisocyanate having an isocyanurate structure is produced by reacting a polyisocyanate such as diisocyanate, and then a blocking agent. Is added to protect a part of the isocyanate group, and a polyalkyleneoxy compound is further added.
  • the polyalkyleneoxy compound has a structural unit (repeating unit) represented by the above formula (2) and has a group capable of reacting with an isocyanate group such as a hydroxy group at the terminal (preferably both terminals).
  • a catalyst for example, a basic catalyst
  • catalysts include tetraalkylammonium hydroxide, alkylcarboxylic acid such as alkyl metal salts such as tin, zinc and lead, metal alcoholates such as sodium and potassium, and aminosilyl group-containing compounds such as hexamethyldisilazane.
  • Mannich bases combined use of tertiary amines and epoxy compounds, and phosphorus compounds such as tributylphosphine. These may use only 1 type or may use 2 or more types together.
  • a basic catalyst is used as a catalyst, it is preferable to neutralize with an acidic compound as needed.
  • An acidic compound may use only 1 type or may use 2 or more types together.
  • the metal surface treatment liquid contains an organic resin (B) having at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group.
  • the organic resin (B) includes at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group, and the amino group is more advantageous in that the effect of the present invention is more excellent. Or a carboxy group is preferable.
  • the type of resin (resin structure) of the organic resin (B) is not particularly limited as long as it has the functional group.
  • an epoxy resin for example, an epoxy resin, a urethane resin, a phenol resin, or an acrylic resin having the functional group.
  • An acrylic-ethylene copolymer, an acrylic-styrene copolymer, an alkyd resin, a polyester resin, or the like can be used.
  • an aqueous organic resin that can be dispersed in an aqueous medium is preferable.
  • organic resin (B) examples include, for example, aromatic epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, modified polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl.
  • aromatic epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, modified polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl.
  • Aliphatic epoxy resins such as ether-modified products are exemplified. These epoxy resins may be cationized by introduction of an amino group, anionized by introduction of a carboxy group, or nonionic by introduction of a nonionic group such as ethylene oxide.
  • the cationic urethane resin is preferably cationized, anionized or nonionic by introducing at least one group of an amino group, a carboxy group and an ethylene oxide group into the resin.
  • both a yellowing isocyanate and a non-yellowing isocyanate can be used as a monomer constituting the urethane resin.
  • the polyol species may have both an aromatic structure and an aliphatic structure.
  • the polyester resin is preferably cationized, anionized, or nonionic by introducing at least one group of an amino group, a carboxy group, and an ethylene oxide group.
  • the phenol resin include resins having a main structure such as novolac type phenol, resol type phenol, and polyvinyl phenol.
  • the acrylic resin can be cationized, anionized, non-ionized and water-based by introducing at least one of an amino group, a carboxy group and an ethylene oxide group.
  • the organic resin (B) is preferably water-based by a self-emulsification method, but may be water-based using a cationic surfactant, a nonionic surfactant, an anionic surfactant or a reactive emulsifier. .
  • organic resins (B) may be graft-modified.
  • the hydroxyl value of the organic resin (B) is preferably 1 to 1000 mgKOH / g.
  • the amine value of the organic resin (B) is preferably 1 to 800 mgKOH / g.
  • the acid value of the organic resin (B) is preferably 1 to 100 mgKOH / g.
  • the metal surface treatment liquid may contain components other than the blocked isocyanate (A) and the organic resin (B).
  • the optional components will be described in detail.
  • the metal surface treatment liquid is at least selected from the group consisting of zirconium, titanium, vanadium, cerium, molybdenum, cobalt, nickel, magnesium, calcium, cerium, zinc, niobium, yttrium, aluminum, tungsten, chromium, and barium.
  • a metal compound (C) containing one kind of element may be contained. These compounds are effective for improving the corrosion resistance of the surface-treated metal material, act as a dissociation catalyst for the blocked isocyanate group, and further as a reaction promoter for the isocyanate group, and affect the properties of the film in the surface-treated metal material.
  • zirconium compound examples include inorganic acid salts such as zirconium carbonate, chloride, nitrate, and sulfate, zirconium oxide and organic acid salts of zirconium, zirconium tetraisopropoxide, diiso Organic zirconium compounds such as zirconium alkoxides such as propoxyzirconium diacetylacetonate and diisopropoxyzirconium ditriethanolaminate, zirconium tetraacetylacetonate and chelate complexes containing zirconium atoms can be used.
  • ammonium zirconium carbonate or zirconium hydrofluoric acid or a salt thereof is preferable in that the effect of the present invention is more excellent.
  • titanium compound compound containing a titanium element
  • a titanium alkoxide for example, a titanium alkoxide, a chelate complex containing a titanium atom, an inorganic salt of titanium, an organic acid salt, and an organic titanium compound are preferable.
  • vanadium compound compound containing a vanadium element
  • a vanadium alkoxide for example, a vanadium alkoxide, a chelate complex containing vanadium, an inorganic salt of vanadium, an organic salt, and an oxide are preferable.
  • vanadium oxyacetylacetonate metavanadate, Sodium metavanadate, potassium metavanadate, ammonium metavanadate, vanadium bisacetylacetonate, vanadyl diacetylacetonate, vanadium pentoxide, vanadium trioxide, vanadium fluoride, vanadium phosphate, vanadium sulfate, vanadium oxalate, vanadium oxytriiso
  • cerium compound for example, cerium alkoxide, chelate complex containing cerium, inorganic salt, organic salt and oxide of cerium are preferable.
  • molybdenum compound compound containing molybdenum element
  • molybdenum alkoxide molybdenum alkoxide
  • a chelate complex containing molybdenum, molybdenum inorganic salt, organic salt and oxide are preferable.
  • cobalt compound compound containing cobalt element
  • cobalt alkoxide for example, cobalt alkoxide, chelate complex containing cobalt, cobalt inorganic salt, organic salt and oxide are preferable.
  • nickel compound compound containing nickel element
  • nickel alkoxide nickel alkoxide, chelate complex containing nickel, nickel inorganic salt, organic salt and oxide are preferable.
  • magnesium compound a compound containing a magnesium element
  • magnesium alkoxide for example, magnesium alkoxide, a chelate complex containing magnesium, magnesium inorganic salt, organic salt and oxide are preferable.
  • Examples of calcium compounds include calcium carbonate, calcium phosphate, calcium nitrate, and calcium sulfate.
  • cerium compound compound containing a cerium element
  • cerium oxide cerium oxide, cerium acetate, cerium (III) or (IV), cerium ammonium nitrate, cerium sulfate, and cerium chloride.
  • Examples of the zinc compound include zinc carbonate, zinc phosphate, zinc nitrate, zinc sulfate, zinc acetate, zinc fluoride, zinc oxide, zinc chloride, zinc tetraethylate, zinc tetrapropylate, Examples thereof include zinc tetrabutyrate, zinc tetraacetylacetonate, zinc monoacetylacetonate, and zinc claurate.
  • niobium compound for example, niobium alkoxides, chelate complexes containing niobium, niobium inorganic salts, organic salts and oxides are preferable.
  • yttrium compound compound containing an yttrium element
  • yttrium alkoxide compound containing an yttrium element
  • a chelate complex containing yttrium an inorganic salt, an organic salt and an oxide of yttrium are preferable.
  • an aluminum compound for example, an aluminum alkoxide, a chelate complex containing aluminum, an aluminum inorganic salt, an organic salt, and an oxide are preferable.
  • tungsten compound compound containing a tungsten element
  • vanadium alkoxide for example, vanadium alkoxide, a chelate complex containing tungsten, an inorganic salt, an organic salt and an oxide of tungsten are preferable.
  • chromium compound compound containing chromium element
  • examples of the chromium compound include chromic acid, dichromic acid, chromium carbonate, chromium chloride, chromium phosphate, chromium nitrate, chromium fluoride, chromium sulfate, chromium acetylacetonate, strontium chromate, etc. Is mentioned.
  • barium compounds examples include barium nitrate, barium carbonate, and barium oxide.
  • the metal surface treatment liquid includes at least one phosphorus-containing compound selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, organic phosphate, organic phosphonic acid, and organic phosphonate ( D) may be included. These compounds easily form multivalent ions and can interact (for example, ionic bonds) with the coexisting polar group. That is, the phosphorus-containing compound (D) acts as a pseudo cross-linking point in the film, thereby affecting the properties of the film formed from the metal surface treatment liquid.
  • the metal compound (C) mentioned above is not contained in a phosphorus containing compound (D).
  • inorganic phosphoric acid and salts thereof include phosphoric acid (orthophosphoric acid), phosphorous acid, triphosphoric acid, hypophosphorous acid, monophosphoric acid such as hypophosphoric acid, monophosphoric acid derivatives and salts, metaphosphoric acid, tripolyphosphoric acid, Examples thereof include condensed phosphoric acids such as tetraphosphoric acid and hexaphosphoric acid, derivatives and salts of condensed phosphoric acids, and the like.
  • organic phosphoric acid and salts thereof examples include alkyl phosphoric acid, phosphoric acid monoester (for example, monododecyl dihydrogen phosphate, monotridecyl dihydrogen phosphate, etc.) and salts thereof, phosphoric acid diester (for example, didodecyl hydrogen phosphate, phosphorous Acid ditridecyl hydrogen and the like) and salts thereof.
  • organic phosphoric acid include compounds represented by R 10 O—P ( ⁇ O) (OR 11 ) (OR 12 ).
  • R 10 represents an organic group
  • R 11 and R 12 each independently represent a hydrogen atom or an organic group.
  • organic group examples include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
  • organic phosphonic acids and salts thereof include hydroxyethylidene diphosphonic acid, aminotri (methylenephosphonic acid), 1-hydroxyethane-1,1-diphosphonic acid, ethylenediamine-N, N, N ′, N′-tetra ( Methylenephosphonic acid), hexamethylenediamine-N, N, N ′, N′-tetra (methylenephosphonic acid), diethylenetriamine-N, N, N ′, N ′′, N ′′ -penta (methylenephosphonic acid), Examples include 2-phosphonobutane-1,2,4-tricarboxylic acid and salts thereof.
  • organic phosphonic acid examples include compounds represented by R 10 —P ( ⁇ O) (OR 11 ) (OR 12 ).
  • R 10 represents an organic group
  • R 11 and R 12 each independently represent a hydrogen atom or an organic group.
  • the organic group include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
  • salts such as inorganic phosphate (salt of inorganic phosphoric acid), organic phosphate (salt of organic phosphoric acid), and organic phosphonate (salt of organic phosphonic acid
  • alkali Mention may be made of metal salts, ammonium salts and amine salts.
  • alkali metal ions constituting the alkali metal salt examples include lithium ions, sodium ions, and potassium ions.
  • the amine constituting the amine salt is not particularly limited.
  • alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine; dimethylethanolamine, diethylethanol
  • Monoalkyls represented by amines alkanol alkylamines such as 2-amino-2-methyl-propanolamine; chemical formula: R 1 NH 2 (wherein R 1 represents a hydrocarbon group having 8 to 20 carbon atoms)
  • Examples include primary amines; alkyldiaminopropane represented by the chemical formula: R 2 NH (CH 2 ) 3 NH 2 (wherein R 2 represents a hydrocarbon group having 5 to 17 carbon atoms).
  • inorganic phosphoric acid, inorganic phosphate, organic phosphonic acid, or organic phosphonate is preferred in terms of more excellent effects of the present invention
  • inorganic phosphate for example, ammonium salt of inorganic phosphoric acid, inorganic An alkali metal salt of phosphoric acid, an amine salt of inorganic phosphoric acid) or an organic phosphonic acid is more preferred, and an ammonium salt of inorganic phosphoric acid (preferably phosphoric acid) or an organic phosphonic acid is particularly preferred.
  • the metal surface treatment liquid may contain a silicon compound (E).
  • the silicon compound (E) is preferably at least one of inorganic silicon compounds such as alkali metal silicates and colloidal silica, or organic silicon compounds such as silane coupling agents.
  • inorganic silicon compound include lithium silicate, sodium silicate, potassium silicate, and colloidal silica.
  • silane coupling agent examples include vinyltrichlorosilane, vinyltris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) -3- Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, tetra- or trimethoxysilane (tetramethoxy
  • the metal surface treatment liquid may contain an inorganic compound (F) containing at least one element selected from the group consisting of lithium, sodium, and potassium.
  • the inorganic compound (F) does not include the above-described metal compound (C), phosphorus-containing compound (D), and silicon compound (E).
  • Specific examples of the inorganic compound (F) include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, nitrates such as lithium nitrate, fluorides such as sodium fluoride, sulfates such as sodium sulfate, and the like. Can be mentioned.
  • the metal surface treatment liquid may contain a dicarboxylic acid diester (G). These act as a film-forming aid for forming a uniform film.
  • a dicarboxylic acid diester (G) include succinic acid diesters such as diethoxyethyl succinate and dioctyl succinate, adipic acid diesters such as diisopropyl adipate, diisobutyl adipate and diethoxyethyl adipate, diethyl sebacate, Examples thereof include sebacic acid diesters such as diisopropyl sebacate and dioctyl sebacate.
  • the metal surface treatment liquid may contain water as a solvent. Moreover, the organic solvent may be contained so that it may mention later.
  • an acidic catalyst for example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid
  • basic catalysts eg, ammonia, trimethylamine, triethylamine
  • metal catalysts can be added.
  • Metal surface treatment solutions include organic solvents that improve film-forming properties and film drying properties, surfactants that improve wettability, thickeners to adjust the coating amount, antifoaming agents that suppress foaming, welding
  • An electroconductive substance for improving the property and a coloring pigment for improving the design can be blended within a range not impairing the liquid stability of the metal surface treatment liquid and the effect of the present invention.
  • the metal surface treatment liquid contains the various components described above.
  • the content of the blocked isocyanate (A) in the metal surface treatment liquid is not particularly limited, but the concentration of the effective isocyanate group of the blocked isocyanate (A) in the metal surface treatment liquid is 0.00 in that the effect of the present invention is more excellent. It is preferably from 01 to 20 g / L, more preferably from 0.01 to 15 g / L, still more preferably from 0.05 to 10 g / L.
  • the content of the organic resin (B) in the metal surface treatment liquid is not particularly limited, but is preferably 5 to 100 g / L, more preferably 10 to 100 g / L in terms of more excellent effects of the present invention.
  • the mass content ratio of the blocked isocyanate (A) and the organic resin (B) in the metal surface treatment liquid is not particularly limited, but the concentration of the effective isocyanate group in the blocked isocyanate (A) is more excellent in the effect of the present invention.
  • Ratio of a (g / L) to the concentration b (g / L) of the functional group selected from the group consisting of the above-mentioned hydroxy group, amino group, sulfo group and carboxy group in the organic resin (B) (
  • the effective isocyanate group concentration a / functional group concentration b) is preferably 0.001 to 30.0, more preferably 0.01 to 30 and even more preferably 0.5 to 30.
  • the concentration (g / L) of the effective isocyanate group represents the amount (g) of the effective isocyanate group in the metal surface treatment liquid (1 L), and the concentration (g / L) of the functional group represents the metal surface treatment liquid (g / L).
  • 1L) represents the amount (g) of the functional group in 1L).
  • the content of the metal compound (C) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention. / L is preferable, and 0.3 to 10 g / L is more preferable.
  • the phosphorus-containing compound (D) is contained in the metal surface treatment liquid, the content of the phosphorus-containing compound (D) in the metal surface treatment liquid is not particularly limited, but is 0.1 in that the effect of the present invention is more excellent. It is preferably ⁇ 50 g / L, more preferably 0.2 to 30 g / L, and further preferably 0.3 to 10 g / L.
  • the metal surface treatment liquid contains a silicon compound (E)
  • the content of the silicon compound (E) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention.
  • / L preferably 0.2 to 30 g / L, and more preferably 0.3 to 10 g / L.
  • the metal surface treatment liquid contains an inorganic compound (F)
  • the content of the inorganic compound (F) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention.
  • / L is preferable, and 0.5 to 50 g / L is more preferable.
  • the content of the dicarboxylic acid diester (G) in the metal surface treatment liquid is not particularly limited, but is 0.01 because the effect of the present invention is more excellent. It is preferably ⁇ 50 g / L, more preferably 0.05 to 10 g / L.
  • the mass ratio (A / C) of the blocked isocyanate (A) to the metal compound (C) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, more preferably 0.1 to 25, and still more preferably 0.1 to 10.
  • the mass ratio (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) in the metal surface treatment liquid is not particularly limited. 0.1 to 50 is preferable, 0.2 to 30 is more preferable, 0.3 to 10 is further preferable, and 0.5 to 10 is particularly preferable.
  • the mass ratio (A / E) of the blocked isocyanate (A) and the silicon compound (E) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, and more preferably 0.2 to 30.
  • the metal surface treatment liquid contains an inorganic compound (F)
  • the mass ratio (A / F) of the blocked isocyanate (A) and the inorganic compound (F) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, and more preferably 0.5 to 50.
  • the mass ratio (A / G) of the blocked isocyanate (A) and the dicarboxylic acid diester (G) in the metal surface treatment liquid is not particularly limited. 5 to 100 is preferable in that the above effect is more excellent.
  • the pH of the metal surface treatment solution is not particularly limited as long as the effects of the present invention can be achieved, but is preferably in the range of pH 3 to 11 in terms of more excellent effects of the present invention.
  • the solid content concentration of the metal surface treatment liquid is not particularly limited as long as the effects of the present invention can be achieved, but is preferably in the range of 1 to 40% by mass from the viewpoint of more excellent effects of the present invention.
  • the method for producing the surface-treated metal material using the above-described metal surface treatment liquid is not particularly limited, but usually, the above-described metal surface treatment liquid is brought into contact with the surface of the metal material and dried by heating to form a film on the metal material. Forming.
  • the metal material which is a to-be-processed object is explained in full detail first, and the procedure of the post process is explained in full detail.
  • the type of the metal material is not particularly limited, and cold-rolled steel sheet, hot-rolled steel sheet, galvanized steel sheet, aluminum-containing galvanized steel sheet, electrogalvanized steel sheet, alloyed galvanized steel sheet, zinc-nickel plated steel sheet, alloy steel sheet and plated steel sheet;
  • metal materials such as metal plates other than steel plates, such as an aluminum plate, a copper plate, a titanium plate, and a magnesium plate, can be used.
  • Particularly suitable metal materials are galvanized steel sheets such as galvanized steel sheets, aluminum-containing galvanized steel sheets, electrogalvanized steel sheets, alloyed galvanized steel sheets, zinc nickel plated steel sheets, and vapor-deposited galvanized steel sheets.
  • the treatment with the metal surface treatment liquid Prior to the treatment with the metal surface treatment liquid, it is not essential, but in order to remove the oil and dirt adhering to the metal material that is the object to be treated, alkali washing with a degreasing agent, hot water washing, pickling, solvent washing, etc. are usually performed. Combined as appropriate. Moreover, although it is usually unnecessary, before the treatment with the metal surface treatment liquid, a ground treatment can be applied for the purpose of further improving the corrosion resistance of the metal material and the adhesion between the film and the metal material.
  • the method for the base treatment is not particularly limited, and examples thereof include surface adjustment treatment for attaching a metal such as Fe, Co, Ni, Cu, Zn, Mn, Zr, Ti, or V, and chemical conversion treatment. In any of the above treatments, it is preferable to wash with water so that the treatment liquid does not remain on the surface of the metal material.
  • the method for contacting the metal surface treatment liquid with the metal material is not particularly limited, and examples thereof include coating methods such as a roll coater method, a dipping method, a spray method, and a bar coating method.
  • the treatment liquid temperature at the time of contact is not particularly limited, but is preferably 10 to 60 ° C, and more preferably 15 to 40 ° C.
  • the metal material is subjected to heat drying treatment.
  • a heating-drying method A dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace etc. are mentioned.
  • heat drying with a hot air furnace, an induction heating furnace, an electric furnace or the like is preferable.
  • the heating and drying temperature is not particularly limited, but the ultimate metal material temperature during drying is preferably 50 to 250 ° C, and more preferably 70 to 220 ° C.
  • Adhesion amount of the coating is not particularly limited, in terms of the effect of the present invention is more excellent, preferably 0.05 ⁇ 10.0g / m 2, more preferably 0.1 ⁇ 8.0g / m 2 0.1 to 5.0 g / m 2 is more preferable.
  • the basic physical properties of the film are usually measured by a DMA (Dynamic Viscoelastic Device) and obtained as a storage elastic modulus and a loss elastic modulus.
  • the storage elastic modulus represents an elastic component that reacts instantaneously to a given stress like a spring, while the loss elastic modulus represents a viscous component that reacts with a delay to the given stress. That is, the storage elastic modulus is a component that directly affects the strength of the film, and a film having a higher storage elastic modulus can be said to be a hard film.
  • the loss elastic modulus is a component representing softness, and a film having a high loss elastic modulus can be said to be a softer film.
  • the temperature at which the loss modulus reaches a maximum value is indicated by the maximum loss tangent Tan ⁇ . If this temperature is too high, the film is brittle, while if it is too low, the film becomes soft.
  • the storage elastic modulus at room temperature of the film is preferably from 0.1 to 5 GPa, more preferably from 0.2 to 4 GPa, more preferably from 0.5 to 2 GPa from the viewpoint that the effect of the present invention is more excellent. Is more preferable.
  • the temperature (Tan ⁇ max) showing the maximum loss tangent Tan ⁇ of the film is preferably 25 to 80 ° C, more preferably 30 to 75 ° C, more preferably 30 to 70 in terms of more excellent effects of the present invention. More preferably, the temperature is C.
  • a coating film may be formed on the surface of the surface-treated metal material described above (on the film) as necessary.
  • the obtained coating film is excellent in adhesion and corrosion resistance.
  • the paint may be an aqueous paint or a solvent-based paint.
  • the type of curing is not particularly limited, and may be thermosetting or electron beam curing. Further, on the surface (on the film) of the surface-treated metal material of the present invention, not only a general paint but also a film coat such as a laminate may be performed.
  • the surface-treated metal material described above can be used for various purposes, and examples thereof include members for home appliances and building materials.
  • blocked isocyanate The preparation method of blocked isocyanate is described below.
  • the “polyisocyanate” used in each synthesis example was a polyisocyanate prepared by the above procedure using the isocyanates listed in the “Isocyanate species” column of each synthesis example described in Table 1. However, in Synthesis Example A10 described below, monomer 1,6-hexamethylene diisocyanate was used.
  • the blocked isocyanates synthesized in the following synthesis examples were so-called self-emulsifying type blocked isocyanates.
  • the weight average molecular weight of the obtained blocked isocyanate was determined as a polyethylene glycol equivalent weight average molecular weight by determining the relative molecular weight distribution of the blocked isocyanate by GPC (gel permeation chromatography). GPC measurement conditions are as follows.
  • A1 to A9 synthesized above contained an isocyanurate structure (structural unit represented by formula (1)) and a polyalkyleneoxy chain (structural unit represented by formula (2)).
  • A10 did not contain an isocyanurate structure and a polyalkyleneoxy chain
  • A11 and A12 did not contain a polyalkyleneoxy chain.
  • Table 1 below, in the “polymerization form” column, “trimer” is intended to include an isocyanurate structure, and “monomer” is intended to indicate that the isocyanate is in a monomer state.
  • “Dissociation temperature” represents the dissociation temperature of a blocked isocyanate group.
  • Particle size represents the particle size of the blocked isocyanate in each blocked isocyanate emulsion.
  • Numberer of alkyleneoxy represents the number of alkyleneoxy units (n in formula (2)).
  • Effectivee NCO% intends the content (mass%) of an effective isocyanate group in each blocked isocyanate.
  • surface represents the following.
  • HDI 1,6-hexamethylene diisocyanate
  • IPDI 3-isocyanate-methyl-3,5,5-trimethylcyclohexyl isocyanate
  • TMXDI 1,3-bis (2-isocyanate 2-propyl) benzene
  • TDI tolylene-2 , 6-diisocyanate
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • DEM diethyl malonate
  • DMP 3,5-dimethylpyrazole
  • MEKO methyl ethyl ketoxime
  • EGB ethylene glycol monobutyl ether
  • B1 Epoxy resin (Watersol EFD-5560, DIC) (type of functional group: hydroxy group)
  • B2 Urethane resin (Hydran COR-70, DIC) (Type of functional group: amino group)
  • B3 Acrylic resin (Watersol S-701, DIC) (type of functional group: carboxy group)
  • D1 Ammonium phosphate
  • D2 Hydroxyethylidene diphosphonic acid
  • D3 Triethanolamine phosphate
  • test piece treated plate sample
  • ⁇ to ⁇ were accepted.
  • evaluation criteria ⁇ : No change ⁇ : Discolored area ratio more than 0% to 10% or less ⁇ : Discolored area ratio more than 10% to 30% or less ⁇ : Discolored area ratio more than 30% to 50% or less ⁇ : Discolored area ratio Is over 50%
  • Each treated plate sample was painted using a melamine alkyd paint (Delicon # 700, manufactured by Dainippon Paint Co., Ltd.). The coating was performed by bar coating. After coating, baking was performed at 140 ° C. for 20 minutes, and a coating film (surface treated product) having a thickness of 25 ⁇ m was formed after drying. Using two plates having the same thickness as the original plate, the coating film (surface treated product) was sandwiched and bent 180 degrees, the folded portion was peeled off, and evaluated according to the following criteria. For coating film adhesion, ⁇ to ⁇ were set as acceptable.
  • Corrosion resistance after coating (5-1) Regarding GI and EG
  • the coating film obtained in (4) above is cross-cut with an NT cutter (A300 type, manufactured by NT Corporation), and salt water specified in JIS-Z2371
  • the spray test was conducted for 480 hours, the rust width from the crosscut was visually evaluated, and evaluated according to the following criteria.
  • ⁇ to ⁇ were accepted.
  • Evaluation criteria ⁇ : Rust width less than 5 mm ⁇ : Rust width 5 mm or more and less than 7 mm ⁇ : Rust width 7 mm or more and less than 8.5 mm ⁇ : Rust width 8.5 mm or more and less than 10 mm ⁇ : Rust width 10 mm or more
  • Table 2 shows the results using hot dip galvanized steel sheets (GI) as test materials
  • Table 3 shows the results using electrogalvanized steel sheets (EG) as test materials
  • Table 4 shows cold results as test materials.
  • the result using a rolled steel sheet (CRS) is represented.
  • the concentration column of blocked isocyanate (A) in Tables 2 to 4 represents the concentration (g / L) of effective isocyanate groups contained in blocked isocyanate (A) in the metal surface treatment liquid.
  • the column of the organic resin (B) concentration in Tables 2 to 4 represents the concentration (g / L) of the organic resin (B) in the metal surface treatment solution.
  • a / b indicates the concentration a (g / L) of the effective isocyanate group contained in the blocked isocyanate (A) and the functionality contained in the organic resin (B) in the metal surface treatment liquid.
  • the ratio ⁇ a / b ⁇ of the group at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group) with the concentration b (g / L).
  • a / C is the ratio of the mass of the blocked isocyanate (A) to the mass of the metal compound (C)
  • a / D is the mass of the blocked isocyanate (A) and containing phosphorus.
  • the ratio between the mass of the compound (D), “A / E” is the mass ratio of the blocked isocyanate (A) to the mass of the silicon compound (E), and “A / F” is the mass of the blocked isocyanate (A).
  • a / G represents the ratio of the mass of the blocked isocyanate (A) to the mass of the dicarboxylic acid diester (G), respectively.
  • Storage elastic modulus” and “Tan ⁇ max” in Table 2 represent temperatures indicating the storage elastic modulus and the maximum loss tangent Tan ⁇ at room temperature of the coatings produced in each Example and each Comparative Example. The “storage modulus” and “Tan ⁇ max” were measured by RSA-G2 (TA instrument).
  • the surface-treated metal material obtained by applying the metal surface treatment liquid of the present invention exhibited various excellent properties.
  • the ratio (a / b) of effective isocyanate group concentration (g / L) / functional group concentration (g / L) in organic resin (B) was 0.01.
  • ⁇ 30 preferably 0.5 to 30, more preferably 1.0 to 15
  • the dissociation temperature of the blocked isocyanate is 120 ° C. or lower, a more excellent effect can be obtained.
  • Example A20 From comparison between Example A20 and Example A17, it was confirmed that a more excellent effect was obtained when the weight average molecular weight of the blocked isocyanate was in the range of 400 to 15000.
  • the content (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) is 0.5 to 50 (preferably 0.2 to 30, more preferably In the case of 0.3 to 10), it was confirmed that a more excellent effect was obtained.
  • phosphorus containing compound (D) is an ammonium salt of inorganic phosphoric acid or organic phosphonic acid.
  • the metal surface treatment liquid described in the comparative example that does not satisfy the predetermined requirements was used, the desired effect could not be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

The present invention provides a metal surface treatment liquid with which it is possible to obtain a surface-treated metal material having excellent corrosion resistance, processing resistance, chemical resistance, coating film adhesiveness, and post-coating corrosion resistance. This metal surface treatment liquid has an isocyanate group blocked by a blocking agent, and includes a blocked isocyanate (A) having an isocyanurate structure and a polyalkyleneoxy chain, and an organic resin (B) having at least one type of functional group selected from the group consisting of hydroxy groups, amino groups, sulfo groups, and carboxy groups.

Description

金属表面処理液、表面処理金属材料の製造方法、表面処理金属材料Metal surface treatment liquid, method for producing surface treated metal material, surface treated metal material
 本発明は、金属表面処理液、表面処理金属材料の製造方法、および、表面処理金属材料に関する。 The present invention relates to a metal surface treatment liquid, a method for producing a surface treatment metal material, and a surface treatment metal material.
 家庭電化製品、自動車、建築材料等の各分野において、耐食性や塗膜密着性の付与を目的として、鋼板などの金属材料にクロメート処理を施す技術が一般に使用されている。しかし、通常、クロメート処理皮膜は環境負荷性の高い6価のクロムを含有することから、近年、皮膜の6価クロムフリー化に対する要望が高まっており、種々の技術が提案されている。
 例えば、特許文献1においては、金属材料上にポリウレタン樹脂を主成分とするウレタン系樹脂皮膜を有する塗装金属材料が開示されており、耐食性や耐加工性が優れる旨が記載されている。
In various fields such as home appliances, automobiles, and building materials, a technique of performing chromate treatment on a metal material such as a steel plate is generally used for the purpose of imparting corrosion resistance and coating film adhesion. However, since the chromate-treated film usually contains hexavalent chromium having a high environmental load, in recent years, there has been an increasing demand for the hexavalent chromium-free film, and various techniques have been proposed.
For example, Patent Document 1 discloses a coated metal material having a urethane-based resin film containing a polyurethane resin as a main component on a metal material, and describes that corrosion resistance and workability are excellent.
特開2007-075777号公報Japanese Patent Laid-Open No. 2007-075777
 一方、近年、各種製品の高機能化に伴い、使用される金属材料に対する要求性能もより高まっている。
 例えば、特許文献1で求められる特性でもある耐食性および耐加工性のより一層の向上が求められる他に、金属材料表面上に配置される塗膜の密着性(塗膜密着性)、塗膜が設けられた後の耐食性(塗装後耐食性)、並びに、酸やアルカリなどに対する耐薬品性などが優れることも求められる。
 本発明者らは、特許文献1に記載されるようなウレタン樹脂を用いて金属材料の表面処理を行い、得られた表面処理金属材料に関して各種特性を評価したところ、すべての項目を昨今の要求レベルで満たすものはなく、さらなる改良が必要であることを知見した。
On the other hand, in recent years, with the enhancement of functionality of various products, the required performance for the metal materials used is also increasing.
For example, in addition to being required to further improve the corrosion resistance and workability which are characteristics required in Patent Document 1, the adhesion (coating film adhesion) of the coating film disposed on the metal material surface, It is also required to be excellent in corrosion resistance after being provided (corrosion resistance after painting) and chemical resistance to acids and alkalis.
The present inventors performed surface treatment of a metal material using a urethane resin as described in Patent Document 1 and evaluated various properties with respect to the obtained surface-treated metal material. There was nothing to satisfy with the level, and it was found that further improvement was necessary.
 本発明は、上記実情に鑑みて、耐食性、耐加工性、耐薬品性、塗膜密着性および塗装後耐食性に優れた表面処理金属材料を得ることができる、金属表面処理液を提供することを目的とする。
 また、本発明は、金属表面処理液を用いた表面処理金属材料の製造方法、および、表面処理金属材料を提供することも目的とする。
In view of the above circumstances, the present invention provides a metal surface treatment liquid capable of obtaining a surface-treated metal material excellent in corrosion resistance, workability, chemical resistance, coating film adhesion and post-coating corrosion resistance. Objective.
Another object of the present invention is to provide a method for producing a surface-treated metal material using a metal surface-treatment liquid, and a surface-treated metal material.
 本発明者らは、上記課題について鋭意検討を行ったところ、所定の構造を含むブロックイソシアネートおよび所定の官能基を有する有機樹脂を含む金属表面処理液を使用することにより、所望の効果が得られることを知見した。
 より具体的には、以下の構成により上記目的を達成することができることを見出した。
As a result of intensive studies on the above problems, the present inventors can obtain a desired effect by using a metal surface treatment liquid containing a blocked isocyanate having a predetermined structure and an organic resin having a predetermined functional group. I found out.
More specifically, the present inventors have found that the above object can be achieved by the following configuration.
(1) ブロック剤によりブロックされたイソシアネート基を有し、さらに、イソシアヌレート構造およびポリアルキレンオキシ鎖を有するブロックイソシアネート(A)と、
 ヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される少なくとも1種の官能基を有する有機樹脂(B)と、を含む金属表面処理液。
(2) ブロックイソシアネート(A)が、後述する式(1)で表される構造単位、および、後述する式(2)で表される構造単位を有する、(1)に記載の金属表面処理液。
(3) さらに、無機リン酸、無機リン酸塩、有機リン酸、有機リン酸塩、有機ホスホン酸、および、有機ホスホン酸塩からなる群から選択される少なくとも1種のリン含有化合物(D)を含む、上記(1)または(2)に記載の金属表面処理液。
(4) リン含有化合物(D)が、無機リン酸のアンモニウム塩、および、有機ホスホン酸からなる群から選択される少なくとも1種を含む、上記(3)に記載の金属表面処理液。
(5) ブロックイソシアネート(A)とリン含有化合物(D)の質量比(A/D)が、0.1~50である、上記(3)または(4)に記載の金属表面処理液。
(6) さらに、ジルコニウム、チタン、バナジウム、セリウム、モリブデン、コバルト、ニッケル、マグネシウム、カルシウム、セリウム、亜鉛、ニオブ、イットリウム、アルミニウム、タングステン、クロム、および、バリウムからなる群から選択される少なくとも1種の元素を含む金属化合物(C)を含む、上記(1)~(5)のいずれかに記載の金属表面処理液。
(7) 金属化合物(C)が、ジルコニウム元素を含む、上記(6)に記載の金属表面処理液。
(8) 金属化合物(C)が、炭酸ジルコニウムアンモニウム、または、ジルコニウムフッ化水素酸若しくはその塩である、上記(6)または(7)に記載の金属表面処理液。
(9) ブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度a(g/L)と、有機樹脂(B)に含まれる官能基の濃度b(g/L)との比{a/b}が0.001~30.0である、上記(1)~(8)のいずれかに記載の金属表面処理液。
(10) ブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度が0.01~20g/Lであり、有機樹脂(B)の濃度が5~100g/Lである、上記(1)~(9)のいずれかに記載の金属表面処理液。
(11) ブロックイソシアネート(A)の重量平均分子量が400~15000である、上記(1)~(10)のいずれかに記載の金属表面処理液。
(12) さらに、珪素化合物(E)を含む、上記(1)~(11)のいずれかに記載の金属表面処理液。
(13) さらに、リチウム、ナトリウム、および、カリウムからなる群から選択される少なくとも1種の元素を含む無機化合物(F)を含む、上記(1)~(12)のいずれかに記載の金属表面処理液。
(14) 上記(1)~(13)のいずれかに記載の金属表面処理液を金属材料表面に接触させ、加熱乾燥して金属材料上に皮膜を形成する工程、を備える表面処理金属材料の製造方法。
(15) 金属材料と、金属材料上に上記(1)~(13)のいずれかに記載の金属表面処理液を接触させて加熱乾燥して形成される皮膜とを備える、表面処理金属材料。
(1) a blocked isocyanate (A) having an isocyanate group blocked by a blocking agent, and further having an isocyanurate structure and a polyalkyleneoxy chain;
A metal surface treatment solution comprising: an organic resin (B) having at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group.
(2) The metal surface treatment liquid according to (1), wherein the blocked isocyanate (A) has a structural unit represented by the formula (1) described later and a structural unit represented by the formula (2) described later. .
(3) Further, at least one phosphorus-containing compound (D) selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, organic phosphate, organic phosphonic acid, and organic phosphonate The metal surface treatment liquid according to (1) or (2) above, comprising:
(4) The metal surface treatment liquid according to (3) above, wherein the phosphorus-containing compound (D) contains at least one selected from the group consisting of an ammonium salt of inorganic phosphoric acid and an organic phosphonic acid.
(5) The metal surface treatment liquid according to (3) or (4) above, wherein the mass ratio (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) is 0.1 to 50.
(6) Further, at least one selected from the group consisting of zirconium, titanium, vanadium, cerium, molybdenum, cobalt, nickel, magnesium, calcium, cerium, zinc, niobium, yttrium, aluminum, tungsten, chromium, and barium. The metal surface treatment liquid according to any one of the above (1) to (5), comprising a metal compound (C) containing any of the above elements.
(7) The metal surface treatment liquid according to (6), wherein the metal compound (C) contains a zirconium element.
(8) The metal surface treatment liquid according to the above (6) or (7), wherein the metal compound (C) is zirconium ammonium carbonate, zirconium hydrofluoric acid or a salt thereof.
(9) Ratio {a / b} of the concentration a (g / L) of the effective isocyanate group contained in the blocked isocyanate (A) and the concentration b (g / L) of the functional group contained in the organic resin (B) The metal surface treatment solution according to any one of the above (1) to (8), wherein is from 0.001 to 30.0.
(10) The above-mentioned (1) to (9), wherein the concentration of the effective isocyanate group contained in the blocked isocyanate (A) is 0.01 to 20 g / L, and the concentration of the organic resin (B) is 5 to 100 g / L. The metal surface treatment liquid according to any one of (1).
(11) The metal surface treatment solution according to any one of (1) to (10) above, wherein the blocked isocyanate (A) has a weight average molecular weight of 400 to 15000.
(12) The metal surface treatment liquid according to any one of (1) to (11), further comprising a silicon compound (E).
(13) The metal surface according to any one of (1) to (12), further comprising an inorganic compound (F) containing at least one element selected from the group consisting of lithium, sodium, and potassium Treatment liquid.
(14) A surface-treated metal material comprising a step of bringing the metal surface treatment liquid according to any one of (1) to (13) into contact with a surface of the metal material, followed by heating and drying to form a film on the metal material. Production method.
(15) A surface-treated metal material comprising a metal material and a film formed by bringing the metal surface treatment liquid according to any one of (1) to (13) above into contact with the metal material and drying by heating.
 本発明によれば、耐食性、耐加工性、耐薬品性、塗膜密着性および塗装後耐食性に優れた表面処理金属材料を得ることができる、金属表面処理液を提供することができる。
 また、本発明によれば、金属表面処理液を用いた表面処理金属材料の製造方法、および、表面処理金属材料を提供することもできる。
ADVANTAGE OF THE INVENTION According to this invention, the metal surface treatment liquid which can obtain the surface treatment metal material excellent in corrosion resistance, work resistance, chemical resistance, coating-film adhesiveness, and post-coating corrosion resistance can be provided.
Moreover, according to this invention, the manufacturing method of the surface treatment metal material using a metal surface treatment liquid, and a surface treatment metal material can also be provided.
 以下、本発明の金属表面処理液、表面処理金属材料およびその製造方法について詳述する。本発明の金属表面処理液を使用することにより所望の効果が得られる理由は、以下のように推測される。
 ブロックイソシアネート(A)は、酸素原子や窒素原子を含むイソシアヌレート構造や、酸素原子を含むポリアルキレンオキシ鎖など分子内に多くの極性基を持つ。これら極性基は、金属材料上の水酸基と水素結合を形成したり、加熱乾燥によって共有結合を形成したりし、結果として皮膜が金属材料により強固に接着する。この特性は、腐食環境にて皮膜下で起こる、溶存酸素の還元反応を経たpH上昇による金属材料と皮膜の結合切断を抑制する作用を有する。また、皮膜と金属材料との界面での接着点が増えることにより、皮膜の剥離や皮膜の破壊を抑制する作用も有する。そのため、耐食性等の腐食抑制に有効に作用する。
 また、金属表面処理液に含まれるブロックイソシアネート(A)中のブロック剤によりブロックされたイソシアネート基(ブロック化イソシアネート基)の大部分は、加熱乾燥によって解離するが、一部残存すると考えられる。これら未反応のブロック化イソシアネート基は、腐食環境においてアルカリ加水分解を起こしうる反面、アルカリ触媒として作用し、共存する反応体との反応によって相互作用および新たな結合を形成しうる。それは、一種の修復機能として作用する。従って、傷部や端面部等のめっきの露出した箇所への腐食抑制能として作用する。
 さらに、本発明の金属表面処理液から形成された皮膜は、極性基を多く含有するために皮膜上に配置される塗膜と優れた密着性を発揮する。この場合、塗膜に含有される官能基と皮膜に含有される官能基との水素結合および/または共有結合の形成によって優れた塗膜密着性を発揮する。
 さらに、本発明の金属表面処理液から形成される皮膜は、耐薬品性(耐溶剤性や撥水性)にも効果的に作用する。これらは、ブロックイソシアネート(A)と共存する有機樹脂(B)との硬化反応によって達成される。これは、硬化反応によって皮膜全体の分子量が増大し、皮膜中に形成される緻密な構造によって腐食因子の浸入抑制が達成されるためである。
Hereinafter, the metal surface treatment liquid, the surface treatment metal material and the production method thereof of the present invention will be described in detail. The reason why the desired effect can be obtained by using the metal surface treatment liquid of the present invention is presumed as follows.
The blocked isocyanate (A) has many polar groups in the molecule such as an isocyanurate structure containing an oxygen atom and a nitrogen atom and a polyalkyleneoxy chain containing an oxygen atom. These polar groups form a hydrogen bond with a hydroxyl group on the metal material, or form a covalent bond by heat drying, and as a result, the film is firmly bonded to the metal material. This characteristic has the effect of suppressing the bond breakage between the metal material and the film due to the increase in pH through the reduction reaction of dissolved oxygen that occurs under the film in a corrosive environment. In addition, since the adhesion point at the interface between the film and the metal material increases, it also has an action of suppressing film peeling and film destruction. Therefore, it acts effectively on corrosion control such as corrosion resistance.
Moreover, most of the isocyanate groups (blocked isocyanate groups) blocked by the blocking agent in the blocked isocyanate (A) contained in the metal surface treatment liquid are dissociated by heat drying, but a part of them is considered to remain. These unreacted blocked isocyanate groups can cause alkali hydrolysis in a corrosive environment, but act as an alkali catalyst and can form interactions and new bonds by reaction with coexisting reactants. It acts as a kind of repair function. Therefore, it acts as an ability to inhibit corrosion of the exposed portions of plating such as scratches and end surfaces.
Furthermore, since the film formed from the metal surface treatment liquid of the present invention contains a large number of polar groups, it exhibits excellent adhesion with the film disposed on the film. In this case, excellent coating film adhesion is exhibited by the formation of hydrogen bonds and / or covalent bonds between the functional groups contained in the coating film and the functional groups contained in the film.
Furthermore, the film formed from the metal surface treatment liquid of the present invention also effectively acts on chemical resistance (solvent resistance and water repellency). These are achieved by a curing reaction with the organic resin (B) coexisting with the blocked isocyanate (A). This is because the molecular weight of the entire coating increases due to the curing reaction, and the penetration of corrosion factors is achieved by the dense structure formed in the coating.
 金属表面処理液には、ブロックイソシアネート(A)と、有機樹脂(B)とが少なくとも含まれる。
 以下、金属表面処理液に含まれる各種成分について詳述し、その後、表面処理金属材料およびその製造方法について詳述する。
The metal surface treatment liquid contains at least a blocked isocyanate (A) and an organic resin (B).
Hereinafter, various components contained in the metal surface treatment liquid will be described in detail, and then the surface-treated metal material and the manufacturing method thereof will be described in detail.
<ブロックイソシアネート(A)>
 金属表面処理液には、ブロック剤によりブロックされたイソシアネート基(ブロック化イソシアネート基)を有し、さらに、イソシアヌレート構造およびポリアルキレンオキシ鎖を有するブロックイソシアネート(A)が含まれる。
 ブロックイソシアネートとは、イソシアネート化合物のイソシアネート基をブロック剤と反応させたものであって、加熱することにより保護基(ブロック剤の残基)が解離してイソシアネート基を再生するものである。解離温度の低いブロックイソシアネートほど比較的低温にてイソシアネート基を再生する。なお、再生したイソシアネート基は、後述する、所定の官能基を有する有機樹脂(B)と架橋反応し、結合を形成する。
<Block isocyanate (A)>
The metal surface treatment liquid contains a blocked isocyanate (A) having an isocyanate group (blocked isocyanate group) blocked with a blocking agent, and further having an isocyanurate structure and a polyalkyleneoxy chain.
The blocked isocyanate is a product obtained by reacting an isocyanate group of an isocyanate compound with a blocking agent, and when heated, the protecting group (residue of the blocking agent) is dissociated to regenerate the isocyanate group. The blocked isocyanate having a lower dissociation temperature regenerates the isocyanate group at a relatively low temperature. The regenerated isocyanate group undergoes a crosslinking reaction with a later-described organic resin (B) having a predetermined functional group to form a bond.
 イソシアネート基をブロック(保護)するために使用されるブロック剤の種類は特に制限されず、通常、活性水素を分子内に1個有する化合物が好適に用いられる。
 例えば、フェノール系ブロック剤(例えば、フェノール、クレゾール)、ラクタム系ブロック剤(例えば、カプロラクタム、バレロラクタム)、オキシム系ブロック剤(例えば、ホルムアミドオキシム、アセトアミドオキシム、メチルエチルケトオキシム)、活性メチレン系ブロック剤(例えば、マロン酸ジエチル、マロン酸ジメチル)、アルコール系ブロック剤(例えば、メタノール、エタノール、エチレングリコールモノブチルエーテル)、ピラゾール系ブロック剤(例えば、3,5-ジメチルピラゾール)、メルカプタン系ブロック剤(例えば、ブチルメルカプタン)、酸アミド系ブロック剤(例えば、アセトアニリド、酢酸アミド)、イミダゾール系ブロック剤(例えば、イミダゾール)、アミン系ブロック剤(例えば、ジフェニルアミン、アニリン)、イミン系ブロック剤(例えば、エチレンイミン)、尿素系ブロック剤(例えば、尿素、チオ尿素)が挙げられ、オキシム系ブロック剤、活性メチレン系ブロック剤、および、ピラゾール系ブロック剤が好ましく挙げられる。
 なかでも、1,3-ジカルボニル化合物または含窒素環状化合物がより好ましい。
 ブロック剤としては、マロネート類やピラゾール類等の電子吸引性基を有するブロック剤が適しており、解離温度を低下させる効果を有する。
 1つのブロック剤によってすべてのイソシアネート基をブロックしてもよく、2種以上のブロック剤を併用してもよい。
The type of the blocking agent used for blocking (protecting) the isocyanate group is not particularly limited, and usually a compound having one active hydrogen in the molecule is preferably used.
For example, phenol blocking agents (for example, phenol, cresol), lactam blocking agents (for example, caprolactam, valerolactam), oxime blocking agents (for example, formamide oxime, acetamide oxime, methyl ethyl ketoxime), active methylene blocking agents ( For example, diethyl malonate, dimethyl malonate), alcohol-based blocking agent (for example, methanol, ethanol, ethylene glycol monobutyl ether), pyrazole-based blocking agent (for example, 3,5-dimethylpyrazole), mercaptan-based blocking agent (for example, Butyl mercaptan), acid amide blocking agents (eg acetanilide, acetic acid amide), imidazole blocking agents (eg imidazole), amine blocking agents (eg diphenyl) Min, aniline), imine block agent (eg, ethyleneimine), urea block agent (eg, urea, thiourea), oxime block agent, active methylene block agent, and pyrazole block agent. Preferably mentioned.
Of these, 1,3-dicarbonyl compounds or nitrogen-containing cyclic compounds are more preferred.
As the blocking agent, a blocking agent having an electron-withdrawing group such as malonates and pyrazoles is suitable and has an effect of lowering the dissociation temperature.
All isocyanate groups may be blocked with one blocking agent, or two or more blocking agents may be used in combination.
 ブロックイソシアネート(A)の解離温度(ブロック化イソシアネート基が解離する温度)は特に制限されないが、60~180℃の場合が多く、取り扱い性の点および耐アルカリ性、塗膜密着性がより優れる点から、80~120℃が好ましい。 The dissociation temperature of the blocked isocyanate (A) (the temperature at which the blocked isocyanate group dissociates) is not particularly limited, but it is often 60 to 180 ° C., because it is easy to handle and has excellent alkali resistance and coating film adhesion. 80 to 120 ° C. is preferable.
 ブロックイソシアネート(A)中におけるブロック剤によりブロックされたイソシアネート基の含有量は特に制限されないが、ブロックイソシアネート(A)中における有効イソシアネート基の含有量は、耐食性、耐加工性、耐薬品性、塗膜密着性および塗装後耐食性の少なくとも1つがより優れる点(以後、単に「本発明の効果がより優れる点」とも称する)で、ブロックイソシアネート(A)全質量中、0.5~10質量%が好ましく、1~7質量%がより好ましい。
 なお、有効イソシアネート基の含有量とは、ブロックイソシアネート(A)において、ブロック化イソシアネート基からイソシアネート基をブロックするブロック基を解離させた後のイソシアネート基の含有量を示す。
 有効イソシアネート基の含有量(濃度)はイソシアネート当量にて規定されており、JIS K1603-1に規定された方法に則って測定する。イソシアネート当量は、1g当量のイソシアネート基を含むブロックイソシアネート(A)のg重量数である。イソシアネート当量は150~5000であることが好ましく、300~4500であることがより好ましく、400~4000であることがさらに好ましい。
The content of the isocyanate group blocked by the blocking agent in the blocked isocyanate (A) is not particularly limited, but the content of the effective isocyanate group in the blocked isocyanate (A) is the corrosion resistance, processing resistance, chemical resistance, coating 0.5 to 10% by mass in the total mass of the blocked isocyanate (A) in that at least one of film adhesion and post-coating corrosion resistance is more excellent (hereinafter also referred to simply as “the effect of the present invention is more excellent”). Preferably, 1 to 7% by mass is more preferable.
In addition, content of an effective isocyanate group shows content of the isocyanate group after dissociating the blocking group which blocks an isocyanate group from a blocked isocyanate group in blocked isocyanate (A).
The content (concentration) of the effective isocyanate group is specified by an isocyanate equivalent, and is measured according to the method specified in JIS K1603-1. Isocyanate equivalent is the number of grams of blocked isocyanate (A) containing 1 g equivalent of isocyanate groups. The isocyanate equivalent is preferably 150 to 5000, more preferably 300 to 4500, and still more preferably 400 to 4000.
 ブロックイソシアネート(A)は、イソシアヌレート構造(イソシアヌレート環構造)を有する。イソシアヌレート構造とは、以下式(X)で表される構造である。*は、結合位置を表す。 Block isocyanate (A) has an isocyanurate structure (isocyanurate ring structure). The isocyanurate structure is a structure represented by the following formula (X). * Represents a binding position.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 上記イソシアヌレート構造は、各種のジイソシアネートまたはトリイソシアネートのイソシアネート基同士を環化三量化して得られる。
 ジイソシアネートとしては、1,4-テトラメチレンジイソシアネート、エチル(2,6-ジイソシアネート)ヘキサノエート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、2,2,4-または2,4,4-トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート;1,3-または1,4-ビス(イソシアネートメチルシクロヘキサン)、1,3-または1,4-ジイソシアネートシクロヘキサン、3-イソシアネート-メチル-3,5,5-トリメチルシクロヘキシルイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、2,5-または2,6-ジイソシアネートメチルノルボルナンなどの脂環族ジイソシアネート;m-またはp-フェニレンジイソシアネート、トリレン-2,4-または2,6-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、1,3-ビス(2-イソシアネート2-プロピル)ベンゼン、ナフタレン-1,5-ジイソシアネート、ジフェニル-4,4’-ジイソシアネート、4,4’-ジイソシアネート3,3’-ジメチルジフェニル、3-メチル-ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテル-4,4’-ジイソシアネートなどの芳香族ジイソシアネートなどが挙げられる。
 また、トリイソシアネートとしては、1,3,6-ヘキサメチレントリイソシアネート、1,8-ジイソシアネート4-イソシアネートメチルオクタン、2-イソシアネートエチル(2,6-ジイソシアネート)ヘキサノエートなどの脂肪族トリイソシアネート;2,5-または2,6-ジイソシアネートメチル-2-イソシアネートプロピルノルボルナンなどの脂環族トリイソシアネート;トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェートなどの芳香族トリイソシアネートが挙げられる。
 ブロックイソシアネート(A)中に含まれるイソシアヌレート構造の数は特に制限されないが、本発明の効果がより優れる点で、1~10個が好ましく、1~4個がより好ましい。
The isocyanurate structure is obtained by cyclization and trimerization of isocyanate groups of various diisocyanates or triisocyanates.
Diisocyanates include 1,4-tetramethylene diisocyanate, ethyl (2,6-diisocyanate) hexanoate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, 2,2,4- or 2,4,4. Aliphatic diisocyanates such as trimethylhexamethylene diisocyanate; 1,3- or 1,4-bis (isocyanate methylcyclohexane), 1,3- or 1,4-diisocyanate cyclohexane, 3-isocyanate-methyl-3,5,5 Alicyclic diisocyanates such as trimethylcyclohexyl isocyanate, dicyclohexylmethane-4,4′-diisocyanate, 2,5- or 2,6-diisocyanate methylnorbornane; m- or p-phenylene diisocyanate Anate, tolylene-2,4- or 2,6-diisocyanate, diphenylmethane-4,4'-diisocyanate, 1,3-bis (2-isocyanate 2-propyl) benzene, naphthalene-1,5-diisocyanate, diphenyl-4 Aromatic diisocyanates such as 4,4'-diisocyanate, 4,4'-diisocyanate 3,3'-dimethyldiphenyl, 3-methyl-diphenylmethane-4,4'-diisocyanate, diphenyl ether-4,4'-diisocyanate .
Examples of the triisocyanate include aliphatic triisocyanates such as 1,3,6-hexamethylene triisocyanate, 1,8-diisocyanate 4-isocyanate methyloctane, 2-isocyanatoethyl (2,6-diisocyanate) hexanoate; Examples thereof include alicyclic triisocyanates such as 5- or 2,6-diisocyanate methyl-2-isocyanatopropylnorbornane; aromatic triisocyanates such as triphenylmethane triisocyanate and tris (isocyanatephenyl) thiophosphate.
The number of isocyanurate structures contained in the blocked isocyanate (A) is not particularly limited, but is preferably 1 to 10 and more preferably 1 to 4 in terms of more excellent effects of the present invention.
 ブロックイソシアネート(A)は、ポリアルキレンオキシ鎖(例えば、ポリエチレンオキシ鎖、ポリプロピレンオキシ鎖)を有する。
 ポリアルキレンオキシ鎖とは、式(2)で表される構造単位(繰り返し単位)を有する鎖である。
 式(2)  -(L-O)
 上記式(2)中、Lはアルキレン基を表す。アルキレン基中に含まれる炭素原子数は特に制限されないが、本発明の効果がより優れる点で、2~10が好ましく、2~4がより好ましい。
 nで表される構造単位(繰り返し単位)の数は特に制限されないが、本発明の効果がより優れる点で、2~1000が好ましく(2~1000の整数が好ましく)、5~400がより好ましく、10~200がさらに好ましい。
 ポリアルキレンオキシ鎖の分子量は特に制限されないが、本発明の効果がより優れる点で、100~10000が好ましく、200~5000がより好ましい。
 ブロックイソシアネート(A)中におけるポリアルキレンオキシ鎖の含有量は特に制限されないが、本発明の効果がより優れる点で、ブロックイソシアネート(A)全質量中、10~70質量%が好ましく、20~60質量%がより好ましい。
The blocked isocyanate (A) has a polyalkyleneoxy chain (for example, a polyethyleneoxy chain, a polypropyleneoxy chain).
The polyalkyleneoxy chain is a chain having a structural unit (repeating unit) represented by the formula (2).
Formula (2)-(LO) n-
In said formula (2), L represents an alkylene group. The number of carbon atoms contained in the alkylene group is not particularly limited, but is preferably 2 to 10 and more preferably 2 to 4 in terms of more excellent effects of the present invention.
The number of structural units (repeating units) represented by n is not particularly limited, but is preferably 2 to 1000 (preferably an integer of 2 to 1000) and more preferably 5 to 400 from the viewpoint of more excellent effects of the present invention. 10 to 200 is more preferable.
The molecular weight of the polyalkyleneoxy chain is not particularly limited, but is preferably from 100 to 10,000, more preferably from 200 to 5,000, from the viewpoint that the effects of the present invention are more excellent.
The content of the polyalkyleneoxy chain in the blocked isocyanate (A) is not particularly limited, but is preferably from 10 to 70% by mass, preferably from 20 to 60%, based on the total mass of the blocked isocyanate (A), from the viewpoint that the effects of the present invention are more excellent. The mass% is more preferable.
 ブロックイソシアネート(A)の重量平均分子量は特に制限されないが、300~20000の場合が多く、取り扱い性に優れ、本発明の効果がより優れる点で、400~15000が好ましく、1000~7000がより好ましい。
 なお、ブロックイソシアネート(A)の重量平均分子量は、形成される皮膜の物性に影響を与える。特に、ブロックイソシアネート(A)の重量平均分子量は、皮膜に優れた弾性や強度を付与する点で、高分子量(好ましくは、重量平均分子量400~15000)であることが好ましい。優れた弾性や硬度は、皮膜に耐加工性、より具体的には耐疵つき性、耐摩耗性等の機械的耐性を付与するだけでなく、耐薬品性等の化学的耐性を付与することにも有効である。こうして得られた皮膜は、ブロックイソシアネート(A)自体の持つ高い極性によって金属材料との密着性に効果的に作用する。
The weight average molecular weight of the blocked isocyanate (A) is not particularly limited, but is often 300 to 20000, preferably 400 to 15000, more preferably 1000 to 7000, in view of excellent handling properties and the effects of the present invention. .
The weight average molecular weight of the blocked isocyanate (A) affects the physical properties of the film to be formed. In particular, the weight average molecular weight of the blocked isocyanate (A) is preferably a high molecular weight (preferably, a weight average molecular weight of 400 to 15000) from the viewpoint of imparting excellent elasticity and strength to the film. Excellent elasticity and hardness not only provide mechanical resistance such as chemical resistance such as chemical resistance, but also mechanical resistance such as scratch resistance and abrasion resistance to the film. Also effective. The film thus obtained effectively acts on the adhesion to the metal material due to the high polarity of the blocked isocyanate (A) itself.
 ブロックイソシアネート(A)は、自己乳化型のブロックイソシアネートであることが好ましい。自己乳化型ブロックイソシアネートとは、化合物自身が水との親和性を持ち、水中で乳化分散できることを意図する。
 後述する金属表面処理液中においてブロックイソシアネート(A)が自己乳化している場合、本発明の効果がより優れる点で、金属表面処理液中におけるブロックイソシアネート(A)の粒子の粒子径は0.01~1.0μmが好ましく、0.05~0.5μmがより好ましい。
The blocked isocyanate (A) is preferably a self-emulsifying type blocked isocyanate. The self-emulsifying type blocked isocyanate intends that the compound itself has an affinity for water and can be emulsified and dispersed in water.
When the blocked isocyanate (A) is self-emulsified in the metal surface treatment liquid described later, the particle size of the blocked isocyanate (A) particles in the metal surface treatment liquid is 0.00 in that the effect of the present invention is more excellent. 01 to 1.0 μm is preferable, and 0.05 to 0.5 μm is more preferable.
(好適態様)
 ブロックイソシアネート(A)の好適態様としては、本発明の効果がより優れる点で、式(1)で表される構造単位、および、上記式(2)で表される構造単位を有する態様が挙げられる。*は、結合位置を表す。
(Preferred embodiment)
A preferred embodiment of the blocked isocyanate (A) is an embodiment having a structural unit represented by the formula (1) and a structural unit represented by the above formula (2) in that the effect of the present invention is more excellent. It is done. * Represents a binding position.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1)中、Xは、それぞれ独立に、2価の炭化水素基を表す。
 2価の炭化水素基に含まれる炭素原子数は特に制限されず、本発明の効果がより優れる点で、1~20が好ましく、2~20がより好ましく、4~12がさらに好ましい。
 2価の炭化水素基としては、2価の脂肪族炭化水素基、2価の芳香族炭化水素基、または、これらの組み合わせが挙げられる。2価の脂肪族炭化水素基としては、直鎖状、分岐鎖状、または環状のいずれであってもよい。環状としては単環式および多環式のいずれでもよく、単環式の脂肪族炭化水素基としてはシクロヘキサンジイルが挙げられ、多環式の脂肪族炭化水素基としてはアダマンタンジイル基、ノルボルナンジイル基などが挙げられる。
 なかでも、2価の炭化水素基としては、炭素原子数1~6のアルキレン基、アルキル基が置換されていてもよい脂肪族六員環基、または、アルキル基が置換されていてもよいキシリレン基などが好ましく挙げられる。
In formula (1), X represents a bivalent hydrocarbon group each independently.
The number of carbon atoms contained in the divalent hydrocarbon group is not particularly limited, and is preferably from 1 to 20, more preferably from 2 to 20, and even more preferably from 4 to 12 from the viewpoint that the effects of the present invention are more excellent.
Examples of the divalent hydrocarbon group include a divalent aliphatic hydrocarbon group, a divalent aromatic hydrocarbon group, or a combination thereof. The divalent aliphatic hydrocarbon group may be linear, branched or cyclic. The cyclic may be either monocyclic or polycyclic, and examples of the monocyclic aliphatic hydrocarbon group include cyclohexanediyl. Examples of the polycyclic aliphatic hydrocarbon group include adamantanediyl group and norbornanediyl group. Etc.
Among these, as the divalent hydrocarbon group, an alkylene group having 1 to 6 carbon atoms, an aliphatic six-membered ring group in which an alkyl group may be substituted, or xylylene in which an alkyl group may be substituted Preferred are groups and the like.
 Rは、ブロック剤の残基を表す。ブロック剤の残基とは、イソシアネート基と反応可能なブロック剤から水素原子を除いた残基を意図する。ブロック剤の種類は、上述した通りである。
 なかでも、炭素原子数3~8のアルキルアミノ基、炭素原子数2~8の1,3-ジカルボニル基、または、炭素原子数2~8のピラゾール基などが好ましく挙げられる。
R 1 represents a residue of the blocking agent. The residue of the blocking agent means a residue obtained by removing a hydrogen atom from a blocking agent that can react with an isocyanate group. The kind of blocking agent is as having mentioned above.
Of these, alkylamino groups having 3 to 8 carbon atoms, 1,3-dicarbonyl groups having 2 to 8 carbon atoms, or pyrazole groups having 2 to 8 carbon atoms are preferable.
 ブロックイソシアネート(A)中における式(1)で表される構造単位の数は特に制限されないが、上述したイソシアヌレート構造の数と同義である。 The number of structural units represented by the formula (1) in the block isocyanate (A) is not particularly limited, but is the same as the number of the isocyanurate structures described above.
 ブロックイソシアネート(A)の製造方法は特に制限されず公知の方法が採用されるが、例えば、ジイソシアネートなどのポリイソシアネートを反応させて、イソシアヌレート構造を有するポリイソシアネートを製造して、その後、ブロック剤を添加してイソシアネート基の一部を保護して、さらに、ポリアルキレンオキシ化合物を添加する方法が挙げられる。なお、ポリアルキレンオキシ化合物は、上述した式(2)で表される構造単位(繰り返し単位)を有し、末端(好ましくは、両末端)にヒドロキシ基などのイソシアネート基と反応可能な基を有する化合物である。 The production method of the blocked isocyanate (A) is not particularly limited and a known method is adopted. For example, a polyisocyanate having an isocyanurate structure is produced by reacting a polyisocyanate such as diisocyanate, and then a blocking agent. Is added to protect a part of the isocyanate group, and a polyalkyleneoxy compound is further added. The polyalkyleneoxy compound has a structural unit (repeating unit) represented by the above formula (2) and has a group capable of reacting with an isocyanate group such as a hydroxy group at the terminal (preferably both terminals). A compound.
 イソシアヌレート構造を有するポリイソシアネートを合成する際には、必要に応じて、触媒(例えば、塩基性触媒)を用いてもよい。触媒としては、例えば、テトラアルキルアンモニウムのハイドロオキサイドや、アルキルカルボン酸の例えば錫、亜鉛、鉛等のアルキル金属塩や、ナトリウム、カリウム等の金属アルコラートや、ヘキサメチルジシラザンなどのアミノシリル基含有化合物や、マンニッヒ塩基類や、第3級アミン類とエポキシ化合物との併用や、トリブチルホスフィンなどの燐系化合物等が挙げられる。これらは1種のみを使用しても、2種以上を併用してもよい。
 なお、触媒として塩基性触媒を使用した場合は、必要に応じて、酸性化合物で中和することが好ましい。酸性化合物は、1種のみを使用しても、2種以上を併用してもよい。
When synthesizing a polyisocyanate having an isocyanurate structure, a catalyst (for example, a basic catalyst) may be used as necessary. Examples of catalysts include tetraalkylammonium hydroxide, alkylcarboxylic acid such as alkyl metal salts such as tin, zinc and lead, metal alcoholates such as sodium and potassium, and aminosilyl group-containing compounds such as hexamethyldisilazane. And Mannich bases, combined use of tertiary amines and epoxy compounds, and phosphorus compounds such as tributylphosphine. These may use only 1 type or may use 2 or more types together.
In addition, when a basic catalyst is used as a catalyst, it is preferable to neutralize with an acidic compound as needed. An acidic compound may use only 1 type or may use 2 or more types together.
<有機樹脂(B)>
 金属表面処理液には、ヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される少なくとも1種の官能基を有する有機樹脂(B)が含まれる。
 有機樹脂(B)には、ヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される少なくとも1種の官能基が含まれ、本発明の効果がより優れる点で、アミノ基またはカルボキシ基が好ましい。
 有機樹脂(B)の樹脂(樹脂構造)の種類は特に制限されず、上記官能基を有していればよいが、例えば、上記官能基を有する、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、アクリル樹脂、アクリル-エチレン共重合体、アクリル-スチレン共重合体、アルキド樹脂、ポリエステル樹脂などを用いることができる。なかでも、水媒体中でも分散可能な水性有機樹脂であることが好ましい。
<Organic resin (B)>
The metal surface treatment liquid contains an organic resin (B) having at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group.
The organic resin (B) includes at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group, and the amino group is more advantageous in that the effect of the present invention is more excellent. Or a carboxy group is preferable.
The type of resin (resin structure) of the organic resin (B) is not particularly limited as long as it has the functional group. For example, an epoxy resin, a urethane resin, a phenol resin, or an acrylic resin having the functional group. An acrylic-ethylene copolymer, an acrylic-styrene copolymer, an alkyd resin, a polyester resin, or the like can be used. Among these, an aqueous organic resin that can be dispersed in an aqueous medium is preferable.
 有機樹脂(B)の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等の芳香族型エポキシ樹脂、ポリエチレングリコールジグリシジルエーテル変性物、ポリプロピレングリコールジグリシジルエーテル変性物等の脂肪族エポキシ樹脂が挙げられる。これらエポキシ樹脂は、アミノ基の導入によるカチオン化、カルボキシ基の導入によるアニオン化、エチレンオキサイド等のノニオン基の導入によるノニオン化などがされていてもよく、水系化の形態は問わない。
 カチオン性ウレタン樹脂も同様に樹脂中にアミノ基、カルボキシ基およびエチレンオキサイド基の少なくとも1種の基の導入によってカチオン化、アニオン化、ノニオン化されていることが好ましい。
 ウレタン樹脂を構成するモノマーとしては、黄変型イソシアネート、無黄変型イソシアネートともに使用することができる。ポリオール種においても、芳香族構造、脂肪族構造ともに有してもよい。
 ポリエステル樹脂においても同様にアミノ基、カルボキシ基およびエチレンオキサイド基の少なくとも1種の基の導入によってカチオン化、アニオン化、ノニオン化されていることが好ましい。なお、樹脂を構成するモノマーに制限はない。
 フェノール樹脂はノボラック型フェノール、レゾール型フェノール、ポリビニルフェノール等の主構造を有する樹脂が挙げられる。水系化においてアミノ基、カルボキシ基およびエチレンオキサイド基の少なくとも1種の基の導入によってカチオン化、アニオン化、ノニオン化することができる。
 アクリル樹脂も同様にアミノ基、カルボキシ基およびエチレンオキサイド基の少なくとも1種の導入によって、カチオン化、アニオン化、ノニオン化され、水系化することができる。なお、樹脂を構成するモノマーに制限はない。
 有機樹脂(B)は、自己乳化法によって水系化されていることが好ましいが、カチオン界面活性剤、ノニオン界面活性剤、アニオン界面活性剤や反応性乳化剤を用いて水系化されたものでも構わない。いずれもこれら1種のみを使用してよいし、2種以上を併用してもよい。
 また、各種有機樹脂(B)はグラフト変性されても構わない。有機樹脂(B)の水酸基価としては、1~1000mgKOH/gであることが好ましい。また、有機樹脂(B)のアミン価としては、1~800mgKOH/gであることが好ましい。また、有機樹脂(B)の酸価としては、1~100mgKOH/gであることが好ましい。
Specific examples of the organic resin (B) include, for example, aromatic epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, modified polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl. Aliphatic epoxy resins such as ether-modified products are exemplified. These epoxy resins may be cationized by introduction of an amino group, anionized by introduction of a carboxy group, or nonionic by introduction of a nonionic group such as ethylene oxide.
Similarly, the cationic urethane resin is preferably cationized, anionized or nonionic by introducing at least one group of an amino group, a carboxy group and an ethylene oxide group into the resin.
As a monomer constituting the urethane resin, both a yellowing isocyanate and a non-yellowing isocyanate can be used. The polyol species may have both an aromatic structure and an aliphatic structure.
Similarly, the polyester resin is preferably cationized, anionized, or nonionic by introducing at least one group of an amino group, a carboxy group, and an ethylene oxide group. In addition, there is no restriction | limiting in the monomer which comprises resin.
Examples of the phenol resin include resins having a main structure such as novolac type phenol, resol type phenol, and polyvinyl phenol. In aqueous formation, it can be cationized, anionized, or nonionic by introducing at least one group of an amino group, a carboxy group and an ethylene oxide group.
Similarly, the acrylic resin can be cationized, anionized, non-ionized and water-based by introducing at least one of an amino group, a carboxy group and an ethylene oxide group. In addition, there is no restriction | limiting in the monomer which comprises resin.
The organic resin (B) is preferably water-based by a self-emulsification method, but may be water-based using a cationic surfactant, a nonionic surfactant, an anionic surfactant or a reactive emulsifier. . Any of these may be used alone or in combination of two or more.
Various organic resins (B) may be graft-modified. The hydroxyl value of the organic resin (B) is preferably 1 to 1000 mgKOH / g. The amine value of the organic resin (B) is preferably 1 to 800 mgKOH / g. The acid value of the organic resin (B) is preferably 1 to 100 mgKOH / g.
<その他任意成分>
 金属表面処理液には、上記ブロックイソシアネート(A)および有機樹脂(B)以外の他の成分が含まれていてよい。以下、任意成分について詳述する。
<Other optional components>
The metal surface treatment liquid may contain components other than the blocked isocyanate (A) and the organic resin (B). Hereinafter, the optional components will be described in detail.
(金属化合物(C))
 金属表面処理液には、ジルコニウム、チタン、バナジウム、セリウム、モリブデン、コバルト、ニッケル、マグネシウム、カルシウム、セリウム、亜鉛、ニオブ、イットリウム、アルミニウム、タングステン、クロム、および、バリウムからなる群から選択される少なくとも1種の元素を含む金属化合物(C)が含まれていてもよい。これら化合物は表面処理金属材料の耐食性向上に有効であり、ブロック化イソシアネート基の解離触媒、さらにはイソシアネート基との反応助触媒として作用し、表面処理金属材料中の皮膜の性質に影響する。
(Metal compound (C))
The metal surface treatment liquid is at least selected from the group consisting of zirconium, titanium, vanadium, cerium, molybdenum, cobalt, nickel, magnesium, calcium, cerium, zinc, niobium, yttrium, aluminum, tungsten, chromium, and barium. A metal compound (C) containing one kind of element may be contained. These compounds are effective for improving the corrosion resistance of the surface-treated metal material, act as a dissociation catalyst for the blocked isocyanate group, and further as a reaction promoter for the isocyanate group, and affect the properties of the film in the surface-treated metal material.
 ジルコニウム化合物(ジルコニウム元素を含む化合物)としては、例えば、ジルコニウムの炭酸塩、塩化物、硝酸塩、硫酸塩などの無機酸塩、ジルコニウム酸化物およびジルコニウムの有機酸塩、ジルコニウムテトライソプロポキシド、ジイソプロポキシジルコニウムジアセチルアセトナト、ジイソプロポキシジルコニウムジトリエタノールアミネートなどのジルコニウムアルコキシド、ジルコニウムテトラアセチルアセトネート、ジルコニウム原子を含むキレート錯体などの有機ジルコニウム化合物を使用できる。なかでも、本発明の効果がより優れる点で、炭酸ジルコニウムアンモニウム、または、ジルコニウムフッ化水素酸若しくはその塩が好ましい。 Examples of the zirconium compound (compound containing zirconium element) include inorganic acid salts such as zirconium carbonate, chloride, nitrate, and sulfate, zirconium oxide and organic acid salts of zirconium, zirconium tetraisopropoxide, diiso Organic zirconium compounds such as zirconium alkoxides such as propoxyzirconium diacetylacetonate and diisopropoxyzirconium ditriethanolaminate, zirconium tetraacetylacetonate and chelate complexes containing zirconium atoms can be used. Of these, ammonium zirconium carbonate or zirconium hydrofluoric acid or a salt thereof is preferable in that the effect of the present invention is more excellent.
 チタン化合物(チタン元素を含む化合物)としては、例えば、チタンアルコキシド、チタン原子を含むキレート錯体、チタンの無機塩、有機酸塩および有機チタン化合物が好ましい。 As the titanium compound (compound containing a titanium element), for example, a titanium alkoxide, a chelate complex containing a titanium atom, an inorganic salt of titanium, an organic acid salt, and an organic titanium compound are preferable.
 バナジウム化合物(バナジウム元素を含む化合物)としては、例えば、バナジウムアルコキシド、バナジウムを含むキレート錯体、バナジウムの無機塩、有機塩および酸化物が好ましく、具体的には、バナジウムオキシアセチルアセトネート、メタバナジン酸、メタバナジン酸ナトリウム、メタバナジン酸カリウム、メタバナジン酸アンモニウム、バナジウムビスアセチルアセトナト、バナジルジアセチルアセトナト、五酸化バナジウム、三酸化バナジウム、フッ化バナジウム、リン酸バナジウム、硫酸バナジウム、シュウ酸バナジウム、バナジウムオキシトリイソプロポキシド、バナジウムオキシトリブトキシド、バナジウムオキシトリイソブトキシド、バナジウムオキシトリエタノールアミネートなどが挙げられる。 As the vanadium compound (compound containing a vanadium element), for example, a vanadium alkoxide, a chelate complex containing vanadium, an inorganic salt of vanadium, an organic salt, and an oxide are preferable. Specifically, vanadium oxyacetylacetonate, metavanadate, Sodium metavanadate, potassium metavanadate, ammonium metavanadate, vanadium bisacetylacetonate, vanadyl diacetylacetonate, vanadium pentoxide, vanadium trioxide, vanadium fluoride, vanadium phosphate, vanadium sulfate, vanadium oxalate, vanadium oxytriiso Examples thereof include propoxide, vanadium oxytributoxide, vanadium oxytriisobutoxide, vanadium oxytriethanolamate and the like.
 セリウム化合物(セリウム元素を含む化合物)としては、例えば、セリウムアルコキシド、セリウムを含むキレート錯体、セリウムの無機塩、有機塩および酸化物が好ましい。 As the cerium compound (compound containing cerium element), for example, cerium alkoxide, chelate complex containing cerium, inorganic salt, organic salt and oxide of cerium are preferable.
 モリブデン化合物(モリブデン元素を含む化合物)としては、例えば、モリブデンアルコキシド、モリブデンを含むキレート錯体、モリブデンの無機塩、有機塩および酸化物が好ましい。 As the molybdenum compound (compound containing molybdenum element), for example, molybdenum alkoxide, a chelate complex containing molybdenum, molybdenum inorganic salt, organic salt and oxide are preferable.
 コバルト化合物(コバルト元素を含む化合物)としては、例えば、コバルトアルコキシド、コバルトを含むキレート錯体、コバルトの無機塩、有機塩および酸化物が好ましい。 As the cobalt compound (compound containing cobalt element), for example, cobalt alkoxide, chelate complex containing cobalt, cobalt inorganic salt, organic salt and oxide are preferable.
 ニッケル化合物(ニッケル元素を含む化合物)としては、例えば、ニッケルアルコキシド、ニッケルを含むキレート錯体、ニッケルの無機塩、有機塩および酸化物が好ましい。 As the nickel compound (compound containing nickel element), for example, nickel alkoxide, chelate complex containing nickel, nickel inorganic salt, organic salt and oxide are preferable.
 マグネシウム化合物(マグネシウム元素を含む化合物)としては、例えば、マグネシウムアルコキシド、マグネシウムを含むキレート錯体、マグネシウムの無機塩、有機塩および酸化物が好ましい。 As the magnesium compound (a compound containing a magnesium element), for example, magnesium alkoxide, a chelate complex containing magnesium, magnesium inorganic salt, organic salt and oxide are preferable.
 カルシウム化合物(カルシウム元素を含む化合物)としては、例えば、炭酸カルシウム、リン酸カルシウム、硝酸カルシウム、硫酸カルシウムなどが挙げられる。 Examples of calcium compounds (compounds containing calcium element) include calcium carbonate, calcium phosphate, calcium nitrate, and calcium sulfate.
 セリウム化合物(セリウム元素を含む化合物)としては、例えば、酸化セリウム、酢酸セリウム、硝酸セリウム(III)または(IV)、硝酸セリウムアンモニウム、硫酸セリウム、塩化セリウムなどが挙げられる。 Examples of the cerium compound (compound containing a cerium element) include cerium oxide, cerium acetate, cerium (III) or (IV), cerium ammonium nitrate, cerium sulfate, and cerium chloride.
 亜鉛化合物(亜鉛元素を含む化合物)としては、例えば、炭酸亜鉛、リン酸亜鉛、硝酸亜鉛、硫酸亜鉛、酢酸亜鉛、フッ化亜鉛、酸化亜鉛、塩化亜鉛、ジンクテトラエチラート、ジンクテトラプロピレート、ジンクテトラブチレート、ジンクテトラアセチルアセトネート、ジンクモノアセチルアセトネート、ジンクラウレートなどが挙げられる。 Examples of the zinc compound (compound containing zinc element) include zinc carbonate, zinc phosphate, zinc nitrate, zinc sulfate, zinc acetate, zinc fluoride, zinc oxide, zinc chloride, zinc tetraethylate, zinc tetrapropylate, Examples thereof include zinc tetrabutyrate, zinc tetraacetylacetonate, zinc monoacetylacetonate, and zinc claurate.
 ニオブ化合物(ニオブ元素を含む化合物)としては、例えば、ニオブアルコキシド、ニオブを含むキレート錯体、ニオブの無機塩、有機塩および酸化物が好ましく、具体的には、酸化ニオブ、水酸化ニオブ、硝酸ニオブ、ニオブ酸ナトリウム、ニオブ酸カルシウム、ニオブ酸マグネシウム、ニオブ酸、フッ化ニオブ、塩化ニオブ、メタニオブ酸ナトリウム、酸化ニオブマグネシウム、ニオブペンタエチラート、ニオブペンタブチラートなどが挙げられる。 As the niobium compound (compound containing niobium element), for example, niobium alkoxides, chelate complexes containing niobium, niobium inorganic salts, organic salts and oxides are preferable. Specifically, niobium oxide, niobium hydroxide, niobium nitrate Sodium niobate, calcium niobate, magnesium niobate, niobic acid, niobium fluoride, niobium chloride, sodium metaniobate, magnesium niobium oxide, niobium pentaethylate, niobium pentabutyrate and the like.
 イットリウム化合物(イットリウム元素を含む化合物)としては、例えば、イットリウムアルコキシド、イットリウムを含むキレート錯体、イットリウムの無機塩、有機塩および酸化物が好ましい。 As the yttrium compound (compound containing an yttrium element), for example, yttrium alkoxide, a chelate complex containing yttrium, an inorganic salt, an organic salt and an oxide of yttrium are preferable.
 アルミニウム化合物(アルミニウム元素を含む化合物)としては、例えば、アルミニウムアルコキシド、アルミニウムを含むキレート錯体、アルミニウムの無機塩、有機塩および酸化物が好ましい。 As the aluminum compound (compound containing an aluminum element), for example, an aluminum alkoxide, a chelate complex containing aluminum, an aluminum inorganic salt, an organic salt, and an oxide are preferable.
 タングステン化合物(タングステン元素を含む化合物)としては、例えば、バナジウムアルコキシド、タングステンを含むキレート錯体、タングステンの無機塩、有機塩および酸化物が好ましい。 As the tungsten compound (compound containing a tungsten element), for example, vanadium alkoxide, a chelate complex containing tungsten, an inorganic salt, an organic salt and an oxide of tungsten are preferable.
 クロム化合物(クロム元素を含む化合物)としては、例えば、クロム酸、重クロム酸、炭酸クロム、塩化クロム、リン酸クロム、硝酸クロム、フッ化クロム、硫酸クロム、クロムアセチルアセトナート、クロム酸ストロンチウムなどが挙げられる。 Examples of the chromium compound (compound containing chromium element) include chromic acid, dichromic acid, chromium carbonate, chromium chloride, chromium phosphate, chromium nitrate, chromium fluoride, chromium sulfate, chromium acetylacetonate, strontium chromate, etc. Is mentioned.
 バリウム化合物(バリウム元素を含む化合物)としては、例えば、硝酸バリウム、炭酸バリウム、酸化バリウムなどが挙げられる。 Examples of barium compounds (compounds containing barium elements) include barium nitrate, barium carbonate, and barium oxide.
(リン含有化合物(D))
 金属表面処理液には、無機リン酸、無機リン酸塩、有機リン酸、有機リン酸塩、有機ホスホン酸、および、有機ホスホン酸塩からなる群から選択される少なくとも1種のリン含有化合物(D)が含まれていてもよい。これら化合物は多価イオンを形成しやすく、共存する極性基と相互作用(例えば、イオン結合)しうる。すなわち、リン含有化合物(D)は皮膜中において擬似的な架橋点として作用する結果、金属表面処理液より形成される皮膜の性質に影響する。なお、上述した金属化合物(C)は、リン含有化合物(D)には含まれない。
 無機リン酸およびその塩としては、リン酸(オルトリン酸)、亜リン酸、三リン酸、次亜リン酸、次リン酸などのモノリン酸類、モノリン酸の誘導体および塩類、メタリン酸、トリポリリン酸、テトラリン酸、ヘキサリン酸などの縮合リン酸類、縮合リン酸類の誘導体および塩類等が挙げられる。
 有機リン酸およびその塩としては、アルキルリン酸、リン酸モノエステル(例えば、リン酸モノドデシル二水素、リン酸モノトリデシル二水素など)およびその塩、リン酸ジエステル(例えば、リン酸ジドデシル水素、リン酸ジトリデシル水素など)およびその塩などが挙げられる。有機リン酸の具体例としては、例えば、R10O-P(=O)(OR11)(OR12)によって表される化合物が挙げられる。なお、R10は有機基を表し、R11およびR12はそれぞれ独立に水素原子または有機基を表す。有機基としては、例えば、炭化水素基(例えば、アルキル基、アリール基、または、これらを組み合わせた基)が挙げられる。
 有機ホスホン酸およびその塩としては、例えば、ヒドロキシエチリデンジホスホン酸、アミノトリ(メチレンホスホン酸)、1-ヒドロキシエタン-1,1-ジホスホン酸、エチレンジアミン-N,N,N´,N´-テトラ(メチレンホスホン酸)、ヘキサメチレンジアミン-N,N,N´,N´-テトラ(メチレンホスホン酸)、ジエチレントリアミン-N,N,N´,N´´,N´´-ペンタ(メチレンホスホン酸)、2-ホスホノブタン-1,2,4-トリカルボン酸、および、これらの塩が挙げられる。有機ホスホン酸の具体例としては、例えば、R10-P(=O)(OR11)(OR12)によって表される化合物が挙げられる。なお、R10は有機基を表し、R11およびR12はそれぞれ独立に水素原子または有機基を表す。有機基としては、例えば、炭化水素基(例えば、アルキル基、アリール基、または、これらを組み合わせた基)が挙げられる。
 なお、無機リン酸塩(無機リン酸の塩)、有機リン酸塩(有機リン酸の塩)、有機ホスホン酸塩(有機ホスホン酸の塩)などの塩類としては特に制限されないが、例えば、アルカリ金属塩、アンモニウム塩、アミン塩を挙げることができる。アルカリ金属塩を構成するアルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオンを挙げることができる。また、アミン塩を構成するアミンとしては、特に制限されないが、例えば、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミンなどのアルカノールアミン;ジメチルエタノールアミン、ジエチルエタノールアミン、2-アミノ-2-メチル-プロパノールアミンなどのアルカノールアルキルアミン;化学式:R1NH2(式中、R1は炭素数8以上、20以下の炭化水素基を示す)で表わされるモノアルキル1級アミン;化学式:R2NH(CH23NH2(式中、R2は炭素数5以上、17以下の炭化水素基を示す)で表わされるアルキルジアミノプロパンなどが挙げられる。
 なかでも、本発明の効果がより優れる点で、無機リン酸、無機リン酸塩、有機ホスホン酸、または、有機ホスホン酸塩が好ましく、無機リン酸塩(例えば、無機リン酸のアンモニウム塩、無機リン酸のアルカリ金属塩、無機リン酸のアミン塩)、または、有機ホスホン酸がより好ましく、無機リン酸(好ましくは、リン酸)のアンモニウム塩、または、有機ホスホン酸が特に好ましい。
(Phosphorus-containing compound (D))
The metal surface treatment liquid includes at least one phosphorus-containing compound selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, organic phosphate, organic phosphonic acid, and organic phosphonate ( D) may be included. These compounds easily form multivalent ions and can interact (for example, ionic bonds) with the coexisting polar group. That is, the phosphorus-containing compound (D) acts as a pseudo cross-linking point in the film, thereby affecting the properties of the film formed from the metal surface treatment liquid. In addition, the metal compound (C) mentioned above is not contained in a phosphorus containing compound (D).
Examples of inorganic phosphoric acid and salts thereof include phosphoric acid (orthophosphoric acid), phosphorous acid, triphosphoric acid, hypophosphorous acid, monophosphoric acid such as hypophosphoric acid, monophosphoric acid derivatives and salts, metaphosphoric acid, tripolyphosphoric acid, Examples thereof include condensed phosphoric acids such as tetraphosphoric acid and hexaphosphoric acid, derivatives and salts of condensed phosphoric acids, and the like.
Examples of the organic phosphoric acid and salts thereof include alkyl phosphoric acid, phosphoric acid monoester (for example, monododecyl dihydrogen phosphate, monotridecyl dihydrogen phosphate, etc.) and salts thereof, phosphoric acid diester (for example, didodecyl hydrogen phosphate, phosphorous Acid ditridecyl hydrogen and the like) and salts thereof. Specific examples of the organic phosphoric acid include compounds represented by R 10 O—P (═O) (OR 11 ) (OR 12 ). R 10 represents an organic group, and R 11 and R 12 each independently represent a hydrogen atom or an organic group. Examples of the organic group include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
Examples of organic phosphonic acids and salts thereof include hydroxyethylidene diphosphonic acid, aminotri (methylenephosphonic acid), 1-hydroxyethane-1,1-diphosphonic acid, ethylenediamine-N, N, N ′, N′-tetra ( Methylenephosphonic acid), hexamethylenediamine-N, N, N ′, N′-tetra (methylenephosphonic acid), diethylenetriamine-N, N, N ′, N ″, N ″ -penta (methylenephosphonic acid), Examples include 2-phosphonobutane-1,2,4-tricarboxylic acid and salts thereof. Specific examples of the organic phosphonic acid include compounds represented by R 10 —P (═O) (OR 11 ) (OR 12 ). R 10 represents an organic group, and R 11 and R 12 each independently represent a hydrogen atom or an organic group. Examples of the organic group include a hydrocarbon group (for example, an alkyl group, an aryl group, or a group obtained by combining these).
In addition, although it does not restrict | limit especially as salts, such as inorganic phosphate (salt of inorganic phosphoric acid), organic phosphate (salt of organic phosphoric acid), and organic phosphonate (salt of organic phosphonic acid), For example, alkali Mention may be made of metal salts, ammonium salts and amine salts. Examples of the alkali metal ions constituting the alkali metal salt include lithium ions, sodium ions, and potassium ions. In addition, the amine constituting the amine salt is not particularly limited. For example, alkanolamines such as monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine; dimethylethanolamine, diethylethanol Monoalkyls represented by amines, alkanol alkylamines such as 2-amino-2-methyl-propanolamine; chemical formula: R 1 NH 2 (wherein R 1 represents a hydrocarbon group having 8 to 20 carbon atoms) Examples include primary amines; alkyldiaminopropane represented by the chemical formula: R 2 NH (CH 2 ) 3 NH 2 (wherein R 2 represents a hydrocarbon group having 5 to 17 carbon atoms).
Among these, inorganic phosphoric acid, inorganic phosphate, organic phosphonic acid, or organic phosphonate is preferred in terms of more excellent effects of the present invention, and inorganic phosphate (for example, ammonium salt of inorganic phosphoric acid, inorganic An alkali metal salt of phosphoric acid, an amine salt of inorganic phosphoric acid) or an organic phosphonic acid is more preferred, and an ammonium salt of inorganic phosphoric acid (preferably phosphoric acid) or an organic phosphonic acid is particularly preferred.
(珪素化合物(E))
 金属表面処理液には、珪素化合物(E)が含まれていてもよい。
 珪素化合物(E)としては、例えば、アルカリ金属ケイ酸塩、コロイダルシリカ等の無機珪素化合物、または、シランカップリング剤等の有機珪素化合物の少なくとも1種であることが好ましい。
 無機珪素化合物としては、例えば、珪酸リチウム、珪酸ナトリウム、珪酸カリウム、コロイダルシリカが挙げられる。シランカップリング剤としては、例えば、ビニルトリクロロシラン、ビニルトリス(2-メトキシエトキシシラン)、ビニルトリエトキシシラン、ビニルトリメトキシシラン、3-(メタクリロイルオキシプロピル)トリメトキシシラン、2-(3、4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、テトラまたはトリメトキシシラン(テトラメトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン等)などが挙げられる。また、テトラ若しくはトリメトキシシランとグリシドールとの脱メタノール反応により得られるグリシジル基含有部分縮合物も使用可能である。
(Silicon compound (E))
The metal surface treatment liquid may contain a silicon compound (E).
The silicon compound (E) is preferably at least one of inorganic silicon compounds such as alkali metal silicates and colloidal silica, or organic silicon compounds such as silane coupling agents.
Examples of the inorganic silicon compound include lithium silicate, sodium silicate, potassium silicate, and colloidal silica. Examples of the silane coupling agent include vinyltrichlorosilane, vinyltris (2-methoxyethoxysilane), vinyltriethoxysilane, vinyltrimethoxysilane, 3- (methacryloyloxypropyl) trimethoxysilane, 2- (3,4- Epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, N- (2-aminoethyl) -3- Aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, tetra- or trimethoxysilane (tetramethoxysilane) Silane, methyl trimethoxy silane, ethyl trimethoxy silane, n- propyl trimethoxysilane and the like) and the like. Moreover, a glycidyl group-containing partial condensate obtained by a demethanol reaction of tetra or trimethoxysilane and glycidol can also be used.
(無機化合物(F))
 金属表面処理液には、リチウム、ナトリウム、および、カリウムからなる群から選択される少なくとも1種の元素を含む無機化合物(F)が含まれていてもよい。なお、無機化合物(F)には、上述した金属化合物(C)、リン含有化合物(D)および珪素化合物(E)は含まれない。
 無機化合物(F)として具体的には、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の水酸化物、硝酸リチウム等の硝酸塩、フッ化ナトリウム等のフッ化物、硫酸ナトリウム等の硫酸塩などが挙げられる。
(Inorganic compound (F))
The metal surface treatment liquid may contain an inorganic compound (F) containing at least one element selected from the group consisting of lithium, sodium, and potassium. The inorganic compound (F) does not include the above-described metal compound (C), phosphorus-containing compound (D), and silicon compound (E).
Specific examples of the inorganic compound (F) include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, nitrates such as lithium nitrate, fluorides such as sodium fluoride, sulfates such as sodium sulfate, and the like. Can be mentioned.
(ジカルボン酸ジエステル(G))
 金属表面処理液には、ジカルボン酸ジエステル(G)が含まれていてもよい。これらは、均一な膜を形成するための造膜助剤として作用する。
 ジカルボン酸ジエステル(G)として具体的には、コハク酸ジエトキシエチル、コハク酸ジオクチル等のコハク酸ジエステル、アジピン酸ジイソプロピル、アジピン酸ジイソブチル、アジピン酸ジエトキシエチル等のアジピン酸ジエステル、セバシン酸ジエチル、セバシン酸ジイソプロピル、セバシン酸ジオクチル等のセバシン酸ジエステルが挙げられる。
(Dicarboxylic acid diester (G))
The metal surface treatment liquid may contain a dicarboxylic acid diester (G). These act as a film-forming aid for forming a uniform film.
Specific examples of the dicarboxylic acid diester (G) include succinic acid diesters such as diethoxyethyl succinate and dioctyl succinate, adipic acid diesters such as diisopropyl adipate, diisobutyl adipate and diethoxyethyl adipate, diethyl sebacate, Examples thereof include sebacic acid diesters such as diisopropyl sebacate and dioctyl sebacate.
(溶媒)
 金属表面処理液には、溶媒として水が含まれていてもよい。また、後述するように、有機溶媒が含まれていてもよい。
(solvent)
The metal surface treatment liquid may contain water as a solvent. Moreover, the organic solvent may be contained so that it may mention later.
(その他成分)
 金属表面処理液には、ブロックイソシアネート(A)の解離、または、ブロック剤の解離したイソシアネート基と有機樹脂(B)中の官能基との反応を促進するため、上記成分以外の、酸性触媒(例えば、塩酸、硫酸、硝酸、リン酸)、塩基性触媒(例えば、アンモニア、トリメチルアミン、トリエチルアミン)、または、金属触媒を加えることができる。
 金属表面処理液には、造膜性の向上や皮膜の乾燥性を改善する有機溶媒、濡れ性を向上させる界面活性剤、皮膜量調整のための増粘剤、発泡を抑える消泡剤、溶接性向上のための導電性物質、意匠性向上のため着色顔料などを、金属表面処理液の液安定性や本発明の効果を損なわない範囲で配合することができる。
(Other ingredients)
In the metal surface treatment solution, in order to promote the dissociation of the blocked isocyanate (A) or the reaction between the isocyanate group dissociated from the blocking agent and the functional group in the organic resin (B), an acidic catalyst ( For example, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid), basic catalysts (eg, ammonia, trimethylamine, triethylamine), or metal catalysts can be added.
Metal surface treatment solutions include organic solvents that improve film-forming properties and film drying properties, surfactants that improve wettability, thickeners to adjust the coating amount, antifoaming agents that suppress foaming, welding An electroconductive substance for improving the property and a coloring pigment for improving the design can be blended within a range not impairing the liquid stability of the metal surface treatment liquid and the effect of the present invention.
<金属表面処理液>
 金属表面処理液には、上述した各種成分が含まれる。
 金属表面処理液中におけるブロックイソシアネート(A)の含有量は特に制限されないが、本発明の効果がより優れる点で、金属表面処理液中におけるブロックイソシアネート(A)の有効イソシアネート基の濃度が0.01~20g/Lであることが好ましく、0.01~15g/Lであることがより好ましく、0.05~10g/Lであることがさらに好ましい。
 金属表面処理液中における有機樹脂(B)の含有量は特に制限されないが、本発明の効果がより優れる点で、5~100g/Lであることが好ましく、10~100g/Lであることがより好ましく、15~90g/Lであることがさらに好ましい。
 金属表面処理液中におけるブロックイソシアネート(A)と有機樹脂(B)との質量含有比は特に制限されないが、本発明の効果がより優れる点で、ブロックイソシアネート(A)中の有効イソシアネート基の濃度a(g/L)と有機樹脂(B)中の上述したヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される官能基の濃度b(g/L)との比(有効イソシアネート基の濃度a/官能基の濃度b)が、0.001~30.0であることが好ましく、0.01~30であることがより好ましく、0.5~30であることがさらに好ましく、1.0~15であることが特に好ましく、2.5~10であることが最も好ましい。
 なお、上記有効イソシアネート基の濃度(g/L)は金属表面処理液(1L)中における有効イソシアネート基の量(g)を表し、上記官能基の濃度(g/L)は金属表面処理液(1L)中における官能基の量(g)を表す。
<Metal surface treatment liquid>
The metal surface treatment liquid contains the various components described above.
The content of the blocked isocyanate (A) in the metal surface treatment liquid is not particularly limited, but the concentration of the effective isocyanate group of the blocked isocyanate (A) in the metal surface treatment liquid is 0.00 in that the effect of the present invention is more excellent. It is preferably from 01 to 20 g / L, more preferably from 0.01 to 15 g / L, still more preferably from 0.05 to 10 g / L.
The content of the organic resin (B) in the metal surface treatment liquid is not particularly limited, but is preferably 5 to 100 g / L, more preferably 10 to 100 g / L in terms of more excellent effects of the present invention. More preferably, it is 15 to 90 g / L.
The mass content ratio of the blocked isocyanate (A) and the organic resin (B) in the metal surface treatment liquid is not particularly limited, but the concentration of the effective isocyanate group in the blocked isocyanate (A) is more excellent in the effect of the present invention. Ratio of a (g / L) to the concentration b (g / L) of the functional group selected from the group consisting of the above-mentioned hydroxy group, amino group, sulfo group and carboxy group in the organic resin (B) ( The effective isocyanate group concentration a / functional group concentration b) is preferably 0.001 to 30.0, more preferably 0.01 to 30 and even more preferably 0.5 to 30. Preferably, it is 1.0 to 15, particularly preferably 2.5 to 10.
The concentration (g / L) of the effective isocyanate group represents the amount (g) of the effective isocyanate group in the metal surface treatment liquid (1 L), and the concentration (g / L) of the functional group represents the metal surface treatment liquid (g / L). 1L) represents the amount (g) of the functional group in 1L).
 金属表面処理液に金属化合物(C)が含まれる場合、金属表面処理液中における金属化合物(C)の含有量は特に制限されないが、本発明の効果がより優れる点で、0.1~50g/Lであることが好ましく、0.3~10g/Lであることがより好ましい。
 金属表面処理液にリン含有化合物(D)が含まれる場合、金属表面処理液中におけるリン含有化合物(D)の含有量は特に制限されないが、本発明の効果がより優れる点で、0.1~50g/Lであることが好ましく、0.2~30g/Lであることがより好ましく、0.3~10g/Lであることがさらに好ましい。
 金属表面処理液に珪素化合物(E)が含まれる場合、金属表面処理液中における珪素化合物(E)の含有量は特に制限されないが、本発明の効果がより優れる点で、0.1~50g/Lであることが好ましく、0.2~30g/Lであることがより好ましく、0.3~10g/Lであることがさらに好ましい。
 金属表面処理液に無機化合物(F)が含まれる場合、金属表面処理液中における無機化合物(F)の含有量は特に制限されないが、本発明の効果がより優れる点で、0.1~50g/Lであることが好ましく、0.5~50g/Lであることがより好ましい。
 金属表面処理液にジカルボン酸ジエステル(G)が含まれる場合、金属表面処理液中におけるジカルボン酸ジエステル(G)の含有量は特に制限されないが、本発明の効果がより優れる点で、0.01~50g/Lであることが好ましく、0.05~10g/Lであることがより好ましい。
When the metal surface treatment liquid contains the metal compound (C), the content of the metal compound (C) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention. / L is preferable, and 0.3 to 10 g / L is more preferable.
When the phosphorus-containing compound (D) is contained in the metal surface treatment liquid, the content of the phosphorus-containing compound (D) in the metal surface treatment liquid is not particularly limited, but is 0.1 in that the effect of the present invention is more excellent. It is preferably ˜50 g / L, more preferably 0.2 to 30 g / L, and further preferably 0.3 to 10 g / L.
When the metal surface treatment liquid contains a silicon compound (E), the content of the silicon compound (E) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention. / L, preferably 0.2 to 30 g / L, and more preferably 0.3 to 10 g / L.
When the metal surface treatment liquid contains an inorganic compound (F), the content of the inorganic compound (F) in the metal surface treatment liquid is not particularly limited, but is 0.1 to 50 g in terms of more excellent effects of the present invention. / L is preferable, and 0.5 to 50 g / L is more preferable.
When the dicarboxylic acid diester (G) is contained in the metal surface treatment liquid, the content of the dicarboxylic acid diester (G) in the metal surface treatment liquid is not particularly limited, but is 0.01 because the effect of the present invention is more excellent. It is preferably ˜50 g / L, more preferably 0.05 to 10 g / L.
 金属表面処理液に金属化合物(C)が含まれる場合、金属表面処理液中におけるブロックイソシアネート(A)と金属化合物(C)の質量比(A/C)は特に制限されないが、本発明の効果がより優れる点で、0.1~50が好ましく、0.1~25がより好ましく、0.1~10がさらに好ましい。
 金属表面処理液にリン含有化合物(D)が含まれる場合、金属表面処理液中におけるブロックイソシアネート(A)とリン含有化合物(D)の質量比(A/D)は特に制限されないが、本発明の効果がより優れる点で、0.1~50が好ましく、0.2~30がより好ましく、0.3~10がさらに好ましく、0.5~10が特に好ましい。
 金属表面処理液に珪素化合物(E)が含まれる場合、金属表面処理液中におけるブロックイソシアネート(A)と珪素化合物(E)の質量比(A/E)は特に制限されないが、本発明の効果がより優れる点で、0.1~50が好ましく、0.2~30がより好ましい。
 金属表面処理液に無機化合物(F)が含まれる場合、金属表面処理液中におけるブロックイソシアネート(A)と無機化合物(F)の質量比(A/F)は特に制限されないが、本発明の効果がより優れる点で、0.1~50が好ましく、0.5~50がより好ましい。
 金属表面処理液にジカルボン酸ジエステル(G)が含まれる場合、金属表面処理液中におけるブロックイソシアネート(A)とジカルボン酸ジエステル(G)の質量比(A/G)は特に制限されないが、本発明の効果がより優れる点で、5~100が好ましい。
When the metal surface treatment liquid contains the metal compound (C), the mass ratio (A / C) of the blocked isocyanate (A) to the metal compound (C) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, more preferably 0.1 to 25, and still more preferably 0.1 to 10.
When the phosphorus-containing compound (D) is contained in the metal surface treatment liquid, the mass ratio (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) in the metal surface treatment liquid is not particularly limited. 0.1 to 50 is preferable, 0.2 to 30 is more preferable, 0.3 to 10 is further preferable, and 0.5 to 10 is particularly preferable.
When the metal surface treatment liquid contains a silicon compound (E), the mass ratio (A / E) of the blocked isocyanate (A) and the silicon compound (E) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, and more preferably 0.2 to 30.
When the metal surface treatment liquid contains an inorganic compound (F), the mass ratio (A / F) of the blocked isocyanate (A) and the inorganic compound (F) in the metal surface treatment liquid is not particularly limited, but the effect of the present invention. Is more preferably 0.1 to 50, and more preferably 0.5 to 50.
When the dicarboxylic acid diester (G) is contained in the metal surface treatment liquid, the mass ratio (A / G) of the blocked isocyanate (A) and the dicarboxylic acid diester (G) in the metal surface treatment liquid is not particularly limited. 5 to 100 is preferable in that the above effect is more excellent.
 金属表面処理液のpHは、本発明の効果を達成し得る限り特に制限はないが、本発明の効果がより優れる点で、pH3~11の範囲であることが好ましい。
 金属表面処理液の固形分濃度については、本発明の効果が達成し得る限り特に制限はないが、本発明の効果がより優れる点で、1~40質量%の範囲であることが好ましい。
The pH of the metal surface treatment solution is not particularly limited as long as the effects of the present invention can be achieved, but is preferably in the range of pH 3 to 11 in terms of more excellent effects of the present invention.
The solid content concentration of the metal surface treatment liquid is not particularly limited as long as the effects of the present invention can be achieved, but is preferably in the range of 1 to 40% by mass from the viewpoint of more excellent effects of the present invention.
<表面処理金属材料の製造方法>
 上述した金属表面処理液を用いて、表面処理金属材料を製造する方法は特に制限されないが、通常、上述した金属表面処理液を金属材料表面に接触させ、加熱乾燥して金属材料上に皮膜を形成する工程を有する。
 以下では、まず、被処理物である金属材料について詳述し、その後工程の手順について詳述する。
<Method for producing surface-treated metal material>
The method for producing the surface-treated metal material using the above-described metal surface treatment liquid is not particularly limited, but usually, the above-described metal surface treatment liquid is brought into contact with the surface of the metal material and dried by heating to form a film on the metal material. Forming.
Below, the metal material which is a to-be-processed object is explained in full detail first, and the procedure of the post process is explained in full detail.
(金属材料)
 金属材料の種類は特に制限されず、冷延鋼板、熱延鋼板、亜鉛めっき鋼板、アルミニウム含有亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化亜鉛めっき鋼板、亜鉛ニッケルめっき鋼板、合金鋼板およびめっき鋼板;アルミニウム板、銅板、チタン板、マグネシウム板等の鋼板以外の金属板などの一般に公知の金属材料を用いることができる。特に好適な金属材料は、亜鉛めっき鋼板、アルミニウム含有亜鉛めっき鋼板、電気亜鉛めっき鋼板、合金化亜鉛めっき鋼板、亜鉛ニッケルめっき鋼板、蒸着亜鉛めっき鋼板等の亜鉛系めっき鋼板である。
(Metal material)
The type of the metal material is not particularly limited, and cold-rolled steel sheet, hot-rolled steel sheet, galvanized steel sheet, aluminum-containing galvanized steel sheet, electrogalvanized steel sheet, alloyed galvanized steel sheet, zinc-nickel plated steel sheet, alloy steel sheet and plated steel sheet; Generally well-known metal materials, such as metal plates other than steel plates, such as an aluminum plate, a copper plate, a titanium plate, and a magnesium plate, can be used. Particularly suitable metal materials are galvanized steel sheets such as galvanized steel sheets, aluminum-containing galvanized steel sheets, electrogalvanized steel sheets, alloyed galvanized steel sheets, zinc nickel plated steel sheets, and vapor-deposited galvanized steel sheets.
 金属表面処理液による処理に先立って、必須ではないが通常、被処理物である金属材料に付着した油分、汚れを取り除くために、脱脂剤によるアルカリ洗浄、湯洗、酸洗、溶剤洗浄などを適宜組み合わせて行う。
 また、通常不要であるが、金属表面処理液による処理を行なう前に、金属材料の耐食性および皮膜と金属材料との密着性をさらに向上させる目的で、下地処理を施すことができる。下地処理の方法は特に制限されないが、Fe、Co、Ni、Cu、Zn、Mn、Zr、Ti、またはVなどの金属を付着させる表面調整処理や、化成処理などが挙げられる。
 上記何れの処理の場合も、金属材料表面に処理液が残留しないように水洗することが好ましい。
Prior to the treatment with the metal surface treatment liquid, it is not essential, but in order to remove the oil and dirt adhering to the metal material that is the object to be treated, alkali washing with a degreasing agent, hot water washing, pickling, solvent washing, etc. are usually performed. Combined as appropriate.
Moreover, although it is usually unnecessary, before the treatment with the metal surface treatment liquid, a ground treatment can be applied for the purpose of further improving the corrosion resistance of the metal material and the adhesion between the film and the metal material. The method for the base treatment is not particularly limited, and examples thereof include surface adjustment treatment for attaching a metal such as Fe, Co, Ni, Cu, Zn, Mn, Zr, Ti, or V, and chemical conversion treatment.
In any of the above treatments, it is preferable to wash with water so that the treatment liquid does not remain on the surface of the metal material.
(手順)
 金属材料への金属表面処理液の接触方法は特に制限されず、例えば、ロールコーター法、浸漬法、スプレー法、バーコート法など塗布方法が挙げられる。
 また、接触時の処理液温度については、特に制限はないが、10~60℃が好ましく、15~40℃がより好ましい。
 さらに、金属材料を金属表面処理液と接触させた後、金属材料に加熱乾燥処理を施す。加熱乾燥方法としては特に制限はなく、ドライヤー、熱風炉、高周波誘導加熱炉、赤外線炉等が挙げられる。ブロックイソシアネート(A)および有機樹脂(B)の硬化および架橋の促進による被覆効果を高めるためには、熱風炉、誘導加熱炉、電気炉などによる加熱乾燥が好ましい。加熱乾燥温度は、特に制限はないが、乾燥時の到達金属材料温度が50~250℃であることが好ましく、70~220℃であることがより好ましい。
(procedure)
The method for contacting the metal surface treatment liquid with the metal material is not particularly limited, and examples thereof include coating methods such as a roll coater method, a dipping method, a spray method, and a bar coating method.
Further, the treatment liquid temperature at the time of contact is not particularly limited, but is preferably 10 to 60 ° C, and more preferably 15 to 40 ° C.
Further, after bringing the metal material into contact with the metal surface treatment liquid, the metal material is subjected to heat drying treatment. There is no restriction | limiting in particular as a heating-drying method, A dryer, a hot air furnace, a high frequency induction heating furnace, an infrared furnace etc. are mentioned. In order to enhance the coating effect by promoting curing and crosslinking of the blocked isocyanate (A) and the organic resin (B), heat drying with a hot air furnace, an induction heating furnace, an electric furnace or the like is preferable. The heating and drying temperature is not particularly limited, but the ultimate metal material temperature during drying is preferably 50 to 250 ° C, and more preferably 70 to 220 ° C.
 上記処理を施すことにより、金属材料とその表面に配置された皮膜とを有する表面処理金属材料が得られる。
 皮膜の付着量(皮膜質量)は特に制限されず、本発明の効果がより優れる点で、0.05~10.0g/m2が好ましく、0.1~8.0g/m2がより好ましく、0.1~5.0g/m2がさらに好ましい。
By performing the above treatment, a surface-treated metal material having a metal material and a film disposed on the surface thereof is obtained.
Adhesion amount of the coating (film weight) is not particularly limited, in terms of the effect of the present invention is more excellent, preferably 0.05 ~ 10.0g / m 2, more preferably 0.1 ~ 8.0g / m 2 0.1 to 5.0 g / m 2 is more preferable.
 皮膜の基本物性はDMA(動的粘弾性装置)によって通常測定され、貯蔵弾性率と損失弾性率として得られる。貯蔵弾性率は、バネのように与えられた応力に対して瞬発的に反応する弾性成分を表し、一方、損失弾性率は与えられた応力に対して遅れて反応する粘性成分を表す。つまり、貯蔵弾性率は皮膜の強度に直接影響する成分であり、高い貯蔵弾性率を持つ皮膜ほど硬い皮膜といえる。損失弾性率は軟らかさを表す成分であり、損失弾性率の高い皮膜はより柔らかい皮膜といえる。損失弾性率が極大値を迎える温度を最大損失正接Tanδで示し、この温度が高すぎる場合、皮膜は脆く、一方低すぎる場合、皮膜は軟質となる。
 皮膜の常温における貯蔵弾性率は、本発明の効果がより優れる点で、0.1~5GPaであるのが好ましく、0.2~4GPaであるのがより好ましく、0.5~2GPaであることがさらに好ましい。
 また、皮膜の最大損失正接Tanδを示す温度(Tanδmax)は、本発明の効果がより優れる点で、25~80℃であることが好ましく、30~75℃であることがより好ましく、30~70℃であることがさらに好ましい。
The basic physical properties of the film are usually measured by a DMA (Dynamic Viscoelastic Device) and obtained as a storage elastic modulus and a loss elastic modulus. The storage elastic modulus represents an elastic component that reacts instantaneously to a given stress like a spring, while the loss elastic modulus represents a viscous component that reacts with a delay to the given stress. That is, the storage elastic modulus is a component that directly affects the strength of the film, and a film having a higher storage elastic modulus can be said to be a hard film. The loss elastic modulus is a component representing softness, and a film having a high loss elastic modulus can be said to be a softer film. The temperature at which the loss modulus reaches a maximum value is indicated by the maximum loss tangent Tanδ. If this temperature is too high, the film is brittle, while if it is too low, the film becomes soft.
The storage elastic modulus at room temperature of the film is preferably from 0.1 to 5 GPa, more preferably from 0.2 to 4 GPa, more preferably from 0.5 to 2 GPa from the viewpoint that the effect of the present invention is more excellent. Is more preferable.
In addition, the temperature (Tanδmax) showing the maximum loss tangent Tanδ of the film is preferably 25 to 80 ° C, more preferably 30 to 75 ° C, more preferably 30 to 70 in terms of more excellent effects of the present invention. More preferably, the temperature is C.
 上述した表面処理金属材料の表面上(皮膜上)には、必要に応じて塗膜を形成してもよい。得られた塗膜は、密着性や耐食性に優れる。
 塗料は、水性塗料であっても溶剤系塗料であっても構わない。硬化形式も特に制限されず、熱硬化であっても電子線硬化であっても構わない。また、本発明の表面処理金属材料の表面上(皮膜上)には、一般塗料だけでなく、ラミネート等のフィルムコートを実施してもよい。
A coating film may be formed on the surface of the surface-treated metal material described above (on the film) as necessary. The obtained coating film is excellent in adhesion and corrosion resistance.
The paint may be an aqueous paint or a solvent-based paint. The type of curing is not particularly limited, and may be thermosetting or electron beam curing. Further, on the surface (on the film) of the surface-treated metal material of the present invention, not only a general paint but also a film coat such as a laminate may be performed.
 上述した表面処理金属材料は、各種用途に使用することができ、例えば、家電や建材用途の部材などが挙げられる。 The surface-treated metal material described above can be used for various purposes, and examples thereof include members for home appliances and building materials.
 以下に本発明の実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples of the present invention, but the present invention is not limited to these examples.
<1.ブロックイソシアネート(A)の合成>
1.1 ポリイソシアネートの調製
 攪拌機のついた反応装置(1Lセパラブルフラスコ)に表1の「イソシアネート種」欄に示す各イソシアネート300gを加えて、60℃での攪拌下、触媒としてトリメチルベンジルアンモニウム・ハイドロオキサイド0.1gを加えた。4時間後、反応液の転化率が38%になった時点でリン酸0.2gを添加して反応を停止した。
<1. Synthesis of blocked isocyanate (A)>
1.1 Preparation of polyisocyanate 300 g of each isocyanate shown in “Isocyanate species” column of Table 1 was added to a reactor equipped with a stirrer (1 L separable flask), and trimethylbenzylammonium · 0.1 g of hydroxide was added. After 4 hours, when the conversion rate of the reaction solution reached 38%, 0.2 g of phosphoric acid was added to stop the reaction.
2.2 ブロックイソシアネートの調製
 以下に、ブロックイソシアネートの調製方法を述べる。なお、各合成例に使用した「ポリイソシアネート」は、表1に記載の各合成例の「イソシアネート種」欄に記載のイソシアネートを用いて、上記手順にして作製したポリイソシアネートを用いた。
 ただし、後述する合成例A10においては、単量体である1,6-ヘキサメチレンジイソシアネートを使用した。
 なお、以下各合成例で合成したブロックイソシアネートは、いわゆる自己乳化型のブロックイソシアネートであった。
2.2 Preparation of blocked isocyanate The preparation method of blocked isocyanate is described below. The “polyisocyanate” used in each synthesis example was a polyisocyanate prepared by the above procedure using the isocyanates listed in the “Isocyanate species” column of each synthesis example described in Table 1.
However, in Synthesis Example A10 described below, monomer 1,6-hexamethylene diisocyanate was used.
The blocked isocyanates synthesized in the following synthesis examples were so-called self-emulsifying type blocked isocyanates.
(合成例A1)
 ポリイソシアネート(100g)、ジエチルマロネート(63.5g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、65~70℃で加熱した。次いで、ポリエチレングリコール(188.4g)(繰り返し単位の数(n):22)を反応液に添加し、反応液温度を70℃にし、5時間保持した。その後、反応液を攪拌しながら水(430g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A1)
Polyisocyanate (100 g), diethyl malonate (63.5 g) and sodium methoxide (1.0 g) were charged to the reactor and heated at 65-70 ° C. Subsequently, polyethylene glycol (188.4 g) (number of repeating units (n): 22) was added to the reaction solution, the reaction solution temperature was raised to 70 ° C., and held for 5 hours. Thereafter, water (430 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A2、A6)
 ポリイソシアネート(100g)、3,5-ジメチルピラゾール(28.8g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、65~70℃で加熱した。次いで、ポリエチレングリコール(188.4g)を反応液に添加し、反応液温度を70℃にし、5時間保持した。その後、反応液を攪拌しながら水(430g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
 なお、A2、およびA6の各製造の際に、上記ポリエチレングリコールの種類を変更して、表1に示すように重量平均分子量が得られるようにした。具体的には、A2の合成の際にはポリエチレングリコール(繰り返し単位の数(n):22)を、A6の合成の際にはポリエチレングリコール(繰り返し単位の数(n):180)を用いた。
(Synthesis Examples A2, A6)
Polyisocyanate (100 g), 3,5-dimethylpyrazole (28.8 g) and sodium methoxide (1.0 g) were charged to the reactor and heated at 65-70 ° C. Next, polyethylene glycol (188.4 g) was added to the reaction solution, the reaction solution temperature was raised to 70 ° C., and held for 5 hours. Thereafter, water (430 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
In the production of A2 and A6, the type of polyethylene glycol was changed so that the weight average molecular weight was obtained as shown in Table 1. Specifically, polyethylene glycol (number of repeating units (n): 22) was used in the synthesis of A2, and polyethylene glycol (number of repeating units (n): 180) was used in the synthesis of A6. .
(合成例A3)
 ポリエチレングリコールをポリプロピレングリコール(繰り返し単位の数(n):17)に変更した以外は、合成例A2と同様の手順に従って、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A3)
A blocked isocyanate emulsion was prepared according to the same procedure as in Synthesis Example A2 except that polyethylene glycol was changed to polypropylene glycol (number of repeating units (n): 17).
(合成例4)
 ポリイソシアネート(100g)、3,5-ジメチルピラゾール(31.6g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、65~70℃で加熱した。次いで、ポリエチレングリコール(640g)(繰り返し単位の数(n):91)を反応液に添加し、反応液温度を70℃に昇温し、5時間保持した。その後、反応液を攪拌しながら水(1100g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example 4)
Polyisocyanate (100 g), 3,5-dimethylpyrazole (31.6 g) and sodium methoxide (1.0 g) were charged to the reactor and heated at 65-70 ° C. Next, polyethylene glycol (640 g) (number of repeating units (n): 91) was added to the reaction solution, and the reaction solution temperature was raised to 70 ° C. and held for 5 hours. Thereafter, water (1100 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A5)
 ポリイソシアネート(100g)、3,5-ジメチルピラゾール(26.2g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、65~70℃で加熱した。次いで、ポリエチレングリコール(136.6g)(繰り返し単位の数(n):68)を反応液に添加し、反応液温度を70℃にし、5時間保持した。その後、反応液を攪拌しながら水(350g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A5)
Polyisocyanate (100 g), 3,5-dimethylpyrazole (26.2 g) and sodium methoxide (1.0 g) were charged to the reactor and heated at 65-70 ° C. Subsequently, polyethylene glycol (136.6 g) (number of repeating units (n): 68) was added to the reaction solution, and the reaction solution temperature was raised to 70 ° C. and held for 5 hours. Thereafter, water (350 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A7、A8)
 3,5-ジメチルピラゾールをメチルエチルケトオキシムまたはエチレングリコールモノブチルエーテルに変更した以外は、合成例A2と同様に手順に従って、ブロックイソシアネート乳化液を調製した。
(Synthesis Examples A7 and A8)
A blocked isocyanate emulsion was prepared in the same manner as in Synthesis Example A2, except that 3,5-dimethylpyrazole was changed to methyl ethyl ketoxime or ethylene glycol monobutyl ether.
(合成例A9)
 ポリイソシアネート(100g)、3,5-ジメチルピラゾール(26.2g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、65~70℃で加熱した。次いで、ポリエチレングリコール(3571g)(繰り返し単位の数(n):409)を反応液に添加し、反応液温度を70℃にし、5時間保持した。その後、反応液を攪拌しながら水(5600g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A9)
Polyisocyanate (100 g), 3,5-dimethylpyrazole (26.2 g) and sodium methoxide (1.0 g) were charged to the reactor and heated at 65-70 ° C. Next, polyethylene glycol (3571 g) (the number of repeating units (n): 409) was added to the reaction solution, and the reaction solution temperature was raised to 70 ° C. and held for 5 hours. Thereafter, water (5600 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A10)
 イソシアネート(100g)、ジエチルマロネート(190.5g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、反応液を65~70℃で加熱した。その後、反応液を攪拌しながら水(530g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A10)
Isocyanate (100 g), diethyl malonate (190.5 g) and sodium methoxide (1.0 g) were charged to the reactor and the reaction was heated at 65-70 ° C. Thereafter, water (530 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A11)
 ポリイソシアネート(100g)、ジエチルマロネート(95.2g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、反応液を65~70℃で加熱した。その後、反応液を攪拌しながら水(290g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A11)
Polyisocyanate (100 g), diethyl malonate (95.2 g) and sodium methoxide (1.0 g) were charged to the reactor and the reaction was heated at 65-70 ° C. Thereafter, water (290 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
(合成例A12)
 ポリイソシアネート(100g)、ジメチルピラゾール(75.7g)およびナトリウムメトキサイド(1.0g)を反応器に装入し、反応液を65~70℃で加熱した。その後、反応液を攪拌しながら水(260g)を反応液に添加し、ブロックイソシアネート乳化液を調製した。
(Synthesis Example A12)
Polyisocyanate (100 g), dimethylpyrazole (75.7 g) and sodium methoxide (1.0 g) were charged to the reactor and the reaction was heated at 65-70 ° C. Thereafter, water (260 g) was added to the reaction solution while stirring the reaction solution to prepare a blocked isocyanate emulsion.
 得られたブロックイソシアネートの重量平均分子量は、ブロックイソシアネートの相対分子量分布をGPC(ゲル浸透クロマトグラフィー)により求め、ポリエチレングリコール換算重量平均分子量として求めた。GPCの測定条件は次の通りである。 The weight average molecular weight of the obtained blocked isocyanate was determined as a polyethylene glycol equivalent weight average molecular weight by determining the relative molecular weight distribution of the blocked isocyanate by GPC (gel permeation chromatography). GPC measurement conditions are as follows.
測定機種:東ソー(株)製SC-8010システム
カラム:Shodex Ohpak SB-G+Ohpak SB-806MHQ×2本
溶解液:DMF/0.06M LiBr/0.04M H3 PO3
温度:カラム恒温槽40℃
流速:0.05ml/分
濃度:0.1wt/Vol%
注入量:50μl
溶解性:完全溶解
前処理:0.45μmフィルター
検出器:示差屈折計
Measurement model: SC-8010 manufactured by Tosoh Corporation Column: Shodex Ohpak SB-G + Ohpak SB-806MHQ × 2 solution: DMF / 0.06M LiBr / 0.04MH 3 PO 3
Temperature: Column thermostat 40 ° C
Flow rate: 0.05 ml / min Concentration: 0.1 wt / Vol%
Injection volume: 50 μl
Solubility: Complete dissolution Pretreatment: 0.45 μm Filter detector: Differential refractometer
 上記で合成されたA1~A9にはイソシアヌレート構造(式(1)で表される構造単位)と、ポリアルキレンオキシ鎖(式(2)で表される構造単位)とが含まれていた。
 A10にはイソシアヌレート構造およびポリアルキレンオキシ鎖が含まれておらず、A11およびA12にはポリアルキレンオキシ鎖が含まれていなかった。
 以下の表1中、「重合形態」欄において、「三量体」はイソシアヌレート構造が含まれることを意図し、「単量体」はイソシアネートが単量体状態であることを意図する。
 「解離温度」は、ブロック化イソシアネート基の解離温度を表す。
 「粒子径」は、各ブロックイソシアネート乳化液中におけるブロックイソシアネートの粒子径を表す。
 「アルキレンオキシ数」は、アルキレンオキシユニットの数(式(2)中のn)を表す。
 「有効NCO%」は、各ブロックイソシアネート中における有効イソシアネート基の含有量(質量%)を意図する。
A1 to A9 synthesized above contained an isocyanurate structure (structural unit represented by formula (1)) and a polyalkyleneoxy chain (structural unit represented by formula (2)).
A10 did not contain an isocyanurate structure and a polyalkyleneoxy chain, and A11 and A12 did not contain a polyalkyleneoxy chain.
In Table 1 below, in the “polymerization form” column, “trimer” is intended to include an isocyanurate structure, and “monomer” is intended to indicate that the isocyanate is in a monomer state.
“Dissociation temperature” represents the dissociation temperature of a blocked isocyanate group.
“Particle size” represents the particle size of the blocked isocyanate in each blocked isocyanate emulsion.
“Number of alkyleneoxy” represents the number of alkyleneoxy units (n in formula (2)).
“Effective NCO%” intends the content (mass%) of an effective isocyanate group in each blocked isocyanate.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 なお、上記表中の各記号は以下を表す。
HDI:1,6-ヘキサメチレンジイソシアネート,IPDI:3-イソシアネート-メチル-3,5,5-トリメチルシクロヘキシルイソシアネート,TMXDI:1,3-ビス(2-イソシアネート2-プロピル)ベンゼン,TDI:トリレン-2,6-ジイソシアネート,PEG:ポリエチレングリコール,PPG:ポリプロピレングリコール,DEM:ジエチルマロネート,DMP:3,5-ジメチルピラゾール,MEKO:メチルエチルケトオキシム、EGB:エチレングリコールモノブチルエーテル
In addition, each symbol in the said table | surface represents the following.
HDI: 1,6-hexamethylene diisocyanate, IPDI: 3-isocyanate-methyl-3,5,5-trimethylcyclohexyl isocyanate, TMXDI: 1,3-bis (2-isocyanate 2-propyl) benzene, TDI: tolylene-2 , 6-diisocyanate, PEG: polyethylene glycol, PPG: polypropylene glycol, DEM: diethyl malonate, DMP: 3,5-dimethylpyrazole, MEKO: methyl ethyl ketoxime, EGB: ethylene glycol monobutyl ether
<2.金属表面処理液の調製>
 表1に示すブロックイソシアネート(A)を用いて、表2~4に示す組合せおよび割合にて、ブロックイソシアネート(A)、有機樹脂(B)、金属化合物(C)、リン含有化合物(D)、珪素化合物(E)、無機化合物(F)、ジカルボン酸ジエステル(G)をこの順序で混合し、脱イオン水により濃度を調整することにより、実施例および比較例に用いた金属表面処理液を調製した。
<2. Preparation of metal surface treatment solution>
Using the blocked isocyanate (A) shown in Table 1, in the combinations and proportions shown in Tables 2 to 4, blocked isocyanate (A), organic resin (B), metal compound (C), phosphorus-containing compound (D), Preparation of metal surface treatment liquid used in Examples and Comparative Examples by mixing silicon compound (E), inorganic compound (F) and dicarboxylic acid diester (G) in this order and adjusting the concentration with deionized water did.
B1:エポキシ樹脂(ウォーターゾールEFD-5560、DIC)(含有官能基の種類:ヒドロキシ基)
B2:ウレタン樹脂(ハイドランCOR-70、DIC)(含有官能基の種類:アミノ基)
B3:アクリル樹脂(ウォーターゾールS-701、DIC)(含有官能基の種類:カルボキシ基)
B1: Epoxy resin (Watersol EFD-5560, DIC) (type of functional group: hydroxy group)
B2: Urethane resin (Hydran COR-70, DIC) (Type of functional group: amino group)
B3: Acrylic resin (Watersol S-701, DIC) (type of functional group: carboxy group)
C1:炭酸ジルコニウムアンモニウム
C2:ジルコニウムフッ化水素酸
C1: ammonium zirconium carbonate C2: zirconium hydrofluoric acid
D1:リン酸アンモニウム
D2:ヒドロキシエチリデンジホスホン酸
D3:リン酸トリエタノールアミン
D1: Ammonium phosphate D2: Hydroxyethylidene diphosphonic acid D3: Triethanolamine phosphate
E1:3-グリシドキシプロピルトリメトキシシラン E1: 3-glycidoxypropyltrimethoxysilane
F1:水酸化リチウム F1: Lithium hydroxide
G1:アジピン酸ジイソブチル G1: Diisobutyl adipate
<3.表面処理>
 以下、溶融亜鉛メッキ鋼板、電気亜鉛メッキ鋼板または冷延鋼板を供試材とした場合について、表面処理方法、評価方法、および評価結果の順に説明する。なお、評価結果は、表2~4にまとめて示す。
[1.素材]
GI:溶融亜鉛メッキ鋼板(板厚:0.8mm、目付量:60g/m2
EG:電気亜鉛メッキ鋼板(板厚:0.8mm、目付量:20g/m2
CRS:冷延鋼板(板厚:0.8mm)
<3. Surface treatment>
Hereinafter, a case where a hot dip galvanized steel sheet, an electrogalvanized steel sheet, or a cold rolled steel sheet is used as a test material will be described in the order of a surface treatment method, an evaluation method, and an evaluation result. The evaluation results are summarized in Tables 2 to 4.
[1. Material]
GI: Hot-dip galvanized steel sheet (plate thickness: 0.8 mm, basis weight: 60 g / m 2 )
EG: electrogalvanized steel sheet (plate thickness: 0.8 mm, basis weight: 20 g / m 2 )
CRS: Cold-rolled steel sheet (thickness: 0.8 mm)
[2.表面処理方法]
(1)脱脂
 日本パーカライジング(株)製アルカリ脱脂剤ファインクリーナーE6406(20g/L建浴、60℃、10秒スプレー、スプレー圧0.5kg/cm)で各素材を脱脂した後、スプレー水洗を10秒間行った。
[2. Surface treatment method]
(1) Degreasing Each material is degreased with Alkali degreasing agent Fine Cleaner E6406 (20 g / L building bath, 60 ° C., 10 seconds spray, spray pressure 0.5 kg / cm 2 ) manufactured by Nippon Parkerizing Co., Ltd. 10 seconds.
(2)塗布および乾燥
 上記(1)で脱脂した各素材に各金属表面処理液を皮膜質量が1g/m2になるようにバーコート塗布し、150℃(PMT)で乾燥し、各処理板試料を作製した。
(2) Coating and drying Each metal surface treatment solution is applied to each material degreased in (1) above by bar coating so that the film mass becomes 1 g / m 2 , and dried at 150 ° C. (PMT). A sample was prepared.
[3.評価項目]
(1)耐食性
(1-1)GIおよびEGに関して
 実施例および比較例において作製したGIおよびEG処理板試料については、以下の平面部および端面部の耐食性試験を行った。評価方法は次の通りである。
(平面部)
 塩水噴霧試験法JIS-Z-2371に基づき塩水噴霧240時間後の白錆発生面積率(平面部全面積に対する白錆の発生面積の割合)を求め、以下の基準に従って評価した。平面部耐食性については、◎~□を合格とした。
[評価基準]
◎:白錆発生面積率 10%未満
○:白錆発生面積率 10%以上20%未満
□:白錆発生面積率 20%以上30%未満
△:白錆発生面積率 30%以上60%未満
×:白錆発生面積率 60%以上
[3. Evaluation item]
(1) Corrosion resistance (1-1) GI and EG The GI and EG-treated plate samples produced in the examples and comparative examples were subjected to the following corrosion resistance tests on the flat surface portion and the end surface portion. The evaluation method is as follows.
(Flat part)
Based on the salt spray test method JIS-Z-2371, the white rust generation area ratio after 240 hours of salt spray (ratio of the white rust generation area to the total area of the flat portion) was determined and evaluated according to the following criteria. As for the corrosion resistance of the flat surface, ◎ to □ were accepted.
[Evaluation criteria]
◎: White rust generation area ratio 10% or less ○: White rust generation area ratio 10% or more and less than 20% □: White rust generation area ratio 20% or more and less than 30% Δ: White rust generation area ratio 30% or more and less than 60% × : White rust generation area ratio 60% or more
(端面部)
 JIS-Z2371に規定された塩水噴霧試験を48時間実施し、端面からの錆幅を目視評価し、以下の基準に従って評価した。端面部耐食性については、◎~□を合格とした。
[評価基準]
◎:錆幅5mm未満
○:錆幅5mm以上7mm未満
□:錆幅7mm以上8.5mm未満
△:錆幅8.5mm以上10mm未満
×:錆幅10mm以上
(End face)
The salt spray test specified in JIS-Z2371 was carried out for 48 hours, the rust width from the end face was visually evaluated, and evaluated according to the following criteria. For the end face portion corrosion resistance, ◎ to □ were passed.
[Evaluation criteria]
◎: Rust width less than 5 mm ○: Rust width 5 mm or more and less than 7 mm □: Rust width 7 mm or more and less than 8.5 mm Δ: Rust width 8.5 mm or more and less than 10 mm ×: Rust width 10 mm or more
(1-2)CRSに関して
 実施例および比較例において作製したCRS処理板試料については、以下の耐食性試験を行った。評価方法は次の通りである。
(平面部)
 塩水噴霧試験法JIS-Z-2371に基づき塩水噴霧72時間後の白錆発生面積率(平面部全面積に対する白錆の発生面積の割合)を求め、以下の基準に従って評価した。耐食性については、◎~□を合格とした。
[評価基準]
◎:白錆発生面積率 10%未満
○:白錆発生面積率 10%以上20%未満
□:白錆発生面積率 20%以上30%未満
△:白錆発生面積率 30%以上60%未満
×:白錆発生面積率 60%以上
(1-2) Regarding CRS The following corrosion resistance test was performed on the CRS-treated plate samples produced in the examples and comparative examples. The evaluation method is as follows.
(Flat part)
Based on the salt spray test method JIS-Z-2371, the white rust generation area ratio after 72 hours of salt water spray (the ratio of the white rust generation area to the total area of the flat portion) was determined and evaluated according to the following criteria. For corrosion resistance, ◎ to □ were accepted.
[Evaluation criteria]
◎: White rust generation area ratio 10% or less ○: White rust generation area ratio 10% or more and less than 20% □: White rust generation area ratio 20% or more and less than 30% △: White rust generation area ratio 30% or more and less than 60% × : White rust generation area ratio 60% or more
(2)耐加工性
 処理板試料の両面を20mm×50mmの平面圧子を用いて10kNの荷重を与えながら100mm/minの速度で引き抜き加工を施し、肉眼で試験片(処理板試料)の外観を評価し、変色面積の割合(引き抜き加工部の面積に対する変色面積の割合)を求め、以下の基準に従って評価した。耐加工性については、◎~□を合格とした。
[評価基準]
◎:全く変化無し
○:変色面積の割合が0%超10%以下
□:変色面積の割合が10%超30%以下
△:変色面積の割合が30%超50%以下
×:変色面積の割合が50%超
(2) Processing resistance Both sides of the treated plate sample were drawn at a speed of 100 mm / min while applying a load of 10 kN using a 20 mm × 50 mm flat indenter, and the appearance of the test piece (treated plate sample) was visually observed. Evaluation was made to determine the ratio of the discolored area (the ratio of the discolored area to the area of the drawn portion) and evaluated according to the following criteria. As for the processing resistance, ◎ to □ were set as acceptable.
[Evaluation criteria]
◎: No change ○: Discolored area ratio more than 0% to 10% or less □: Discolored area ratio more than 10% to 30% or less △: Discolored area ratio more than 30% to 50% or less ×: Discolored area ratio Is over 50%
(3)耐薬品性
(3-1)耐アルカリ性
 処理板試料に、上記脱脂で使用した脱脂剤を65℃に調整し2分間スプレーした。その後、肉眼で試験片(処理板試料)の外観を観察し、以下の基準に従って評価した。耐アルカリ性については、◎~□を合格とした。
[評価基準]
◎:全く変化無し
○:変色面積の割合が0%超10%以下
□:変色面積の割合が10%超30%以下
△:変色面積の割合が30%超50%以下
×:変色面積の割合が50%超
(3-2)耐酸性
 処理板試料を、1%硫酸水溶液に5時間浸漬した。その後、肉眼で試験片(処理板試料)の外観を観察し、以下の基準に従って評価した。耐酸性については、◎~□を合格とした。
[評価基準]
◎:全く変化無し
○:変色面積の割合が0%超10%以下
□:変色面積の割合が10%超30%以下
△:変色面積の割合が30%超50%以下
×:変色面積の割合が50%超
(3) Chemical resistance (3-1) Alkali resistance A degreasing agent used in the above degreasing was adjusted to 65 ° C. and sprayed on the treated plate sample for 2 minutes. Thereafter, the appearance of the test piece (treated plate sample) was observed with the naked eye and evaluated according to the following criteria. As for alkali resistance, ◎ to □ were accepted.
[Evaluation criteria]
◎: No change ○: Discolored area ratio more than 0% to 10% or less □: Discolored area ratio more than 10% to 30% or less △: Discolored area ratio more than 30% to 50% or less ×: Discolored area ratio More than 50% (3-2) acid resistance The treated plate sample was immersed in a 1% aqueous sulfuric acid solution for 5 hours. Thereafter, the appearance of the test piece (treated plate sample) was observed with the naked eye and evaluated according to the following criteria. For acid resistance, ◎ to □ were accepted.
[Evaluation criteria]
◎: No change ○: Discolored area ratio more than 0% to 10% or less □: Discolored area ratio more than 10% to 30% or less △: Discolored area ratio more than 30% to 50% or less ×: Discolored area ratio Is over 50%
(4)塗膜密着性
 メラミンアルキッド系塗料(大日本塗料株式会社製デリコン#700)を用いて、各処理板試料を塗装処理した。塗装はバーコート塗布で行い、塗装後、140℃で20分間焼付けを行い、乾燥後膜厚で25μmの塗膜(表面処理物)を形成した。
 原板と同じ厚さの板を2枚用いて、塗膜(表面処理物)を挟み180度折り曲げ加工を行い、折り曲げ部のテープ剥離を行い、以下の基準に従って評価した。塗膜密着性については、◎~□を合格とした。
[評価基準]
◎:剥離なし
○:剥離面積が0%超10%以下
□:剥離面積が10%超30%以下
△:剥離面積が30%超50%以下
×:剥離面積が50%超
(4) Coating Film Adhesion Each treated plate sample was painted using a melamine alkyd paint (Delicon # 700, manufactured by Dainippon Paint Co., Ltd.). The coating was performed by bar coating. After coating, baking was performed at 140 ° C. for 20 minutes, and a coating film (surface treated product) having a thickness of 25 μm was formed after drying.
Using two plates having the same thickness as the original plate, the coating film (surface treated product) was sandwiched and bent 180 degrees, the folded portion was peeled off, and evaluated according to the following criteria. For coating film adhesion, ◎ to □ were set as acceptable.
[Evaluation criteria]
◎: No peeling ○: Peeling area is more than 0% and 10% or less □: Peeling area is more than 10% and 30% or less △: Peeling area is more than 30% and 50% or less ×: Peeling area is more than 50%
(5)塗装後耐食性
(5-1)GIおよびEGに関して
 上記(4)で得られた塗膜にNTカッター(エヌティー株式会社製 A300型)でクロスカットを施し、JIS-Z2371に規定された塩水噴霧試験を480時間実施し、クロスカットからの錆幅を目視評価し、以下の基準に従って評価した。塗装後耐食性については、◎~□を合格とした。
[評価基準]
◎:錆幅5mm未満
○:錆幅5mm以上7mm未満
□:錆幅7mm以上8.5mm未満
△:錆幅8.5mm以上10mm未満
×:錆幅10mm以上
(5) Corrosion resistance after coating (5-1) Regarding GI and EG The coating film obtained in (4) above is cross-cut with an NT cutter (A300 type, manufactured by NT Corporation), and salt water specified in JIS-Z2371 The spray test was conducted for 480 hours, the rust width from the crosscut was visually evaluated, and evaluated according to the following criteria. As for corrosion resistance after painting, ◎ to □ were accepted.
[Evaluation criteria]
◎: Rust width less than 5 mm ○: Rust width 5 mm or more and less than 7 mm □: Rust width 7 mm or more and less than 8.5 mm Δ: Rust width 8.5 mm or more and less than 10 mm ×: Rust width 10 mm or more
(5-2)CSRに関して
 上記(4)で得られた塗膜にNTカッター(エヌティー株式会社製 A300型)でクロスカットを施し、JIS-Z2371に規定された塩水噴霧試験を120時間実施し、クロスカットからの錆幅を目視評価し、以下の基準に従って評価した。塗装後耐食性については、◎~□を合格とした。
[評価基準]
◎:錆幅3mm未満
○:錆幅3mm以上6mm未満
□:錆幅6mm以上7.5mm未満
△:錆幅7.5mm以上10mm未満
×:錆幅10mm以上
(5-2) Regarding CSR The coating film obtained in (4) above was cross-cut with an NT cutter (A300 type, manufactured by NT Corporation), and the salt spray test specified in JIS-Z2371 was conducted for 120 hours. The rust width from the crosscut was visually evaluated and evaluated according to the following criteria. As for corrosion resistance after painting, ◎ to □ were accepted.
[Evaluation criteria]
◎: Rust width less than 3 mm ○: Rust width 3 mm to less than 6 mm □: Rust width 6 mm to less than 7.5 mm Δ: Rust width 7.5 mm to less than 10 mm ×: Rust width 10 mm or more
 以下の表2は供試材として溶融亜鉛メッキ鋼板(GI)を使用した結果を、表3は供試材として電気亜鉛メッキ鋼板(EG)を使用した結果を、表4は供試材として冷延鋼板(CRS)を使用した結果を表す。
 また、表2~4中のブロックイソシアネート(A)の濃度欄は、金属表面処理液中におけるブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度(g/L)を表す。また、表2~4中の有機樹脂(B)の濃度欄は、金属表面処理液中における有機樹脂(B)の濃度(g/L)を表す。
 表2~4中、「a/b」は、金属表面処理液中における、ブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度a(g/L)と、有機樹脂(B)に含まれる官能基(ヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される少なくとも1種の官能基)の濃度b(g/L)との比{a/b}を表す。
 また、表2~4中の「A/C」はブロックイソシアネート(A)の質量と金属化合物(C)の質量との比を、「A/D」はブロックイソシアネート(A)の質量とリン含有化合物(D)の質量との比を、「A/E」はブロックイソシアネート(A)の質量と珪素化合物(E)の質量との比を、「A/F」はブロックイソシアネート(A)の質量と無機化合物(F)の質量との比を、「A/G」はブロックイソシアネート(A)の質量とジカルボン酸ジエステル(G)の質量との比をそれぞれ表す。
 表2中の「貯蔵弾性率」「Tanδmax」は、各実施例および各比較例にて製造される皮膜の常温における貯蔵弾性率および最大損失正接Tanδを示す温度を表す。なお、「貯蔵弾性率」「Tanδmax」は、RSA-G2(TAインスツルメント)によって測定した。
Table 2 below shows the results using hot dip galvanized steel sheets (GI) as test materials, Table 3 shows the results using electrogalvanized steel sheets (EG) as test materials, and Table 4 shows cold results as test materials. The result using a rolled steel sheet (CRS) is represented.
The concentration column of blocked isocyanate (A) in Tables 2 to 4 represents the concentration (g / L) of effective isocyanate groups contained in blocked isocyanate (A) in the metal surface treatment liquid. The column of the organic resin (B) concentration in Tables 2 to 4 represents the concentration (g / L) of the organic resin (B) in the metal surface treatment solution.
In Tables 2 to 4, “a / b” indicates the concentration a (g / L) of the effective isocyanate group contained in the blocked isocyanate (A) and the functionality contained in the organic resin (B) in the metal surface treatment liquid. The ratio {a / b} of the group (at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group) with the concentration b (g / L).
In Tables 2 to 4, “A / C” is the ratio of the mass of the blocked isocyanate (A) to the mass of the metal compound (C), and “A / D” is the mass of the blocked isocyanate (A) and containing phosphorus. The ratio between the mass of the compound (D), “A / E” is the mass ratio of the blocked isocyanate (A) to the mass of the silicon compound (E), and “A / F” is the mass of the blocked isocyanate (A). And “A / G” represents the ratio of the mass of the blocked isocyanate (A) to the mass of the dicarboxylic acid diester (G), respectively.
“Storage elastic modulus” and “Tan δ max” in Table 2 represent temperatures indicating the storage elastic modulus and the maximum loss tangent Tan δ at room temperature of the coatings produced in each Example and each Comparative Example. The “storage modulus” and “Tan δ max” were measured by RSA-G2 (TA instrument).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2~表4からわかるように本発明の金属表面処理液を塗工して得られた表面処理金属材料は、各種優れた特性を示すことが確認された。
 なかでも、実施例A1~A14の比較より、有効イソシアネート基の濃度(g/L)/有機樹脂(B)中の官能基の濃度(g/L)の比(a/b)が0.01~30(好ましくは0.5~30、より好ましくは1.0~15)の場合、より優れた効果が得られることが確認された。
 また、実施例A15~A19の比較より、ブロックイソシアネートの解離温度が120℃以下の場合、より優れた効果が得られることが確認された。
 また、実施例A20と実施例A17との比較より、ブロックイソシアネートの重量平均分子量が400~15000の範囲において、より優れた効果が得られることが確認された。
 また、実施例A21~A26の比較より、ブロックイソシアネート(A)とリン含有化合物(D)との含有量(A/D)が0.5~50(好ましくは0.2~30、より好ましくは0.3~10)の場合、より優れた効果が得られることが確認された。
 また、実施例A24、A28とA30との比較より、リン含有化合物(D)が無機リン酸のアンモニウム塩または有機ホスホン酸の場合、より優れた効果が得られることが確認された。
 一方、所定の要件の満たさない比較例に記載の金属表面処理液を用いた場合、所望の効果が得られないことが確認された。
As can be seen from Tables 2 to 4, it was confirmed that the surface-treated metal material obtained by applying the metal surface treatment liquid of the present invention exhibited various excellent properties.
In particular, from the comparison of Examples A1 to A14, the ratio (a / b) of effective isocyanate group concentration (g / L) / functional group concentration (g / L) in organic resin (B) was 0.01. In the case of ˜30 (preferably 0.5 to 30, more preferably 1.0 to 15), it was confirmed that a more excellent effect was obtained.
Further, from comparison of Examples A15 to A19, it was confirmed that when the dissociation temperature of the blocked isocyanate is 120 ° C. or lower, a more excellent effect can be obtained.
Further, from comparison between Example A20 and Example A17, it was confirmed that a more excellent effect was obtained when the weight average molecular weight of the blocked isocyanate was in the range of 400 to 15000.
From the comparison of Examples A21 to A26, the content (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) is 0.5 to 50 (preferably 0.2 to 30, more preferably In the case of 0.3 to 10), it was confirmed that a more excellent effect was obtained.
Moreover, it was confirmed from the comparison with Example A24, A28, and A30 that a more excellent effect is acquired when phosphorus containing compound (D) is an ammonium salt of inorganic phosphoric acid or organic phosphonic acid.
On the other hand, it was confirmed that when the metal surface treatment liquid described in the comparative example that does not satisfy the predetermined requirements was used, the desired effect could not be obtained.

Claims (15)

  1.  ブロック剤によりブロックされたイソシアネート基を有し、さらに、イソシアヌレート構造およびポリアルキレンオキシ鎖を有するブロックイソシアネート(A)と、
     ヒドロキシ基、アミノ基、スルホ基、および、カルボキシ基からなる群から選択される少なくとも1種の官能基を有する有機樹脂(B)と、を含む金属表面処理液。
    A blocked isocyanate (A) having an isocyanate group blocked by a blocking agent, and further having an isocyanurate structure and a polyalkyleneoxy chain;
    A metal surface treatment solution comprising: an organic resin (B) having at least one functional group selected from the group consisting of a hydroxy group, an amino group, a sulfo group, and a carboxy group.
  2.  前記ブロックイソシアネート(A)が、式(1)で表される構造単位、および、式(2)で表される構造単位を有する、請求項1に記載の金属表面処理液。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Xは、それぞれ独立に、2価の炭化水素基を表す。Rは、前記ブロック剤の残基を表す。*は、結合位置を表す。)
     式(2)  -(L-O)
    (式(2)中、Lは、アルキレン基を表す。nは、2~1000を表す。)
    The metal surface treatment liquid according to claim 1, wherein the blocked isocyanate (A) has a structural unit represented by the formula (1) and a structural unit represented by the formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), each X independently represents a divalent hydrocarbon group. R 1 represents a residue of the blocking agent. * Represents a bonding position.)
    Formula (2)-(LO) n-
    (In the formula (2), L represents an alkylene group. N represents 2 to 1000.)
  3.  さらに、無機リン酸、無機リン酸塩、有機リン酸、有機リン酸塩、有機ホスホン酸、および、有機ホスホン酸塩からなる群から選択される少なくとも1種のリン含有化合物(D)を含む、請求項1または2に記載の金属表面処理液。 Furthermore, including at least one phosphorus-containing compound (D) selected from the group consisting of inorganic phosphoric acid, inorganic phosphate, organic phosphoric acid, organic phosphate, organic phosphonic acid, and organic phosphonate, The metal surface treatment liquid according to claim 1 or 2.
  4.  前記リン含有化合物(D)が、無機リン酸のアンモニウム塩、および、有機ホスホン酸からなる群から選択される少なくとも1種を含む、請求項3に記載の金属表面処理液。 The metal surface treatment solution according to claim 3, wherein the phosphorus-containing compound (D) contains at least one selected from the group consisting of an ammonium salt of inorganic phosphoric acid and an organic phosphonic acid.
  5.  前記ブロックイソシアネート(A)と前記リン含有化合物(D)の質量比(A/D)が、0.1~50である、請求項3または4に記載の金属表面処理液。 The metal surface treatment liquid according to claim 3 or 4, wherein a mass ratio (A / D) of the blocked isocyanate (A) and the phosphorus-containing compound (D) is 0.1 to 50.
  6.  さらに、ジルコニウム、チタン、バナジウム、セリウム、モリブデン、コバルト、ニッケル、マグネシウム、カルシウム、セリウム、亜鉛、ニオブ、イットリウム、アルミニウム、タングステン、クロム、および、バリウムからなる群から選択される少なくとも1種の元素を含む金属化合物(C)を含む、請求項1~5のいずれか1項に記載の金属表面処理液。 And at least one element selected from the group consisting of zirconium, titanium, vanadium, cerium, molybdenum, cobalt, nickel, magnesium, calcium, cerium, zinc, niobium, yttrium, aluminum, tungsten, chromium, and barium. The metal surface treatment solution according to any one of claims 1 to 5, comprising a metal compound (C).
  7.  前記金属化合物(C)が、ジルコニウム元素を含む、請求項6に記載の金属表面処理液。 The metal surface treatment liquid according to claim 6, wherein the metal compound (C) contains a zirconium element.
  8.  前記金属化合物(C)が、炭酸ジルコニウムアンモニウム、または、ジルコニウムフッ化水素酸若しくはその塩である、請求項6または7に記載の金属表面処理液。 The metal surface treatment liquid according to claim 6 or 7, wherein the metal compound (C) is zirconium ammonium carbonate, zirconium hydrofluoric acid or a salt thereof.
  9.  前記ブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度a(g/L)と、前記有機樹脂(B)に含まれる前記官能基の濃度b(g/L)との比{a/b}が0.001~30.0である、請求項1~8のいずれか1項に記載の金属表面処理液。 Ratio {a / b} of the concentration a (g / L) of the effective isocyanate group contained in the blocked isocyanate (A) and the concentration b (g / L) of the functional group contained in the organic resin (B) The metal surface treatment solution according to any one of claims 1 to 8, wherein is from 0.001 to 30.0.
  10.  前記ブロックイソシアネート(A)に含まれる有効イソシアネート基の濃度が0.01~20g/Lであり、前記有機樹脂(B)の濃度が5~100g/Lである、請求項1~9のいずれか1項に記載の金属表面処理液。 The concentration of effective isocyanate groups contained in the blocked isocyanate (A) is 0.01 to 20 g / L, and the concentration of the organic resin (B) is 5 to 100 g / L. The metal surface treatment liquid according to item 1.
  11.  前記ブロックイソシアネート(A)の重量平均分子量が400~15000である、請求項1~10のいずれか1項に記載の金属表面処理液。 The metal surface treatment liquid according to any one of claims 1 to 10, wherein the blocked isocyanate (A) has a weight average molecular weight of 400 to 15000.
  12.  さらに、珪素化合物(E)を含む、請求項1~11のいずれか1項に記載の金属表面処理液。 The metal surface treatment liquid according to any one of claims 1 to 11, further comprising a silicon compound (E).
  13.  さらに、リチウム、ナトリウム、および、カリウムからなる群から選択される少なくとも1種の元素を含む無機化合物(F)を含む、請求項1~12のいずれか1項に記載の金属表面処理液。 The metal surface treatment solution according to any one of claims 1 to 12, further comprising an inorganic compound (F) containing at least one element selected from the group consisting of lithium, sodium, and potassium.
  14.  請求項1~13のいずれか1項に記載の金属表面処理液を金属材料表面に接触させ、加熱乾燥して前記金属材料上に皮膜を形成する工程、を備える表面処理金属材料の製造方法。 A method for producing a surface-treated metal material, comprising a step of bringing the metal surface treatment liquid according to any one of claims 1 to 13 into contact with the surface of the metal material, followed by heating and drying to form a film on the metal material.
  15.  金属材料と、前記金属材料上に請求項1~13のいずれか1項に記載の金属表面処理液を接触させて加熱乾燥して形成される皮膜とを備える、表面処理金属材料。 A surface-treated metal material comprising: a metal material; and a film formed by bringing the metal surface treatment liquid according to any one of claims 1 to 13 into contact with the metal material and drying by heating.
PCT/JP2015/084703 2014-12-11 2015-12-10 Metal surface treatment liquid, method for producing surface-treated metal material, and surface-treated metal material WO2016093323A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177015326A KR101988780B1 (en) 2014-12-11 2015-12-10 Metal surface treatment solution, method for producing surface-treated metal material, and surface-treated metal material
JP2016501908A JP6127198B2 (en) 2014-12-11 2015-12-10 Metal surface treatment liquid, method for producing surface treated metal material, surface treated metal material
CN201580067410.0A CN107429110B (en) 2014-12-11 2015-12-10 Metal surface treatment liquid, method for producing surface-treated metal material, and surface-treated metal material
PH12017501069A PH12017501069A1 (en) 2014-12-11 2017-06-08 Metal surface treatment solution, method for producing surface-treated metal material, and surface-treated metal material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-251070 2014-12-11
JP2014251070 2014-12-11

Publications (2)

Publication Number Publication Date
WO2016093323A1 true WO2016093323A1 (en) 2016-06-16
WO2016093323A8 WO2016093323A8 (en) 2017-07-20

Family

ID=56107500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084703 WO2016093323A1 (en) 2014-12-11 2015-12-10 Metal surface treatment liquid, method for producing surface-treated metal material, and surface-treated metal material

Country Status (7)

Country Link
JP (1) JP6127198B2 (en)
KR (1) KR101988780B1 (en)
CN (1) CN107429110B (en)
MY (1) MY178227A (en)
PH (1) PH12017501069A1 (en)
TW (1) TWI709623B (en)
WO (1) WO2016093323A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018150241A (en) * 2017-03-09 2018-09-27 三洋化成工業株式会社 Method of producing blocked isocyanate
TWI662152B (en) * 2016-10-19 2019-06-11 日商關西塗料股份有限公司 Water-based metal surface treatment agent, metal surface treatment method and surface-treated metal plate
JP2021134325A (en) * 2020-02-28 2021-09-13 日本パーカライジング株式会社 Surface treatment agent and material having surface-treated film
WO2022264949A1 (en) * 2021-06-17 2022-12-22 日本ペイント・サーフケミカルズ株式会社 Method for manufacturing surface-treated metal member, and aqueous surface treatment agent for processed and cast metal member

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7043084B2 (en) * 2017-07-19 2022-03-29 奥野製薬工業株式会社 Treatment liquid for film formation
CN110760916B (en) * 2019-11-18 2022-04-05 和县科嘉阀门铸造有限公司 Method for improving corrosion resistance of magnesium alloy valve
KR102512525B1 (en) * 2020-08-25 2023-03-22 (주)에이치비티 Concrete and mortar rust inhibitor composition
KR102322614B1 (en) * 2020-11-06 2021-11-08 (주)에이치비티 Acid resistant concrete composition for structure
CN113774666A (en) * 2021-08-24 2021-12-10 上海路维国际贸易有限公司 Cleaning material and preparation method thereof
CN115233231B (en) * 2022-07-29 2024-08-20 北京蓝星清洗有限公司 Composition with cleaning function and application

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231347A (en) * 1997-02-19 1998-09-02 Asahi Chem Ind Co Ltd Polyfunctional block polyisocyanate composition
JP2004292502A (en) * 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp Water-based coating composition
JP2007162098A (en) * 2005-12-15 2007-06-28 Nippon Parkerizing Co Ltd Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP2009155409A (en) * 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp Blocked polyisocyanate composition
JP2010280778A (en) * 2009-06-03 2010-12-16 Asahi Kasei Chemicals Corp High elongation, low-temperature curing blocked polyisocyanate composition
WO2011093283A1 (en) * 2010-01-29 2011-08-04 日本パーカライジング株式会社 Metal surface treatment agent and metal surface treatment method
WO2011096559A1 (en) * 2010-02-08 2011-08-11 旭化成ケミカルズ株式会社 Block polyisocyanate composition and coating composition containing same
JP2011256232A (en) * 2010-06-07 2011-12-22 Asahi Kasei Chemicals Corp Water-based coating composition
JP2013023704A (en) * 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd Aqueous agent of treating metal surface, and metallic material covered with surface coat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691440A (en) * 1995-10-05 1997-11-25 Arco Chemical Technonogy, L.P. Catalyst and process for producing isocyanate trimers
JP3784638B2 (en) * 2000-11-24 2006-06-14 株式会社日鉱マテリアルズ Metal surface treatment agent and metal material coated with the same
JP5135669B2 (en) 2005-09-16 2013-02-06 新日鐵住金株式会社 Manufacturing method of painted metal
JP5529372B2 (en) * 2007-11-20 2014-06-25 関西ペイント株式会社 Metal surface treatment composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10231347A (en) * 1997-02-19 1998-09-02 Asahi Chem Ind Co Ltd Polyfunctional block polyisocyanate composition
JP2004292502A (en) * 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp Water-based coating composition
JP2007162098A (en) * 2005-12-15 2007-06-28 Nippon Parkerizing Co Ltd Metal surface-treating aqueous agent, surface treatment method and surface treated metallic material
JP2009155409A (en) * 2007-12-26 2009-07-16 Asahi Kasei Chemicals Corp Blocked polyisocyanate composition
JP2010280778A (en) * 2009-06-03 2010-12-16 Asahi Kasei Chemicals Corp High elongation, low-temperature curing blocked polyisocyanate composition
WO2011093283A1 (en) * 2010-01-29 2011-08-04 日本パーカライジング株式会社 Metal surface treatment agent and metal surface treatment method
WO2011096559A1 (en) * 2010-02-08 2011-08-11 旭化成ケミカルズ株式会社 Block polyisocyanate composition and coating composition containing same
JP2011256232A (en) * 2010-06-07 2011-12-22 Asahi Kasei Chemicals Corp Water-based coating composition
JP2013023704A (en) * 2011-07-15 2013-02-04 Nippon Parkerizing Co Ltd Aqueous agent of treating metal surface, and metallic material covered with surface coat

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662152B (en) * 2016-10-19 2019-06-11 日商關西塗料股份有限公司 Water-based metal surface treatment agent, metal surface treatment method and surface-treated metal plate
JP2018150241A (en) * 2017-03-09 2018-09-27 三洋化成工業株式会社 Method of producing blocked isocyanate
JP2021134325A (en) * 2020-02-28 2021-09-13 日本パーカライジング株式会社 Surface treatment agent and material having surface-treated film
JP7428539B2 (en) 2020-02-28 2024-02-06 日本パーカライジング株式会社 Materials with surface treatment agents and surface treatment films
WO2022264949A1 (en) * 2021-06-17 2022-12-22 日本ペイント・サーフケミカルズ株式会社 Method for manufacturing surface-treated metal member, and aqueous surface treatment agent for processed and cast metal member
JP7560188B2 (en) 2021-06-17 2024-10-02 日本ペイント・サーフケミカルズ株式会社 Manufacturing method for surface-treated metal parts and aqueous surface treatment agent for processed and molded metal parts

Also Published As

Publication number Publication date
MY178227A (en) 2020-10-07
JP6127198B2 (en) 2017-05-10
TW201641628A (en) 2016-12-01
WO2016093323A8 (en) 2017-07-20
TWI709623B (en) 2020-11-11
PH12017501069A1 (en) 2017-11-27
CN107429110A (en) 2017-12-01
CN107429110B (en) 2020-04-21
KR101988780B1 (en) 2019-06-12
KR20170084152A (en) 2017-07-19
JPWO2016093323A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6127198B2 (en) Metal surface treatment liquid, method for producing surface treated metal material, surface treated metal material
TWI392766B (en) Process for coating metallic surfaces with an aqueous composition, and this composition
JP5546097B2 (en) Surface treatment metal material and metal surface treatment agent
TWI394864B (en) Metal surface treatment composition, and surface-treated metal material with metal surface treatment film obtained from the metal surface treatment composition
EP1433878A1 (en) Chemical conversion coating agent and surface-treated metal
JPWO2007069783A1 (en) Surface treatment agent for metal material, surface treatment method and surface treatment metal material
JP5086040B2 (en) Metal surface treatment composition
JP4629984B2 (en) Aqueous coating agent for steel, coating method and coated steel
KR20080111029A (en) Composition for metal surface treatment, metal surface treatment method, and metal material
JP4834195B2 (en) Metal surface treatment composition
US20060147735A1 (en) Chemical conversion treating agent and surface treated metal
US8597482B2 (en) Process for depositing rinsable silsesquioxane films on metals
JP4629987B2 (en) Sealing agent, phosphating steel sheet coating method and phosphating steel sheet
JP5563359B2 (en) Metal surface treatment agent
JP5652999B2 (en) Metal surface treatment composition and surface-treated metal material having a metal surface treatment layer obtained from the metal surface treatment composition
JP7230356B2 (en) Surface-treated steel sheet and method for producing surface-treated steel sheet
JP2010053413A (en) Surface treatment composition
US11401428B2 (en) Coating agent compositions that are suitable for dip coating and that cure at low temperature
WO2012039217A1 (en) Aqueous primer composition, method for forming multi layer coating and coated article
JP5490656B2 (en) High corrosion resistance surface-treated steel sheet
JP7428539B2 (en) Materials with surface treatment agents and surface treatment films
JP5461115B2 (en) High corrosion resistance surface-treated steel sheet
JPH09221595A (en) Metal surface treatment composition and galvanized steel sheet with film formed by treating therewith
US7473324B2 (en) Corrosion resistant coatings

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016501908

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866896

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015326

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12017501069

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866896

Country of ref document: EP

Kind code of ref document: A1