WO2016091255A1 - Verfahren zur optimierung einer ansteuerdynamik eines elektromotors, vorzugsweise zur anwendung in einem hydrostatischen kupplungsaktor eines kraftfahrzeuges - Google Patents

Verfahren zur optimierung einer ansteuerdynamik eines elektromotors, vorzugsweise zur anwendung in einem hydrostatischen kupplungsaktor eines kraftfahrzeuges Download PDF

Info

Publication number
WO2016091255A1
WO2016091255A1 PCT/DE2015/200510 DE2015200510W WO2016091255A1 WO 2016091255 A1 WO2016091255 A1 WO 2016091255A1 DE 2015200510 W DE2015200510 W DE 2015200510W WO 2016091255 A1 WO2016091255 A1 WO 2016091255A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase angle
motor
electric motor
commutation
motor current
Prior art date
Application number
PCT/DE2015/200510
Other languages
English (en)
French (fr)
Inventor
Jose Alexander Lazo Zamalloa
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to JP2017531294A priority Critical patent/JP6667529B2/ja
Priority to KR1020177015360A priority patent/KR20170094181A/ko
Priority to CN201580066912.1A priority patent/CN107005182B/zh
Priority to DE112015005537.1T priority patent/DE112015005537A5/de
Publication of WO2016091255A1 publication Critical patent/WO2016091255A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D28/00Electrically-actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D29/00Clutches and systems of clutches involving both fluid and magnetic actuation
    • F16D29/005Clutches and systems of clutches involving both fluid and magnetic actuation with a fluid pressure piston driven by an electric motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/15Controlling commutation time
    • H02P6/153Controlling commutation time wherein the commutation is advanced from position signals phase in function of the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D2025/081Hydraulic devices that initiate movement of pistons in slave cylinders for actuating clutches, i.e. master cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof

Definitions

  • the invention relates to a method for optimizing a drive dynamics of an electric motor, preferably for use in a hydrostatic
  • Clutch actuator of a motor vehicle in which a commutation of a plurality of pole pairs of the electric motor takes place in dependence on a position of a rotor of the electric motor, wherein the position of the rotor is derived from a phase angle, which occupies the rotor to a stator of the electric motor and which of a Sensor is measured and forwarded to a control unit which controls the commutation in dependence on the phase angle.
  • a method for checking a commutation quality of an electronically commutating electric motor is known from DE 10 201 1 086 583 A1, which has several phases in a drive system of a motor vehicle, in particular in a hydraulic actuation system of a friction clutch, and with a rotor of the electric motor Angle of rotation is monitored by an absolute measuring rotor position sensor.
  • DE 10 2013 207 317 A1 discloses a method for controlling an electric motor, in particular for actuating actuators in a motor vehicle, in which a momentary motor voltage is compared with a voltage limit before it is applied to the electric motor, and the voltage limit from a Impedance of the electric motor is derived.
  • a momentary motor voltage is compared with a voltage limit before it is applied to the electric motor, and the voltage limit from a Impedance of the electric motor is derived.
  • the invention is therefore based on the object of specifying a method for optimizing a drive dynamics of an electric motor, in which the thermal load of the electric motor is reduced.
  • the object is achieved in that an offset phase angle is added before each commutation to the measured phase angle and the sum phase angle of the commutation thus formed is used as the basis.
  • an offset phase angle to control the commutation becomes a Simulates the position of the rotor, which causes the control unit to set a higher rotational speed of the rotor at a given load.
  • the desired position of the rotor is reached faster, which represents an increase in the dynamics of the control. Since the motor current depends on the load, overheating of the output stages of the electric motor is reliably prevented.
  • the offset phase angle is determined as a function of an effective motor constant, which is calculated taking into account a maximum motor current which just allows a permanent thermal load on a final stage controlling the electric motor within a predetermined period of time. Due to the fact that different torque / motor current ratios are set by the offset phase angle, the motor current can be calculated or also measured.
  • the effective motor constant is assigned to an offset phase angle which is used to increase the sum phase angle of the next commutation to increase the drive dynamics of the electric motor. To prevent destruction of the final stage of the electric motor by a high motor current, the motor current is applied depending on the size in varying periods of time at the final stage of the electric motor.
  • effective motor constants are stored in the control unit as a function of offset phase angles in a look-up table.
  • the associated offset phase angle is read from the table and added to the measured phase angle for setting the sum phase angle. This allows a comfortable calculation, which requires little computing time.
  • a motor current for the commutation is calculated in a starting phase starting from a predetermined start offset phase angle, while for subsequent commutations the offset phase angle of the immediately preceding commutation is always taken as the basis for the calculation of the motor current. This always takes into account the instantaneous situation on the electric motor.
  • the maximum motor current allowed in a given period of time represents a current threshold value, which is compared with the motor current calculated on the basis of the effective motor constant, and falls below it of the current threshold value, an addition of the offset phase angle to the measured phase angle is carried out by the calculated motor current. This ensures that it is checked before each commutation process whether the calculated motor current does not exceed the maximum permitted motor current, which prevents overheating of the output stage.
  • the offset phase angle is set to zero when the rotor of the electric motor has a low rotational speed.
  • the presence of a low rotational speed allows conclusions to be drawn that the rotor is working in the area of a reversal of rotation, where high current fluctuations occur.
  • the influencing of the commutation by the current fluctuations produced by acceleration or deceleration of the rotor is prevented by setting the offset phase angle to zero for a predetermined short time, so that the motor current can weaken again before the next commutation.
  • an engine flow exceeding the maximum motor current is applied to the electric motor in a pulsating manner in short periods of time.
  • the drive dynamics of the electric motor is further improved.
  • the short drive and the power amplifier loading high currents can be used, since due to the short period of concern, a thermal load on the power amplifier is limited.
  • the shorter the time period the higher the motor current exceeding the maximum motor current. This reliably prevents overheating of the output stage.
  • the offset phase angle set according to the effective motor constant is set to be pulsating. This also contributes to a dynamic increase for a specific actuator application and thus a faster actuation of the actuator is achieved.
  • FIG. 1 is a block diagram of a drive system in the form of a hydraulic
  • Actuation system for a friction clutch shows a representation of the output stage of an electric motor
  • FIG. 6 shows a possible course of the load over time with and without the method according to the invention
  • FIG. 7 shows a possible course of the rotational speed over time with and without the method according to the invention
  • FIG. 6 shows a possible course of the load over time with and without the method according to the invention
  • FIG. 7 shows a possible course of the rotational speed over time with and without the method according to the invention
  • Fig. 10 look-up table with exemplary numerical values
  • the drive system 1 is shown in the form of a hydraulic actuation system 2 for a friction clutch 3, as provided for example in duplicate to a respective friction clutch 1 of a dual clutch transmission with two partial transmissions in a drive train 1 of a motor vehicle.
  • the actuating system 2 includes a housing 4, in which a pressure piston 5 is axially displaced axially from the rotor 6 of an electronically commutated electric motor 7 with the interposition of a transmission 8 for converting the rotational movement of the rotor 6 of the electronically commutated electric motor 7.
  • the electronically commutated electric motor 7 is driven by a control unit 9, wherein the electric motor 7 has an output stage 10.
  • the control unit 9 controls the commutation of the electric motor 7 on the basis of the rotor position sensor 1 1 supplied rotation angle cpo , which is arranged opposite the rotor 6 frontally.
  • the slave cylinder 13 Via a pressure line 12, the slave cylinder 13 is acted upon by the pressure generated by the pressure piston 5 during an axial displacement in the housing 4, whose piston actuates the pressure plate of the friction clutch 3.
  • the electronically commutated electric motor 7 has three coil bodies acted upon by a current in three phases U, V, W, which are energized one after the other by means of the phases U, V, W, so that a magnetic alternating field is commutated, which couples the pole pairs to the rotor 6 repels and thus forces a rotation of the rotor 6.
  • the control unit 9 is in a memory not shown a
  • FIG. 2 shows an electric motor 7, which is connected to the output stage 10. Furthermore, the output stage 10 is connected to a power supply 20, which is also positioned in the control unit 9.
  • the electric motor 7 is actuated by the control unit 9 by means of a block commutation, which means that the electric motor 7 is driven so that always one of the phases U, V, W of the electric motor 7 is de-energized while the other two phases U, V, W are energized.
  • the phases U, V, W are tapped at center taps of the output stage 10.
  • the output stage 10 is designed as a bridge circuit with electronic switching elements.
  • B-bridge six electronic switching elements 14, 15, 16, 17, 18, 19 are provided, which are advantageously designed as field effect transistors.
  • the field effect transistors are electronically commutated, thereby generating a rotating field.
  • the field effect transistors are only shown as switches. Between the switches 14 and 15, the phase U, between the switches 16 and 17, the phase V and between the switches 18 and 19, the phase W of the electric motor 7 is tapped.
  • Fig. 3 the dependence of the current flowing through the output stage 10 motor current I over the time t is shown.
  • the time intervals are decisive for ensuring that the output stage 10 is not overheated when the maximum motor current I is present.
  • a maximum motor current of 10 amps can be used indefinitely almost at all outside temperatures T, without destroying the field effect transistors 14, 15, 16, 17, 18, 19.
  • Higher motor currents of about 20 amperes, for example, at ambient temperatures T above 0 ° C only to 0.4 seconds at the output stage 10 without problems.
  • Motor currents up to 50 amperes may only be applied at temperatures T below 0 ° C at the output stage 10, if destruction of the power amplifier 10 is to be prevented.
  • N N number of inductors of the electric motor, Lmot inductance.
  • each effective motor constant K ee ff is electrically associated with an offset phase angle cp 0 ff in degrees.
  • the calculation is based on a not to be exceeded maximum motor current of 10 amperes, which is drawn as threshold i hold zoom. If the calculated motor current i_theo is smaller than the limit i hold. If this is the case, then a phase angle cpo is measured by the rotor position sensor 11. At this phase angle ⁇ 0 , an offset phase angle cp 0 ff is added, which is added by means of a newly determined effective modulus.
  • torkonstante ee ff K is determined from the lookup table.
  • the new effective motor constant K e _eff is determined on the assumption from equation (1) that the maximum motor current to be achieved is 10 amperes.
  • This new summation phase angle cps thus formed by addition is given to the control unit 9 for setting the next commutation.
  • the control unit 9 is simulated a phase angle cps, which is thus actually absent. Due to the thus adjusted changing torque-motor current ratio, a maximum rotational speed of the rotor 6 is achieved with reduced torque to take the desired rotor position.
  • the actual phase angle cpo assumed by the rotor 6 is again measured by the rotor position sensor 11.
  • the offset phase angle cp 0ff is set to zero and the pre-control described is suppressed. Also set to zero, the offset phase angle co ff , if by short-term strong fluctuations in the motor current I, a high dynamic change is displayed, which can be done for example by acceleration or braking operations of the electric motor 7. This occurs in particular when the electric motor 7 makes a change of direction.
  • the offset phase angle (o ff is set to zero until the strong fluctuations in the motor current have subsided, and the described pre-commutation method is then restarted.
  • the maximum motor current exceeds Motor current applied pulsating to the electric motor 7. It is assumed that the motor current can be varied in height and is not limited to a maximum motor current of 10 A. The time intervals in which the motor current exceeding the maximum motor current is applied to the electric motor 7 are shorter, the higher the excess motor current. If, for example, a maximum motor current i hold of 20, 30 or 40 amperes is set as the threshold value, the effective motor constant k ee ff and the offset phase angle cp 0 ff are adjusted so that an increasing motor current is present for the set time interval. In a next phase of the commutation, when the theoretical motor current i_theo is greater than the threshold value i hold, the threshold value i hold is reset.
  • FIGS. 4 to 8 show different characteristic curves over time.
  • FIG. 4 shows the effective motor constant K ee ff over time
  • FIG. 5 shows the commutation angle cps over time
  • FIG. 6 shows the load N over time
  • FIG. 7 shows the rotational speed n of the rotor 6 over time
  • FIG. 8 the theoretically calculated motor current i_theo over time.
  • the curve A denotes the corresponding parameters without the correction of the phase angle
  • the curve B shows a phase angle correction at a low load
  • curve C shows a continuously executed phase angle correction
  • the curve D illustrates the phase angle correction with pulsed motor current. It can be seen that the angular correction with pulsed dynamics brings the best improvement in the rotational speed of the rotor 6 and a rapid bringing the rotor 6 to the desired position entails.
  • Fig. 9 the average motor current applied to the electric motor 7 is shown for different time intervals. As shown, the considered activity time is assured by the use of the existing pilot strategy, considering the maximum motor current limit for the MOSFETs 14, 15, 16, 17, 18, 19 included in the final stage 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Verwendung in einem hydrostatischen Kupplungsaktor eines Kraftfahrzeuges, bei welchem eine Kommutierung von mehreren Polpaaren des Elektromotors (7) in Abhängigkeit von einer Stellung eines Rotors (6) des Elektromotors (7) erfolgt, wobei die Stellung des Rotors (6) aus einem Phasenwinkel (φ 0) abgeleitet wird, welchen der Rotor (6) zu einem Stator des Elektromotors (7) einnimmt und welcher von einem Sensor (11) gemessen und an eine Steuereinheit (9) weitergeleitet wird, welche in Abhängigkeit des Phasenwinkels (φ 0) die Kommutierung steuert. Bei einem Verfahren wird vor jeder Kommutierung zu dem gemessenen Phasenwinkel (φ 0) ein Offsetphasenwinkel (φ off) hinzu addiert und der so gebildete Summenphasenwinkel (φ S) der Kommutierung zu Grunde gelegt.

Description

Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Anwendung in einem hydrostatischen Kupplungsaktor eines
Kraftfahrzeuges
Die Erfindung betrifft ein Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Anwendung in einem hydrostatischen
Kupplungsaktor eines Kraftfahrzeuges, bei welchem eine Kommutierung von mehreren Polpaaren des Elektromotors in Abhängigkeit von einer Stellung eines Rotors des Elektromotors erfolgt, wobei die Stellung des Rotors aus einem Phasenwinkel abgelei- tet wird, welchen der Rotor zu einem Stator des Elektromotors einnimmt und welcher von einem Sensor gemessen und an eine Steuereinheit weitergeleitet wird, welche in Abhängigkeit des Phasenwinkels die Kommutierung steuert.
Aus der DE 10 201 1 086 583 A1 ist ein Verfahren zur Überprüfung einer Kommutierungsgüte eines elektronisch kommutierenden Elektromotors bekannt, welcher mehre- re Phasen in einem Antriebssystem eines Kraftfahrzeuges, insbesondere in einem hydraulischen Betätigungssystem einer Reibungskupplung, aufweist und mit einem Rotor des Elektromotors, dessen Drehwinkel durch einen absolut messenden Rotorlagesensor überwacht wird.
Die DE 10 2013 207 317 A1 offenbart ein Verfahren zur Ansteuerung eines Elektro- motors, insbesondere zur Betätigung von Aktoren in einem Kraftfahrzeug, bei welchem eine momentane Motorspannung mit einem Spannungsgrenzwert verglichen wird, bevor diese an den Elektromotor angelegt wird, und der Spannungsgrenzwert aus einer Impedanz des Elektromotors abgeleitet wird. Dadurch erfolgt eine Begrenzung des maximal zulässigen Motorstromes, um die Endstufen des Elektromotors vor Zerstörung zu schützen.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors anzugeben, bei welchem die thermische Belastung des Elektromotors reduziert wird.
Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass vor jeder Kommutierung zu dem gemessenen Phasenwinkel ein Offsetphasenwinkel hinzu addiert wird und der so gebildete Summenphasenwinkel der Kommutierung zu Grunde gelegt wird. Durch die Verwendung eines Offset-Phasenwinkels zur Steuerung der Kommutierung wird eine Position des Rotors simuliert, die die Steuereinheit zur Einstellung einer höheren Rotationsgeschwindigkeit des Rotors bei einer vorgegebenen Last veranlasst. Dadurch wird die gewünschte Position des Rotors schneller erreicht, was eine Erhöhung der Dynamik der Ansteuerung darstellt. Da der Motorstrom von der Last abhängt, wird ei- ne Überhitzung der Endstufen des Elektromotors zuverlässig unterbunden.
Vorteilhafterweise wird der Offset-Phasenwinkel in Abhängigkeit einer effektiven Motorkonstanten bestimmt, welche unter Berücksichtigung eines maximalen Motorstromes berechnet wird, der eine dauerhafte thermische Belastung einer, den Elektromotor ansteuernden Endstufe in einem vorgegebenen Zeitraum gerade noch erlaubt. Aufgrund der Tatsache, dass durch den Offset-Phasenwinkel unterschiedliche Drehmoment/Motorstrom-Verhältnisse eingestellt werden, kann der Motorstrom berechnet oder auch gemessen werden. Die effektive Motorkonstante wird einem Offset- Phasenwinkel zugeordnet, welcher zur Erhöhung des Summenphasenwinkels der nächsten Kommutierung verwendet wird, um die Ansteuerdynamik des Elektromotors zu erhöhen. Um eine Zerstörung der Endstufe des Elektromotors durch einen zu hohen Motorstrom zu verhindern, wird der Motorstrom je nach Größe in variierenden Zeiträumen an der Endstufe des Elektromotors angelegt.
In einer Ausgestaltung werden in der Steuereinheit effektive Motorkonstanten in Abhängigkeit von Offset-Phasenwinkeln in einer Lookup-Tabelle abgespeichert. Somit wird je nach berechneter effektiver Motorkonstante aus der Tabelle der zugeordnete Offset-Phasenwinkel ausgelesen und zur Einstellung des Summenphasenwinkels zu dem gemessenen Phasenwinkel hinzu addiert. Dies ermöglicht eine komfortable Kalkulation, die wenig Rechenzeit benötigt wird.
In einer Weiterbildung wird in einer Startphase ausgehend von einem vorgegebenen Start-Offset-Phasenwinkel ein Motorstrom für die Kommutierung berechnet, während für darauf folgende Kommutierungen immer der Offset-Phasenwinkel der unmittelbar vorhergehenden Kommutierung der Berechnung des Motorstromes zugrunde gelegt wird. Dadurch wird immer die augenblickliche Situation an dem Elektromotor berücksichtigt. In einer Variante stellt der maximale, in einem vorgegebenen Zeitraum erlaubte Motorstrom einen Stromschwellwert dar, welcher mit dem, auf der Grundlage der effektiven Motorkonstante berechneten Motorstrom verglichen wird und bei Unterschreitung des Stromschwellwertes durch den berechneten Motorstrom eine Addition des Offset- Phasenwinkels zum gemessenen Phasenwinkel ausgeführt wird. Somit wird sichergestellt, dass vor jedem Kommutierungsvorgang geprüft wird, ob der berechnete Motorstrom auch den maximal erlaubten Motorstrom nicht überschreitet, wodurch eine Überhitzung der Endstufe verhindert wird.
In einer Ausführungsform wird der Offset-Phasenwinkel auf null gesetzt, wenn der Rotor des Elektromotors eine niedrige Rotationsgeschwindigkeit aufweist. Das Vorhandensein einer niedrigen Rotationsgeschwindigkeit lässt Rückschlüsse darauf zu, dass der Rotor im Bereich eines Drehrichtungswechsels arbeitet, wo hohe Stromschwan- kungen auftreten. Die Beeinflussung der Kommutierung durch die, durch Beschleunigung oder Abbremsen des Rotors erzeugten Stromschwankungen wird durch Setzung des Offset-Phasenwinkels auf null für eine vorgegebene kurze Zeit unterbunden, damit sich der Motorstrom vor der nächsten Kommutierung wieder abschwächen kann.
In einer Weiterbildung wird ein, den maximalen Motorstrom übersteigender Motor- ström pulsierend in kurzen Zeiträumen an den Elektromotor angelegt. Mit Hilfe dieser Pulsationen wird die Ansteuerdynamik des Elektromotors weiter verbessert. Dabei können aufgrund der kurzen Ansteuerung auch die Endstufe belastenden hohen Ströme verwendet werden, da aufgrund des kurzen Zeitraumes des Anliegens eine thermische Belastung der Endstufe begrenzt wird. Vorteilhafterweise ist der Zeitraum umso kürzer ausgebildet, je höher der den maximalen Motorstrom übersteigende Motorstrom ist. Dadurch wird ein Überhitzen der Endstufe zuverlässig verhindert.
In einer Ausgestaltung wird der entsprechend der effektiven Motorkonstante eingestellte Offset-Phasenwinkel pulsierend eingestellt. Auch das trägt dazu bei, dass für eine spezielle Aktoranwendung eine Dynamik erhöht und somit eine schnellere Betätigung des Aktors erreicht wird.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen: Fig. 1 ein Blockschaltbild eines Antriebssystems in Form eines hydraulischen
Betätigungssystems für eine Reibungskupplung, Fig. 2 eine Darstellung der Endstufe eines Elektromotors,
Fig. 3 eine abstrahierte Darstellung des maximal zulässigen Motorstromes über der zeit,
Fig. 4 ein möglicher Kennlinienverlauf der Motorkommutierung über der Zeit mit und ohne dem erfindungsgemäßen Verfahren,
Fig. 5 ein möglicher Kennlinienverlauf eines kommutierten Summenphasen- winkels über der Zeit mit und ohne dem erfindungsgemäßen Verfahren,
Fig. 6 ein möglicher Verlauf der Last über der Zeit mit und ohne dem erfindungsgemäßen Verfahren, Fig. 7 ein möglicher Verlauf der Drehzahl über der Zeit mit und ohne dem erfindungsgemäßen Verfahren,
Fig. 8 ein möglicher Verlauf des Motorstromes über der Zeit mit und ohne dem erfindungsgemäßen Verfahren,
Fig. 9 ein möglicher Verlauf des gemittelten Motorstromes über der Zeit mit und ohne dem erfindungsgemäßen Verfahren,
Fig. 10 Lookup-Tabelle mit beispielhaften Zahlenwerten
Gleiche Merkmale sind mit gleichen Bezugszeichen gekennzeichnet.
In Fig. 1 ist das Antriebssystem 1 in Form eines hydraulischen Betätigungssystems 2 für eine Reibungskupplung 3 dargestellt, wie es beispielsweise in zweifacher Ausführung zu jeweils einer Reibungskupplung 1 eines Doppelkupplungsgetriebes mit zwei Teilgetrieben in einem Antriebsstrang 1 eines Kraftfahrzeuges vorgesehen ist. Das Betätigungssystem 2 enthält ein Gehäuse 4, in dem ein Druckkolben 5 von dem Rotor 6 eines elektronisch kommutierten Elektromotors 7 unter Zwischenschaltung eines Getriebes 8 zur Wandlung der Drehbewegung des Rotors 6 des elektronisch kommutierten Elektromotors 7 in eine Axialbewegung axial verlagert wird.
Der elektronisch kommutierte Elektromotor 7 wird von einem Steuergerät 9 angesteuert, wobei der Elektromotor 7 eine Endstufe 10 aufweist. Das Steuergerät 9 steuert die Kommutierung des Elektromotors 7 aufgrund der, von einem absolut messen- den Rotorlagesensor 1 1 gelieferten Drehwinkel cpo, der dem Rotor 6 frontal gegenüberliegend angeordnet ist.
Über eine Druckleitung 12 wird mittels des, vom Druckkolben 5 während einer Axialverlagerung im Gehäuse 4 erzeugten Druckes der Nehmerzylinder 13 beaufschlagt, dessen Kolben die Anpressplatte der Reibungskupplung 3 betätigt.
Der elektronisch kommutierte Elektromotor 7 verfügt über drei, von einem Strom in drei Phasen U, V, W beaufschlagte Spulenkörper, die nacheinander mittels der Phasen U, V, W bestromt werden, so dass ein magnetisches Wechselfeld kommutiert wird, das die Polpaare am Rotor 6 abstößt und damit eine Drehung des Rotors 6 er- zwingt. In dem Steuergerät 9 ist in einem nicht weiter dargestellten Speicher eine
Kommutierungstabelle abgelegt. Fig. 2 zeigt einen Elektromotor 7, der mit der Endstufe 10 verschaltet ist. Des Weiteren ist die Endstufe 10 mit einer Spannungsversorgung 20 verbunden, welche ebenfalls im Steuergerät 9 positioniert ist. Im Betrieb der Reibungskupplung 3 wird der Elektromotor 7 von dem Steuergerät 9 mittels einer Block- kommutierung angesteuert, was bedeutet, dass der Elektromotor 7, so angesteuert wird, dass immer eine der Phasen U, V, W des Elektromotors 7 stromlos geschaltet ist, während die anderen beiden Phasen U, V, W bestromt werden. Wie aus Fig. 2 ersichtlich, werden die Phasen U, V, W an Mittelabgriffen der Endstufe 10 abgegriffen. Die Endstufe 10 ist dabei als Brückenschaltung mit elektronischen Schaltelementen ausgebildet. Bei der im vorliegenden Fall vorhandenen B-Brücke sind sechs elektronische Schaltelemente 14, 15, 16, 17, 18, 19 vorhanden, die vorteilhafterweise als Feldeffekttransistoren ausgebildet sind. Bei der Verwendung eines bürstenlosen Gleichstrommotors als Elektromotor 7 werden die Feldeffekttransistoren elektronisch kommutiert und dadurch ein Drehfeld erzeugt. Der Einfachheit halber sind die Feldef- fekttransistoren nur als Schalter dargestellt. Zwischen den Schaltern 14 und 15 wird die Phase U, zwischen den Schaltern 16 und 17 die Phase V und zwischen den Schaltern 18 und 19 die Phase W des Elektromotors 7 abgegriffen.
In Fig. 3 ist die Abhängigkeit des durch die Endstufe 10 fließenden Motorstromes I über der Zeit t dargestellt. Daraus ist ersichtlich, dass die, die Feldeffekttransistoren 14, 15, 16, 17, 18, 19 umfassende Endstufe 10 bei vorgegebenen Außentemperaturen T nur in begrenzten Zeitintervallen mit unterschiedlichen Motorströmen belastbar ist. Die Zeitintervalle sind entscheidend dafür, dass die Endstufe 10 bei einem anliegenden maximalen Motorstrom I nicht überhitzt wird. So ist beispielsweise ein maximaler Motorstrom von 10 Ampere annähernd bei allen Außentemperaturen T unbegrenzt nutzbar, ohne die Feldeffekttransistoren 14, 15, 16, 17, 18, 19 zu zerstören. Höhere Motorströme von etwa 20 Ampere können beispielsweise bei Außentemperaturen T über 0°C nur bis 0,4 Sekunden an der Endstufe 10 problemlos anliegen. Motorströme bis 50 Ampere dürfen nur bei Temperaturen T unter 0°C an der Endstufe 10 anliegen, wenn eine Zerstörung der Endstufe 10 verhindert werden soll.
Um die Ansteuerdynamik des Elektromotors 7 bei einer vorgegebenen Last in Abhän- gigkeit von dem maximalen Motorstrom zu optimieren, wird vorgeschlagen, vor jeder Kommutierung einen aktuellen Motorstrom i_theo zu berechnen. Diese Berechnung erfolgt nach der Formel
Figure imgf000008_0001
wobei
Ubat Motorspannung, Ke_eff Motorkonstante,
ω Drehzahl
N Anzahl der Induktivitäten des Elektromotors, Lmot Induktivität.
Dieser Formel liegt eine effektive Motorkonstante Ke eff zugrunde, welche beim Start des Kalkulationsvorganges festgesetzt wird. In einer Lookup-Tabelle, die in der Steuereinheit 9 abgespeichert ist, sind jeder effektiven Motorkonstanten Ke eff ein Offset- Phasenwinkels cp0ff in Grad elektrisch zugeordnet. Der Kalkulation liegt dabei ein nicht zu überschreitender maximaler Motorstrom von 10 Ampere zugrunde, welcher als Schwellwert i hold heran gezogen wird. Ist der kalkulierte Motorstrom i_theo kleiner ist als der Grenzwert i hold. Ist dies der Fall, so wird ein Phasenwinkel cpo durch den Rotorlagesensor 1 1 gemessen. Zu diesem Phasenwinkel φ0 wird ein Offset- Phasenwinkel cp0ff hinzu addiert, welcher mittels einer neu bestimmten effektiven Mo- torkonstante Ke eff aus der Lookup-Tabelle bestimmt wird. Die neue effektive Motorkonstante Ke_eff wird dabei unter der Annahme aus Gleichung (1 ) ermittelt, dass der zu erreichende maximale Motorstrom 10 Ampere beträgt. Diesem so durch Addition gebildeten neuen Summenphasenwinkel cps wird dem Steuergerät 9 zur Einstellung der nächsten Kommutierung vorgegeben. Dadurch wird dem Steuergerät 9 ein Phasenwinkel cps simuliert, der so tatsächlich nicht vorhanden ist. Aufgrund des sich somit einstellenden geänderten Drehmoment-Motorstrom-Verhältnisses wird eine maximale Rotationsgeschwindigkeit des Rotors 6 bei reduziertem Drehmoment erreicht, um die gewünschte Rotorposition einzunehmen. Zur Einstellung des nächsten Kommutierungsschrittes wird der tatsächlich von dem Rotor 6 eingenommene Phasenwinkel cpo wieder durch den Rotorlagesensor 1 1 gemessen. Darüber hinaus wird wiederum geprüft, ob der theoretische Motorstrom i_theo, welcher jetzt unter Zuhilfenahme der effektiven Motorkonstanten Ke eff aus dem unmittelbar vorhergehenden Kalkulationsschritt gemäß Gleichung (1 ) berechnet wird, kleiner ist als der Schwellwert i hold. Ist der so berechnete theoretische Motorstrom i_theo kleiner ist als der maximale Motorstromschwei I wert i hold (10A), wird eine neue effektive Motorkonstante Ke eff berechnet, welcher aus der Lookup-Tabelle ein neuer Offset-Phasenwinkel cp0ff zugeordnet wird. Eine derartige Lookup-Tabelle ist in Fig. 10 beispielhaft dargestellt. Diese effektive Motorkonstante Ke eff erlaubt somit ei- nen Motorschwell wert von 10A. Dieser Vorgang wiederholt sich vor jedem neuen Kommutierungsschritt.
Wird allerdings festgestellt, dass eine Rotationsgeschwindigkeit des Rotors 6 sehr klein ist, so wird der Offset-Phasenwinkel cp0ff auf null gesetzt und die beschriebene Vorsteuerung unterbunden. Ebenfalls auf null gesetzt wird der Offset-Phasenwinkel c off, wenn durch kurzfristige starke Schwankungen des Motorstromes I ein hoher Dynamikwechsel angezeigt wird, was beispielsweise durch Beschleunigungs- oder Bremsvorgänge des Elektromotors 7 erfolgen kann. Dies tritt insbesondere dann auf, wenn der Elektromotor 7 einen Richtungswechsel vornimmt. Der Offset-Phasenwinkel ( off wird dabei solange auf null gesetzt, bis die starken Schwankungen des Motor- Stroms abgeklungen sind. Anschließend wird das beschriebene Vorkommutierungsverfahren wieder gestartet.
Um die Dynamik der Motorsteuerung weiter zu verbessern, wird auf der Grundlage des vorbeschriebenen Verfahrens ein, den maximalen Motorstrom übersteigender Motorstrom pulsierend an den Elektromotor 7 angelegt. Dabei wird davon ausgegangen, dass der Motorstrom in seiner Höhe variiert werden kann und nicht auf einen maximalen Motorstrom von 10 A begrenzt ist. Die Zeitintervalle, in welchen der, den maximalen Motorstrom übersteigende Motorstrom an dem Elektromotor 7 anliegt, sind umso kürzer, je höher der übersteigende Motorstrom ist. Wird z.B. ein maximaler Motorstrom i hold von 20, 30 oder 40 Ampere als Schwellwert eingestellt, werden die effektive Motorkonstante ke eff und der Offset-Phasenwinkel cp0ff so justiert, dass für das eingestellte Zeitintervall ein anwachsender Motorstrom vorhanden ist. In einer nächsten Phase der Kommutierung, wenn der theoretische Motorstrom i_theo größer ist als der Schwellwert i hold ist, wird der Schwellwert i hold zurückgesetzt.
In den Figuren 4 bis 8 sind verschiedene Kennlinien über der Zeit aufgenommen. So zeigt Fig. 4 die effektive Motorkonstante Ke eff über der Zeit, Fig. 5 den Kommutierungswinkel cps über der Zeit, Fig. 6 die Last N über der Zeit, Fig. 7 die Drehgeschwindigkeit n des Rotors 6 über der Zeit und Fig. 8 den theoretisch berechneten Motor- ström i_theo über der Zeit. Dabei bezeichnet die Kurve A die entsprechenden Parameter ohne die Korrektur des Phasenwinkels, die Kurve B zeigt eine Phasenwinkel- korrektur bei einer geringen Last, Kurve C zeigt eine kontinuierlich ausgeführt Phasenwinkel korrektur, während die Kurve D die Phasenwinkelkorrektur mit gepulstem Motorstrom verdeutlicht. Daraus ist ersichtlich, dass die Winkelkorrektur mit gepulster Dynamik die beste Verbesserung der Rotationsgeschwindigkeit des Rotors 6 bringt und ein schnelles Heranführen des Rotors 6 an die gewünschte Position nach sich zieht.
In Fig. 9 wird der durchschnittliche Motorstrom, der an dem Elektromotor 7 anliegt, für unterschiedliche Zeitintervalle dargestellt. Wie gezeigt, ist die betrachtete Aktivitätszeit gesichert durch den Gebrauch der vorhandenen Vorsteuerstrategie, wobei die maximale Motorstrombegrenzung für die, in der Endstufe 10 enthaltenen MOSFETs 14, 15, 16, 17, 18, 19 betrachtet wird.
Mit dem vorgeschlagenen Verfahren wird die Dynamik der Ansteuerung des Elektromotors 7 unter Berücksichtigung der Größe des Motorstromes verbessert. Bezugszeichenliste
1 Antriebssystem
Hydraulisches Betätigungssystem
Reibungskupplung
Gehäuse
5 Druckkolben
6 Rotor
7 Elektromotor
8 Getriebe
9 Steuergerät
10 Endstufe
1 1 Rotorlagesensor
12 Druckleitung
13 Nehmerzylinder
14 Schalter
15 Schalter
16 Schalter
17 Schalter
18 Schalter
19 Schalter
20 Spannungsversorgung
cpo gemessener Phasenwinkel
( off Offset-Phasenwinkel
cps Summenphasenwinkel
i theo Motorstrom i hold maximaler Motorstrom Ke_eff effective Motorkonstante T Außentemperatur

Claims

Patentansprüche
Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Verwendung in einem hydrostatischen Kupplungsaktor eines Kraftfahrzeuges, bei welchem eine Kommutierung von mehreren Polpaaren des Elektromotors (7) in Abhängigkeit von einer Stellung eines Rotors (6) des Elektromotors (7) erfolgt, wobei die Stellung des Rotors (6) aus einem Phasenwinkel (φ0) abgeleitet wird, welchen der Rotor (6) zu einem Stator des Elektromotors (7) einnimmt und welcher von einem Sensor (1 1 ) gemessen und an eine Steuereinheit (9) weitergeleitet wird, welche in Abhängigkeit des Phasenwinkels (cpo) die Kommutierung steuert, dadurch gekennzeichnet, dass vor jeder Kommutierung zu dem gemessenen Phasenwinkel (cpo) ein Offsetphasenwinkel (cp0ff) hinzu addiert wird und der so gebildete Summenphasenwinkel (cps) der Kommutierung zu Grunde gelegt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Offset- Phasenwinkel (cp0ff) in Abhängigkeit einer effektiven Motorkonstante (Ke eff) bestimmt wird, welche unter Berücksichtigung eines maximalen Motorstromes (i hold) bestimmt wird, der eine dauerhaft thermische Belastung einer, den Elektromotor (7) ansteuernden Endstufe (10) in einem vorgegebenen Zeitraum gerade noch erlaubt.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in der Steuereinheit effektive Motorkonstanten (Ke eff) in Abhängigkeit von Offset- Phasenwinkeln (cpeff) in einer Lookup-Tabelle abgespeichert werden.
Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass in einer Startphase ausgehend von einem vorgegebenen Start-Offset-Phasenwinkel ein Motorstrom (i_theo) für die Kommutierung berechnet wird, während für darauf folgende Kommutierungen immer der Offset-Phasenwinkel (cp0ff) der unmittel- bar vorhergehenden Konnnnutierung der Berechnung des Motorstromes (i_theo) zugrunde gelegt wird.
5. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der maximale, in einem vorgegebenen Zeitraum erlaubte Motorstrom (i hold) einen Stromschwellwert darstellt, welcher mit dem, auf der Grundlage der effektiven Motorkonstanten (Ke eff) berechneten Motorstrom (i_theo) verglichen wird und bei Unterschreitung des Stromschwellwertes durch den berechneten Motorstrom (i_theo) eine Addition des Offsetphasenwinkels (c off) zum gemessenen Phasenwinkel (cpo) ausgeführt wird.
6. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Offset-Phasenwinkel (cp0ff) auf null gesetzt wird, wenn der Rotor (6) des Elektromotors (7) eine niedrige Rotationsgeschwindigkeit aufweist.
7. Verfahren nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Motorstrom (i_theo) pulsierend in kurzen Zeiträumen an den Elektromotor (7) angelegt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass der Zeitraum umso kürzer ausgebildet ist, je höher der maximale Motorstrom (i hold) ist.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass der entsprechend der effektiven Motorkonstante (Ke eff) eingestellte Offset-Phasenwinkel (cpoff) pulsierend eingestellt wird.
PCT/DE2015/200510 2014-12-11 2015-11-19 Verfahren zur optimierung einer ansteuerdynamik eines elektromotors, vorzugsweise zur anwendung in einem hydrostatischen kupplungsaktor eines kraftfahrzeuges WO2016091255A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017531294A JP6667529B2 (ja) 2014-12-11 2015-11-19 好適には自動車の流体静力式クラッチアクチュエータにおいて使用される、電動機の駆動制御運動特性を最適化するための方法
KR1020177015360A KR20170094181A (ko) 2014-12-11 2015-11-19 바람직하게 자동차의 정유압 클러치 액추에이터에 사용하기 위한, 전동기의 주행 다이내믹을 최적화하기 위한 방법
CN201580066912.1A CN107005182B (zh) 2014-12-11 2015-11-19 用于优化电动机的控制动态性、优选用于在机动车的静液压的离合器执行器中使用的方法
DE112015005537.1T DE112015005537A5 (de) 2014-12-11 2015-11-19 Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Anwendung in einem hydrostatischen Kupplungsaktor eines Kraftfahrzeuges

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014225534.1A DE102014225534B3 (de) 2014-12-11 2014-12-11 Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Anwendung in einem hydrostatischen Kupplungsaktor eines Kraftfahrzeuges
DE102014225534.1 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016091255A1 true WO2016091255A1 (de) 2016-06-16

Family

ID=54549094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/200510 WO2016091255A1 (de) 2014-12-11 2015-11-19 Verfahren zur optimierung einer ansteuerdynamik eines elektromotors, vorzugsweise zur anwendung in einem hydrostatischen kupplungsaktor eines kraftfahrzeuges

Country Status (5)

Country Link
JP (1) JP6667529B2 (de)
KR (1) KR20170094181A (de)
CN (1) CN107005182B (de)
DE (2) DE102014225534B3 (de)
WO (1) WO2016091255A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017214637A1 (de) * 2017-08-22 2019-02-28 Robert Bosch Gmbh Verfahren zum Betrieb eines elektronisch kommutierten Elektromotors
DE102017121829A1 (de) * 2017-09-20 2019-03-21 Minebea Mitsumi Inc. Verfahren zum Betreiben eines sensorlos, elektronisch kommutierten, mehrphasigen Elektromotors
DE102022101507A1 (de) 2022-01-24 2023-07-27 Schaeffler Technologies AG & Co. KG Verfahren zur Regelung eines Generator-Drehmoments eines Generators eines elektrischen Antriebssystems für ein muskelkraftbetriebenes Fahrzeugs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237814A1 (en) * 2009-03-20 2010-09-23 Zhongshan Broad-Ocean Motor Co., Ltd. Method for controlling brushless dc motor
DE102010001427A1 (de) * 2010-02-01 2011-08-04 Robert Bosch GmbH, 70469 Sensoreinheit zur Befestigung an einer elektrischen Maschine sowie Motorsystem
DE102011086583A1 (de) 2011-11-17 2013-05-23 Schaeffler Technologies AG & Co. KG Verfahren zur Überprüfung einer Kommutierungsgüte eines elektronisch kommutierten Elektromotors
DE102013207317A1 (de) 2012-05-15 2013-11-21 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Elektromotors, insbesondere zur Betätigung von Aktoren in einem Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272877A (ja) * 1986-05-16 1987-11-27 Mitsubishi Heavy Ind Ltd インバ−タ装置
JP3399156B2 (ja) * 1995-05-29 2003-04-21 株式会社デンソー ブラシレスdcモータの制御装置
US7436139B2 (en) * 2003-01-29 2008-10-14 Matra Manufacturing & Services Sas Phase advance angle optimization for brushless motor control
US7821217B2 (en) * 2006-05-22 2010-10-26 Black & Decker Inc. Electronically commutated motor and control system employing phase angle control of phase current
JP4165598B2 (ja) * 2006-11-02 2008-10-15 トヨタ自動車株式会社 電動過給機
JP4654217B2 (ja) * 2007-04-25 2011-03-16 日立オートモティブシステムズ株式会社 永久磁石モータの弱め界磁制御装置及びそれを用いた電動パワーステアリング
DE102008052144B4 (de) * 2008-10-20 2024-01-25 Sew-Eurodrive Gmbh & Co Kg Synchronmaschine und Verfahren zum Betreiben einer Synchronmaschine
JP5225252B2 (ja) * 2009-11-12 2013-07-03 本田技研工業株式会社 車両の駆動源停止制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100237814A1 (en) * 2009-03-20 2010-09-23 Zhongshan Broad-Ocean Motor Co., Ltd. Method for controlling brushless dc motor
DE102010001427A1 (de) * 2010-02-01 2011-08-04 Robert Bosch GmbH, 70469 Sensoreinheit zur Befestigung an einer elektrischen Maschine sowie Motorsystem
DE102011086583A1 (de) 2011-11-17 2013-05-23 Schaeffler Technologies AG & Co. KG Verfahren zur Überprüfung einer Kommutierungsgüte eines elektronisch kommutierten Elektromotors
DE102013207317A1 (de) 2012-05-15 2013-11-21 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines Elektromotors, insbesondere zur Betätigung von Aktoren in einem Kraftfahrzeug

Also Published As

Publication number Publication date
DE112015005537A5 (de) 2017-08-17
JP6667529B2 (ja) 2020-03-18
KR20170094181A (ko) 2017-08-17
CN107005182A (zh) 2017-08-01
CN107005182B (zh) 2020-01-03
JP2018500868A (ja) 2018-01-11
DE102014225534B3 (de) 2015-12-10

Similar Documents

Publication Publication Date Title
EP1314240A1 (de) Lüfteranordnung
DE102012216891A1 (de) Gerät zum Antreiben eines bürstenlosen Motors und Verfahren zum Antreiben eines bürstenlosen Motors
WO2011124346A2 (de) Verfahren zum ansteuern eines optimalen betriebspunktes bei einer synchronmaschine und eine umrichtergespeiste synchronmaschine
WO2012003825A2 (de) Verfahren zum abgleich eines phasen versatzes zwischen einem rotorlagesensor und der rotorlage eines elektrisch kommutierten motors
DE102014225534B3 (de) Verfahren zur Optimierung einer Ansteuerdynamik eines Elektromotors, vorzugsweise zur Anwendung in einem hydrostatischen Kupplungsaktor eines Kraftfahrzeuges
WO2018072907A1 (de) Verfahren zum temperatur-derating von elektrischen maschinen
EP2988980B1 (de) Kraftfahrzeug mit generatorlastabhängiger motorsteuerung
DE112017005029T5 (de) Steuervorrichtung und Verfahren für bürstenlosen Motor
EP1683260B1 (de) Ansteuerung eines elektromotors mit kontinuierlicher einstellung des kommutierungswinkels
DE102007003771A1 (de) Adaptive Steuerungsvorrichtung einer Betätigungsvorrichtung, insbesondere einer Kupplung oder eines Getriebes
EP3737847A1 (de) Verfahren zur steuerung und regelung einer brennkraftmaschine mit generator und asynchronmaschine, steuer- und regeleinrichtung sowie brennkraftmaschine
WO2019011375A1 (de) Verfahren zur leckageerkennung mittels eines aktuators
DE102004030326B4 (de) Elektronisch kommutierter Motor
DE102020104384A1 (de) Verfahren zum Starten eines Elektromotors
EP2160831B1 (de) Verfahren und schaltungsanordnung zum betreiben eines bürstenlosen gleichstrommotors
DE102017223189A1 (de) Mehrpumpenanlage und Verfahren zu deren Betrieb
EP3152829B1 (de) Verfahren und vorrichtung zur steuerung eines betriebs eines elektromotors
DE102016209179A1 (de) Automatische Optimierung eines Betriebsparameters einer elektrischen Maschine
EP3115651B1 (de) Hydrostatisches getriebe, fahrantrieb mit dem getriebe und verfahren zur steuerung des getriebes
DE102009018390B4 (de) Kupplungssteuervorrichtung
EP1870999B1 (de) Verfahren zum Betreiben einer Pumpe mit einer elektronisch kommutierenden elektrischen Maschine
EP3598631B1 (de) Verfahren zum betrieb einer elektrisch kommutierten maschine und elektrisch kommutierte maschine
EP3718202B1 (de) Verfahren zum betreiben einer antriebseinrichtung für ein kraftfahrzeug sowie entsprechende antriebseinrichtung für ein kraftfahrzeug
DE102013222539A1 (de) Verfahren und Vorrichtung zum Betreiben einer permanent-angeregten Synchronmaschine
EP3664278A1 (de) Verfahren zur netzsynchronisation einer permanenterregten drehstrommaschine mit einem thyristoren umfassenden sanftstarter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015360

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017531294

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005537

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015005537

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831131

Country of ref document: EP

Kind code of ref document: A1