WO2016093093A1 - Methods for manganese removal for cast iron - Google Patents

Methods for manganese removal for cast iron Download PDF

Info

Publication number
WO2016093093A1
WO2016093093A1 PCT/JP2015/083567 JP2015083567W WO2016093093A1 WO 2016093093 A1 WO2016093093 A1 WO 2016093093A1 JP 2015083567 W JP2015083567 W JP 2015083567W WO 2016093093 A1 WO2016093093 A1 WO 2016093093A1
Authority
WO
WIPO (PCT)
Prior art keywords
cast iron
manganese
furnace
oxygen
component
Prior art date
Application number
PCT/JP2015/083567
Other languages
French (fr)
Japanese (ja)
Inventor
潔 木下
博敏 村田
Original Assignee
株式会社木下製作所
株式会社ナニワ炉機研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社木下製作所, 株式会社ナニワ炉機研究所 filed Critical 株式会社木下製作所
Priority to US15/535,118 priority Critical patent/US20170342515A1/en
Priority to JP2016510542A priority patent/JP6110018B2/en
Priority to CN201580067729.3A priority patent/CN107406898A/en
Publication of WO2016093093A1 publication Critical patent/WO2016093093A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/04Removing impurities other than carbon, phosphorus or sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to a method for removing manganese from a raw material having a high manganese content, which is used for producing cast iron parts.
  • Cast iron castings are used for automobile parts and machine parts. About half of the production of cast iron castings is produced for automobiles, and cast iron castings account for about 10% of the total weight of automobiles.
  • the raw material used for the production of this cast iron casting uses steel scraps of automotive steel sheets. Due to the recent demand for weight reduction, the manganese content of automotive steel sheets has increased, and manganese is a pearlite-promoting element. Therefore, it is a problem because toughness is lowered and internal defects are easily generated.
  • Patent Document 1 proposes a demanganese treatment method for cast iron, in which a demanganese treatment agent containing sulfur is added to a molten cast iron containing manganese and floated as manganese sulfide to remove manganese from the molten metal. And about the removal of a manganese component, MnS produced
  • Patent Document 2 discloses a method for removing manganese in a cast iron melt by reducing the manganese content in the production of cast iron and adding only sodium sulfate as an additive to the cast iron melt at a temperature of 1400-1500 ° C. Proposed.
  • this method of removing manganese if the temperature of the molten cast iron is less than 1300 ° C., the generation of SiO 2 is severe and the wear of Si, which is the main component of cast iron, is not preferable.
  • MnS is not formed unless the Mn or S content (%) is in a very high region.
  • this invention can make Mn removal rate 70% or more, even if Mn content of a cast iron molten metal is 1.5 mass% or more.
  • the Mn removal rate is said to increase according to the amount of Na 2 SO 4 added until the amount of Na 2 SO 4 added is approximately 10% by mass.
  • Patent Document 3 in melting by a rotary furnace using natural gas, liquefied petroleum gas, kerosene or the like as a heat source and pure oxygen, only steel scraps and return scraps or steel scraps are used as charging materials, and an oxidative combustion period.
  • a method for producing spheroidal graphite cast iron obtained by hot water means obtained by combining raw metal obtained by performing de-Mn melting and molten metal previously melted in another furnace and adjusted in components
  • a material bar having a mixing ratio of steel scrap 60% and return scrap 40% is charged into the rotary furnace through the material inlet, and the upper portion thereof is used as a slagging agent 1.62% quartz sand and 0.30% limestone were sprayed. It is said that it was dissolved while adjusting the volume ratio of pure oxygen to natural gas (CH 4 ) in the range of 1.95 to 2.10.
  • Patent Document 4 discloses a method for removing impurities including manganese (Mn) while suppressing the depletion of carbon (C) and silicon (Si) contained in a molten cast iron melted in advance.
  • the temperature of the molten metal is maintained at 1250 ° C or higher and lower than 1500 ° C, and the molten metal and the acidic slag layer are brought into contact with each other, while the theoretical combustion ratio of fuel and oxygen (oxygen amount (volume) x 5 / fuel (volume) amount)
  • oxygen amount (volume) x 5 / fuel (volume) amount There has been proposed a method for removing impurities in a cast iron melt by directly exposing an oxygen-excess flame having a 1 to 1.5 to the surface of the cast iron melt and superheating the surface.
  • the temperature of the molten cast iron at the time of hot water supply is preferably less than 1500 ° C, more preferably 1250 ° C or more and less than 1500 ° C. When the temperature is within this temperature range, it is easy to remove Mn while suppressing the depletion of C and Si after hot water supply.
  • an oxygen-excess flame is burned using LPG gas or LNG gas while supplying an excess amount of oxygen more than that required for combustion. The oxygen-excess flame exposes the molten metal surface directly to the flame and removes impurities without increasing the temperature of the entire molten metal while bringing the remaining molten metal surface into contact with acidic slag. However, it is said that the wear of C and Si can be reduced.
  • JP 2003-105420 A Japanese Patent No. 4210603 JP-A-7-268432 JP 2011-153359 A
  • the method for removing manganese described in Patent Document 1 or 2 has a problem that a sulfide is used as a manganese removal agent, and an amount of several percent is required by mass%, and a large amount of slag containing sulfur is generated.
  • the increase in sulfur in the cast iron melt is said to be small, but since the sulfur content increases to 0.02 to 0.03%, desulfurization is necessary for use in spheroidal graphite cast iron parts. There is a problem of becoming.
  • the method for removing manganese described in Patent Document 3 or 4 has an advantage that the amount of generated slag can be reduced because manganese contained in cast iron is oxidized and removed as slag.
  • the method described in Patent Document 4 can reduce the amount of generated slag because no ironmaking material is used.
  • the manganese treatment method described in Patent Document 3 or 4 requires a flammable gas and is not preferable in the field where high-temperature work is performed.
  • the manganese removal method of cast iron has a preferable method which does not require a combustible gas from a viewpoint of handleability and work efficiency. Moreover, it is preferable from a viewpoint of energy saving that the processing temperature of manganese removal of cast iron is as low as possible.
  • the present invention does not require a manganese removal agent such as sulfide or a flammable gas in removing manganese from cast iron, produces less slag, has high manganese removal efficiency, and is safe. It aims at providing the manganese removal method of cast iron which can be operated.
  • the method for removing manganese from cast iron according to the present invention is to remove the manganese component by making the inside of the furnace an oxygen atmosphere and blowing air into the molten cast iron in the furnace to keep the carbon component in the molten cast iron substantially constant. Implemented by doing.
  • the method for removing manganese from cast iron according to the present invention removes the manganese component by setting the furnace interior to an oxygen atmosphere, stirring the cast iron melt in the furnace, and maintaining the carbon component in the cast iron melt almost constant. Is implemented.
  • the manganese component can be removed while maintaining the carbon component in the cast iron melt almost constant while adjusting the amount of oxygen supplied to the furnace and / or the stirring speed of the cast iron melt in the furnace. .
  • the manganese component can be removed while maintaining the ratio between the removal rate of the silicon component and the removal rate of the manganese component substantially constant, and the removal of the manganese component is suppressed while suppressing the decrease in the silicon component. Can do.
  • the manganese component can be removed while maintaining the temperature of the cast iron melt almost constant, and the temperature of the cast iron melt can be set to 1400 ° C. to 1200 ° C.
  • the method for removing manganese from cast iron according to the present invention is a method for removing manganese that does not require a manganese removal agent such as sulfide or a flammable gas and generates less slag, and can remove manganese with high efficiency.
  • the method for removing manganese according to the present invention is a method for removing manganese from cast iron, wherein the inside of the furnace is in an oxygen atmosphere and air is blown into the molten cast iron to remove the manganese component contained in the molten cast iron, the carbon in the molten cast iron. It is carried out by removing the manganese component while keeping the component substantially constant. That is, the present manganese removal method belongs to the oxygen treatment method because the manganese removal treatment is performed by blowing air into the cast iron melt in a furnace in an oxygen atmosphere. And this manganese removal process is implemented by removing a manganese component, keeping a carbon component constant.
  • the furnace it is important for the supply of oxygen that the furnace is in an oxygen atmosphere.
  • oxygen can also be supplied by bubbling with air, it is preferable to supply oxygen by providing a dedicated supply means that can supply oxygen on the surface of the molten metal in the furnace.
  • the supply method and supply amount of oxygen influence the effect of manganese removal treatment.
  • the removal rate of the manganese component in the molten cast iron or the molten metal temperature can be adjusted by adjusting the supply amount of oxygen.
  • Blowing air into the cast iron melt increases the area of the reaction interface between oxygen in the air blown by the flow and stirring of the cast iron melt and oxygen supplied into the furnace, and promotes oxidation of manganese. For this reason, an inert gas is not preferable. Also, a mixed gas of air and oxygen is not preferable because it involves oxidation and combustion.
  • the amount of air blown into the cast iron melt does not require an amount or strength to scatter the melt or slag. That is, the blowing of air into the cast iron melt does not require intense bubbling.
  • the temperature of the molten metal when performing the manganese removal treatment is preferably 1400 ° C. or lower and 1350 ° C. to 1175 ° C. in order to suppress carbon consumption in the cast iron molten metal.
  • the temperature of the cast iron melt is preferably low from the viewpoint of energy saving, but is preferably 1350 ° C. to 1200 ° C. in view of energy saving including the next step. That is, the cast iron melt from which Mn has been removed is heated to 1400-1550 ° C. and then used for casting or the like.
  • the furnace for treating the molten cast iron may be a furnace that does not have its own heating means, such as a ladle. What is necessary is just to have the air supply means which can blow in.
  • a ladle as shown in FIG. 1 can be used.
  • a furnace 10 includes an air supply means 15 that can blow air into a furnace body 11, a furnace lid 12, a cast iron melt 20, and an oxygen supply means 16 that can make the interior of the furnace 10 an oxygen atmosphere.
  • the furnace 10 has an operation port 12a for taking out a sample and an exhaust port 12b for exhausting gas generated during the processing operation.
  • the manganese removal method for cast iron blows air into the cast iron melt in an oxygen atmosphere to flow and agitate the cast iron melt, thereby increasing the area of the reaction interface between the cast iron melt and oxygen. It promotes oxidation.
  • a method of flowing and stirring the cast iron melt may be a method of directly stirring the cast iron melt. That is, it is possible to remove the manganese component while maintaining the carbon component in the cast iron melt almost constant by stirring the cast iron melt in the furnace with an oxygen atmosphere in the furnace.
  • Such a method of directly stirring the cast iron melt has an advantage that control is relatively easy.
  • This method of directly stirring the cast iron melt can remove the manganese component while keeping the carbon component in the cast iron melt almost constant at a substantially constant temperature with little temperature drop of the cast iron melt.
  • the method of stirring this cast iron molten metal directly can adjust the removal rate of the manganese component in a cast iron molten metal by adjusting the stirring speed or stirring force which stirs a cast iron molten metal.
  • the stirring speed or stirring force for stirring the cast iron melt it is possible to keep the cast iron melt at a substantially constant temperature or to raise the temperature.
  • the present invention efficiently removes the manganese component in the cast iron melt by adjusting the oxygen amount to be supplied to the furnace and / or the stirring speed or stirring force for stirring the cast iron melt.
  • a method of removing the manganese component in the molten cast iron by setting the interior of the furnace in an oxygen atmosphere and stirring the molten cast iron in the furnace can be performed by the furnace 10 shown in FIG.
  • the furnace 10 includes a furnace body 11, a furnace lid 12, a stirring means 17 for stirring the cast iron melt 20, and an oxygen supply means 16 that can make the interior of the furnace 10 an oxygen atmosphere.
  • the furnace 10 has an operation port 12a for taking out a sample and an exhaust port 12b for exhausting gas generated during the processing operation.
  • the furnace 10 of this example mechanically agitates the cast iron melt 20 by the agitating means 17 having a drive source such as a motor, but has an agitating means capable of agitating the cast iron melt by an electromagnetic method such as high frequency. It may be a thing.
  • a manganese removal test (test A) of cast iron was performed.
  • the components of the cast iron melt during the test were measured using an emission spectroscopic analyzer (PDA-7020 manufactured by Shimadzu Corporation) for a sample taken from a furnace in a timely manner.
  • the temperature of the cast iron melt was measured with an immersion type thermocouple.
  • the cast iron pouring amount was 500 kg or 300 kg (Example 2 only).
  • the oxygen supply means for supplying oxygen a burner capable of supplying only oxygen or a mixture of oxygen and propane gas (LPG) or a sonic nozzle capable of supplying oxygen at supersonic speed was used. When only oxygen was supplied by the burner, the oxygen flow rate was 5 Nm 3 / h.
  • the oxygen flow rate was 3 Nm 3 / h.
  • the inner diameter of the air inlet of the burner was about 15 mm, and the inner diameter of the air inlet of the sonic nozzle was about 2 mm.
  • Test conditions for Test A are shown in Table 1.
  • Table 1 the treatment time indicates the elapsed time after pouring molten cast iron melted in the cast iron melting furnace into a preheated furnace and starting the manganese removal test.
  • air was blown into the molten cast iron at a flow rate of 200 L / min, and oxygen was supplied first by a burner for 15 minutes and then by a sonic nozzle until 34 minutes.
  • Example 2 only air blowing (400 L / min) was performed.
  • Example 3 air was blown (200 L / min) and oxygen was supplied.
  • Comparative Example 1 a mixed gas of oxygen and LPG was supplied by a burner, and air was first blown at a flow rate of 200 L / min for 21 minutes, and then the flow rate was increased to 400 L / min for 41 minutes.
  • Comparative Example 2 air was blown (200 L / min) and oxygen was supplied. Then, 10-20 kg of charcoal was introduced intermittently for 15 minutes from the beginning of the test. When charcoal was charged, a fostering flame was observed from the sample inlet.
  • the mixed gas of oxygen and LPG is an oxygen-excess gas with respect to the theoretical combustion gas. When a sonic nozzle is used, oxygen can be supplied at an extremely high speed (sound speed or higher). Vigorous bubbling occurred when the air was blown at a flow rate of 400 L / min, but this was not the case at a flow rate of 200 L / min.
  • Table 2 shows the test results of Example 1 of Test A.
  • the component content is mass%, and the balance other than the components shown in Table 2 is iron and inevitable impurities.
  • the content of titanium (Ti) was initially 0.017% but became 0.008% after 34 minutes of treatment time. The content is almost halved.
  • the aluminum (Al) content decreased by about 20% after the treatment time of 34 minutes, and the chromium (Cr), boron (B), and zinc (Zn) contents also decreased somewhat. .
  • Example 1 The result of Example 1 is shown in FIG.
  • the horizontal axis represents the treatment time
  • the vertical axis represents the residual ratio of Mn, Si or C, and the molten metal temperature.
  • the residual ratio is the ratio of the residual content to the initial content of the Mn, C, or Si content.
  • the C residual ratio is in the range of 1.00 to 1.02, and the C amount is maintained at a substantially constant value within a fluctuation range within 2% of the initial content.
  • the Mn residual rate curve is a steep descending curve, and after 34 minutes of processing time, the Mn residual rate is 0.6 (60% of the initial content), and the Mn content decreases rapidly. It shows that.
  • the Si residual rate curve falls smoothly, and the residual rate after 34 minutes of processing time is 0.84 (84% of the initial content). That is, in this example, Mn is removed at a rate twice or more that of Si.
  • the molten metal temperature gradually decreased from the initial 1257 ° C. to 1152 ° C., then gradually increased after the processing time of 20 minutes, and reached 1181 ° C. after the processing time of 34 minutes. It is understood that the effect of the sonic nozzle appears.
  • the graphs shown in FIGS. 4 to 7 show the relationship between the Mn residual rate, C residual rate, Si residual rate, or molten metal temperature and treatment time in Test A, respectively.
  • the horizontal axis represents the processing time
  • the vertical axis represents the residual ratio of Mn, C or Si.
  • the horizontal axis represents the processing time
  • the vertical axis represents the molten metal temperature.
  • the gradient or removal rate is the ratio of the amount of components removed per unit processing time to the initial content ((residual rate a-residual rate b) / (processing time b-processing Time a)).
  • Comparative Example 1 ( ⁇ mark) is a case where a manganese removal test was performed by spraying LPG combustion gas onto the molten cast iron surface in an oxygen-excess furnace.
  • This Comparative Example 1 is an example in which the oxygen amount and LPG gas amount are increased after 10 minutes of processing time, and the air blowing into the cast iron melt is increased from 200 L / min to 400 L / min after 26 minutes of processing time.
  • the slope of the Mn residual rate curve of Comparative Example 1 is smaller than the slope of the Mn residual rate curves of Examples 1 to 3
  • the Mn removal rate of Comparative Example 1 is the Mn removal rate of Examples 1 to 3. About 80%. According to FIG.
  • C removal is about 4% after about 40 minutes of processing time even if the amount of air is increased, and C removal (carbon consumption) is suppressed.
  • the slope of the Si residual rate curve shown in FIG. 6 is the smallest until the processing time is 20 minutes, and Si removal is also suppressed.
  • the residual rate of Si is the highest, and the residual rate is 0.93 even after 30 minutes of processing time. That is, it is understood that the inside of the furnace is difficult to oxidize and is an environment where oxidation of Si is suppressed.
  • the molten metal temperature curve shown in FIG. 7 an increase in the molten metal temperature due to charcoal combustion is not observed and overlaps with the molten metal temperature curve of Example 3.
  • the index a straight line shown in FIG. 4 and the index a straight line shown in FIG. 6 are straight lines having the same gradient. That is, it is shown that the Mn removal rate of Comparative Example 2 shown in FIG. 4 is substantially equal to the Si removal rate of Examples 1 to 3 shown in FIG.
  • the furnace shown in FIG. 2 was used to conduct a cast iron manganese removal test (Test B).
  • Test B was performed by changing the oxygen supply conditions or the cast iron molten metal stirring conditions.
  • air was blown in at 200 L / min along with the supply of oxygen. This air blowing was performed in the same manner as in Example 1 or 3 of Test A above.
  • oxygen was supplied at 20 N 3 / h from the start to the end of the test, and the stirring speed of the stirring means 17 was variously changed.
  • the stirring speed of the stirring means 17 was started at 200 rpm from the start to the end of the test in Example 7, and started at 100 rpm in Example 8, and increased to 200 rpm after 11 minutes of the processing time.
  • the component measurement or temperature measurement of the molten cast iron during this test was performed using the same emission spectroscopic analyzer or immersion thermocouple as in test A.
  • the amount of molten iron poured into the cast iron furnace was 500 kg.
  • the results of Test B are shown in Figs. 8 shows the Mn residual rate, FIG. 9 shows the C residual rate, FIG. 10 shows the Si residual rate, the horizontal axis shows the processing time, and the vertical axis shows the residual rate of Mn, C, or Si.
  • the horizontal axis indicates the processing time, and the vertical axis indicates the molten metal temperature.
  • the Mn removal rate shown in FIG. 8 shows the results of Examples 1 and 3 of Test A together with the results of Test B.
  • the index a straight line and the index b straight line in FIG. 8 indicate straight lines having the same gradient as the index a straight line and the index b straight line shown in FIG.
  • the slopes of the index a straight line, the index b straight line, and the index c straight line are 1: 3.2: 6.1 based on the index a straight line.
  • the Mn residual rate decreases substantially along the index b straight line or the index c straight line from the start of the processing to the processing time of 10 to 20 minutes.
  • the Mn residual ratios of Example 1, Example 3, Example 5, and Example 8 decrease along the index b straight line.
  • the Mn residual ratios of Example 4, Example 6, Example 7, and Example 9 decrease along the index c straight line.
  • the Mn residual rate curves of Example 5 and Example 8 are bent downward at a processing time of 11 minutes, and have a different shape from the other Mn residual rate curves.
  • the C residual ratio is in the range of approximately 1.02 to 0.96, which is a substantially constant value. That is, C removal (decarburization) is suppressed.
  • the Si residual ratio in each example decreases substantially along the straight line b.
  • the residual ratio of Si in Example 5 initially decreased along the straight line a, but rapidly decreased after 16 minutes of processing time, and decreased along the straight line b after 25 minutes of processing time.
  • the removal of Si is most advanced.
  • the treatment proceeds at a molten metal temperature of 1410 to 1270 ° C., and the molten metal temperature curve generally shows that the molten metal has risen during the treatment and the molten metal has been heated.
  • the C residual amount of Examples 1, 3, 4 to 6 is in a range of 1.02 to 0.97, and is almost constant.
  • the residual ratio of C hardly depends on the supply amount of oxygen and the supply method.
  • the Si residual rate is affected by the supply amount and supply method of oxygen. In general, when the supply amount of oxygen is small, the Si residual rate decreases along the index a line, and when the oxygen supply amount is large, the Si residual rate decreases along the index b line. The effect of changing the supply amount of oxygen appears well in the case of Example 5.
  • Si residual rate the supply of oxygen is reduced along the index a straight line when the 15 Nm 3 / h, the supply of oxygen is rapidly reduced with increasing the 20 Nm 3 / h.
  • the Si residual rate decreases along the index b straight line after 25 minutes of processing time.
  • Example 4 in which a large amount of oxygen (50 Nm 3 / h) was initially supplied and the supply amount of oxygen was rapidly reduced to a treatment time of 7 minutes (20 Nm 3 / h) and 15 minutes (10 Nm 3 / h). Almost no effect appears in the Si residual rate curve, the C residual rate curve, and the molten metal temperature curve (FIGS. 9 to 11).
  • the molten metal temperature of Example 1 or 3 decreases by about 100 ° C. during the treatment.
  • the temperature drop in Examples 4 to 6 is small, and the temperature drop in Example 4 is 55 ° C. at the maximum. It is understood that when the supply amount of oxygen becomes a certain amount (for example, 15 Nm 3 / h) or more, a decrease in the melt temperature due to the blowing of air into the melt can be suppressed.
  • the molten metal temperature can be adjusted by adjusting the oxygen supply amount.
  • Examples 7, 8 and 9 are tests conducted by changing the stirring conditions of the cast iron melt while supplying oxygen at 20 Nm 3 / h.
  • Example 7 is a case where the test was conducted at a stirring speed of 200 rpm.
  • Mn can be efficiently removed (FIG. 8)
  • decarburization is small (FIG. 9)
  • the decrease in molten metal temperature is about 20 ° C.
  • Mn removal is performed at a substantially constant molten metal temperature. It can be done (FIG. 11).
  • Example 8 due to the fact that the stirring speed was increased from the initial 100 rpm to 200 rpm after 11 minutes from the processing time, the Mn residual rate decreased rapidly along the index b straight line, and the processing speed decreased. It decreases along the index c straight line after 18 minutes. That is, it is shown that the degree of Mn removal can be adjusted by adjusting the stirring speed of the molten metal. According to FIG. 8, the Mn residual ratio of Examples 7 to 9 decreases linearly until the processing time of 10.
  • FIG. 12 shows the relationship between the slope of the Mn residual rate curve (Mn removal rate) and the stirring speed. According to FIG. 12, a certain relationship is observed between the Mn removal speed and the stirring speed. For this reason, the degree of Mn removal can be adjusted by adjusting the stirring speed of the molten metal based on FIG.
  • Example 8 the molten metal temperature increased after 15 minutes of processing time, which corresponds well to increasing the stirring speed from 100 rpm to 200 rpm after 11 minutes of processing time.
  • Example 9 is an example in which the treatment was started at a stirring speed of 150 rpm and the stirring speed was increased to 250 rpm after 20 minutes of processing time, but the molten metal temperature was increased after 20 minutes of processing time, and the stirring speed was changed. The effect is clearly shown. In the case of Example 9, as shown in FIGS. 8 to 10, the effect of changing the stirring speed hardly appears in the Mn residual rate, the C residual rate, and the Si residual rate.
  • the Mn residual rate decreases along each of the index b straight line and the index c straight line.
  • Si residual ratio is reducing along each of the parameter
  • the ratio of the slope of the index b straight line to the slope of the index c straight line is 32/61, which is about 1/2. That is, the reduction rate ratio is about 1/2.
  • FIG. 13 is a graph showing the relationship between the Si / Mn reduction ratio ((1.00-Si residual rate a) / (1.00-Mn residual rate a)) and the processing time at the processing time a.
  • the Si / Mn reduction ratio of Example 7 is approximately 0.5 and constant. That is, the decrease rate of Si is 1/2 of the decrease rate of Mn.
  • the Si / Mn reduction ratio of Example 9 is constant at about 0.8, but Example 4 vibrates in the range of Si / Mn reduction ratio of 0.1 to 0.7.
  • the Si / Mn reduction ratio of Example 6 increases almost linearly in the range of 0.62 to 0.9.
  • the Si / Mn reduction ratio of Example 8 increases almost linearly in the range of 0.01 to 0.5, and the removal (consumption) of Si is suppressed.
  • the degree of removal of Si can be predicted as compared with the removal of Mn. From this viewpoint, the method of Example 7 or Example 9 is preferable.
  • the present invention can remove metal components such as Cr, Ti, Al, B, and Zn.
  • Table 4 shows the results of Example 5, and Table 5 shows the results of Example 7.
  • time indicates the processing time, and temperature indicates the molten metal temperature. Content of each component shows the mass%. Comparing Table 4 and Table 5, B can be efficiently removed in both cases of Example 5 and Example 7.
  • Zn is difficult to remove in the case of Example 5 by air blowing, and it is difficult to remove Cr and Al in the case of Example 7 by molten metal stirring.
  • Cr, Ti, or Al can be removed by 40 to 50% in about 30 minutes.
  • Example 7, 50 to 60% of Ti or Zn can be removed in 15 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention needs neither a manganese-removing agent, e.g., a sulfide, nor a combustible gas in manganese removal for cast iron, yields little slag, attains a high manganese removal efficiency, and renders a safe operation possible. One of the methods for manganese removal for cast iron according to the present invention is practiced by making the interior of a furnace an oxygen atmosphere and blowing air into a melt for cast iron within the furnace, thereby keeping the carbon content in the melt for cast iron approximately constant to remove the manganese components. Another method for manganese removal for cast iron according to the present invention is practiced by making the interior of a furnace an oxygen atmosphere and stirring a melt for cast iron within the furnace, thereby keeping the carbon content in the melt for cast iron approximately constant to remove the manganese components.

Description

鋳鉄のマンガン除去方法Method for removing manganese from cast iron
 本発明は、鋳鉄部品の製造に供されるマンガン含有量の高い原材料のマンガン除去方法に関する。 The present invention relates to a method for removing manganese from a raw material having a high manganese content, which is used for producing cast iron parts.
 鋳鉄鋳物は自動車部品や機械部品などに使用されており、鋳鉄鋳物の生産量の約半分が自動車用として生産され、自動車総重量の約10%を鋳鉄鋳物が占めている。この鋳鉄鋳物の製造に供される原材料は自動車用鋼板の鋼屑が利用されているところ、近年の軽量化の要請から自動車用鋼板のマンガン含有量が増加しており、マンガンがパーライト化促進元素であるため靱性が低下すること、また、内部欠陥を生じ易くなるということから問題になっている。 Cast iron castings are used for automobile parts and machine parts. About half of the production of cast iron castings is produced for automobiles, and cast iron castings account for about 10% of the total weight of automobiles. The raw material used for the production of this cast iron casting uses steel scraps of automotive steel sheets. Due to the recent demand for weight reduction, the manganese content of automotive steel sheets has increased, and manganese is a pearlite-promoting element. Therefore, it is a problem because toughness is lowered and internal defects are easily generated.
 この鋳鉄部品の製造に供される原材料のマンガン含有量の増加に対する問題に対し、以下のような提案がされている。例えば、特許文献1に、マンガンを含む鋳鉄溶湯中に硫黄を含む脱マンガン処理剤を加え、硫化マンガンとして浮上させて溶湯中からマンガンを除去する鋳鉄の脱マンガン処理方法が提案されている。そして、マンガン成分の除去について、溶湯中で生成したMnSは浮上し溶湯表面のスラグ中に除去される。この浮上除去を促進するためには、溶湯の入った取鍋底部のポーラスプラグからガスを吹込むなど、溶湯を攪拌することが有効である。ガス攪拌の場合、吹込みガスとしては圧縮空気や窒素ガスが安価で使い易い。但し、溶湯中の酸素量、窒素量の増加を抑えるためにはAr等の不活性ガスの方が好ましいとされる。 The following proposals have been made for the problem of increasing the manganese content of the raw material used for the production of cast iron parts. For example, Patent Document 1 proposes a demanganese treatment method for cast iron, in which a demanganese treatment agent containing sulfur is added to a molten cast iron containing manganese and floated as manganese sulfide to remove manganese from the molten metal. And about the removal of a manganese component, MnS produced | generated in the molten metal floats and is removed in the slag of the molten metal surface. In order to promote this floating removal, it is effective to stir the molten metal, for example, by blowing gas from a porous plug at the bottom of the ladle containing the molten metal. In the case of gas stirring, compressed air and nitrogen gas are inexpensive and easy to use as the blowing gas. However, an inert gas such as Ar is preferred in order to suppress an increase in the amount of oxygen and nitrogen in the molten metal.
 特許文献2に、鋳鉄の製造においてマンガン含有量を低下させる方法であって、温度が1400~1500℃である鋳鉄溶湯に、添加剤として硫酸ナトリウムのみを添加混合する鋳鉄溶湯中のマンガン除去方法が提案されている。このマンガン除去方法において、鋳鉄溶湯の温度は1300℃未満であると、SiO2の生成が激しく、鋳鉄の主要成分であるSiの減耗が大きく好ましくない。また、1300℃以上の鋳鉄溶湯中では、Mn又はSの含有量(%)が非常に高い領域でないとMnSは形成されないとされる。そして、この発明は、鋳鉄溶湯のMn含有量が1.5質量%以上であっても、Mn除去率を70%以上にすることが可能である。Mn除去率は、Na2SO4の添加量が概ね10質量%までは、Na2SO4の添加量に応じて向上するとされる。 Patent Document 2 discloses a method for removing manganese in a cast iron melt by reducing the manganese content in the production of cast iron and adding only sodium sulfate as an additive to the cast iron melt at a temperature of 1400-1500 ° C. Proposed. In this method of removing manganese, if the temperature of the molten cast iron is less than 1300 ° C., the generation of SiO 2 is severe and the wear of Si, which is the main component of cast iron, is not preferable. In a cast iron melt at 1300 ° C. or higher, MnS is not formed unless the Mn or S content (%) is in a very high region. And this invention can make Mn removal rate 70% or more, even if Mn content of a cast iron molten metal is 1.5 mass% or more. The Mn removal rate is said to increase according to the amount of Na 2 SO 4 added until the amount of Na 2 SO 4 added is approximately 10% by mass.
 特許文献3に、熱源として天然ガス、液化石油ガス又は灯油等と純酸素を利用する回転炉による溶解において、装入材料地金として鋼屑と戻り屑又は鋼屑のみを用い、酸化性燃焼期に脱Mn溶解を行うことにより得られる原湯と、他炉であらかじめ溶解し、成分調整した溶湯とを併せ湯手段により得られる球状黒鉛鋳鉄の製造方法が提案されている。そして、この球状黒鉛鋳鉄の製造方法の実施例において、鋼屑60%と戻り屑40%の配合割合の材料地金を材料装入口より回転炉内に装入し、その上部に造滓剤として、1.62%珪砂と0.30%石灰石を散布した。純酸素と天然ガス(CH4)の容量比を1.95~2.10の範囲で調整しながら溶解したとされる。 In Patent Document 3, in melting by a rotary furnace using natural gas, liquefied petroleum gas, kerosene or the like as a heat source and pure oxygen, only steel scraps and return scraps or steel scraps are used as charging materials, and an oxidative combustion period In addition, there has been proposed a method for producing spheroidal graphite cast iron obtained by hot water means obtained by combining raw metal obtained by performing de-Mn melting and molten metal previously melted in another furnace and adjusted in components. In the embodiment of the method for producing the spheroidal graphite cast iron, a material bar having a mixing ratio of steel scrap 60% and return scrap 40% is charged into the rotary furnace through the material inlet, and the upper portion thereof is used as a slagging agent 1.62% quartz sand and 0.30% limestone were sprayed. It is said that it was dissolved while adjusting the volume ratio of pure oxygen to natural gas (CH 4 ) in the range of 1.95 to 2.10.
 特許文献4に、あらかじめ溶融された鋳鉄溶湯中に含まれている炭素(C)およびシリコン(Si)の減耗を抑制しながら、マンガン(Mn)を含む不純物を除去する方法であって、前記鋳鉄溶湯の温度を1250℃以上1500℃未満に維持して、該溶湯と酸性スラグ層とを接触させながら、燃料と酸素との理論燃焼比(酸素量(体積)×5/燃料(体積)量)が1~1.5である酸素過剰の火炎を前記鋳鉄溶湯の表面に直接暴露して、該表面を過熱する鋳鉄溶湯中の不純物除去方法が提案されている。給湯時の鋳鉄溶湯の温度は、1500℃未満であることが好ましく、より好ましくは1250℃以上1500℃未満である。この温度範囲であると、給湯後に、C、Siの減耗を抑制しながらの脱Mn処理が容易となる。また、酸素過剰の火炎は、LPGガスまたはLNGガスを用いて、燃焼に必要な酸素量よりも過剰の酸素量を供給しながら燃焼させるバーナーが好ましいとされる。そして、酸素過剰の火炎は、溶湯表面を火炎に直接暴露して、残りの溶湯表面を酸性スラグに接触させながら溶湯全体の温度を上昇させることなく不純物除去処理するので、Mnの酸化除去が進行しつつ、C、Siの減耗を少なくできるとされる。 Patent Document 4 discloses a method for removing impurities including manganese (Mn) while suppressing the depletion of carbon (C) and silicon (Si) contained in a molten cast iron melted in advance. The temperature of the molten metal is maintained at 1250 ° C or higher and lower than 1500 ° C, and the molten metal and the acidic slag layer are brought into contact with each other, while the theoretical combustion ratio of fuel and oxygen (oxygen amount (volume) x 5 / fuel (volume) amount) There has been proposed a method for removing impurities in a cast iron melt by directly exposing an oxygen-excess flame having a 1 to 1.5 to the surface of the cast iron melt and superheating the surface. The temperature of the molten cast iron at the time of hot water supply is preferably less than 1500 ° C, more preferably 1250 ° C or more and less than 1500 ° C. When the temperature is within this temperature range, it is easy to remove Mn while suppressing the depletion of C and Si after hot water supply. In addition, it is preferable that an oxygen-excess flame is burned using LPG gas or LNG gas while supplying an excess amount of oxygen more than that required for combustion. The oxygen-excess flame exposes the molten metal surface directly to the flame and removes impurities without increasing the temperature of the entire molten metal while bringing the remaining molten metal surface into contact with acidic slag. However, it is said that the wear of C and Si can be reduced.
特開2003-105420号公報JP 2003-105420 A 特許第4210603号公報Japanese Patent No. 4210603 特開平7-268432号公報JP-A-7-268432 特開2011-153359号公報JP 2011-153359 A
 特許文献1又は2に記載のマンガン除去方法は、脱マンガン剤として硫化物を使用し、質量%で数パーセントの量が必要とされ、硫黄を含有する多量のスラグを生じるという問題がある。また、特許文献2に記載の方法によると、鋳鉄溶湯中の硫黄の増加が少ないとされるが、硫黄含有量が0.02~0.03%に増加するので球状黒鉛鋳鉄部品に供するには脱硫が必要になるという問題がある。 The method for removing manganese described in Patent Document 1 or 2 has a problem that a sulfide is used as a manganese removal agent, and an amount of several percent is required by mass%, and a large amount of slag containing sulfur is generated. In addition, according to the method described in Patent Document 2, the increase in sulfur in the cast iron melt is said to be small, but since the sulfur content increases to 0.02 to 0.03%, desulfurization is necessary for use in spheroidal graphite cast iron parts. There is a problem of becoming.
 一方、特許文献3又は4に記載のマンガン除去方法は、鋳鉄中に含まれるマンガンを酸化させてスラグとして除去する方法であるから、生成スラグ量が少なくて済むという利点がある。特に、特許文献4に記載の方法は、特許文献3に記載の方法と異なり、造滓材を使用しないので生成スラグ量を少なくすることができる。しかしながら、特許文献3又は4に記載のマンガン処理方法は、可燃性ガスを必要としており、高温作業を行う現場においては好ましくないという問題がある。 On the other hand, the method for removing manganese described in Patent Document 3 or 4 has an advantage that the amount of generated slag can be reduced because manganese contained in cast iron is oxidized and removed as slag. In particular, unlike the method described in Patent Document 3, the method described in Patent Document 4 can reduce the amount of generated slag because no ironmaking material is used. However, the manganese treatment method described in Patent Document 3 or 4 requires a flammable gas and is not preferable in the field where high-temperature work is performed.
 鋳鉄のマンガン除去方法として、環境保全が重視される社会においてはスラグ量が多く、硫黄を含むスラグが生成される方法は好ましくない。そして、鋳鉄のマンガン除去方法は、取扱性、作業効率の観点から可燃性ガスを必要としない方法が好ましい。また、鋳鉄のマンガン除去の処理温度はなるべく低い温度であるのが、省エネルギーの観点から好ましい。 As a method for removing manganese from cast iron, a method in which a large amount of slag is produced and a slag containing sulfur is generated is not preferable in a society where environmental conservation is important. And the manganese removal method of cast iron has a preferable method which does not require a combustible gas from a viewpoint of handleability and work efficiency. Moreover, it is preferable from a viewpoint of energy saving that the processing temperature of manganese removal of cast iron is as low as possible.
 本発明は、このような従来の問題点及び要請に鑑み、鋳鉄のマンガン除去において、硫化物などの脱マンガン剤や可燃性ガスを要せず、生成スラグが少なくマンガン除去効率が高く、安全に操業することができる鋳鉄のマンガン除去方法を提供することを目的とする。 In view of such conventional problems and demands, the present invention does not require a manganese removal agent such as sulfide or a flammable gas in removing manganese from cast iron, produces less slag, has high manganese removal efficiency, and is safe. It aims at providing the manganese removal method of cast iron which can be operated.
 本発明に係る鋳鉄のマンガン除去方法は、炉内を酸素雰囲気にするとともにその炉内の鋳鉄溶湯に空気を吹き込んで、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行うことにより実施される。 The method for removing manganese from cast iron according to the present invention is to remove the manganese component by making the inside of the furnace an oxygen atmosphere and blowing air into the molten cast iron in the furnace to keep the carbon component in the molten cast iron substantially constant. Implemented by doing.
 また、本発明に係る鋳鉄のマンガン除去方法は、炉内を酸素雰囲気にしてその炉内の鋳鉄溶湯を攪拌し、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行うことにより実施される。 Further, the method for removing manganese from cast iron according to the present invention removes the manganese component by setting the furnace interior to an oxygen atmosphere, stirring the cast iron melt in the furnace, and maintaining the carbon component in the cast iron melt almost constant. Is implemented.
 上記発明において、炉内に供給する酸素量又は/及び炉内の鋳鉄溶湯の攪拌速度を調整しつつ、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行うことができる。 In the above invention, the manganese component can be removed while maintaining the carbon component in the cast iron melt almost constant while adjusting the amount of oxygen supplied to the furnace and / or the stirring speed of the cast iron melt in the furnace. .
 また、上記発明において、珪素成分の除去速度とマンガン成分の除去速度の比をほぼ一定に保持してマンガン成分の除去を行うことができ、珪素成分の減少を抑えてマンガン成分の除去を行うことができる。 In the above invention, the manganese component can be removed while maintaining the ratio between the removal rate of the silicon component and the removal rate of the manganese component substantially constant, and the removal of the manganese component is suppressed while suppressing the decrease in the silicon component. Can do.
 また、上記発明において、鋳鉄溶湯の湯温をほぼ一定に保持してマンガン成分の除去を行うことができ、鋳鉄溶湯の温度は、1400℃~1200℃とすることができる。 In the above invention, the manganese component can be removed while maintaining the temperature of the cast iron melt almost constant, and the temperature of the cast iron melt can be set to 1400 ° C. to 1200 ° C.
 本発明の鋳鉄のマンガン除去方法は、硫化物などの脱マンガン剤や可燃性ガスを要せず、生成スラグが少ないマンガン除去方法であり、高い効率でマンガンを除去することができる。 The method for removing manganese from cast iron according to the present invention is a method for removing manganese that does not require a manganese removal agent such as sulfide or a flammable gas and generates less slag, and can remove manganese with high efficiency.
本発明の試験Aに使用される炉の説明図である。It is explanatory drawing of the furnace used for the test A of this invention. 本発明の試験Bに使用される炉の説明図である。It is explanatory drawing of the furnace used for the test B of this invention. 試験Aにおける実施例1の試験結果を示すグラフである。6 is a graph showing the test results of Example 1 in Test A. 試験AのMn残存率を示すグラフである。4 is a graph showing the Mn residual rate of test A. 試験AのC残存率を示すグラフである。4 is a graph showing the C residual ratio of test A. 試験AのSi残存率を示すグラフである。6 is a graph showing the Si residual rate in Test A. 試験Aの鋳鉄溶湯温度を示すグラフである。3 is a graph showing a cast iron melt temperature in Test A. 試験BのMn残存率を示すグラフである。4 is a graph showing the Mn residual rate of test B. 試験BのC残存率を示すグラフである。4 is a graph showing the C residual ratio of test B. 試験BのSi残存率を示すグラフである。4 is a graph showing the Si residual rate in Test B. 試験Bの鋳鉄溶湯温度を示すグラフである。3 is a graph showing a cast iron melt temperature in Test B. 試験Bの攪拌速度とMn除去速度との関係を示すグラフである。4 is a graph showing the relationship between the stirring speed and the Mn removal speed in Test B. Si/Mn減少比を示すグラフである。It is a graph which shows Si / Mn reduction | decrease ratio.
 以下、本発明を実施するための形態について説明する。本発明に係るマンガン除去方法は、炉内を酸素雰囲気にし、鋳鉄溶湯に空気を吹き込んでその鋳鉄溶湯中に含まれるマンガン成分を除去する鋳鉄のマンガン除去方法であって、前記鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行うことにより実施される。すなわち、本マンガン除去方法は、酸素雰囲気にした炉内において鋳鉄溶湯に空気を吹き込んでマンガン除去処理を行うので酸素処理方法に属する。そして、このマンガン除去処理は、炭素成分を一定に保持してマンガン成分の除去を行うことにより実施される。 Hereinafter, modes for carrying out the present invention will be described. The method for removing manganese according to the present invention is a method for removing manganese from cast iron, wherein the inside of the furnace is in an oxygen atmosphere and air is blown into the molten cast iron to remove the manganese component contained in the molten cast iron, the carbon in the molten cast iron. It is carried out by removing the manganese component while keeping the component substantially constant. That is, the present manganese removal method belongs to the oxygen treatment method because the manganese removal treatment is performed by blowing air into the cast iron melt in a furnace in an oxygen atmosphere. And this manganese removal process is implemented by removing a manganese component, keeping a carbon component constant.
 本発明において、酸素の供給は炉内を酸素雰囲気にすることが重要である。空気によるバブリングによっても酸素を供給することができるが、炉内の湯面上に酸素を供給することができる専用の供給手段を設けて酸素を供給する方が好ましい。本発明において、酸素の供給方法や供給量はマンガン除去処理の効果を左右する。本発明は、酸素の供給量を調整することによって、鋳鉄溶湯中のマンガン成分の除去速度、あるいは溶湯温度などを調整することができる。 In the present invention, it is important for the supply of oxygen that the furnace is in an oxygen atmosphere. Although oxygen can also be supplied by bubbling with air, it is preferable to supply oxygen by providing a dedicated supply means that can supply oxygen on the surface of the molten metal in the furnace. In the present invention, the supply method and supply amount of oxygen influence the effect of manganese removal treatment. In the present invention, the removal rate of the manganese component in the molten cast iron or the molten metal temperature can be adjusted by adjusting the supply amount of oxygen.
 鋳鉄溶湯への空気の吹込みは、鋳鉄溶湯の流動・撹拌により吹き込んだ空気中の酸素および炉内に供給した酸素との反応界面の面積を拡大させマンガンの酸化を促進する。このため、不活性ガスは好ましくない。また、空気及び酸素の混合ガスは、酸化・燃焼を伴うので好ましくない。鋳鉄溶湯への空気の吹込みの程度は、溶湯やスラグを飛び散らすほどの量又は強さを要しない。すなわち、鋳鉄溶湯への空気の吹込みは、激しいバブリングはしなくてもよい。 Blowing air into the cast iron melt increases the area of the reaction interface between oxygen in the air blown by the flow and stirring of the cast iron melt and oxygen supplied into the furnace, and promotes oxidation of manganese. For this reason, an inert gas is not preferable. Also, a mixed gas of air and oxygen is not preferable because it involves oxidation and combustion. The amount of air blown into the cast iron melt does not require an amount or strength to scatter the melt or slag. That is, the blowing of air into the cast iron melt does not require intense bubbling.
 マンガン除去処理を行うときの溶湯の温度は、鋳鉄溶湯中の炭素の消耗を抑えるために1400℃以下がよく、1350℃~1175℃とすることができる。鋳鉄溶湯の温度は、省エネルギーの観点からは低い方が好ましいが、次工程を含めた省エレルギーを考慮すると、1350℃~1200℃が好ましい。すなわち、Mn除去を行った鋳鉄溶湯は、1400~1550℃に昇温した後、鋳込み等に供されるからである。 The temperature of the molten metal when performing the manganese removal treatment is preferably 1400 ° C. or lower and 1350 ° C. to 1175 ° C. in order to suppress carbon consumption in the cast iron molten metal. The temperature of the cast iron melt is preferably low from the viewpoint of energy saving, but is preferably 1350 ° C. to 1200 ° C. in view of energy saving including the next step. That is, the cast iron melt from which Mn has been removed is heated to 1400-1550 ° C. and then used for casting or the like.
 また、本発明において鋳鉄溶湯の処理を行う炉は、取鍋のようなそれ自体加熱手段を有していないものであってもよく、炉内を酸素雰囲気にすることができ、鋳鉄溶湯に空気を吹き込むことができる空気給気手段を有するものであればよい。例えば、図1に示すような取鍋を使用することができる。図1において、炉10は、炉本体11、炉蓋12、鋳鉄溶湯20に空気を吹き込むことができる空気給気手段15、炉10の内部を酸素雰囲気にすることができる酸素給気手段16を有している。そして、炉10は、サンプルの取り出しを行う操作口12a、処理作業中に発生するガスを排気する排気口12bを有している。 In the present invention, the furnace for treating the molten cast iron may be a furnace that does not have its own heating means, such as a ladle. What is necessary is just to have the air supply means which can blow in. For example, a ladle as shown in FIG. 1 can be used. In FIG. 1, a furnace 10 includes an air supply means 15 that can blow air into a furnace body 11, a furnace lid 12, a cast iron melt 20, and an oxygen supply means 16 that can make the interior of the furnace 10 an oxygen atmosphere. Have. The furnace 10 has an operation port 12a for taking out a sample and an exhaust port 12b for exhausting gas generated during the processing operation.
 本発明に係る鋳鉄のマンガン除去方法は、上述のように、酸素雰囲気下において鋳鉄溶湯に空気を吹き込んで鋳鉄溶湯を流動・撹拌し、鋳鉄溶湯と酸素との反応界面の面積を拡大させてMnの酸化を促進させている。このような、鋳鉄溶湯を流動・攪拌する方法は、鋳鉄溶湯を直接的に攪拌する方法であってもよい。すなわち、炉内を酸素雰囲気にしてその炉内の鋳鉄溶湯を攪拌し、その鋳鉄溶湯中の炭素成分をほぼ一定に保持しつつマンガン成分の除去を行うことができる。このような、鋳鉄溶湯を直接的に攪拌する方法は、制御が比較的容易であるという利点がある。 As described above, the manganese removal method for cast iron according to the present invention blows air into the cast iron melt in an oxygen atmosphere to flow and agitate the cast iron melt, thereby increasing the area of the reaction interface between the cast iron melt and oxygen. It promotes oxidation. Such a method of flowing and stirring the cast iron melt may be a method of directly stirring the cast iron melt. That is, it is possible to remove the manganese component while maintaining the carbon component in the cast iron melt almost constant by stirring the cast iron melt in the furnace with an oxygen atmosphere in the furnace. Such a method of directly stirring the cast iron melt has an advantage that control is relatively easy.
 この鋳鉄溶湯を直接的に攪拌する方法は、鋳鉄溶湯の温度低下が少なくほぼ一定温度で鋳鉄溶湯中の炭素成分をほぼ一定に保持しつつマンガン成分を除去することができる。また、この鋳鉄溶湯を直接的に攪拌する方法は、鋳鉄溶湯を攪拌する攪拌速度又は攪拌力を調整することによって、鋳鉄溶湯中のマンガン成分の除去速度を調整することができる。さらに、鋳鉄溶湯を攪拌する攪拌速度又は攪拌力を調整することによって、鋳鉄溶湯をほぼ一定温度に保持することや昇温させることが可能である。 This method of directly stirring the cast iron melt can remove the manganese component while keeping the carbon component in the cast iron melt almost constant at a substantially constant temperature with little temperature drop of the cast iron melt. Moreover, the method of stirring this cast iron molten metal directly can adjust the removal rate of the manganese component in a cast iron molten metal by adjusting the stirring speed or stirring force which stirs a cast iron molten metal. Furthermore, by adjusting the stirring speed or stirring force for stirring the cast iron melt, it is possible to keep the cast iron melt at a substantially constant temperature or to raise the temperature.
 以上、本発明は、炉内を酸素雰囲気にし、供給する酸素量又は/及び鋳鉄溶湯を攪拌する攪拌速度又は攪拌力を調整することによって、鋳鉄溶湯中のマンガン成分の効率的な除去を行うことができる。この炉内を酸素雰囲気にしその炉内の鋳鉄溶湯を攪拌して鋳鉄溶湯中のマンガン成分の除去を行う方法は、図2に示す炉10によって実施することができる。炉10は、炉本体11、炉蓋12、鋳鉄溶湯20を攪拌する攪拌手段17、炉10の内部を酸素雰囲気にすることができる酸素給気手段16を有している。そして、炉10は、サンプルの取り出しを行う操作口12a、処理作業中に発生するガスを排気する排気口12bを有している。本例の炉10は、モータなどの駆動源を有する攪拌手段17によって鋳鉄溶湯20を機械的に攪拌しているが、高周波など電磁気的な方法により鋳鉄溶湯を攪拌することができる攪拌手段を有するものであってもよい。 As described above, the present invention efficiently removes the manganese component in the cast iron melt by adjusting the oxygen amount to be supplied to the furnace and / or the stirring speed or stirring force for stirring the cast iron melt. Can do. A method of removing the manganese component in the molten cast iron by setting the interior of the furnace in an oxygen atmosphere and stirring the molten cast iron in the furnace can be performed by the furnace 10 shown in FIG. The furnace 10 includes a furnace body 11, a furnace lid 12, a stirring means 17 for stirring the cast iron melt 20, and an oxygen supply means 16 that can make the interior of the furnace 10 an oxygen atmosphere. The furnace 10 has an operation port 12a for taking out a sample and an exhaust port 12b for exhausting gas generated during the processing operation. The furnace 10 of this example mechanically agitates the cast iron melt 20 by the agitating means 17 having a drive source such as a motor, but has an agitating means capable of agitating the cast iron melt by an electromagnetic method such as high frequency. It may be a thing.
 図1に示す炉を使用し、鋳鉄のマンガン除去試験(試験A)を行った。本試験中の鋳鉄溶湯の成分測定は、炉から適時試料を採取したサンプルについて発光分光分析装置(株式会社島津製作所製PDA-7020)を使用して行った。鋳鉄溶湯の温度測定は、浸漬型の熱電対により行った。鋳鉄注湯量は500kg又は300kg(実施例2のみ)であった。酸素を供給する酸素給気手段は、酸素のみ又は酸素とプロパンガス(LPG)の混合気を供給することができるバーナー又は超音速で酸素を供給することができるソニックノズルを使用した。バーナーにより酸素のみを供給するときは、酸素流量が5Nm3/hであった。ソニックノズルにより酸素を供給するときは、酸素流量が3Nm3/hであった。バーナーの給気口内径は約15mm、ソニックノズルの給気口内径は約2mmであった。 Using the furnace shown in FIG. 1, a manganese removal test (test A) of cast iron was performed. The components of the cast iron melt during the test were measured using an emission spectroscopic analyzer (PDA-7020 manufactured by Shimadzu Corporation) for a sample taken from a furnace in a timely manner. The temperature of the cast iron melt was measured with an immersion type thermocouple. The cast iron pouring amount was 500 kg or 300 kg (Example 2 only). As the oxygen supply means for supplying oxygen, a burner capable of supplying only oxygen or a mixture of oxygen and propane gas (LPG) or a sonic nozzle capable of supplying oxygen at supersonic speed was used. When only oxygen was supplied by the burner, the oxygen flow rate was 5 Nm 3 / h. When supplying oxygen with a sonic nozzle, the oxygen flow rate was 3 Nm 3 / h. The inner diameter of the air inlet of the burner was about 15 mm, and the inner diameter of the air inlet of the sonic nozzle was about 2 mm.
 試験Aの試験条件を表1に示す。表1において、処理時間とは、鋳鉄溶解炉で溶解した鋳鉄溶湯を予熱した炉に注湯し、マンガン除去試験を開始した後の経過時間を示す。実施例1において、鋳鉄溶湯への空気の吹込みは流量200L/分で行い、酸素の供給は、先ず15分間はバーナーにより、次にソニックノズルにより34分まで行った。実施例2は、空気の吹込み(400L/分)のみを行った。実施例3は、空気の吹込み(200L/分)及び酸素の供給を行った。比較例1は、バーナーにより酸素とLPGの混合ガスを供給し、空気の吹込みは先ず流量200L/分で21分間行い、次に流量を400L/分に増加して41分まで行った。比較例2は、空気の吹込み(200L/分)及び酸素の供給を行った。そして、試験の最初から15分間まで断続的に10~20kgの木炭を投入した。木炭を投入したときは、盛んな火炎がサンプル投入口から観察された。なお、比較例1において、酸素とLPGの混合ガスは、理論燃焼ガスに対して酸素過剰のガスになっている。ソニックノズルを使用する場合は、酸素を超高速(音速以上)で供給することができる。空気の吹込みが流量400L/分の場合は激しいバブリングを生じたが、流量200L/分の場合はそのようなことはなかった。 Test conditions for Test A are shown in Table 1. In Table 1, the treatment time indicates the elapsed time after pouring molten cast iron melted in the cast iron melting furnace into a preheated furnace and starting the manganese removal test. In Example 1, air was blown into the molten cast iron at a flow rate of 200 L / min, and oxygen was supplied first by a burner for 15 minutes and then by a sonic nozzle until 34 minutes. In Example 2, only air blowing (400 L / min) was performed. In Example 3, air was blown (200 L / min) and oxygen was supplied. In Comparative Example 1, a mixed gas of oxygen and LPG was supplied by a burner, and air was first blown at a flow rate of 200 L / min for 21 minutes, and then the flow rate was increased to 400 L / min for 41 minutes. In Comparative Example 2, air was blown (200 L / min) and oxygen was supplied. Then, 10-20 kg of charcoal was introduced intermittently for 15 minutes from the beginning of the test. When charcoal was charged, a thriving flame was observed from the sample inlet. In Comparative Example 1, the mixed gas of oxygen and LPG is an oxygen-excess gas with respect to the theoretical combustion gas. When a sonic nozzle is used, oxygen can be supplied at an extremely high speed (sound speed or higher). Vigorous bubbling occurred when the air was blown at a flow rate of 400 L / min, but this was not the case at a flow rate of 200 L / min.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験Aの実施例1の試験結果を表2に示す。表2において、成分含有量は質量%であり、表2に示す成分以外の残部は、鉄及び不可避的不純物である。上記のマンガン(Mn)、炭素(C)及び珪素(Si)以外は、表2によると、チタン(Ti)の含有量は当初0.017%であったものが処理時間34分後に0.008%になっており、含有量がほぼ半減している。また、アルミニウム(Al)の含有量は処理時間34分後に約20%減少しており、クロム(Cr)、硼素(B)及び亜鉛(Zn)の含有量についてもいくらか減少していることが分かる。 Table 2 shows the test results of Example 1 of Test A. In Table 2, the component content is mass%, and the balance other than the components shown in Table 2 is iron and inevitable impurities. According to Table 2, except for the above manganese (Mn), carbon (C) and silicon (Si), the content of titanium (Ti) was initially 0.017% but became 0.008% after 34 minutes of treatment time. The content is almost halved. In addition, the aluminum (Al) content decreased by about 20% after the treatment time of 34 minutes, and the chromium (Cr), boron (B), and zinc (Zn) contents also decreased somewhat. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記実施例1の結果を図3に示す。図3において、横軸が処理時間、縦軸がMn、Si又はCの残存率、および溶湯温度である。残存率とは、Mn、C又はSiの含有量の当初含有量に対する残存含有量の比率である。図3によれば、C残存率は1.00~1.02の範囲内にあり、C量は当初含有量の2%以内の変動範囲のほぼ一定値に保たれている。これに対し、Mn残存率曲線は急勾配の下降曲線になっており、処理時間34分後にMnの残存率が0.6(当初含有量の60%)になっており、Mn量が急速に減少していることを示している。一方、Si残存率曲線は滑らかに下降しており、処理時間34分後の残存率が0.84(当初含有量の84%)である。すなわち、本例においては、Mnは、Siに対して2倍以上の速度で除去されている。溶湯温度は、当初の1257℃から1152℃まで次第に低下した後、処理時間20分経過後には次第に上昇し、処理時間34分経過後には1181℃になっている。ソニックノズルの効果が表れているように解される。 The result of Example 1 is shown in FIG. In FIG. 3, the horizontal axis represents the treatment time, and the vertical axis represents the residual ratio of Mn, Si or C, and the molten metal temperature. The residual ratio is the ratio of the residual content to the initial content of the Mn, C, or Si content. According to FIG. 3, the C residual ratio is in the range of 1.00 to 1.02, and the C amount is maintained at a substantially constant value within a fluctuation range within 2% of the initial content. In contrast, the Mn residual rate curve is a steep descending curve, and after 34 minutes of processing time, the Mn residual rate is 0.6 (60% of the initial content), and the Mn content decreases rapidly. It shows that. On the other hand, the Si residual rate curve falls smoothly, and the residual rate after 34 minutes of processing time is 0.84 (84% of the initial content). That is, in this example, Mn is removed at a rate twice or more that of Si. The molten metal temperature gradually decreased from the initial 1257 ° C. to 1152 ° C., then gradually increased after the processing time of 20 minutes, and reached 1181 ° C. after the processing time of 34 minutes. It is understood that the effect of the sonic nozzle appears.
 図4~図7に示すグラフは、本試験AにおけるそれぞれMn残存率、C残存率、Si残存率又は溶湯温度と処理時間との関係を示す。図4~図6において、横軸は処理時間、縦軸はMn、C又はSiの残存率を示す。図7において、横軸は処理時間、縦軸は溶湯温度を示す。Mn残存率曲線又はSi残存率曲線において、勾配又は除去速度とは単位処理時間当たりに除去された成分量の当初含有量に対する比((残存率a-残存率b)/(処理時間b-処理時間a))をいう。 The graphs shown in FIGS. 4 to 7 show the relationship between the Mn residual rate, C residual rate, Si residual rate, or molten metal temperature and treatment time in Test A, respectively. 4 to 6, the horizontal axis represents the processing time, and the vertical axis represents the residual ratio of Mn, C or Si. In FIG. 7, the horizontal axis represents the processing time, and the vertical axis represents the molten metal temperature. In the Mn residual rate curve or Si residual rate curve, the gradient or removal rate is the ratio of the amount of components removed per unit processing time to the initial content ((residual rate a-residual rate b) / (processing time b-processing Time a)).
<燃焼ガスの吹付け>
 比較例1(□印)は、酸素過剰な炉内において、LPG燃焼ガスを鋳鉄溶湯面に吹き付けてマンガン除去試験を行った場合である。この比較例1は、処理時間10分後に酸素量及びLPGガス量を増加し、処理時間26分後に鋳鉄溶湯への空気の吹込みも200L/分から400L/分に増加した場合の例である。比較例1のMn残存率曲線の勾配は、図4によれば、実施例1~3のMn残存率曲線の勾配より小さく、比較例1のMn除去速度は実施例1~3のMn除去速度の約80%である。図5によれば、C除去は、空気量の増加があっても処理時間約40分後において4%程度であり、C除去(炭素の消耗)が抑制されている。図6に示すSi残存率曲線の勾配は処理時間20分までは最も小さく、Si除去も抑制されている。
<Blowing of combustion gas>
Comparative Example 1 (□ mark) is a case where a manganese removal test was performed by spraying LPG combustion gas onto the molten cast iron surface in an oxygen-excess furnace. This Comparative Example 1 is an example in which the oxygen amount and LPG gas amount are increased after 10 minutes of processing time, and the air blowing into the cast iron melt is increased from 200 L / min to 400 L / min after 26 minutes of processing time. According to FIG. 4, the slope of the Mn residual rate curve of Comparative Example 1 is smaller than the slope of the Mn residual rate curves of Examples 1 to 3, and the Mn removal rate of Comparative Example 1 is the Mn removal rate of Examples 1 to 3. About 80%. According to FIG. 5, C removal is about 4% after about 40 minutes of processing time even if the amount of air is increased, and C removal (carbon consumption) is suppressed. The slope of the Si residual rate curve shown in FIG. 6 is the smallest until the processing time is 20 minutes, and Si removal is also suppressed.
 酸素量及びLPGガス量を増加した効果は、Mn残存率曲線には表れていなく(図4)、C残存率曲線(図5)及びSi残存率曲線(図6)にもほとんど表れていない。しかしながら、溶湯温度は処理時間10分後に上昇をしており、酸素量及びLPGガス量の増加によく対応している。一方、空気量の増量の効果は、Mn残存率曲線に表れており、C残存率曲線及びSi残存率曲線には明瞭に表れている。 The effect of increasing the amount of oxygen and the amount of LPG gas does not appear in the Mn residual rate curve (FIG. 4), and hardly appears in the C residual rate curve (FIG. 5) and the Si residual rate curve (FIG. 6). However, the molten metal temperature rises after 10 minutes of treatment time, and corresponds well to increases in the oxygen content and LPG gas content. On the other hand, the effect of increasing the air amount appears in the Mn residual rate curve and clearly in the C residual rate curve and the Si residual rate curve.
<炉内の雰囲気>
 比較例2(○印)は、鋳鉄溶湯に対する酸素の供給、空気の吹込みが実施例1又は3と同様であるが、炉内に木炭を投入し炉内の環境を実施例1又は3の場合と異なる状態にしてマンガン除去試験を行った場合である。図4に示すように、Mn残存率曲線の勾配は最も緩やかで、比較例2のMn除去速度は実施例1又は3のMn除去速度の約40%である。図5に示すC残存率曲線によると、木炭による加炭の効果が観察されるが、C残存量は当初含有量の4%変動範囲内にある。図6に示すSi残存率曲線によると、Siの残存率は最も高く、処理時間30分後においても残存率は0.93である。すなわち、炉内が酸化し難い環境になっており、Siの酸化が抑制される環境になっていると解される。図7に示す溶湯温度曲線によると、木炭燃焼による溶湯温度の上昇は観察されず、実施例3の溶湯温度曲線に重なっている。なお、図4に示す指標a直線と、図6に示す指標a直線は同じ勾配の直線である。すなわち、図4に示す比較例2のMn除去速度は、図6に示す実施例1~3のSi除去速度とほぼ同等であることが示されている。
<Atmosphere in furnace>
In Comparative Example 2 (circle mark), the supply of oxygen to the cast iron melt and the blowing of air were the same as in Example 1 or 3, but the charcoal was introduced into the furnace and the environment in the furnace was changed to that in Example 1 or 3. This is a case where the manganese removal test was conducted in a different state. As shown in FIG. 4, the slope of the Mn residual rate curve is the slowest, and the Mn removal rate of Comparative Example 2 is about 40% of the Mn removal rate of Example 1 or 3. According to the C residual rate curve shown in FIG. 5, the effect of carburizing with charcoal is observed, but the C residual amount is within a 4% variation range of the initial content. According to the Si residual rate curve shown in FIG. 6, the residual rate of Si is the highest, and the residual rate is 0.93 even after 30 minutes of processing time. That is, it is understood that the inside of the furnace is difficult to oxidize and is an environment where oxidation of Si is suppressed. According to the molten metal temperature curve shown in FIG. 7, an increase in the molten metal temperature due to charcoal combustion is not observed and overlaps with the molten metal temperature curve of Example 3. The index a straight line shown in FIG. 4 and the index a straight line shown in FIG. 6 are straight lines having the same gradient. That is, it is shown that the Mn removal rate of Comparative Example 2 shown in FIG. 4 is substantially equal to the Si removal rate of Examples 1 to 3 shown in FIG.
 図2に示す炉を使用して鋳鉄のマンガン除去試験(試験B)を行った。試験は、酸素の供給条件又は鋳鉄溶湯の攪拌条件を表3に示すように、種々変えて行った。実施例4~6は、酸素の供給とともに、200L/分の空気の吹込みを行った。この空気の吹込みは、上記試験Aの実施例1又は3と同様の方法で行った。実施例7~9は、酸素を20N3/hで試験開始から終了まで供給するとともに、攪拌手段17の攪拌速度を種々変えた。例えば、攪拌手段17の攪拌速度は、実施例7において試験開始から終了まで200rpm、実施例8において100rpmで試験開始し、処理時間11分後に200rpmに増加した。本試験中の鋳鉄溶湯の成分測定又は温度測定は、試験Aの場合と同様の発光分光分析装置又は浸漬型の熱電対により行った。鋳鉄の炉への注湯量は500kgであった。 The furnace shown in FIG. 2 was used to conduct a cast iron manganese removal test (Test B). As shown in Table 3, the test was performed by changing the oxygen supply conditions or the cast iron molten metal stirring conditions. In Examples 4 to 6, air was blown in at 200 L / min along with the supply of oxygen. This air blowing was performed in the same manner as in Example 1 or 3 of Test A above. In Examples 7 to 9, oxygen was supplied at 20 N 3 / h from the start to the end of the test, and the stirring speed of the stirring means 17 was variously changed. For example, the stirring speed of the stirring means 17 was started at 200 rpm from the start to the end of the test in Example 7, and started at 100 rpm in Example 8, and increased to 200 rpm after 11 minutes of the processing time. The component measurement or temperature measurement of the molten cast iron during this test was performed using the same emission spectroscopic analyzer or immersion thermocouple as in test A. The amount of molten iron poured into the cast iron furnace was 500 kg.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 試験Bの結果を図8~図11に示す。図8はMn残存率、図9はC残存率、図10はSi残存率を示し、横軸は処理時間、縦軸はMn、C又はSiの残存率を示す。図11は、横軸は処理時間、縦軸は溶湯温度を示す。図8に示すMn除去率は、試験Bの結果とともに試験Aの実施例1及び3の結果をも合わせて示している。また、図8の指標a直線、指標b直線は、図6又は図10に示す指標a直線、指標b直線と同じ勾配の直線を示す。指標a直線、指標b直線、指標c直線の勾配は、指標a直線を基準にすると、1:3.2:6.1である。 The results of Test B are shown in Figs. 8 shows the Mn residual rate, FIG. 9 shows the C residual rate, FIG. 10 shows the Si residual rate, the horizontal axis shows the processing time, and the vertical axis shows the residual rate of Mn, C, or Si. In FIG. 11, the horizontal axis indicates the processing time, and the vertical axis indicates the molten metal temperature. The Mn removal rate shown in FIG. 8 shows the results of Examples 1 and 3 of Test A together with the results of Test B. Further, the index a straight line and the index b straight line in FIG. 8 indicate straight lines having the same gradient as the index a straight line and the index b straight line shown in FIG. The slopes of the index a straight line, the index b straight line, and the index c straight line are 1: 3.2: 6.1 based on the index a straight line.
 図8によると、Mn残存率は、処理の開始から処理時間10分~20分までにおいて指標b直線又は指標c直線にほぼ沿って減少している。実施例1、実施例3、実施例5及び実施例8のMn残存率は指標b直線に沿って減少している。実施例4、実施例6、実施例7及び実施例9のMn残存率は指標c直線に沿って減少している。そして、実施例5及び実施例8のMn残存率曲線は、処理時間が11分のところで下に屈曲しており、他のMn残存率曲線と異なる形状をしている。 According to FIG. 8, the Mn residual rate decreases substantially along the index b straight line or the index c straight line from the start of the processing to the processing time of 10 to 20 minutes. The Mn residual ratios of Example 1, Example 3, Example 5, and Example 8 decrease along the index b straight line. The Mn residual ratios of Example 4, Example 6, Example 7, and Example 9 decrease along the index c straight line. The Mn residual rate curves of Example 5 and Example 8 are bent downward at a processing time of 11 minutes, and have a different shape from the other Mn residual rate curves.
 図9によると、C残存率は、ほぼ1.02~0.96の範囲に入っており、ほぼ一定値になっている。すなわち、C除去(脱炭)が抑制されている。図10によると、各実施例のSi残存率はほぼ指標b直線に沿って減少している。実施例5のSi残存率は、当初指標a直線に沿って減少していたが、処理時間16分後に急速に減少し、処理時間25分後には指標b直線に沿うように減少している。実施例9の場合は、Siの除去が最も進んでいる。図11によると、溶湯温度1410~1270℃において処理が進行しており、溶湯温度曲線は、概して処理の途中で上昇し溶湯が昇温していることを示している。 Referring to FIG. 9, the C residual ratio is in the range of approximately 1.02 to 0.96, which is a substantially constant value. That is, C removal (decarburization) is suppressed. According to FIG. 10, the Si residual ratio in each example decreases substantially along the straight line b. The residual ratio of Si in Example 5 initially decreased along the straight line a, but rapidly decreased after 16 minutes of processing time, and decreased along the straight line b after 25 minutes of processing time. In the case of Example 9, the removal of Si is most advanced. According to FIG. 11, the treatment proceeds at a molten metal temperature of 1410 to 1270 ° C., and the molten metal temperature curve generally shows that the molten metal has risen during the treatment and the molten metal has been heated.
<酸素の供給>
 図8に示す実施例1、3、4~6は、空気の吹込みが200L/minで同じであるが、酸素の供給量又は供給の仕方が異なる。これらのMn残存率曲線を観察すると、酸素の供給量によってMnの除去速度を調整できることが分かる。すなわち、実施例4のMn残存率曲線によると、大量の酸素(50Nm3/h)を供給した処理時間7分までの勾配が最も大きく、処理時間12分で当初Mn含有量の30%が除去されている。最初に充分な酸素を供給したことが効果的であったと解される。また、実施例5の場合は、酸素の供給を当初の15Nm3/hから処理時間11分経過後に20Nm3/hに増加したことに起因して、Mn残存率曲線が処理時間11分において屈曲しており、Mnの除去が促進されていることが観察される。
<Oxygen supply>
In Examples 1, 3, 4 to 6 shown in FIG. 8, the air blowing rate is the same at 200 L / min, but the oxygen supply amount or the supply method is different. Observing these Mn residual rate curves, it can be seen that the removal rate of Mn can be adjusted by the supply amount of oxygen. That is, according to the Mn residual rate curve of Example 4, the gradient up to the treatment time of 7 minutes when a large amount of oxygen (50 Nm 3 / h) was supplied was the largest, and 30% of the initial Mn content was removed in the treatment time of 12 minutes. Has been. It is understood that supplying sufficient oxygen first was effective. The bending, in the case of Example 5, due to the increased supply of oxygen from the beginning of 15 Nm 3 / h after the lapse processing time 11 minutes to 20 Nm 3 / h, Mn residual ratio curve in the processing time 11 minutes It is observed that the removal of Mn is promoted.
 実施例1、3、4~6のC残存量は、図5及び図9によるとC残存率が1.02~0.97の範囲にあり、ほぼ一定値になっている。C残存率は、酸素の供給量及び供給の仕方にほとんど左右されない。一方、Si残存率は、酸素の供給量及び供給の仕方に影響を受けることが図6及び図10に示されている。概して、酸素の供給量が少ない場合はSi残存率が指標a直線に沿って減少し、酸素の供給量が多い場合はSi残存率が指標b直線に沿って減少している。酸素の供給量を変化させた影響が実施例5の場合によく表れている。すなわち、Si残存率は、酸素の供給が15Nm3/hのときは指標a直線に沿って減少し、酸素の供給が20Nm3/hに増加すると急激に減少している。そして、Si残存率は処理時間25分後には指標b直線に沿って減少している。一方、当初に大量の酸素(50Nm3/h)を供給し、処理時間7分(20Nm3/h)及び15分(10Nm3/h)に酸素の供給量を急激に絞った実施例4においては、Si残存率曲線、C残存率曲線及び溶湯温度曲線にその効果はほとんど表れていない(図9~11)。 According to FIGS. 5 and 9, the C residual amount of Examples 1, 3, 4 to 6 is in a range of 1.02 to 0.97, and is almost constant. The residual ratio of C hardly depends on the supply amount of oxygen and the supply method. On the other hand, it is shown in FIGS. 6 and 10 that the Si residual rate is affected by the supply amount and supply method of oxygen. In general, when the supply amount of oxygen is small, the Si residual rate decreases along the index a line, and when the oxygen supply amount is large, the Si residual rate decreases along the index b line. The effect of changing the supply amount of oxygen appears well in the case of Example 5. That, Si residual rate, the supply of oxygen is reduced along the index a straight line when the 15 Nm 3 / h, the supply of oxygen is rapidly reduced with increasing the 20 Nm 3 / h. The Si residual rate decreases along the index b straight line after 25 minutes of processing time. On the other hand, in Example 4 in which a large amount of oxygen (50 Nm 3 / h) was initially supplied and the supply amount of oxygen was rapidly reduced to a treatment time of 7 minutes (20 Nm 3 / h) and 15 minutes (10 Nm 3 / h). Almost no effect appears in the Si residual rate curve, the C residual rate curve, and the molten metal temperature curve (FIGS. 9 to 11).
 図7と図11を比較すると、実施例1又は3の溶湯温度は処理中に約100℃低下する。これに対し、実施例4~6の溶湯温度の低下は少なく、実施例4の温度低下が最大で55℃である。酸素の供給量が一定量(例えば15Nm3/h)以上になると、溶湯への空気の吹込みによる溶湯温度の低下を抑制できると解される。また、図11によると、酸素量を増加すると溶湯温度が上昇する傾向にあることが分かる。すなわち、酸素供給量を調整することによって、溶湯温度の調整が可能である。 When FIG. 7 and FIG. 11 are compared, the molten metal temperature of Example 1 or 3 decreases by about 100 ° C. during the treatment. On the other hand, the temperature drop in Examples 4 to 6 is small, and the temperature drop in Example 4 is 55 ° C. at the maximum. It is understood that when the supply amount of oxygen becomes a certain amount (for example, 15 Nm 3 / h) or more, a decrease in the melt temperature due to the blowing of air into the melt can be suppressed. Moreover, according to FIG. 11, it turns out that there exists a tendency for molten metal temperature to rise, if oxygen amount is increased. That is, the molten metal temperature can be adjusted by adjusting the oxygen supply amount.
<溶湯の攪拌>
 実施例7、8及び9は、表3に示すように、酸素の供給が20Nm3/hで鋳鉄溶湯の攪拌条件をそれぞれ変えて行った試験である。実施例7は、攪拌速度を200rpmで試験を行った場合である。実施例7によれば、効率的にMnを除去することができ(図8)、脱炭は少なく(図9)、溶湯温度の低下が約20℃で少なくほぼ一定の溶湯温度でMn除去を行うことができる(図11)。実施例8の場合は、攪拌速度を当初の100rpmから処理時間11分経過後に200rpmに増加したことに起因し、Mn残存率が指標b直線に沿って減少していたところ急速に低下し、処理時間18分後に指標c直線に沿って減少するようになっている。すなわち、溶湯の攪拌速度を調整することによってMn除去の程度を調整することができることが示されている。図8によると、実施例7~9のMn残存率は、処理時間10まで直線的に減少している。このMn残存率曲線の勾配(Mn除去速度)と攪拌速度との関係を図12に示す。図12によると、Mn除去速度と攪拌速度には一定の関係が観察される。このため、図12に基づいて溶湯の攪拌速度を調整することによってMn除去の程度を調整することができる。
<Agitation of molten metal>
As shown in Table 3, Examples 7, 8 and 9 are tests conducted by changing the stirring conditions of the cast iron melt while supplying oxygen at 20 Nm 3 / h. Example 7 is a case where the test was conducted at a stirring speed of 200 rpm. According to Example 7, Mn can be efficiently removed (FIG. 8), decarburization is small (FIG. 9), and the decrease in molten metal temperature is about 20 ° C. and Mn removal is performed at a substantially constant molten metal temperature. It can be done (FIG. 11). In the case of Example 8, due to the fact that the stirring speed was increased from the initial 100 rpm to 200 rpm after 11 minutes from the processing time, the Mn residual rate decreased rapidly along the index b straight line, and the processing speed decreased. It decreases along the index c straight line after 18 minutes. That is, it is shown that the degree of Mn removal can be adjusted by adjusting the stirring speed of the molten metal. According to FIG. 8, the Mn residual ratio of Examples 7 to 9 decreases linearly until the processing time of 10. FIG. 12 shows the relationship between the slope of the Mn residual rate curve (Mn removal rate) and the stirring speed. According to FIG. 12, a certain relationship is observed between the Mn removal speed and the stirring speed. For this reason, the degree of Mn removal can be adjusted by adjusting the stirring speed of the molten metal based on FIG.
 図11によると、実施例8は、溶湯温度が処理時間15分後に上昇しており、これは処理時間11分後に攪拌速度を100rpmから200rpmに増加させたことによく対応している。また、実施例9は、攪拌速度が150rpmで処理を開始し、処理時間20分後に攪拌速度を250rpmに増加した例であるが、溶湯温度は処理時間20分後に上昇しており、攪拌速度変更の効果が明瞭に表れている。なお、実施例9の場合は、図8~図10に示すように、攪拌速度変更の効果は、Mn残存率、C残存率及びSi残存率にほとんど表れていない。 According to FIG. 11, in Example 8, the molten metal temperature increased after 15 minutes of processing time, which corresponds well to increasing the stirring speed from 100 rpm to 200 rpm after 11 minutes of processing time. Further, Example 9 is an example in which the treatment was started at a stirring speed of 150 rpm and the stirring speed was increased to 250 rpm after 20 minutes of processing time, but the molten metal temperature was increased after 20 minutes of processing time, and the stirring speed was changed. The effect is clearly shown. In the case of Example 9, as shown in FIGS. 8 to 10, the effect of changing the stirring speed hardly appears in the Mn residual rate, the C residual rate, and the Si residual rate.
<Mn除去とSi除去>
 図8によると、Mn残存率は、指標b直線、指標c直線のそれぞれに沿って減少している。また、図6及び図10によると、Si残存率は、指標b直線、指標c直線のそれぞれに沿って減少している。指標b直線の勾配と指標c直線の勾配の比は32/61で約1/2である。すなわち、減少速度の比は約1/2である。
<Mn removal and Si removal>
According to FIG. 8, the Mn residual rate decreases along each of the index b straight line and the index c straight line. Moreover, according to FIG.6 and FIG.10, Si residual ratio is reducing along each of the parameter | index b straight line and the parameter | index c straight line. The ratio of the slope of the index b straight line to the slope of the index c straight line is 32/61, which is about 1/2. That is, the reduction rate ratio is about 1/2.
 図13は、処理時間aにおけるSi/Mn減少比((1.00-Si残存率a)/(1.00-Mn残存率a))と処理時間の関係を示すグラフである。図13によると、実施例7のSi/Mn減少比は、ほぼ0.5で一定である。すなわち、Siの減少速度は、Mnの減少速度の1/2である。また、図13によると、実施例9のSi/Mn減少比は約0.8で一定であるが、実施例4はSi/Mn減少比が0.1~0.7の範囲で振動している。実施例6のSi/Mn減少比は0.62~0.9の範囲でほぼ直線的に増加している。実施例8のSi/Mn減少比は0.01~0.5の範囲でほぼ直線的に増加しており、Siの除去(消耗)が抑制されている。鋳鉄溶湯のマンガン除去方法においては、Mn除去に対し、Siの除去の程度も予測できるのが好ましい。かかる観点からは、実施例7又は実施例9の方法が好ましい。 FIG. 13 is a graph showing the relationship between the Si / Mn reduction ratio ((1.00-Si residual rate a) / (1.00-Mn residual rate a)) and the processing time at the processing time a. According to FIG. 13, the Si / Mn reduction ratio of Example 7 is approximately 0.5 and constant. That is, the decrease rate of Si is 1/2 of the decrease rate of Mn. Further, according to FIG. 13, the Si / Mn reduction ratio of Example 9 is constant at about 0.8, but Example 4 vibrates in the range of Si / Mn reduction ratio of 0.1 to 0.7. The Si / Mn reduction ratio of Example 6 increases almost linearly in the range of 0.62 to 0.9. The Si / Mn reduction ratio of Example 8 increases almost linearly in the range of 0.01 to 0.5, and the removal (consumption) of Si is suppressed. In the method for removing manganese from molten cast iron, it is preferable that the degree of removal of Si can be predicted as compared with the removal of Mn. From this viewpoint, the method of Example 7 or Example 9 is preferable.
<Cr、Ti、Al、B、Zn>
 本願発明は、Cr、Ti、Al、B、Znなどの各金属成分を除去することができる。表4に実施例5による結果、表5に実施例7による結果を示す。この表において、時間とは、処理時間を示し、温度とは溶湯温度を示す。各成分の含有量は質量%を示す。表4と表5を比較すると、Bは、実施例5、実施例7のいずれの場合も効率よく除去することができる。しかし、Znは、空気吹込みによる実施例5の場合は除去し難く、溶湯攪拌による実施例7の場合はCr及びAlの除去が難しい。実施例5によれば、約30分の処理で、Cr、Ti又はAlを40~50%除去することができる。実施例7によれば、15分の処理で、Ti又はZnを50~60%除去することができる。
<Cr, Ti, Al, B, Zn>
The present invention can remove metal components such as Cr, Ti, Al, B, and Zn. Table 4 shows the results of Example 5, and Table 5 shows the results of Example 7. In this table, time indicates the processing time, and temperature indicates the molten metal temperature. Content of each component shows the mass%. Comparing Table 4 and Table 5, B can be efficiently removed in both cases of Example 5 and Example 7. However, Zn is difficult to remove in the case of Example 5 by air blowing, and it is difficult to remove Cr and Al in the case of Example 7 by molten metal stirring. According to Example 5, Cr, Ti, or Al can be removed by 40 to 50% in about 30 minutes. According to Example 7, 50 to 60% of Ti or Zn can be removed in 15 minutes.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 10  炉
 11  炉本体
 12  炉蓋
 15  空気給気手段
 16  酸素給気手段
 20  鋳鉄溶湯
10 Furnace 11 Furnace body 12 Furnace lid 15 Air supply means 16 Oxygen supply means 20 Cast iron melt

Claims (8)

  1.  炉内を酸素雰囲気にするとともにその炉内の鋳鉄溶湯に空気を吹き込んで、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行う鋳鉄のマンガン除去方法。 A method for removing manganese from cast iron, in which the inside of the furnace is in an oxygen atmosphere and air is blown into the molten cast iron in the furnace to keep the carbon component in the molten cast iron almost constant.
  2.  炉内を酸素雰囲気にしてその炉内の鋳鉄溶湯を攪拌し、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分の除去を行う鋳鉄のマンガン除去方法。 A method for removing manganese from cast iron, in which the inside of the furnace is placed in an oxygen atmosphere, the molten cast iron in the furnace is agitated, and the carbon component in the molten cast iron is kept almost constant to remove the manganese component.
  3.  炉内に供給する酸素量又は/及び炉内の鋳鉄溶湯の攪拌速度を調整しつつマンガン成分の除去を行う請求項2に記載の鋳鉄のマンガン除去方法。 The method for removing manganese from cast iron according to claim 2, wherein the manganese component is removed while adjusting the amount of oxygen supplied into the furnace and / or the stirring speed of the molten cast iron in the furnace.
  4.  珪素成分の除去速度とマンガン成分の除去速度の比をほぼ一定に保持して行う請求項1~3の何れか一項に記載の鋳鉄のマンガン除去方法。 The method for removing manganese from cast iron according to any one of claims 1 to 3, wherein the ratio between the removal rate of the silicon component and the removal rate of the manganese component is maintained substantially constant.
  5.  珪素成分の減少を抑えてマンガン成分の除去を行う請求項1~3の何れか一項に記載の鋳鉄のマンガン除去方法。 The method for removing manganese from cast iron according to any one of claims 1 to 3, wherein the manganese component is removed while suppressing a decrease in the silicon component.
  6.  鋳鉄溶湯の湯温をほぼ一定に保持して行う請求項1~3の何れか一項に記載の鋳鉄のマンガン除去方法。 The method for removing manganese from cast iron according to any one of claims 1 to 3, wherein the molten iron temperature of the cast iron melt is kept substantially constant.
  7.  鋳鉄溶湯の温度は、1400℃~1200℃である請求項1~6の何れか一項に記載の鋳鉄のマンガン除去方法。 The method for removing manganese from cast iron according to any one of claims 1 to 6, wherein the temperature of the molten cast iron is 1400 ° C to 1200 ° C.
  8.  炉内を酸素雰囲気にするとともにその炉内の鋳鉄溶湯に空気を吹き込み又は炉内を酸素雰囲気にしてその炉内の鋳鉄溶湯を攪拌し、その鋳鉄溶湯中の炭素成分をほぼ一定に保持してマンガン成分と合わせ、クロム、チタン、アルミニウム、硼素又は亜鉛の金属成分の除去を行う鋳鉄の金属成分除去方法。 Bring the furnace atmosphere to oxygen and blow the air into the cast iron melt in the furnace or stir the cast iron melt in the furnace to keep the carbon component in the cast iron melt almost constant. A method for removing a metal component of cast iron, wherein the metal component of chromium, titanium, aluminum, boron or zinc is removed together with the manganese component.
PCT/JP2015/083567 2014-12-12 2015-11-30 Methods for manganese removal for cast iron WO2016093093A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/535,118 US20170342515A1 (en) 2014-12-12 2015-11-30 Methods for manganese removal of cast iron
JP2016510542A JP6110018B2 (en) 2014-12-12 2015-11-30 Method for removing manganese from cast iron
CN201580067729.3A CN107406898A (en) 2014-12-12 2015-11-30 The manganese minimizing technology of cast iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014252462 2014-12-12
JP2014-252462 2014-12-12

Publications (1)

Publication Number Publication Date
WO2016093093A1 true WO2016093093A1 (en) 2016-06-16

Family

ID=56107283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083567 WO2016093093A1 (en) 2014-12-12 2015-11-30 Methods for manganese removal for cast iron

Country Status (4)

Country Link
US (1) US20170342515A1 (en)
JP (1) JP6110018B2 (en)
CN (1) CN107406898A (en)
WO (1) WO2016093093A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110551865A (en) * 2019-09-17 2019-12-10 天津达亿冶金技术研究有限公司 system and process for treating molten iron of manganese-rich slag furnace by utilizing induction heating and blowing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113122768A (en) * 2021-04-12 2021-07-16 长沙学院 Low-cost seawater corrosion resistant nodular cast iron and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133015A (en) * 1976-04-30 1977-11-08 Komatsu Mfg Co Ltd Demanganization of cast iron in basic bessemer furnace
JPS61163203A (en) * 1985-01-10 1986-07-23 Nippon Steel Corp Method for removing mn from molten iron
JP2003160807A (en) * 2001-11-22 2003-06-06 Kawasaki Steel Corp Preliminary treatment method for molten pig iron
JP2011153359A (en) * 2010-01-28 2011-08-11 Kimura Chuzosho:Kk Method for removing impurity in molten cast iron and cast iron raw material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1484465A (en) * 1922-05-12 1924-02-19 J R Billings Iron And Steel Co Process of treating molten cast iron or steel
US4021232A (en) * 1974-08-09 1977-05-03 Hitachi Metals, Ltd. Cast iron melting process
DE2727093A1 (en) * 1977-06-15 1979-01-04 Linde Ag Removal of manganese and silicon from a cast iron melt - by an oxygen blow and addn. of slag formers
JPS5831012A (en) * 1981-08-19 1983-02-23 Nippon Steel Corp Preferential desiliconizing method for molten iron by blowing of gaseous oxygen
JP4210603B2 (en) * 2002-03-28 2009-01-21 旭テック株式会社 Method for removing manganese in molten cast iron and method for producing spheroidal graphite cast iron
CN101555536B (en) * 2009-04-30 2011-04-20 包头市神润高新材料股份有限公司 Production technique for smelting low-manganese pig iron
CN101555538A (en) * 2009-04-30 2009-10-14 爱德洛(北京)科技有限公司 Production technique for smelting low-manganese pig iron

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52133015A (en) * 1976-04-30 1977-11-08 Komatsu Mfg Co Ltd Demanganization of cast iron in basic bessemer furnace
JPS61163203A (en) * 1985-01-10 1986-07-23 Nippon Steel Corp Method for removing mn from molten iron
JP2003160807A (en) * 2001-11-22 2003-06-06 Kawasaki Steel Corp Preliminary treatment method for molten pig iron
JP2011153359A (en) * 2010-01-28 2011-08-11 Kimura Chuzosho:Kk Method for removing impurity in molten cast iron and cast iron raw material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAO FUJIKAWA ET AL.: "New removal impurities processing from molten metal of cast iron", MIE PREFECTURE INDUSTRIAL RESEARCH INSTITUTE KENKYU HOKOKU, vol. 34, 25 November 2010 (2010-11-25), pages 38 - 45 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110551865A (en) * 2019-09-17 2019-12-10 天津达亿冶金技术研究有限公司 system and process for treating molten iron of manganese-rich slag furnace by utilizing induction heating and blowing

Also Published As

Publication number Publication date
CN107406898A (en) 2017-11-28
JPWO2016093093A1 (en) 2017-04-27
JP6110018B2 (en) 2017-04-05
US20170342515A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
JP5552754B2 (en) Arc furnace operation method
JP5236926B2 (en) Manufacturing method of molten steel
JP6110018B2 (en) Method for removing manganese from cast iron
CN107245637A (en) A kind of AOD smelts the method and a kind of AOD furnace of high manganese stainless steel
JP2006274349A (en) Method for refining steel
JP5150654B2 (en) Method for removing impurities in cast iron melt and cast iron raw material
JP6085005B2 (en) Generation method of foamed slag in arc furnace steelmaking
JP5493335B2 (en) Hot copper decoppering method
JP5061598B2 (en) Hot metal desulfurization method
JP4998691B2 (en) Metal band covering desulfurization wire and method for desulfurization of molten iron
JP4714655B2 (en) Desulfurization method for chromium-containing molten iron
JP6806288B2 (en) Steel manufacturing method
JP6947374B2 (en) Cast iron refining method
JP5573024B2 (en) Steelmaking slag treatment method
JPS6250544B2 (en)
US4177070A (en) Exothermic slag-forming mixture
JP2019151535A (en) Method of producing phosphate slag fertilizer
JP7266939B1 (en) Desulfurization method for desulfurization slag in steelmaking process
JP6947024B2 (en) Hot metal desulfurization method
JP2006316318A (en) Method for desulfurizing molten pig iron
JP4833889B2 (en) Desulfurization method for chromium-containing molten iron
JP2016078035A (en) Mold flux for continuous casting of steel
RU2198235C2 (en) Method of production of ferromanganese and silicomanganese
RU2198936C2 (en) Method of melting in furnace at pneumatic mixing by melted slag
CN112725563A (en) Low-carbon ferrosilicon smelting method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016510542

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867526

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15535118

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15867526

Country of ref document: EP

Kind code of ref document: A1