WO2016091022A1 - 一种子模块分布式控制方法、装置和系统 - Google Patents

一种子模块分布式控制方法、装置和系统 Download PDF

Info

Publication number
WO2016091022A1
WO2016091022A1 PCT/CN2015/093086 CN2015093086W WO2016091022A1 WO 2016091022 A1 WO2016091022 A1 WO 2016091022A1 CN 2015093086 W CN2015093086 W CN 2015093086W WO 2016091022 A1 WO2016091022 A1 WO 2016091022A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
control device
module
valve control
bridge arm
Prior art date
Application number
PCT/CN2015/093086
Other languages
English (en)
French (fr)
Inventor
丁久东
田杰
董云龙
李海英
曹冬明
刘海彬
卢宇
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to ES15866788T priority Critical patent/ES2834852T3/es
Priority to KR1020177015115A priority patent/KR101842012B1/ko
Priority to EP15866788.1A priority patent/EP3232555B1/en
Priority to RU2017119026A priority patent/RU2649973C1/ru
Priority to DK15866788.1T priority patent/DK3232555T3/da
Priority to US15/528,100 priority patent/US9876420B2/en
Priority to CA2970423A priority patent/CA2970423C/en
Publication of WO2016091022A1 publication Critical patent/WO2016091022A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4833Capacitor voltage balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits

Definitions

  • the invention belongs to the technical field of power electronics, and in particular relates to a distributed control method, device and system for sub-modules.
  • the bridge arm of this type of topology adopts the form of cascading of basic operating units, avoiding a large number of switching devices directly connected in series, and there is no problem of driving consistency, etc., which greatly reduces the technical barrier of direct current transmission.
  • the topology disperses the energy in the capacitance of each sub-module of the bridge arm, how to quickly realize the equalization control of the capacitance voltage of each sub-module during operation is one of the difficulties.
  • the sub-module voltage equalization strategy usually adopts the sub-module capacitor voltage sequencing strobe method.
  • the number of bridge arm sub-modules is too large, the time cost of the sorting algorithm is too large, and the load ratio of the valve control device is too high, and As the voltage level increases, the number of sub-modules (number of links) increases accordingly, and the time overhead of the sorting algorithm increases geometrically.
  • Patent CN201210451946 proposes "a sub-module group equalization control method for a modular multi-level converter", which averages sub-modules, calculates the total voltage of each group and calculates the energy balance factor of each group, thereby calculating Get the number of submodules that each group needs to invest.
  • This algorithm requires an average grouping, and does not take into account the dynamic variation of the number of normal sub-modules such as sub-module fail-through in the running process; in addition, the method of calculating the energy balance factors of each group by using the total voltage of each group results in normal groups of each group. Number of modules When the difference is large, the sub-module voltage is diverged, and the calculated number of input sub-modules may be greater than the number of normal sub-modules.
  • the object of the present invention is to provide a sub-module distributed control method, device and system, which avoids the problem that the load rate of the valve control device increases due to the increase of the number of links, and also avoids the hardware expansion of the valve control device. Cost and development cycle issues, while having excellent sub-module equalization effects.
  • a sub-module distributed control method is characterized in that all sub-modules of each bridge arm of the converter valve are divided into M groups, M ⁇ 1, and all sub-modules include a fault sub-module and a normal sub-module, and each group corresponds to all The number of submodules is equal or unequal, allowing the number of normal submodules in each group to change dynamically.
  • Each group corresponds to a valve control device, each valve control device operates independently, and the number of submodules input from the upper controller to the valve control device
  • the calculation steps for the number of submodule inputs are as follows:
  • the valve control device obtains the average voltage of the normal submodule under its jurisdiction Count the number of normal submodules And send it to the upper controller;
  • the upper controller collects the bridge arm current I arm and determines the direction
  • the upper controller governs one or more bridge arms of the converter valve.
  • the normal submodule is a submodule that can participate in normal switching.
  • the fault sub-module includes a bypass, a sub-module in a locked state, and an empty slot on the converter valve tower.
  • the charging direction in the step (3) refers to the arm current direction when the sub-module voltage rises
  • the discharging direction refers to the bridge arm current direction when the sub-module voltage drops.
  • the invention also provides a sub-module distributed control device, which comprises a direction determining unit, a weight solving unit, a selection switch unit, a bridge arm input calculation unit and a valve control device input calculation unit, wherein
  • the direction determining unit is configured to determine a direction according to the collected bridge arm current I arm ;
  • the weight solving unit is configured to calculate an average voltage of a normal submodule according to each valve control device Number of normal submodules And the direction of the bridge arm current is respectively determined as the weight B i of the valve control device under the jurisdiction, when the bridge arm current is the charging direction When the bridge arm current is in the discharge direction,
  • the selection switch unit is configured to select a weight B i of the valve control device under the control according to the determination result of the direction determining unit, and output the same to the valve control device to input into the calculation unit;
  • the valve control device is input to the calculation unit for counting the total number of submodules that the corresponding bridge arm should input according to the weight weight B i and the bridge arm input calculation unit Calculate the number of submodules invested by each valve control unit Where round is a rounding rounding function.
  • the invention also provides a sub-module distributed control system, comprising: a converter valve, an upper controller and a valve control device, wherein all sub-modules of each bridge arm of the converter valve are divided into M groups, M ⁇ 1 All sub-modules include fault sub-modules and normal sub-modules.
  • the number of all sub-modules corresponding to each group is equal or different, allowing the number of normal sub-modules of each group to change dynamically.
  • Each group corresponds to a valve control device, and each valve control The device is operated independently; the upper controller includes the sub-module distributed control device according to claim 7, and is configured to calculate the number of sub-module inputs and send the same to the valve control device.
  • the information of the number of normal sub-modules in each group is introduced in the weight, which can ensure that the number of input sub-modules calculated by each group does not exceed the number of normal sub-modules of the group.
  • Figure 1 is a diagram of a distributed control structure of a sub-module, in which VBC is a valve control device and SM is a sub-module;
  • FIG. 2 is a schematic diagram of a distributed control logic of a submodule
  • FIG. 3 is a schematic structural diagram of a sub-module distributed control device of the present invention.
  • a sub-module distributed control method which divides all sub-modules of each bridge arm of the converter valve into M Group, M ⁇ 1, all sub-modules include fault sub-modules and normal sub-modules.
  • the number of all sub-modules corresponding to each group can be equal or different, allowing the number of normal sub-modules of each group to change dynamically.
  • Each group corresponds to one valve.
  • the control device, each valve control device operates independently, and the number of sub-modules input from the upper controller to the valve control device is calculated. The calculation steps of the number of sub-module inputs are as follows:
  • the valve control device obtains the average voltage of the normal submodule under its jurisdiction Count the number of normal submodules And send it to the upper controller;
  • the upper controller collects the bridge arm current I arm and determines the direction
  • the upper controller can govern either a bridge arm of the converter valve or a plurality of bridge arms of the converter valve.
  • the above normal submodule is a submodule that can participate in normal switching.
  • the fault sub-module includes a bypass, a sub-module in a locked state, and an empty slot on the converter valve tower.
  • the charging direction refers to the arm current direction when the sub-module voltage rises
  • the discharging direction refers to the arm current direction when the sub-module voltage drops.
  • the invention also provides a sub-module distributed control device, as shown in FIG. 3, comprising a direction determining unit, a weight solving unit, a selection switch unit, a bridge arm input calculation unit, and a valve control device input calculation unit, among them
  • the direction determining unit is configured to determine a direction according to the collected bridge arm current I arm ;
  • the weight solving unit is configured to calculate an average voltage of a normal submodule according to each valve control device Number of normal submodules And the direction of the bridge arm current is respectively determined as the weight B i of the valve control device under the jurisdiction, when the bridge arm current is the charging direction When the bridge arm current is in the discharge direction,
  • the selection switch unit is configured to select a weight B i of the valve control device under the control according to the determination result of the direction determining unit, and output the same to the valve control device to input into the calculation unit;
  • the valve control device is input to the calculation unit for counting the total number of submodules that the corresponding bridge arm should input according to the weight weight B i and the bridge arm input calculation unit Calculate the number of submodules invested by each valve control unit Where round is a rounding rounding function.
  • the invention also provides a sub-module distributed control system, comprising: a converter valve, an upper controller and a valve control device, wherein all sub-modules of each bridge arm of the converter valve are divided into M groups, M ⁇ 1 All sub-modules include fault sub-modules and normal sub-modules.
  • the number of all sub-modules corresponding to each group is equal or different, allowing the number of normal sub-modules of each group to change dynamically.
  • Each group corresponds to a valve control device, and each valve control The device is operated independently; the upper controller includes the sub-module distributed control device of the present invention for calculating the number of sub-module inputs and delivering the same to the valve control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)

Abstract

一种子模块分布式控制方法、装置和系统,通过将每个桥臂的子模块分组,每组对应着一台阀控装置,上层控制装置根据桥臂电流、各组正常子模块的平均电压和数目计算出各组的权重,并结合相应桥臂应该投入的子模块数目计算出各组投入的子模块数目下发给阀控装置,阀控装置按照现有文献提供的均压策略和选通方法工作。

Description

一种子模块分布式控制方法、装置和系统 技术领域
本发明属于电力电子技术领域,特别涉及一种子模块分布式控制方法、装置和系统。
背景技术
随着电力电子技术的发展,基于模块化多电平换流器的柔性直流输电技术得到了极为广泛的关注和应用。该型拓扑的桥臂采用基本运行单元级联的形式,避免大量开关器件直接串联,不存在驱动一致性等问题,大幅降低了直流输电的技术壁垒。但由于该拓扑将能量分散存储在桥臂的各个子模块电容中,因此,如何在运行过程中快速实现各个子模块电容电压的均衡控制是其实现难点之一。
目前子模块均压策略通常采用子模块电容电压排序选通的方法,但当桥臂子模块数量过多,排序算法的时间开销占比过大,阀控装置的负载率过高,且随着电压等级的提高,子模块的数目(链接数)相应的提高,排序算法的时间开销将呈几何级增加。
另一方面,由于每个子模块都需要与阀控装置进行通讯,阀控装置与子模块的通讯接口也将随着链接数的增大而增大,而硬件的扩容会造成成本的大幅度提升,也会造成开发周期的提升,不利于阀控装置的扩容。
专利CN201210451946提出了“一种模块化多电平换流器的子模块分组均压控制方法”,该发明对子模块进行平均分组,计算各组总电压并计算各组的能量平衡因子,从而计算得到各组需要投入的子模块数目。这种算法要求平均分组,没有考虑到运行过程出现子模块故障旁路等正常子模块数目动态变化的情况;另外该发明用各组总电压计算各组能量平衡因子的方法会导致各组正常子模块数 目差别较大时子模块电压发散,并且可能导致计算得到的投入子模块数目大于正常子模块数目。
因此有必要寻找一种具备工程应用可行性的解决方案来降低阀控装置的负载率,提高阀控装置的可扩容性,且具有优异的子模块均压效果。
发明内容
本发明的目的,在于提供一种子模块分布式控制方法、装置和系统,避免因链接数的增加而带来的阀控装置负载率升高的问题,也避免阀控装置硬件扩容而带来的成本和开发周期问题,同时具有优异的子模块均压效果。
为了达成上述目的,本发明采用的技术方案是:
一种子模块分布式控制方法,其特征在于,将换流阀每个桥臂的所有子模块分为M组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目相等或者不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行,由上层控制器向阀控装置下发子模块投入数目,子模块投入数目的计算步骤如下:
(1)阀控装置求得所辖正常子模块的平均电压
Figure PCTCN2015093086-appb-000001
统计正常子模块的数目
Figure PCTCN2015093086-appb-000002
并上送给上层控制器;
(2)上层控制器采集桥臂电流Iarm并判断方向;
(3)上层控制器根据各阀控装置所辖正常子模块平均电压
Figure PCTCN2015093086-appb-000003
正常子模块数目
Figure PCTCN2015093086-appb-000004
以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时
Figure PCTCN2015093086-appb-000005
当桥臂电流为放电方向时,
Figure PCTCN2015093086-appb-000006
(4)上层控制器根据相应桥臂应该投入的总的子模块数目
Figure PCTCN2015093086-appb-000007
和各阀控装置的权重Bi计算各阀控装置投入的子模块数目
Figure PCTCN2015093086-appb-000008
其中round为四舍五入取整函数。
上述方案中,所述上层控制器管辖换流阀的一个或者多个桥臂。
上述方案中,所述正常子模块为可以参与正常投切的子模块。
上述方案中,所述故障子模块包括旁路、闭锁状态的子模块以及换流阀塔上的空槽位。
上述方案中,所有变量的下标i的取值范围为1~M。
上述方案中,步骤(3)中所述充电方向是指子模块电压上升时的桥臂电流方向,所述放电方向是指子模块电压下降时的桥臂电流方向。
本发明还提供一种子模块分布式控制装置,其特征在于包括方向判断单元、权重求解单元、选择开关单元、桥臂投入计算单元以及阀控装置投入计算单元,其中
所述方向判断单元用于根据所采集到的桥臂电流Iarm判断方向;
所述权重求解单元用于根据各阀控装置所辖正常子模块平均电压
Figure PCTCN2015093086-appb-000009
正常子模块数目
Figure PCTCN2015093086-appb-000010
以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时
Figure PCTCN2015093086-appb-000011
当桥臂电流为放电方向时,
Figure PCTCN2015093086-appb-000012
所述选择开关单元用于根据所述方向判断单元的判断结果,选择所辖阀控装置的权重Bi并输出给所述阀控装置投入计算单元;
所述阀控装置投入计算单元用于根据所述权重权重Bi以及所述桥臂投入计算单元计算得到的相应桥臂应该投入的总的子模块数目
Figure PCTCN2015093086-appb-000013
计算各阀控装置 投入的子模块数目
Figure PCTCN2015093086-appb-000014
其中round为四舍五入取整函数。
本发明还提供一种子模块分布式控制系统,其特征在于,包括换流阀、上层控制器以及阀控装置,其中,换流阀每个桥臂的所有子模块分为M组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目相等或者不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行;上层控制器中包括权利要求7所述的子模块分布式控制装置,用于计算子模块投入数目,并下发给所述阀控装置。
采用上述方案后,本发明的有益效果为:
(1)大幅度降低阀控装置的负载率,提高阀控装置的可靠性;
(2)避免阀控装置的硬件扩容,从而降低开发周期和开发成本;
(3)权重中引入了各组子模块平均电压信息,可以保证各组之间具有优异的均压效果。
(4)权重中引入了各组正常子模块数目的信息,可以保证各组计算得到投入子模块数目不超过该组正常子模块数目。
附图说明
图1是子模块分布式控制结构图,图中VBC为阀控装置,SM为子模块;
图2是子模块分布式控制逻辑示意图;
图3是本发明的子模块分布式控制装置结构示意图。
具体实施方式
以下将结合附图及具体实施例,对本发明的技术方案进行详细说明。
一种子模块分布式控制方法,通过将换流阀每个桥臂的所有子模块分为M 组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目可以相等也可以不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行,由上层控制器向阀控装置下发子模块投入数目,子模块投入数目的计算步骤如下:
(1)阀控装置求得所辖正常子模块的平均电压
Figure PCTCN2015093086-appb-000015
统计正常子模块的数目
Figure PCTCN2015093086-appb-000016
并上送给上层控制器;
(2)上层控制器采集桥臂电流Iarm并判断方向;
(3)上层控制器根据各阀控装置所辖正常子模块平均电压
Figure PCTCN2015093086-appb-000017
正常子模块数目
Figure PCTCN2015093086-appb-000018
以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时
Figure PCTCN2015093086-appb-000019
当桥臂电流为放电方向时,
Figure PCTCN2015093086-appb-000020
(4)上层控制器根据相应桥臂应该投入的总的子模块数目
Figure PCTCN2015093086-appb-000021
和各阀控装置的权重Bi计算各阀控装置投入的子模块数目
Figure PCTCN2015093086-appb-000022
其中round为四舍五入取整函数。
上述上层控制器既可以管辖换流阀的一个桥臂,也可以管辖换流阀的多个桥臂。
上述正常子模块为可以参与正常投切的子模块。
上述故障子模块包括旁路、闭锁状态的子模块以及换流阀塔上的空槽位。
上述所有变量的下标i的取值范围为1~M。
上述充电方向是指子模块电压上升时的桥臂电流方向,所述放电方向是指子模块电压下降时的桥臂电流方向。
本发明还提供一种子模块分布式控制装置,如图3所示,包括方向判断单元、权重求解单元、选择开关单元、桥臂投入计算单元以及阀控装置投入计算单元, 其中
所述方向判断单元用于根据所采集到的桥臂电流Iarm判断方向;
所述权重求解单元用于根据各阀控装置所辖正常子模块平均电压
Figure PCTCN2015093086-appb-000023
正常子模块数目
Figure PCTCN2015093086-appb-000024
以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时
Figure PCTCN2015093086-appb-000025
当桥臂电流为放电方向时,
Figure PCTCN2015093086-appb-000026
所述选择开关单元用于根据所述方向判断单元的判断结果,选择所辖阀控装置的权重Bi并输出给所述阀控装置投入计算单元;
所述阀控装置投入计算单元用于根据所述权重权重Bi以及所述桥臂投入计算单元计算得到的相应桥臂应该投入的总的子模块数目
Figure PCTCN2015093086-appb-000027
计算各阀控装置投入的子模块数目
Figure PCTCN2015093086-appb-000028
其中round为四舍五入取整函数。
本发明还提供一种子模块分布式控制系统,其特征在于,包括换流阀、上层控制器以及阀控装置,其中,换流阀每个桥臂的所有子模块分为M组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目相等或者不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行;上层控制器中包括本发明的子模块分布式控制装置,用于计算子模块投入数目,并下发给所述阀控装置。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (8)

  1. 一种子模块分布式控制方法,其特征在于,将换流阀每个桥臂的所有子模块分为M组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目相等或者不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行,由上层控制器向阀控装置下发子模块投入数目,子模块投入数目的计算步骤如下:
    (1)阀控装置求得所辖正常子模块的平均电压
    Figure PCTCN2015093086-appb-100001
    统计正常子模块的数目
    Figure PCTCN2015093086-appb-100002
    并上送给上层控制器;
    (2)上层控制器采集桥臂电流Iarm并判断方向;
    (3)上层控制器根据各阀控装置所辖正常子模块平均电压
    Figure PCTCN2015093086-appb-100003
    正常子模块数目
    Figure PCTCN2015093086-appb-100004
    以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时
    Figure PCTCN2015093086-appb-100005
    当桥臂电流为放电方向时,
    Figure PCTCN2015093086-appb-100006
    (4)上层控制器根据相应桥臂应该投入的总的子模块数目
    Figure PCTCN2015093086-appb-100007
    和各阀控装置的权重Bi计算各阀控装置投入的子模块数目
    Figure PCTCN2015093086-appb-100008
    其中round为四舍五入取整函数。
  2. 如权利要求1所述的一种子模块分布式控制方法,其特征在于所述上层控制器管辖换流阀的一个或者多个桥臂。
  3. 如权利要求1所述的一种子模块分布式控制方法,其特征在于所述正常子模块为可以参与正常投切的子模块。
  4. 如权利要求1所述的一种子模块分布式控制方法,其特征在于所述故障子模块包括旁路、闭锁状态的子模块以及换流阀塔上的空槽位。
  5. 如权利要求1所述的一种子模块分布式控制方法,其特征在于所有变量的下标i的取值范围为1~M。
  6. 如权利要求1所述的一种子模块分布式控制方法,其特征在于步骤(3)中所述充电方向是指子模块电压上升时的桥臂电流方向,所述放电方向是指子模块电压下降时的桥臂电流方向。
  7. 一种子模块分布式控制装置,其特征在于包括方向判断单元、权重求解单元、选择开关单元、桥臂投入计算单元以及阀控装置投入计算单元,其中
    所述方向判断单元用于根据所采集到的桥臂电流Iarm判断方向;
    所述权重求解单元用于根据各阀控装置所辖正常子模块平均电压
    Figure PCTCN2015093086-appb-100009
    正常子模块数目
    Figure PCTCN2015093086-appb-100010
    以及桥臂电流方向分别求出所辖阀控装置的权重Bi,当桥臂电流为充电方向时当桥臂电流为放电方向时,
    Figure PCTCN2015093086-appb-100012
    所述选择开关单元用于根据所述方向判断单元的判断结果,选择所辖阀控装置的权重Bi并输出给所述阀控装置投入计算单元;
    所述阀控装置投入计算单元用于根据所述权重权重Bi以及所述桥臂投入计算单元计算得到的相应桥臂应该投入的总的子模块数目
    Figure PCTCN2015093086-appb-100013
    计算各阀控装置投入的子模块数目
    Figure PCTCN2015093086-appb-100014
    其中round为四舍五入取整函数。
  8. 一种子模块分布式控制系统,其特征在于,包括换流阀、上层控制器以及阀控装置,其中,换流阀每个桥臂的所有子模块分为M组,M≥1,所有子模块包括故障子模块以及正常子模块,每组对应的所有子模块数目相等或者不等,允许每组正常子模块数目动态变化,每组对应着一台阀控装置,各台阀控装置独立运行;上层控制器中包括权利要求7所述的子模块分布式控制装置,用于计算子模块投入数目,并下发给所述阀控装置。
PCT/CN2015/093086 2014-12-11 2015-10-28 一种子模块分布式控制方法、装置和系统 WO2016091022A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
ES15866788T ES2834852T3 (es) 2014-12-11 2015-10-28 Procedimiento, dispositivo y sistema de control distribuido de submódulos
KR1020177015115A KR101842012B1 (ko) 2014-12-11 2015-10-28 서브 모듈 분배 제어, 방법, 장치 및 시스템
EP15866788.1A EP3232555B1 (en) 2014-12-11 2015-10-28 Sub-module distributed control method, device and system
RU2017119026A RU2649973C1 (ru) 2014-12-11 2015-10-28 Способ, устройство и система распределенного управления подмодулями
DK15866788.1T DK3232555T3 (da) 2014-12-11 2015-10-28 Fremgangsmåde, indretning og system til fordelt styring af undermodul
US15/528,100 US9876420B2 (en) 2014-12-11 2015-10-28 Sub-module distributed control method, device and system
CA2970423A CA2970423C (en) 2014-12-11 2015-10-28 Submodule distributed control method, device and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410768743.3 2014-12-11
CN201410768743.3A CN105743360B (zh) 2014-12-11 2014-12-11 一种子模块分布式控制方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2016091022A1 true WO2016091022A1 (zh) 2016-06-16

Family

ID=56106651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093086 WO2016091022A1 (zh) 2014-12-11 2015-10-28 一种子模块分布式控制方法、装置和系统

Country Status (10)

Country Link
US (1) US9876420B2 (zh)
EP (1) EP3232555B1 (zh)
KR (1) KR101842012B1 (zh)
CN (1) CN105743360B (zh)
CA (1) CA2970423C (zh)
DK (1) DK3232555T3 (zh)
ES (1) ES2834852T3 (zh)
PT (1) PT3232555T (zh)
RU (1) RU2649973C1 (zh)
WO (1) WO2016091022A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106452043B (zh) * 2016-12-01 2019-05-07 南京南瑞继保电气有限公司 一种子模块分布式充电方法
CN106877714B (zh) * 2017-04-27 2019-04-16 国家电网公司 一种模块化多电平换流器分层放电控制系统及方法
CN107783519A (zh) * 2017-09-29 2018-03-09 南京南瑞继保电气有限公司 一种换流阀控制保护系统架构
CN109818508B (zh) * 2017-11-20 2021-02-09 南京南瑞继保电气有限公司 一种柔性直流换流阀子模块电压控制方法及装置
CN110971132B (zh) * 2018-09-30 2023-10-20 西门子股份公司 模块化多电平换流器的控制系统、方法、装置和子模块
KR102639907B1 (ko) * 2021-01-27 2024-02-27 엘에스일렉트릭(주) 멀티레벨 컨버터 방식의 statcom 시스템 및 동작 방법
CN113193537B (zh) * 2021-05-17 2023-03-10 中国南方电网有限责任公司超高压输电公司广州局 柔性直流换流阀控制保护系统功率模块故障诊断方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102916592A (zh) * 2012-11-12 2013-02-06 华北电力大学 一种模块化多电平换流器的子模块分组均压控制方法
CN103280952A (zh) * 2013-04-23 2013-09-04 浙江大学 一种模块化多电平换流器的控制系统及其应用方法
JP2014042396A (ja) * 2012-08-22 2014-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 自励式電力変換装置
CN103929081A (zh) * 2014-04-14 2014-07-16 中国西电电气股份有限公司 一种用于模块化多电平换流器的子模块均压方法
CN104009663A (zh) * 2014-05-22 2014-08-27 南京南瑞继保电气有限公司 一种适用于大容量模块化多电平换流器及协调控制方法
CN104038052A (zh) * 2014-06-23 2014-09-10 上海交通大学 模块化多电平换流器快速电压均衡控制方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU983932A1 (ru) * 1981-04-29 1982-12-23 Chernikov Georgij B Устройство дл управлени высоковольтным тиристорным вентилем
EP1195877B1 (de) * 2000-10-06 2018-09-12 ABB Schweiz AG Stromrichtersystem mit durch einen Gleichspannungszwischenkreis verbundenen Stromrichtermodulen sowie Verfahren zum Betrieb
RU2178616C1 (ru) * 2000-12-05 2002-01-20 Ульяновский государственный технический университет Способ релейного управления m-фазным преобразователем на двухоперационных вентилях
US7157809B2 (en) 2002-09-12 2007-01-02 Toko, Inc. Method and circuits for inductive DC converters with current regulated output
US7498693B2 (en) * 2004-02-18 2009-03-03 Diversified Technologies, Inc. More compact and higher reliability power source system
US7851945B2 (en) * 2005-08-08 2010-12-14 Hewlett-Packard Development Company, L.P. System and method of providing power
US8832076B2 (en) * 2007-10-19 2014-09-09 Oracle International Corporation Search server architecture using a search engine adapter
JP5438935B2 (ja) * 2008-08-29 2014-03-12 株式会社東芝 短絡距離継電器
US7889525B2 (en) * 2009-03-25 2011-02-15 Intersil Americas Inc. System and method for phase dropping and adding
JP5676919B2 (ja) 2010-05-25 2015-02-25 株式会社東芝 電力変換装置
US20140091622A1 (en) * 2011-04-15 2014-04-03 Deka Products Limited Partnership Modular Power Conversion System
US8976554B2 (en) * 2012-09-18 2015-03-10 Siemens Corporation Control for fault-bypass of cascaded multi-level inverter
CN103199729B (zh) * 2013-04-10 2016-01-20 国家电网公司 一种模块化多电平变流器子模块分组阶梯波调制方法
DE102013212426A1 (de) * 2013-06-27 2014-12-31 Siemens Aktiengesellschaft Umrichteranordnung mit parallel geschalteten Mehrstufen-Umrichtern sowie Verfahren zu deren Steuerung
US9906057B2 (en) * 2014-10-09 2018-02-27 Nec Corporation Modular multilvel converter and control framework for hybrid energy storage
US9639105B2 (en) * 2014-11-18 2017-05-02 International Business Machines Corporation Thermal management in a multi-phase power system
US10389114B2 (en) * 2014-11-25 2019-08-20 The Boeing Company Regulated transformer rectifier unit for aircraft systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014042396A (ja) * 2012-08-22 2014-03-06 Toshiba Mitsubishi-Electric Industrial System Corp 自励式電力変換装置
CN102916592A (zh) * 2012-11-12 2013-02-06 华北电力大学 一种模块化多电平换流器的子模块分组均压控制方法
CN103280952A (zh) * 2013-04-23 2013-09-04 浙江大学 一种模块化多电平换流器的控制系统及其应用方法
CN103929081A (zh) * 2014-04-14 2014-07-16 中国西电电气股份有限公司 一种用于模块化多电平换流器的子模块均压方法
CN104009663A (zh) * 2014-05-22 2014-08-27 南京南瑞继保电气有限公司 一种适用于大容量模块化多电平换流器及协调控制方法
CN104038052A (zh) * 2014-06-23 2014-09-10 上海交通大学 模块化多电平换流器快速电压均衡控制方法

Also Published As

Publication number Publication date
CN105743360B (zh) 2018-01-19
CA2970423A1 (en) 2016-06-16
ES2834852T3 (es) 2021-06-18
CA2970423C (en) 2019-08-27
KR101842012B1 (ko) 2018-05-14
US20170317574A1 (en) 2017-11-02
EP3232555A4 (en) 2018-05-23
DK3232555T3 (da) 2020-12-07
KR20170066692A (ko) 2017-06-14
EP3232555B1 (en) 2020-09-09
EP3232555A1 (en) 2017-10-18
PT3232555T (pt) 2020-12-07
US9876420B2 (en) 2018-01-23
RU2649973C1 (ru) 2018-04-06
CN105743360A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2016091022A1 (zh) 一种子模块分布式控制方法、装置和系统
CN103337951B (zh) 一种基于载波移相调制的mmc冗余保护策略的实现方法
US20170163171A1 (en) Apparatus and method for controlling asymmetric modular multilevel converter
CN105429163B (zh) 一种直流输电系统换流阀触发角控制方法和控制系统
CN104112165A (zh) 基于多目标离散粒子群的智能配电网故障恢复方法
CN106558876B (zh) 一种交直流混合主动配电网的运行控制方法
CN105656330A (zh) 一种适用于高电平模块化多电平换流器的电容均压策略
CN114448228B (zh) 基于端口电压状态判别的直挂式储能变流器冗余控制方法及系统
CN104836457B (zh) 一种模块化多电平换流器电容电压分组平衡优化算法
CN111416357A (zh) 接入分布式电源的柔性多状态开关的功率潮流控制方法
CN108964151B (zh) 一种微电网网架结构设计方法及系统
CN110780132B (zh) 含多端直流系统的交直流电力系统节点可靠性检测方法
CN109103948A (zh) 城市轨道交通牵引变电所控制方法及系统
CN108767887B (zh) 高压直流输电的子模块电容电压预测校正方法
CN114063492B (zh) 供电系统整流模块的节能控制方法、控制装置及存储介质
CN109120174A (zh) 基于双子mmc模块的电容电压均衡方法
CN109818508B (zh) 一种柔性直流换流阀子模块电压控制方法及装置
CN109713670B (zh) 基于三端口柔性多状态开关的故障恢复控制优化方法
CN107482928A (zh) 一种高压直流输电用模块化多电平换流器及其控制方法
CN106505977A (zh) 一种脉冲展宽电路及脉冲展宽方法
CN105262122A (zh) 一种直流输电系统串联双阀组整流侧电压平衡控制方法
CN110098754A (zh) 一种考虑备用冗余的mmc冗余子模块有效利用率计算方法
CN207475206U (zh) 一种可重构变流装置
CN106026101A (zh) 双回线路统一潮流控制器及多断面潮流控制方法
CN109274283A (zh) 基于动态分层排序的控制mmc电容电压平衡的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866788

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15528100

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177015115

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2970423

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015866788

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017119026

Country of ref document: RU

Kind code of ref document: A